

1 Intranasal Delivery of shRNA to Knockdown the 5HT-2A receptor 2 Enhances Memory and Alleviates Anxiety

3
4
5 **Troy T. Rohn^{1,2*}, Dean Radin², Tracy Brandmeyer², Peter G. Seidler², Barry J. Linder²,**
6 **Tom Lytle², John L. Mee² and Fabio Macciardi^{2,3}**

7 **Affiliations**

8 ¹Troy T. Rohn, Department of Biological Sciences, Boise State University, Boise, Idaho,
9 83725, USA.

10 ²Cognigenics, 1372 S. Eagle Road, Suite 197, Eagle, Idaho, 83616, USA.

11 ³Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697,
12 USA

13 *** Correspondence:**

14 Troy T. Rohn

15 208-781-1163

16 trohn@boisestate.edu or troy.rohn@cognigenics.io

17

18 **Author Contributions:** TTR, DR, and FM, designed research, analyzed and interpreted data
19 and wrote the manuscript. All other authors reviewed the results and approved the final
20 version of the manuscript. All experiments were carried out independently by contract
21 research organizations (CROs).

22

23

24

25

26

27

28

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

29 **Short-hairpin RNAs (shRNA) targeting knockdown of specific genes hold enormous**
30 **promise for precision-based therapeutics to treat numerous neurodegenerative**
31 **disorders. However, whether shRNA constructed molecules can modify neuronal**
32 **circuits underlying certain behaviors has not been explored. We designed shRNA to**
33 **knockdown the human *HTR2A* gene *in vitro* using iPSC-differentiated neurons. Multi-**
34 **electrode array (MEA) results showed the knockdown of the 5HT-2A mRNA and**
35 **receptor protein led to a decrease in spontaneous electrical activity. *In vivo*, intranasal**
36 **delivery of AAV9 vectors containing shRNA resulted in a decrease in anxiety-like**
37 **behavior in mice and a significant improvement in memory in both mice (104%) and**
38 **rats (92%) compared to vehicle-treated animals. Our demonstration of a non-invasive**
39 **shRNA delivery platform that can bypass the blood-brain barrier has broad**
40 **implications for treating numerous neurological mental disorders. Specifically,**
41 **targeting the *HTR2A* gene presents a novel therapeutic approach for treating chronic**
42 **anxiety and age-related cognitive decline.**

43
44
45 Neurological disorders such as Alzheimer's disease (AD) and chronic anxiety are a major
46 public mental health challenge, affecting millions of people worldwide. However, despite
47 significant research efforts, there has been limited success in treating the symptoms
48 associated with these disorders. Precision-based therapeutics such as CRISPR/Cas9 and
49 RNA interference molecules offer a promising new approach to treating neurological and
50 neurodegenerative disorders. shRNA represents one class of RNA interference molecules
51 that has a mechanism based on the sequence-specific degradation of host mRNA through
52 cytoplasmic delivery and degradation of double-stranded RNA through the RISC pathway ¹,
53 ². Whereas CRISPR/Cas9 leads to permanent changes in the genome, shRNA induces

54 reversible gene silencing through a posttranslational regulatory process targeting degradation
55 of specific mRNAs. Besides being reversible, shRNA has also been widely used in research
56 for over a decade and there are currently four FDA-approved therapeutics that use shRNA to
57 treat rare metabolic disorders ³. Moreover, shRNA targets a specific mRNA sequence,
58 meaning it can potentially distinguish between closely related genes with high sequence
59 homology. However, whether shRNA could be used to modify certain behavioral traits within
60 the CNS has not been investigated.

61 Currently there is a great need for non-invasive methods of delivering gene therapy to the
62 brain. shRNA represents a potential powerful tool, but it is difficult to deliver to the brain
63 because of the blood-brain barrier (BBB). The BBB is a protective layer that prevents most
64 molecules from entering the brain ⁴. One way to overcome this challenge is to use adeno-
65 associated viral (AAV) vectors. AAV vectors are viruses that have been modified to be safe
66 and effective for gene delivery due to their ability to deliver stable, long-lasting transgene
67 expression in non-dividing cells ⁵.

68 We recently demonstrated that intranasal delivery of CRISPR/Cas9 encapsulated within
69 adeno-associated viral (serotype AAV9) vectors could bypass the BBB and lead to knockout
70 of the *HTR2A* gene in neuronal populations ⁶ (US Patent Application No. 63/283,150). The
71 *HTR2A* gene encodes for the 5HT-2A receptor, one of the fifteen serotonin receptor subtypes
72 expressed in the brain and is implicated in both anxiety disorders ^{7, 8} and memory ⁹⁻¹¹. In the
73 present study we designed a shRNA to knockdown the *HTR2A* gene and demonstrate a
74 decrease in spontaneous electrical activity in human iPSC-differentiated neurons *in vitro* as
75 well as enhanced memory and a reduction in anxiety in mice and rats *in vivo*. The
76 development of this non-invasive shRNA delivery platform, which is capable of bypassing the
77 blood-brain barrier, holds substantial implications for treatment of a wide spectrum of
78 neurological and neurodegenerative disorders. Specifically, the targeting of the *HTR2A* gene

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

79 emerges as a novel and promising therapeutic approach for addressing conditions such as
80 chronic anxiety, mild cognitive impairment, dementia, and possibly AD.

81

82 Materials and Methods

83 **Guide RNA and AAV9 vector design for CRISPR/Cas9 experiments.** Details on the
84 methods used to synthesize, design, and validate guide RNA (gRNA) and knockdown of the
85 mouse *HTR2A* gene have been previously reported ⁶. In brief, the selected gRNA,
86 TGCAATTAGGTGACGACTCGAGG (US Patent Application No. 63/283,150), would give no
87 predicted off-target cut sites, produce an 86.6% frameshift frequency, and a precision score
88 of 0.55. Two different adeno-associated virus serotype 9 (AAV9) vectors were designed to
89 deliver spCas9 and gRNA to CNS neurons. The design of two vectors was necessary based
90 on the limited carrying capacity of 4.7 kb for AA9 viruses ¹². We created dual AAV9 systems
91 to expand the capacity of an effective silencing of the target gene. The first AAV9 expressed
92 spCas9 under a neuronal-specific promoter, MeCP2, and the spCas9 vector utilized the
93 PX551 plasmid from Addgene (pAAV-pMecp2-SpCas9-spA) ¹³. The second AAV9 vector
94 consisted of the gRNA sequence and a green-fluorescence protein (GFP) reporter under the
95 U6 promoter (AAV-GFP-ssODN-U6-gRNA) ⁶. Titer load (in genome copy number per ml, or
96 GC/ml) was determined through quantitative real-time PCR, with typical yields giving 2.0 x
97 10¹³ GC/ml. Both AAV9 vectors were stored in phosphate buffered saline (PBS) with 5%
98 glycerol at -80°C until used. Design, manufacturing, and purification of the AAV9 vectors used
99 in this study were performed by Vector Biolabs (Malvern, PA).

100 **shRNA design and AAV9 vector design.** Different strategies were employed depending
101 on whether CRISPR/Cas9 or shRNA was utilized. For the CRISPR/Cas9 experiment, we

102 proceeded as described in the previous paragraph. For CNS delivery of shRNA, a similar
103 approach was undertaken, but in this case a single AAV9 vector was used. It consisted of a
104 single DNA plasmid containing the following target shRNA sequence to the human HTR2A
105 RNA: (US Provisional Patent Application Serial No. 63/470,150):

106 GCTGTTCTGAAGACAAAGAACTCTGGTTTGGCCACTGACTGACCAGAGTTCTGTCTTC
107 AGAA CAG

108 The human *HTR2A* gene consists of four exons that give rise to two major isoforms and is
109 found on chromosome 13. The predicted binding region of the primary RNA transcript for this
110 sequence is the beginning of exon 4, which would lead to the potential knockdown of all
111 possible isoforms (Fig. 1A). This specific shRNA sequence was chosen based upon validation
112 and screening of four different shRNA sequences. As shown in Fig. 1B, in contrast to the
113 empty vector control, Shmir#3 led to an 87% knockdown of the targeted RNA sequence. This
114 sequence included three elements necessary for the construction of the complete shRNA
115 molecule (**Supplementary Information, Figure 1**): 1) The targeting sequence
116 TCTGAAGACAAAGAACTCTG; 2) The stem-loop feature of the shRNA; 3) The passenger
117 strand. The RISC complex initially recognizes a double-stranded short interfering RNA, but
118 only one strand is finally retained in the functional ribonucleoprotein complex. The non-
119 incorporated strand, or ‘passenger’ strand, is removed during the assembly process and most
120 probably degraded thereafter ¹⁴. In addition to the human shRNA construct, a scrambled
121 control, AAV9-MeCP2-GFP-scrmb-shRNA, containing the identical target sequence but in
122 random order, was synthesized in an identical manner.

123 For construction of the mouse shRNA to target knock-down of the 5HT-2A receptor, a similar
124 approach was utilized. The mouse *HTR2A* gene encodes a single protein-coding transcript,
125 Htr2A-201 located on chromosome 14 (**Supplementary Information, Figure 1**). The

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

126 following sequence was used for assembly of the shRNA based on *in vitro* testing indicating
127 a 77% knockdown:

128 GCTGAGCACATCCAGGTAAATCCAGGTTTGGCCACGACTGACCTGGATTCTGGATG
129 TGCT CAG

130 No knockdown was observed with the empty vector control or a scrambled shRNAmir control
131 (**Supplementary Information, Figure 1**). For validation and screening, knockdown was
132 verified using HEK293 cells co-transfected with the cDNA plasmid containing the *HTR2A*
133 gene target. It is noteworthy that the designed shRNA target sequence for mice is 100%
134 conserved in the rat *HTR2A* gene, thus this same construct was used in our rat studies.

135 For all designed shRNA delivery subcloning of the shRNA was carried out in a modified pAAV
136 cis-plasmid under the neuronal-specific promoter, MeCP2. A reporter gene enhanced green
137 fluorescent protein (eGFP) was subcloned upstream of the shRNA sequence. AAV9 viral
138 large-scale transfection of plasmids was carried out in HEK293 cells and purified through a
139 series of CsCl centrifugations. Titer load (in genome copy number per ml, or GC/ml) was
140 determined through quantitative real-time PCR, with typical yields giving 1-2 x 10¹³ GC/ml. All
141 AAV9 vectors were stored in PBS with 5% glycerol at -80°C until used. Design,
142 manufacturing, and purification of AAV9 vectors used in this study were performed by Vector
143 Biolabs (Malvern, PA).

144

145 **Culturing of human iPSC differentiated neurons.**

146 Human iPSC differentiated cortical glutamatergic neurons were cultured for
147 immunocytochemistry (ICC), PCR analysis, and functional measurements using a multi-

148 electrode array (MEA) assay. Seeding density on 24-well Axion MEA plates was carried out
149 at 90K/well to obtain confluent monocultures. Post thaw viability was 91.6%. Cells were
150 thawed in seeding medium (**Supplementary Information, Table 1**) and then plated in 10 μ l
151 droplets at 90K/well, incubated at 37 °C for 20 minutes, and then 490 μ L of seeding media
152 was gently added to each well. On day 4 *in vitro*, a 500 μ L media addition was performed with
153 Day 4 Medium (**Supplementary Information, Table 2**). From day 7 to day 28 a 50% media
154 change was performed every 3-4 days with Maintenance Medium (**Supplementary**
155 **Information, Table 3**).

156 **Immunocytochemistry of human iPSC differentiated cortical glutamatergic neurons**

157 A select group of cortical glutamatergic neurons were cultured and treated with scrambled or
158 hu-HTR2A shRNA test articles (MOI 1.0x10⁴-1.0x10⁶) for an endpoint evaluation using ICC
159 and GFP fluorescence to determine an optimal multiplicity of infection (MOI). Neurons were
160 cultured in a 96-well plate format for a minimum of 10 days and the GFP signal was observed
161 to determine optimal MOI of hu-HTR2A shRNA. Additionally, immunocytochemistry targeting
162 the 5HT-2A receptor was performed and images were reviewed to determine the appropriate
163 antibodies and dilutions. Based on these preliminary studies, we chose the human specific
164 5HT-2A antibody from ThermoFisher PA5-120747 at 1:50 with secondary Goat Anti-Rabbit
165 Fluor555 at 1:1000 using a MOI of 3 x10⁵. For ICC, at 10 days *in vitro*, immunocytochemistry
166 was initiated to stain for the 5HT-2A receptor. Wells were washed with 100 μ L of 1X DPBS
167 (PBS) for 5 minutes followed by fixation in 50 μ L of 4% Paraformaldehyde (PFA) for 10
168 minutes. Once fixed, wells were rinsed twice with PBS for 5 minutes each and then blocked
169 in 50 μ L of 2.5% Donkey Serum (DS)/0.1% Triton in PBS for 10 minutes. After the blocking
170 step was completed, 50 μ L of blocking solution containing 5HT-2A receptor primary
171 antibodies in PBS containing 2.5% DS and 0.1% Triton was added and left at 4°C overnight.
172 Following overnight incubation in primary antibody, the primary antibody solution was

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

173 removed, and target wells were rinsed twice with PBS. Next, a 5% DS in PBS was added to
174 wells for 10 minutes. Following primary removal the secondary antibody solution containing
175 Fluor 647 anti-chicken, Fluor 555 anti-rabbit, and Hoechst 40045 in a 5% DS in PBS was
176 added to each well. Wells containing the secondary antibody solution were incubated at
177 ambient temperature for 45 minutes protected from light. Once incubation was complete,
178 wells were washed three times with PBS and imaging began. Additional fixed wells were
179 stained with antibodies within 1 week to acquire additional reference images. Plates were
180 stored at 4°C. Imaging was completed using a BioTek® LionHeart FX using 4X, 10X, or 20X
181 objectives and excitation at 365nm, 465nm, 523nm, and 590nm. Phase contrast imaging was
182 also completed using the same imaging system. Regions of interest (ROI) were identified
183 within each MOI group to select regions showing clear neuron morphology and representative
184 images were acquired.

185

186 **Functional assay using multi-electrode array (MEA) on monocultures of human iPSC 187 differentiated glutamatergic neurons**

188 Cells were thawed in seeding medium and plated at 90K/well on a CytoView MEA 24-White
189 Plate as described above. Three different conditions were tested in quadruplicate starting at
190 Day 0 (first day of plating): 1) Vehicle control consisting of PBS only; 2) Scrambled AAV9
191 shRNA at MOI of 3×10^5 ; 3) hu-HTR2A shRNA at MOI 3×10^5 . Electrophysiological recordings
192 were acquired three times per week following day 5 *in vitro* on the Axion Maestro Edge
193 Platform. Each plate consisted of 24-wells with 16 electrodes in a 4x4 grid/well for a 384-
194 channel configuration. The Maestro Edge was equilibrated to 37 °C and 5% CO₂ prior to an
195 MEA plate being placed on the instrument. Each plate was then equilibrated for 15 minutes,
196 after which a 15-minute recording was taken from plate 92-0232 from Day 3 until day 30. The

197 Day 14 recording showed an overwhelming anomaly in the signal, in every well on every
198 electrode, indicating interference. Due to the interference, the data from this recording was
199 excluded from analysis. Raw data files (*.raw) and spike files (*.spk) were recorded using the
200 software AxIS Navigator (s 1.5.1.17) on the Spontaneous Neural Configuration setting.
201 Neuronal spikes were detected using an adaptive thresholding set to 6 times standard
202 deviation (6SD) of the mean noise level. Each *.spk was loaded into Neural Metric Tool
203 (Version 2.4.12, Axion Biosystems) for data analysis (*.csv) and to obtain spike raster plots.
204 Active electrodes (AEs) were defined as >1 spikes/min. Bursting electrodes were defined
205 using inner spike interval (ISI) parameters set to a minimum number of spikes of 5 per ISI
206 event and maximum ISI of 100 milliseconds (ms). Network bursting was extracted using the
207 minimum of 50 spikes and 35% of electrodes.
208 Each graph, mean firing rate (MFR), electrode and network Bursting, and Synchrony Index,
209 was generated using data from *.csv files in the software Origin (Pro), version 2022. All
210 culturing and characterization of iPSC neurons as well as immunohistochemistry and MEA
211 analysis were performed by BrainXell (Madison, WI, USA).

212

213 **Quantitative real-time qPCR**

214 A select group of human iPSC differentiated cortical glutamatergic neurons were cultured and
215 treated with scrambled AAV9, hu-HTR2A shRNA AAV9, or D-PBS vehicle with an endpoint
216 of collecting cell pellets. The neurons were cultured in a 24-well plate, with AAV added to the
217 wells within one hour of seeding at a density 200K/well. Cells were cultured to 16 days *in*
218 *vitro*, at which time they were dissociated from the wells and pelleted via centrifugation.
219 Pelleted cells were immediately frozen at -80C. Total RNA was extracted from frozen cells
220 using a standard extraction protocol with Trizol, dissolved in DEPC-treated deionized water

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

221 and quantified. Following reverse transcription, qPCR was carried out using the following
222 primers:

223 **Primer Sequence (5'->3')** 1. **GAPDH** Forward: TGAAGGTCGGAGTCAACGGAT Reverse:
224 CCTGGAAGATGGTGATGGGAT 2. **HTR2A** Forward: CTTCCAGCGGTCGATCCATAG
225 Reverse: GCAGGACTCTTGCAGATGAC

226 The relative expression was determined by calculating the $2^{-\Delta\text{Ct}}$ value. The $2^{(-\text{ddCt})}$ value
227 was calculated and normalized to calculate a fold difference between the vehicle controls and
228 the AVV9-treated groups. The RNA extraction and qPCR were performed by Creative
229 Biogene (Shirley, NY, USA).

230 **Test formulation and intranasal administration for *in vivo* delivery.** For CRISPR/Cas9
231 T-maze alternation task behavioral studies, the AAV-treated group consisted of an equal
232 mixture of AAV9-gRNA-U6-GFP and AAV9-Mecp2-spCas9 suspended in 0.9% NaCl (saline).
233 The concentration of AAV9 stock mixture was $\sim 5.0 \times 10^{12}$ GC/ml for mice tested. For each
234 behavioral test, a new, independent batch of AAV9 vectors was synthesized and prepared
235 accordingly. The AAV cocktail was administered twice on day one (morning and afternoon)
236 5 weeks before the execution of the behavioral tests. For intranasal delivery of AVV, mice
237 were hand-restrained with the nose positioned to facilitate the dosing. A meniscus of AAV
238 solution droplet (10 μL per nostril) was then formed at the tip of the micropipette and presented
239 for inhalation in each of the nares of the mouse. Each mouse (N=15) received a total of 40 μL
240 of AAVs equivalent to $\sim 2 \times 10^{11}$ viral particles, whereas vehicle-treated animals (N=15)
241 received 40 μL of saline for each treatment following the same protocol.

242 To test shRNA targeted to knockdown the *HTR2A* gene *in vivo*, 100 μL of AAV9-MeCP2-
243 GFP-mHTR2A-shRNAmir at $1-2 \times 10^{13}$ GC/ML was mixed with 100 μL of saline. In that solution
244 the stock AAV9 was at $\sim 6.5 \times 10^{12}$ GC/ML. Animals (N= 15 for each group) were then dosed

245 with 40 μ l AAV9-MeCP2-GFP-mHTR2A-shRNA as a single 20 μ L dose (10 μ l per nostril)
246 twice on day 1, five weeks before the first trial. Thus, each mouse received a total of 40 μ l of
247 AAVs equivalent to 1-2 \times 10¹¹ viral particles. Vehicle treated animals received 40 μ l of saline
248 for each treatment. For both groups, mice were treated on day 1 and assessed behaviorally
249 5 weeks later, unless otherwise specified.

250

251 **Light dark behavioral test.** The light dark test was performed at one timepoint on the 5th
252 and 8th week after the treatment using 2-month-old CD-1 male mice. In this task, mice were
253 given a choice between exploring a brightly lit chamber or a dark chamber as a measure of
254 anxiety. The apparatus consisted of two PVC (polyvinylchloride) boxes (19 \times 19 \times 15 cm)
255 covered with Plexiglas. One of these boxes was darkened. The other box was illuminated by
256 a desk lamp placed above and providing an illumination of approximately 2000 Lux. An
257 opaque plastic tunnel (5 \times 7 \times 10 cm) separated the dark box from the illuminated one. A
258 camera linked to a video tracking system (Viewpoint, France) was used to monitor the
259 behavior of the mouse in the lit box. Animals were placed individually in the lit box, with their
260 heads directed towards the tunnel. The time spent in the lit box and the number of transitions
261 between the two boxes was recorded over a 5 min period after the first entry of the animal in
262 the dark box. The total walked distance in the lit box was also recorded. The apparatus was
263 cleaned between each animal using 70% alcohol. A total of 15 mice were used for each group.

264

265 **T-maze continuous alternation task (T-CAT).**

266 The T-maze continuous alternation task (T-CAT) is among the methods implemented to
267 evaluate the spatial exploratory performance in rats or mice ¹⁵. It relies on spatial and working
268 memory and is sensitive to various pharmacological manipulations affecting memory
269 processes. Exploratory studies performed at Neurofit SAS (Illkirch, France) indicate that

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

270 cognitive dysfunction occurs in aged male C57Bl6 mice (12 months old) and that this deficit
271 can be reversed by drugs with cognitive enhancing properties such as nicotine and donepezil.
272 The aim of this study was to investigate the potential cognitive enhancing properties of 5HT-
273 2A receptor knockdown using CRISPR/Cas9 on aged (12 months old) mice with an age-
274 dependent cognitive dysfunction. Aged male C57Bl6 mice (12 months old) were used and
275 randomly distributed to control or experimental groups (15 animals per group). The T-maze
276 consisted of 2 choice arms and 1 start arm mounted to a square center. Sliding doors were
277 provided to close specific arms during the forced choice alternation task. During the trials,
278 animal handling and the visibility of the operator were minimized as much as possible.
279 The experimental protocol for this task consists of a single session which starts with one
280 “forced-choice” trial, followed by 14 “free-choice” trials. In the first “forced-choice” trial, the
281 animal is confined 5 s in the start arm and then it is released while either the left or right goal
282 arm is blocked by closing the sliding door. Afterwards, mice negotiate the maze at will,
283 eventually entering the open goal arm and returning to the start position. Immediately after
284 the return of the animal to the start position, the left or right goal door is opened, and the
285 animal is allowed to choose freely between the left and right goal arm (“free choice” trials).
286 The animal is entered in an arm when it places its four paws in the arm. A session is
287 terminated, and the animal is removed from the maze as soon as 14 free-choice trials have
288 been performed or 15 min have elapsed, whichever occurs first. The apparatus is then
289 cleaned between each animal using 70% alcohol. The percent of spontaneous alternations
290 between the two arms is calculated as the number of spontaneous alternations divided by the
291 number of free-choice trials.

292

293 **Novel object recognition test.** The object recognition task is used to assess short-term
294 memory, intermediate-term memory, and long-term memory in rats ¹⁶. The task is based on
295 the natural tendency of rats to preferentially explore a novel versus a familiar object, which
296 requires memory of the familiar object. The time delay design allows for the screening of
297 compounds with potential cognitive enhancing properties to overcome the natural forgetting
298 process. To test whether shRNA-knockdown of the rat 5HT-2A receptor improved memory,
299 Wistar male rats (12 animals per group) were randomly assigned to two groups consisting of
300 vehicle (PBS) or AAV9-MeCP2-GFP-mHTR2A shRNA. Following administration of the
301 vehicle or AAV9 compound (see above), animals were assessed in this task at both 3 and 5
302 weeks later.

303 **The behavioral protocol consists of 4 steps:**

304 Step 1 - Habituation: 24 hours before the first trial, animals are habituated to the apparatus
305 for 15 min.

306
307 Step 2 -Acquisition: Object A is placed at the periphery of a central square (~30 x 30 cm).
308 Memory acquisition session lasts for 10 minutes.

309
310 Step 3 -Retention: 24 hours later, objects A (familiar) and B (novel) are placed at two
311 adjacent locations of the central square. The number of contacts and time spent in
312 contact with the objects are recorded.

313
314 Step 4 -Recognition: For each animal, the time taken to explore object A (t_A) and object B (t_B)
315 are used to create a recognition index (RI) determined as $RI = t_B/(t_A + t_B) \times 100$.

316
317 The arena and objects were cleaned with 70% alcohol between each rat test session.

318 These behavioral studies were performed by Neurofit SAS. All animal care and experimental
319 procedures were performed in accordance with institutional guidelines and were conducted
320 in compliance with French Animal Health Regulation.

321 For all behavioral studies, animals were keyed, and data were blinded until the end of
322 experiments.

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

323 **Tissue preparation.** Immediately following behavioral analysis, mice or rats were
324 anesthetized with 5% isoflurane/oxygen mixture and sacrificed by decapitation. Brains,
325 including the olfactory bulbs, were extracted, and fixed in 4% formalin for 48 hours and
326 transferred to vials containing 1% formalin in PBS buffer. Brain samples were stored at 4°C.
327 Alternatively, brains were flash frozen and stored at -80°C for RNA extraction and analysis by
328 PCR.

329

330 **Statistical analysis** Behavioral data were analyzed by independent sample t-tests using
331 JASP (Version 0.17.3, University of Amsterdam), and microelectrode array data were
332 analyzed via repeated measures ANOVAs using Statistica (Version 13.5, Tibco Software). All
333 data used in these tests were checked and found to conform to parametric assumptions.

334

335 **Quantitative real-time qPCR in mice or rat brain tissue**

336 Total mouse brain RNA was extracted from frozen brains using a standard extraction protocol
337 with Trizol, dissolved in DEPC-treated deionized water and quantified. Following reverse
338 transcription, qPCR was carried out using the following primers:

339 Prime-F: 5'-AGAGGAGCCACACAGGTCTC-3' and

340 Primer-R: 5'-ACGACAGTTGTCAATAAAGCAG-3'. The relative expression was determined
341 by calculating the $2^{-\Delta\text{ct}}$ value. RNA extraction and qPCR was contracted out to Creative
342 Biogene (Shirley, NY, USA).

343 The following primers were used:

344 Rat Htr2a-F: 5'-CACCGACATGCCTCTCCAT-3'

345 Rat Htr2a-R: 5'-AGGCCACCGGTACCCATAC-3'

346 Rat-GAPDH-F: 5'-TGGCCTCCAAGGAGTAAGAAC-3'

347 Rat-GAPDH-R: 5'-GGCCTCTCTCTTGCTCTCAGTATC-3'

348 **RNA Isolation Method**

349 Tissue samples were pulverized using a sterilized mortar and pestle in the presence of liquid
350 nitrogen. Samples were then transferred to a new, chilled tube and 1 mL of TRIzol reagent
351 was added and thoroughly mixed. After the incubation period, 0.2 mL of chloroform was
352 introduced to each tube. Subsequently, the samples were centrifuged at 12,000 x g for 15
353 minutes at a temperature of 4°C. RNA was transferred to a new tube and 0.5 mL of
354 isopropanol was added to this aqueous phase and incubated for 10 minutes at 4°C. RNA
355 pellets were then resuspended in 1 mL of 75% ethanol. After brief vortexing, the samples
356 were centrifuged again at 7500 x g for 5 minutes at 4°C, and the supernatant was removed
357 with a micropipette. The RNA pellet air dried for a period of 5 to 10 minutes. Finally, the dried
358 RNA pellet was resuspended in a volume of 20 to 50 µL of RNase-free water.

359 **qPCR Method**

360 For the qPCR process, 2 µg of total RNA was utilized, and cDNA was synthesized according
361 to the kit manufacturer's recommendations. This cDNA solution was then diluted by adding a
362 9-fold volume of water. For setting up the qPCR reaction, 17 µL of the master mix was
363 dispensed into each well of a 96-well plate using a multichannel pipette. Separately, 3 µL of
364 cDNA was added to each well. Each well, therefore, contained 5 µL of cDNA from different
365 samples, 0.2 µL of a qPCR Primer Mix at 10 µM concentration, 10 µL of SYBR GREEN Mix
366 at 2x concentration, and 4.8 µL of water, bringing the total volume to 20 µL. Samples were
367 run at 95°C for 5 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 60
368 seconds.

369

370 **Immunohistochemical fluorescence microscopy.** Following dehydration, 4 µm paraffin-
371 embedded, sagittal sections were cut just lateral to the midline and used for
15

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

372 immunofluorescence labeling. Briefly, all tissue sections were labeled with anti-GFP antibody
373 (rabbit mAB #2956) 1:1,000 (Cell Signaling Technology, Inc., Danvers, MA, USA) or anti-
374 5HT-2A receptor antibody (rabbit polyclonal, #24288) at 1:500 dilution (Immunostar, Hudson,
375 WI). Secondary antibodies were conjugated to FITC or Cy3. DAPI was used as a nuclear
376 stain. Whole slide scanning was performed using a Pannoramic Midi II scanner using a 40X
377 objective lens with optical magnification of 98X, 0.1 μ m/pixel. All sectioning, immunolabeling,
378 and capturing of images was contracted out to iHisto (Salem, MA).

379

380 **ImageJ quantification.** The level of 5HT2A receptor fluorescence was quantified using
381 ImageJ software. This was accomplished by capturing 2X immunofluorescence images from
382 three separate tissue sections from each group (vehicle control or AAV-treated). All data were
383 expressed as the mean gray value \pm SEM. The mean gray value reflects the sum of the gray
384 values of all the pixels in the selected area divided by the number of pixels. The area of
385 selection in square pixels was identical between vehicle-controls and AAV-treated for all
386 analyses.

387

388

389 **Results**

390

391 ***Delivery platform of htr2a-shRNA utilizing adeno-associated viruses***

392 *In vitro* analysis of designed shRNAs indicated efficient knockdown of the mouse/rat (77%)
393 and human form (87%) mRNA. Following validation of both shRNAs, we developed an *in vivo*
394 delivery platform for these reagents. Adeno-associated viruses (AAVs) are a popular choice
395 for delivering shRNA cargo due to their low immunogenicity, good safety profile, and ability
396 to achieve long-term expression in non-dividing cells ¹². We selected the AAV9 serotype,
397 which has been shown to be a highly efficient vector for transgene expression in neurons

398 throughout the CNS^{17, 18}. A single AAV9 vector has the storage capacity (4.7 kb) to hold the
399 DNA plasmid containing either the mouse, rat, or human htr2a shRNA. Since mouse and rat
400 show 100% identity of the target sequence within the *HTR2A* gene, the same DNA plasmid
401 construct was used for either species. Both constructs (mouse/rat and human) contained the
402 DNA sequencing necessary for full assembly of a shRNA molecule following infection and
403 delivery within neurons. To ensure neuronal specificity, expression of shRNAs was under the
404 control of the neuronal specific promoter, MeCP2. AAV9 vector constructs also contained the
405 GFP receptor gene to provide a visual proxy of shRNA expression. Typical viral titers were
406 on the order of 1-2 x 10¹³ GC/ml. Herein, the mouse/rat and human shRNAs will be referred
407 to as AAV9-MeCP2-GFP-mHTR2A-shRNA and AAV9-MeCP2-GFP-huHTR2A-shRNA,
408 respectively.

409

410 ***Adeno-associated virus exposure of human iPSC-differentiated glutamatergic cortical***
411 ***neurons with AAV9-MeCP2-GFP-huHTR2A-shRNA leads to a decrease in 5HT-2A***
412 ***receptor expression***

413 As an initial approach, we tested *in vitro* the ability of AAV9-MeCP2-GFP-huHTR2A-shRNA
414 to knockdown the human 5HT-2A receptor. Preliminary experiments were carried out with
415 AAV9-MeCP2-GFP-huHTR2A-shRNA at various concentrations of viral particles to number
416 of neurons (e.g., MOI). Results indicated an optimal MOI of 3 x 10⁵ on Day 1 *in vitro* and
417 subsequent 5HT-2A receptor density was examined by immunocytochemistry following
418 fixation on Day 10 using a human anti-5HT2A receptor antibody. As a control, we also tested
419 a scrambled version of the targeted sequence packaged in an identical DNA plasmid within
420 AAV9 vectors. As shown in Fig. 1A-D, treatment of neurons with AAV9-MeCP2-GFP-
421 huHTR2A-shRNA led to a decrease in the expression of the 5HT-2A receptor as compared
422 to scrambled controls. A consistent decrease in 5HT-2A fluorescence intensity was seen in

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

423 both cell bodies and in particular neurites following treatment with hu-HTR2A shRNA (Fig.
424 1D). ImageJ quantification of 5HT-2A immunofluorescence indicated a significant 27%
425 decrease in hu-HTR2A shRNA-AAV9-treated neurons as compared to scrambled-treated (p
426 = .0019) (Fig. 1E). To confirm knockdown of 5HT-2A mRNA, real-time qPCR experiments
427 were undertaken. The results indicated a significant 34% decrease in HTR2A mRNA
428 expression as compared to vehicle controls, $p = .012$ (Fig. 1F). Relative mRNA levels were
429 not significantly different between vehicle control and scrambled-treated cells ($p = .502$).
430 Although there was a 24% decrease in mRNA expression between scrambled- and shRNA-
431 treated neurons, this finding did not reach statistical significance ($p = .094$).
432

433 ***Adeno-associated virus exposure of human iPSC-differentiated glutamatergic cortical
434 neurons with AAV9-MeCP2-GFP-huHTR2A-shRNA leads to a decrease in spontaneous
435 electrical activity.***

436 The serotonin 5HT-2A receptor is the major excitatory receptor subtype in the cortex,
437 therefore, we examined whether exposure of human iPSC-differentiated neurons to AAV9-
438 MeCP2-GFP-huHTR2A-shRNA would lead to a decrease in electrical activity as measured
439 by multi-electrode array (MEA). Multiple parameters were recorded over a 21-day period
440 including the mean burst duration, burst frequency, network bursts, spikes per burst, and
441 synchrony index (see methods for details). As shown in Fig. 2, data are presented over the
442 entire 21-day period (left side) to provide context, and averages of the measures in each of
443 the three treatment conditions over days 12-18 (right side). These three days were selected
444 for repeated measures analysis because by inspection it was evident that following treatment
445 with AAV9-MeCP2-GFP-huHTR2A-shRNA, MEA results before day 12 were essentially flat,

446 and after day 21 the CRO reported that the cells began to lift off the MEA plate and appeared
447 to be dying.

448 For the 3-day repeated measures analysis the result of interest was whether the average of
449 the three conditions differed from each other. Thus, the factor of “condition” was evaluated,
450 and because there was no *a priori* reason to select those three days, post-hoc comparisons
451 were performed, and the p-values adjusted appropriately using the Fisher LSD (least
452 significant difference) method.

453 To summarize the data presented in Fig. 2, we observed a decrease in the spontaneous
454 activity of neurons treated with AAV9-MeCP2-GFP-huHTR2A-shRNA in every metric as
455 compared to control conditions and scrambled conditions, and significantly so in every case
456 when compared to control conditions.

457

458 ***Intranasal adeno-associated virus delivery of mouse AAV9-MeCP2-GFP-mHTR2A-
459 shRNA decreases 5HT-2A receptor expression in vivo.***

460 To deliver AAV9-shRNA cargo to mice *in vivo*, we used the nasal route
461 (PCT/US2022/050947). This route bypasses the blood-brain barrier (BBB) and is a practical,
462 non-invasive method. We have previously shown that this route is effective for delivering
463 AAV9 vectors containing CRISPR/Cas9 DNA plasmids⁶. On day 1, we administered AAV9-
464 MeCP2-GFP-mHTR2A-shRNA intranasally (final concentration ~1-2.0 x 10¹¹ viral particles).
465 Treated mice were then behaviorally assessed 5 and 8 weeks later. After the behavioral test
466 on week 8, mice were sacrificed, and brains were fixed in 4% formalin for
467 immunofluorescence studies or frozen for PCR analyses. The concentration of AAV9 vectors
468 and the time points chosen were based on our previous study⁶. Compared to vehicle-treated
469 control mice (Fig. 3A-C), widespread neuronal expression of GFP that served as a proxy for
470 mHTR2A-shRNA expression was evident in subcortical areas including the interpeduncular
19

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

471 nucleus (Fig. 3D-F) an area implicated as a major connectome for stress-mediated pathways
472 ¹⁹ and throughout the olfactory bulb (Fig. 3G-I). As predicted, non-neuronal cells were
473 negative for GFP staining due to the expression of GFPs under MecP2, a specific neuronal
474 promoter. The expression of GFP appeared to localize primarily within the soma of neurons.
475 The strong expression of GFP corresponded with a concomitant decrease in 5HT-2A receptor
476 fluorescence intensity (Fig. 3E), although some staining within apical dendrites was still
477 evident (Fig. 3H). This pattern of staining aligns with our previous results following intranasal
478 treatment of mice with AAV9-CRISPR/Cas9 targeting the HTR2A gene ⁶. ImageJ
479 quantification of 5HT-2A receptor immunofluorescence confirmed a significant decrease in
480 expression ($p = .0017$) (Fig. 3J).

481 Next, we sought to confirm whether intranasal delivery of AAV9 vectors could lead to a
482 decrease in the relative mRNA expression of the *HT2RA* gene. Following treatment of mice
483 on day 1, mice were sacrificed 8 weeks post intranasal treatment and brains and olfactory
484 bulbs were snap-frozen. Total brain or olfactory bulb RNA was extracted from vehicle controls
485 (N=5) or AAV-treated mice (N=5), and real-time PCR was performed as described in the
486 Methods section. There was no significant difference in the relative expression of brain *htr2a*
487 mRNA between the two groups ($p > 0.05$) (Fig. 3K), but treatment did lead to a significant
488 difference in the relative expression within the olfactory bulb between the two groups ($p =$
489 0.006) (Fig. 3L). Normalized data indicated a 1.2-fold decrease in *htr2a* expression.
490 Although we were unable to demonstrate a robust decrease in *htr2a* mRNA expression, it is
491 not surprising given the potentially large dilution effect of brain mRNA. Neurons make up less
492 than 10% of the total number of cells in the brain and only a fraction of those neurons would
493 have been infected by AAV9-mHTR2A-shRNA. Moreover, the expression of shRNA from
494 DNA plasmids could attenuate after 8-weeks because the shRNA is maintained as an

495 episomal transgene and not integrated into the host genome ²⁰. Indeed, a recent study in
496 mice indicates that vector DNA rapidly decreases 10-fold within neurons over the first 3 weeks
497 following stereotaxic injections of AAV9 vectors into the striatum ²¹.

498

499 ***Intranasal adeno-associated virus delivery of mouse AAV9-MeCP2-GFP-mHTR2A-
500 shRNA decreases anxiety.***

501 Previous studies have shown that serotonin plays a role in pathways associated with stress
502 and anxiety. Therapeutics that reduce serotonin uptake or block serotonin receptors are used
503 to treat anxiety disorders ²²⁻²⁷. One serotonin receptor that is thought to be particularly
504 important for anxiety is the 5HT-2A receptor, which is upregulated by stress and mice that
505 lack the 5HT-2A receptor show reduced anxiety ²⁸. We tested whether delivering mHTR2A-
506 shRNA to mice could decrease anxiety utilizing the light-dark box test ^{29, 30}.

507 The light/dark box test is a well characterized test used to evaluate the relative anxiety status
508 of mice ²⁹. The light/dark paradigm in mice is based on a conflict between the innate aversion
509 to brightly illuminated areas and the spontaneous exploratory activity. If given a choice, mice
510 prefer the dark, and anxiolytic compounds have been found to increase the total duration of
511 time spent in the lit area as well as the number of entries into the lit box ³⁰. At 5 weeks post-
512 treatment, AAV9-shRNA-treated mice led to a significant increase compared to vehicle-
513 controls in the time spent in the lit box (34% increase, $p < .001$) as well as the number of
514 entries into the lit box (22% increase, $p = .004$) (Fig. 4A and B). It is noteworthy that these
515 results are similar to our previously reported findings using AAV9-CRISPR/Cas9 where we
516 found a 36% increase in time spent in the lit area and a 27% increase in number of entries ⁶.
517 At 8 weeks post-treatment, the effects appear to be slightly attenuated and significance was
518 only observed in the time spent in the lit box (Fig. 4C) but not in the number of entries (Fig.
519 4D). There was no significant difference in body weight between the two groups, although as
21

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

520 in our previous study utilizing AAV9-CRISPR/Cas9, we did observe a trend for a slight
521 decrease in weight in the AAV9-shRNA-treated mice (Fig. 4E).

522

523 ***Intranasal delivery of either AAV9-CRISPR/Cas9 or AAV9-shRNA improves memory.***

524 Whether blocking or downregulating the 5HT-2A receptor is expected to improve memory
525 outcomes is not well established. To address this, we employed two different animal model
526 species using two different memory tests. In the first test, we treated aged mice with our
527 AAV9-CRISPR/Cas9 construct to decrease 5HT-2A receptor density through selective
528 knockout of the *HTR2A* gene ⁶. Mice were treated on day 1 and assessed using the T-maze
529 continuous alternation task 5 weeks later (see Methods for details).

530 As shown in Fig. 5, compared to the vehicle-control group, AAV9-CRISPR/Cas9-treated mice
531 showed a highly significant increase in the number of spontaneous alterations ($p = 0.0007$).

532 This finding equates to a 104% increase in memory. Examination of CA2 and CA3 regions of
533 the hippocampus an area of the brain implicated in memory indicated 5HT-2A receptor
534 staining within neuronal processes but not cell bodies of vehicle-controls (Fig. 5B). In
535 contrast, for treated animals, 5HT-2A staining was abolished with a corresponding strong
536 expression of GFP (a proxy for guide RNA expression) within the CA2 and CA3 regions of
537 the hippocampus (Fig. 5C). Taken together, these data suggest that specific knockdown of
538 the 5HT-2A receptor using CRISPR has the potential to be a promising therapeutic approach
539 for the treatment of age-related cognitive decline.

540 To confirm these results, we tested a different species, rats, using a novel object recognition
541 test following treatment with AAV9-mHTR2A-shRNA. In this case, 2-month-old rats were
542 treated with AAV9-mHTR2A-shRNA on day one and tested 3- and 5-weeks later. The novel
543 object recognition task is used to assess short-term memory, intermediate-term memory, and

544 long-term memory in rats¹⁶. The task is based on the natural tendency of rats to preferentially
545 explore a novel versus a familiar object, which requires memory of the familiar object (see
546 Methods for details). As shown in Fig. 6, at 3-weeks significant increases in both the contact-
547 recognition index (92% increase, $p < 0.000003$) and time-recognition index (73%, $p < 0.0003$)
548 were observed (Fig. 6C and D). Importantly, there were no differences in the amount of time
549 spent during the learning phase ($p > 0.05$) (Fig. 6A and B), therefore, these results represent
550 a true increase in memory retention. In addition, there was no significant difference in weight
551 at 3-weeks ($p = 0.463$). A Bayesian analysis for memory data at 3 weeks indicated a Bayes
552 Factor in favor of the hypothesis that the AAV9-HTR2A-shRNA treatment would produce
553 better memory results than the control treatment for the novel object contacts and time metrics
554 was 4,377 and 106, respectively. Considering that the rule of thumb for a Bayes Factor of 100
555 is considered “decisive evidence,” we conclude that the treated rats had superior memory as
556 compared to the vehicle-controls.

557 At 5-weeks post treatment the enhanced memory effects were attenuated and only contact-
558 recognition index showed a significant 36% increase ($p = 0.008$) (Fig. 6G and H). The contact-
559 recognition index was 19% higher than vehicle-control rats but did not reach statistical
560 significance ($p = 0.114$). To test whether treatment led to a decrease in 5HT-2A receptor
561 mRNA levels, qPCR was performed. A significant decrease in relative mRNA levels was
562 observed 5-weeks post treatment ($p = .038$) (Fig. 6I). We also were able to confirm the
563 expression of the HTR2A-shRNA within the olfactory bulb using GFP fluorescence as a proxy
564 (Fig. 6J).

565 Considered together, for the novel object recognition test the results showed a highly
566 significant improvement in memory retention at week 3 and a significant improvement at 5
567 weeks. The attenuation of memory retention at 5-weeks may be a result of an increase in

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

568 degradation of the plasmid DNA, an extinction in memory because of the same rats being
569 tested twice in a span of 2 weeks, or a combination of the two.

570

571 Discussion

572 According to the American Psychiatric Association, anxiety disorders make up the most
573 common type of mental disorders, affecting nearly 30 percent of adults at some point in their
574 lives. Chronic anxiety in turn can impact memory and as a result, persistent anxiety and
575 memory impairments are inextricably linked. Indeed, anxiety disorders are interrelated and
576 inseparable with memory loss, and anxiety is likely an early predictor of future cognitive
577 impairment ³¹⁻³⁵. Numerous studies now support that anxiety and depression are key co-
578 morbidities associated with AD ³⁶⁻³⁹. In the present study, we demonstrate that short-hairpin
579 RNAs (shRNA) targeting knockdown of the human *HTR2A* gene can modify neuronal circuits
580 underlying anxiety and memory. *In vitro*, using human iPSC-differentiated neurons, shRNA
581 targeting the *HTR2A* RNA transcript led to decreased expression of the 5HT-2A mRNA and
582 receptor protein as well as a concomitant decrease in spontaneous electrical activity of
583 cortical neural networks. *In vivo*, application of AAV9-shRNA by intranasal delivery led to a
584 decrease in 5HT-2A receptor density and a significant decrease in anxiety following 5-weeks
585 post-treatment in mice. However, this anxiolytic effect was attenuated at 8-weeks post-
586 treatment. There are several possible explanations for the decreased efficacy of AAV9-
587 shRNA at 8 weeks of treatment. First, it is possible that the plasmid DNA within infected cells
588 was degraded, which is supported by the lack of difference in mRNA levels between the two
589 groups at 8 weeks (Fig. 3K). Second, the diminished response could be due to habituation,
590 because the same mice were used for both the 5- and 8-week light/dark tests. Finally, it is
591 possible that both factors are at play simultaneously. In summary, we found that intranasal

592 delivery of AAV9-htr2a-shRNA, which reduces the expression of the 5HT-2A receptor,
593 significantly decreased anxiety of mice in the light/dark box test.

594 Studies employing specific 5HT-2A receptor antagonists, including M200907, ritanserin,
595 ketanserin, TCB-2, and risperidone, give mixed results with some increasing acquisition or
596 consolidation while others do not (for review see ⁴⁰). On the other hand, studies examining
597 the knocking down of the 5HT-2A receptor have shown improvement in memory in rodent
598 models ⁹⁻¹¹. In humans, administration of mianserin (15 mg/day), an agent with marked 5HT-
599 2A antagonism, improved memory, learning and attention ⁴¹. These conflicting results may
600 reflect the different underlying neural mechanisms involved in different types of memory as
601 well as the dose of the administered 5HT-2A antagonist. Because of the uncertainty of the
602 role of 5HT-2A receptor in memory, in the current study we tested whether downregulation of
603 the 5HT-2A receptor, either through CRISPR/Cas9 or shRNA, could impact memory. Our *in*
604 *vivo* experiments showed that knockdown of the 5HT-2A receptor led to a significant
605 improvement in memory in both an aged-mouse model as well as in 2-month-old rats. How
606 does a decrease in 5HT-2A receptor density contribute to a significant increase in memory?
607 Several possibilities exist, including a decrease in anxiety, which may itself promote better
608 memory outcomes. Knockdown of the 5HT-2A receptor within the hippocampus may be
609 another proposed mechanism for these findings. Indeed, we found a general pattern of guide
610 RNA expression within the CA2/CA3 region of the hippocampus of CRISPR/Cas9-treated
611 mice and an apparent decrease expression of the 5HT-2A receptor in the same region,
612 particularly within apical dendrites of glutamatergic neurons. Previous studies have
613 demonstrated 5HT-2A receptor mRNA expression in the CA3 region of the hippocampus ⁴²,
614 ⁴³. Because the 5HT-2A receptor is excitatory, downregulation of this receptor in apical
615 dendrites within the hippocampus may improve memory through the modulation of
616 hippocampal neuronal and glial oscillatory rhythm ^{44, 45}. Indeed, reduction of hippocampal

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

617 hyperactivity has been shown to improve cognition in amnestic mild cognitive impairment ⁴⁶.
618 While molecular mechanisms of memory formation, retention and recalling in hippocampal
619 neurons are not yet fully understood, recent evidence shows that individual neurons code
620 discrete memories using either a rate code or a temporal firing code ⁴⁷. Presently, however,
621 our knowledge of the complex interplay of serotonin modulation of hippocampal glutamatergic
622 neurons is at a very early stage.

623 In conclusion, our study highlights the immense potential of short-hairpin RNAs (shRNA) as
624 a precision-based therapeutic approach for neurodegenerative disorders. While the use of
625 shRNA molecules to modify neuronal circuits underlying specific behaviors is a relatively
626 unexplored territory, our findings shed light on their promising efficacy. Through the design
627 of shRNA targeting the human HTR2A gene, we demonstrated significant outcomes both *in*
628 *vitro* and *in vivo*. *In vitro* experiments using iPSC-differentiated neurons revealed that
629 knockdown of the 5HT-2A receptor led to a notable decrease in spontaneous electrical
630 activity, emphasizing the pivotal role of this receptor in neural network dynamics.

631 *In vivo*, intranasal delivery of AAV9 vectors carrying shRNA resulted in a remarkable reduction
632 in anxiety-like behavior in mice, addressing a critical aspect of mental health. Additionally, our
633 treatment led to a substantial improvement in memory in both mice and rats, with memory
634 enhancements reaching up to 104% and 92%, respectively, compared to vehicle-treated
635 animals. These results suggest that targeting the *HTR2A* gene can simultaneously alleviate
636 chronic anxiety and ameliorate age-related cognitive decline.

637 Perhaps equally significant is the development of a non-invasive shRNA delivery platform
638 capable of bypassing the blood-brain barrier. This achievement opens up a wide range of
639 possibilities for the treatment of various neurological and mental disorders. In particular, the
640 novel therapeutic approach we have demonstrated holds great promise for addressing the

641 intertwined issues of chronic anxiety and cognitive decline, offering hope for improving the
642 quality of life for individuals affected by these conditions.

643

644 **Competing financial interest's statement:**

645 J.L.M., B.J.L. and D.R. are co-founders of Cognigenics, members of its scientific advisory
646 board, and hold equity in the company. T.T.R. is a part-time consultant serving as Director of
647 Preclinical Research at Cognigenics and in addition to receiving a salary, owns shares of the
648 company's common stock and options for common shares. F.M. is a part-time consultant
649 serving as Chief Science Officer at Cognigenics, Inc., and is a member of its scientific
650 advisory board. All other authors declare no competing interests.

651

652 **Figure Legends**

653 **Fig. 1. Treatment of human iPSC-differentiated glutamatergic neurons with shRNA**
654 **leads to downregulation of the 5HT-2A receptor protein. (A-D):** Representative
655 immunofluorescence images in human neurons following a 10-day treatment with scrambled
656 AAV9 shRNA-AAV9 viral particles (A and B) or hu-HTR2A shRNA-AAV9 viral particles at MOI
657 of 3×10^5 (**C and D**). Green fluorescence represents green fluorescence protein expression,
658 while red fluorescence is indicative of 5HT-2A receptor protein following
659 immunocytochemistry using an anti-mouse 5HT-2A receptor antibody at 1:50. Low level
660 GFP expression, which served as a proxy for scrambled shRNA expression was observed in
661 all cases (Fig. 1A). Panel B indicates robust expression of the 5HT-2A receptor protein in
662 both cell bodies and neurites following treatment with the scrambled control. Panels C and D
663 are representative images following treatment with hu-HTR2A shRNA-AAV9 and revealed
664 stronger GFP expression (**C**). (**D**): Following hu-HTR2A shRNA-AAV9 treatment, a decrease
665 in 5HT-2A fluorescent intensity was apparent. (**E**): ImageJ quantification of 5HT-2A

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

666 immunofluorescence indicated a significant 27% decrease in hu-HTR2A shRNA-AAV9-
667 treated neurons as compared to scrambled-treated (*p-value = .0019, N= 3 different samples
668 for each condition). **(F)**: Data show the results of qPCR real-time assays to analyze mRNA
669 levels of Htr2a following extraction of RNA iPSC differentiated neurons in either vehicle-
670 controls (blue bar) or scrambled treated (green bar), and hu-HTR2A shRNA (red bar).
671 Neurons were treated on day 1 at a cell density of 200K/well and cells pelleted and frozen on
672 day 16. Results display the relative change in expression using GAPDH as an internal
673 control. Real-time PCR results represent a total of 3 separate treatments for each condition
674 in which cells were pooled and frozen at -80°C. PCR experiments were performed in triplicate.
675 The results indicated a significant 34% decrease in htr2a mRNA expression as compared to
676 vehicle controls, where *denotes significant difference between the two groups, p = .012.
677 Relative mRNA levels were not significantly different between vehicle control and scrambled-
678 treated cells (p-value = .502) or between scrambled- and shRNA-treated neurons (p-value =
679 .094).

680

681 **Fig. 2. Adeno-associated virus exposure of human iPSC-differentiated glutamatergic**
682 **cortical neurons with AAV9-MeCP2-GFP-huHTR2A-shRNA leads to a decrease in**
683 **spontaneous electrical activity.** Following plating of neurons, three different conditions
684 were tested starting at Day 5: 1) Vehicle control consisting of PBS only (green circles, labeled
685 “control”); 2) Scrambled AAV9 shRNA at MOI of 3×10^5 (blue circles, labeled “scrambled”);
686 3) HTR2A hu-shRNA at MOI 3×10^5 (red triangles, labeled “AAV9”). Electrophysiological
687 recordings were acquired three times per week following day 5 *in vitro*. As noted in the text,
688 recording anomalies observed on day 14 were deemed unreliable and were excluded from
689 further analysis. By inspection, it was evident from the AAV9-MeCP2-GFP-huHTR2A-shRNA

690 results that the largest differences noted between the three conditions were on days 12, 16,
691 and 18, and especially so for the synchrony index. Thus, data on these three days were
692 examined for each MEA metric using a repeated measures ANOVA to determine the main
693 effect of “condition,” and then a post-hoc comparison was performed comparing the three
694 conditions, with p-values adjusted via the Fisher LSD method (**A-B**): Significant differences
695 occurred in mean burst duration between the AAV9 and both of the other two conditions ($p <$
696 .001). (**C-D**): Significant differences in average burst frequency were observed between AAV9
697 vs. the control ($p < .01$) and scrambled conditions ($p < .05$). (**E-F**): A significant difference in
698 average network bursts occurred between AAV9 and the control condition ($p < .01$) (**G-H**):
699 Significant differences in the synchrony index were observed between both conditions ($p <$
700 0.001). (**I-J**): Significant differences in the number of spikes per burst were observed between
701 AAV9 vs. the control ($p < .01$) and scrambled conditions ($p < .05$). All data are expressed as
702 the mean \pm S.E. Asterisks denote: * $p < .05$; ** $p < .01$; *** $p < .001$.

703

704 **Fig. 3. Intranasal adeno-associated virus delivery of AAV9-MeCP2-GFP-mouse HTR2A-**
705 **shRNA leads to a decrease in 5HT-2A receptor protein expression.** Mice were treated
706 with vehicle or AAV vectors on day 1, and 8 weeks later sacrificed, fixed, and 4 μ m paraffin-
707 embedded sagittal tissue sections were stained with anti-GFP (green, 1:1,000) or an anti-
708 mouse 5HT2A receptor antibody (red, 1:500). Whole slide imaging was performed using a
709 Pannoramic Midi II scanner (see methods for details). Representative 40X
710 immunofluorescence images from vehicle controls, (cerebellum, **A-C**) or AAV-treated mice
711 are shown (interpeduncular nucleus, **D-F**) and (olfactory bulb, **G-I**). DAPI nuclear stain
712 staining is indicated by blue. Treatment with MeCP2-GFP-mouse HTR2A-shRNA led to a
713 general pattern of less robust staining profile of the 5HT2A receptor in cell body regions and
714 apical dendrites (merged images Panels F and I). Panels A, D, and G represent GFP channel

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

715 only (a proxy for shRNA expression); Panels B, E, and F represent 5HT-2A receptor protein
716 represent red channel only; Panels C, F, and I represent the merged images. All scale bars
717 represent 50 μ m. **(J)**: Quantitative analysis using ImageJ software indicated a significant
718 decrease in 5HT-2A receptor fluorescence intensity of AAV-treated mice (red bar) versus
719 vehicle-controls (green bar). Data represent the mean gray value \pm SEM of 2X sagittal brain
720 sections (N=3 for each group). *Denotes significant difference, p-value = .0017. **(K and L)**:
721 Data show the results of qPCR real-time assays to analyze mRNA levels of Htr2a following
722 extraction of total brain RNA from frozen brain (K) or olfactory tissue (L) in either vehicle-
723 controls (black bar) or shRNA treated (red bar). Results display the *relative change* in
724 expression after 8-weeks of treatment with AAV9-MeCP2-GFP-mouse HTR2A. Real-time
725 PCR results represent a total of N=5 animals for each group performed in triplicate \pm SEM.
726 *Denotes significant difference between the two groups, p = 0.006 in olfactory mRNA.

727

728 **Fig. 4. Intranasal adeno-associated virus delivery of AAV9-MeCP2-GFP-mouse HTR2A-
729 shRNA decreases anxiety.** Mice were treated intranasally on day 1 with 2.0×10^{11} viral
730 particles and compared to vehicle-controls either at 5-weeks (**A and B**) or 8-weeks (**C and
731 D**) later in the light dark test to evaluate the relative anxiety status of mice. Results for 5-week
732 AAV9-shRNA-treated mice indicated a 34% increase in the time spent in the lit box (N=15, p-
733 value <.001) as well as an 22% increase in the number of entries into the lit box (p = .004).
734 Following a retesting of the same animals at 8-weeks, a slightly diminished response in both
735 parameters was noted, however there was still a significant increase in the time spent in the
736 lit box (**C**) (p-value = 0.04). The number of entries into the light box at 8-weeks just missed
737 statistical significance (**D**) (p-value = .058). **(E)**: Although there was a trend for slightly lower
738 weight in AAV9-shRNA-treated mice, data indicated no significance between the two groups

739 (p = 0.49). *Denotes statistical significance between the two groups (p-value <0.05). NS
740 denotes non-significant (p-value>0.05).

741

742 **Fig. 5. Intranasal adeno-associated virus delivery of co-packaged Cas9 DNA and a**
743 **HTR2A-targeting guide RNA improves memory in aged mice. (A):** Aged 12-month-old
744 mice were treated intranasally with vehicle or with 2.0×10^{11} viral particles on day 1, and 5-
745 weeks later tested behaviorally using a spontaneously alteration memory test. Mice treated
746 with AAV9-CRISPR/Cas9 showed a significant increase in the percent spontaneous
747 alterations (p-value = .0007, N=15 mice per group, asterisk, blue bar). **(B):** Representative,
748 merged immunofluorescence image of vehicle-control animals depicting the presence of 5HT-
749 2A receptor protein labeling in apical dendrites in the CA2/CA3 region of the hippocampus.
750 The blue staining reflects nuclear staining with DAPI. As expected, there was no expression
751 of GFP in vehicle controls. **(C):** Identical to Panel B with the exception that the merged image
752 is from a AAV9-CRISPR/Cas9-treated mouse brain. In this case, strong GFP labeling was
753 observed in cell bodies while there was an observed decrease in 5HT-2A receptor
754 fluorescence. Images are representative of 3 separate mice for each group.

755

756 **Fig. 6. Intranasal adeno-associated virus delivery of AAV9-MeCP2-GFP-mouse HTR2A-**
757 **shRNA improves memory in rats.** The target sequence used to synthesize the shRNA is
758 100% conserved between mice and rats. To test whether shRNA-knockdown of the rat 5HT-
759 2A receptor improves memory, Wistar rats (12 animals per group) were randomly assigned
760 to two different groups consisting of vehicle- or AAV9-MeCP2-GFP-mHTR2A-shRNA.
761 Following treatment on day 1, animals were assessed behaviorally 3- (**A-D**) and 5- weeks
762 later (**E-H**). Details of the novel object recognition test can be found in the methods. At 3
763 weeks, there was no significance difference in the time spent or the number of physical
31

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

764 contacts with the novel object during the acquisition (training) period ($p > 0.05$) (**A and B**).
765 Rats were tested 24-hours later, and AAV9-treated rats (blue bars) showed a significant
766 increase in both the contact-recognition index ($p < 0.000003$) (C) and the time recognition-
767 index ($p < 0.0003$) (D). The same groups of rats were retested at 5-weeks and again no
768 significant difference was noted in the time spent or the number of physical contacts with the
769 novel object during the acquisition (training) period ($p > 0.05$) (**E and F**). Twenty-four hours
770 later there was a significant increase in the contact-recognition index ($p < 0.01$) (G), however,
771 there was no significant difference in the contact-recognition index ($p = 0.114$) (H). (I): Data
772 show the results of qPCR real-time assays to analyze mRNA levels of Htr2a following
773 extraction of rat brain RNA. Results display relative mRNA levels after 5-weeks post-
774 treatment with AAV9-HTR2A-shRNA. Real-time PCR results represent a total of N=5 animals
775 for each group performed in triplicate \pm SEM. *Denotes significant difference between the two
776 groups, $p = 0.038$. (J): Representative, merged immunofluorescence image of vehicle-control
777 animals depicting the presence of 5HT-2A receptor protein labeling (red fluorescence) within
778 the olfactory bulb. The blue staining reflects nuclear staining with DAPI. As expected, there
779 was no expression of GFP in vehicle controls (J, left panel) while strong GFP labeling was
780 observed in cell bodies of neurons of shRNA-treated rats (J, right panel). Images are
781 representative of 3 separate mice for each group.

782

783 References Cited

- 784 1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific
785 genetic interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature*
786 1998; **391**(6669): 806-811.
- 787 2. Holm A, Hansen SN, Klitgaard H, Kauppinen S. Clinical advances of RNA
788 therapeutics for treatment of neurological and neuromuscular diseases. *RNA Biol*
789 2022; **19**(1): 594-608.

791

792 3. Kulkarni JA, Sah DW, Jayaraman M. Clinical pharmacology of RNA interference–
793 based therapeutics: A summary based on Food and Drug Administration–approved
794 small interfering RNAs. *Clinical Pharmacology & Therapeutics* 2021; **110**(6): 1176–
795 1194.

796

797 4. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development.
798 *NeuroRx* 2005; **2**(1): 3–14.

799

800 5. Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs:
801 The impact of systemic delivery by AAV9. *J Control Release* 2016; **241**: 94–109.

802

803 6. Rohn TT, Radin D, Brandmeyer T, Linder BJ, Andriambeloson E, Wagner S *et al.*
804 Genetic modulation of the HTR2A gene reduces anxiety-related behavior in mice.
805 *PNAS Nexus* 2023; **2**(6): pgad170.

806

807 7. Weisstaub NV, Zhou M, Lira A, Lambe E, Gonzalez-Maeso J, Hornung JP *et al.*
808 Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. *Science*
809 2006; **313**(5786): 536–540.

810

811 8. Celada P, Puig MV, Martin-Ruiz R, Casanovas JM, Artigas F. Control of the
812 serotonergic system by the medial prefrontal cortex: potential role in the etiology of
813 PTSD and depressive disorders. *Neurotox Res* 2002; **4**(5–6): 409–419.

814

815 9. Cohen H. Anxiolytic effect and memory improvement in rats by antisense
816 oligodeoxynucleotide to 5-hydroxytryptamine-2A precursor protein. *Depress Anxiety*
817 2005; **22**(2): 84–93.

818

819 10. Jaggar M, Weisstaub N, Gingrich JA, Vaidya VA. 5-HT2A receptor deficiency alters
820 the metabolic and transcriptional, but not the behavioral, consequences of chronic
821 unpredictable stress. *Neurobiol Stress* 2017; **7**: 89–102.

822

823 11. Naghdi N, Harooni HE. The effect of intrahippocampal injections of ritanserin
824 (5HT2A/2C antagonist) and granisetron (5HT3 antagonist) on learning as assessed
825 in the spatial version of the water maze. *Behav Brain Res* 2005; **157**(2): 205–210.

826

827 12. Xu CL, Ruan MZC, Mahajan VB, Tsang SH. Viral Delivery Systems for CRISPR.
828 *Viruses* 2019; **11**(1).

829

830 13. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J *et al.* In vivo
831 interrogation of gene function in the mammalian brain using CRISPR-Cas9. *Nat
832 Biotechnol* 2015; **33**(1): 102–106.

833

834 14. Leuschner PJ, Ameres SL, Kueng S, Martinez J. Cleavage of the siRNA passenger
835 strand during RISC assembly in human cells. *EMBO Rep* 2006; **7**(3): 314–320.

836

837 15. Spowitz-Manning L, van der Staay FJ. The T-maze continuous alternation task for
838 assessing the effects of putative cognition enhancers in the mouse. *Behav Brain Res*
839 2004; **151**(1–2): 37–46.

840

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

841 16. Cohen SJ, Stackman RW, Jr. Assessing rodent hippocampal involvement in the
842 novel object recognition task. A review. *Behav Brain Res* 2015; **285**: 105-117.

843
844 17. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM *et al.* Intravenous
845 administration of self-complementary AAV9 enables transgene delivery to adult
846 motor neurons. *Mol Ther* 2009; **17**(7): 1187-1196.

847
848 18. Dayton RD, Wang DB, Klein RL. The advent of AAV9 expands applications for brain
849 and spinal cord gene delivery. *Expert Opin Biol Ther* 2012; **12**(6): 757-766.

850
851 19. Sherafat Y, Bautista M, Fowler JP, Chen E, Ahmed A, Fowler CD. The
852 Interpeduncular-Ventral Hippocampus Pathway Mediates Active Stress Coping and
853 Natural Reward. *eNeuro* 2020; **7**(6).

854
855 20. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene
856 therapy delivery. *Nature reviews Drug discovery* 2019; **18**(5): 358-378.

857
858 21. Hollidge BS, Carroll HB, Qian R, Fuller ML, Giles AR, Mercer AC *et al.* Kinetics and
859 durability of transgene expression after intrastriatal injection of AAV9 vectors. *Front
860 Neurol* 2022; **13**: 1051559.

861
862 22. Meyer JH, Kapur S, Eisfeld B, Brown GM, Houle S, DaSilva J *et al.* The effect of
863 paroxetine on 5-HT(2A) receptors in depression: an [(18)F]setoperone PET imaging
864 study. *Am J Psychiatry* 2001; **158**(1): 78-85.

865
866 23. Ceulemans DL, Hoppenbrouwers ML, Gelders YG, Reyntjens AJ. The influence of
867 ritanserin, a serotonin antagonist, in anxiety disorders: a double-blind placebo-
868 controlled study versus lorazepam. *Pharmacopsychiatry* 1985; **18**(5): 303-305.

869
870 24. Muguruza C, Miranda-Azpiazu P, Diez-Alarcia R, Morentin B, Gonzalez-Maeso J,
871 Callado LF *et al.* Evaluation of 5-HT2A and mGlu2/3 receptors in postmortem
872 prefrontal cortex of subjects with major depressive disorder: effect of antidepressant
873 treatment. *Neuropharmacology* 2014; **86**: 311-318.

874
875 25. Ribeiro L, Busnello JV, Kauer-Sant'Anna M, Madruga M, Quevedo J, Busnello EA *et
876 al.* Mirtazapine versus fluoxetine in the treatment of panic disorder. *Brazilian journal
877 of medical and biological research = Revista brasileira de pesquisas medicas e
878 biologicas / Sociedade Brasileira de Biofisica [et al]* 2001; **34**(10): 1303-1307.

879
880 26. Muehlbacher M, Nickel MK, Nickel C, Kettler C, Lahmann C, Pedrosa Gil F *et al.*
881 Mirtazapine treatment of social phobia in women: a randomized, double-blind,
882 placebo-controlled study. *Journal of clinical psychopharmacology* 2005; **25**(6): 580-
883 583.

884
885 27. Mestre TA, Zurowski M, Fox SH. 5-Hydroxytryptamine 2A receptor antagonists as
886 potential treatment for psychiatric disorders. *Expert Opin Investig Drugs* 2013; **22**(4):
887 411-421.

888

889 28. Murnane KS. Serotonin 2A receptors are a stress response system: implications for
890 post-traumatic stress disorder. *Behav Pharmacol* 2019; **30**(2 and 3-Spec Issue): 151-
891 162.

892

893 29. Bourin M, Hascoet M. The mouse light/dark box test. *Eur J Pharmacol* 2003; **463**(1-
894 3): 55-65.

895

896 30. Rosso M, Wirz R, Loretan AV, Sutter NA, Pereira da Cunha CT, Jaric I *et al.*
897 Reliability of common mouse behavioural tests of anxiety: A systematic review and
898 meta-analysis on the effects of anxiolytics. *Neurosci Biobehav Rev* 2022; **143**:
899 104928.

900

901 31. Sinoff G, Werner P. Anxiety disorder and accompanying subjective memory loss in
902 the elderly as a predictor of future cognitive decline. *Int J Geriatr Psychiatry* 2003;
903 **18**(10): 951-959.

904

905 32. Kassem AM, Ganguli M, Yaffe K, Hanlon JT, Lopez OL, Wilson JW *et al.* Anxiety
906 symptoms and risk of dementia and mild cognitive impairment in the oldest old
907 women. *Aging Ment Health* 2018; **22**(4): 474-482.

908

909 33. Liew TM. Trajectories of subjective cognitive decline, and the risk of mild cognitive
910 impairment and dementia. *Alzheimer's research & therapy* 2020; **12**(1): 135.

911

912 34. Liew TM. Subjective cognitive decline, anxiety symptoms, and the risk of mild
913 cognitive impairment and dementia. *Alzheimer's research & therapy* 2020; **12**(1):
914 107.

915

916 35. Ma L. Depression, Anxiety, and Apathy in Mild Cognitive Impairment: Current
917 Perspectives. *Frontiers in aging neuroscience* 2020; **12**: 9.

918

919 36. Botto R, Callai N, Cermelli A, Causarano L, Rainero I. Anxiety and depression in
920 Alzheimer's disease: a systematic review of pathogenetic mechanisms and relation
921 to cognitive decline. *Neurol Sci* 2022; **43**(7): 4107-4124.

922

923 37. Cacabelos R, Carril JC, Corzo L, Pego R, Cacabelos N, Alcaraz M *et al.*
924 Pharmacogenetics of anxiety and depression in Alzheimer's disease.
925 *Pharmacogenomics* 2023; **24**(1): 27-57.

926

927 38. Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, Tan L *et al.* The prevalence of
928 neuropsychiatric symptoms in Alzheimer's disease: Systematic review and meta-
929 analysis. *J Affect Disord* 2016; **190**: 264-271.

930

931 39. Johansson M, Stomrud E, Johansson PM, Svenningsson A, Palmqvist S, Janelidze
932 S *et al.* Development of Apathy, Anxiety, and Depression in Cognitively Unimpaired
933 Older Adults: Effects of Alzheimer's Disease Pathology and Cognitive Decline. *Biol
934 Psychiatry* 2022; **92**(1): 34-43.

935

936 40. Zhang G, Stackman RW, Jr. The role of serotonin 5-HT2A receptors in memory and
937 cognition. *Front Pharmacol* 2015; **6**: 225.

Improved memory and decreased anxiety employing gene therapy targeting the HTR2A gene

938

939 41. Poyurovsky M, Koren D, Gonopolsky I, Schneidman M, Fuchs C, Weizman A *et al.*
940 Effect of the 5-HT2 antagonist mianserin on cognitive dysfunction in chronic
941 schizophrenia patients: an add-on, double-blind placebo-controlled study. *Eur
942 Neuropsychopharmacol* 2003; **13**(2): 123-128.

943

944 42. Chen H, Zhang L, Rubinow DR, Chuang DM. Chronic buspirone treatment
945 differentially regulates 5-HT1A and 5-HT2A receptor mRNA and binding sites in
946 various regions of the rat hippocampus. *Brain Res Mol Brain Res* 1995; **32**(2): 348-
947 353.

948

949 43. Luttgen M, Ove Ogren S, Meister B. Chemical identity of 5-HT2A receptor
950 immunoreactive neurons of the rat septal complex and dorsal hippocampus. *Brain
951 Res* 2004; **1010**(1-2): 156-165.

952

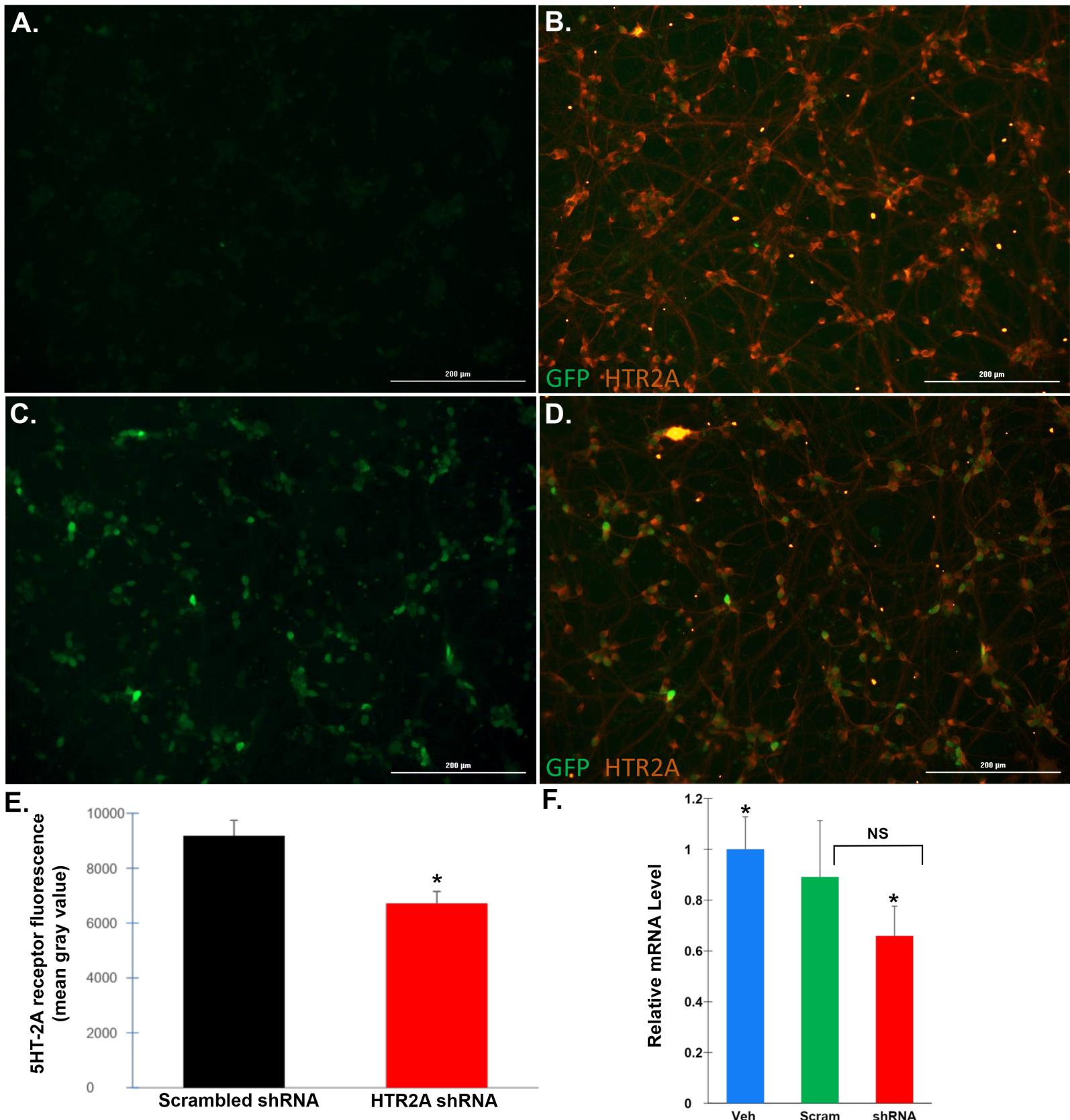
953 44. Vertes RP. Hippocampal theta rhythm: a tag for short-term memory. *Hippocampus*
954 2005; **15**(7): 923-935.

955

956 45. Berens SC, Horner AJ. Theta Rhythm: Temporal Glue for Episodic Memory. *Curr Biol*
957 2017; **27**(20): R1110-R1112.

958

959 46. Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE *et al.* Reduction of
960 hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment.
961 *Neuron* 2012; **74**(3): 467-474.


962

963 47. Kolibius LD, Roux F, Parish G, Ter Wal M, Van Der Plas M, Chelvarajah R *et al.*
964 Hippocampal neurons code individual episodic memories in humans. *Nat Hum
965 Behav* 2023.

966

967

Figure 1, Rohn et al.

Figure 2. Rohr et al.

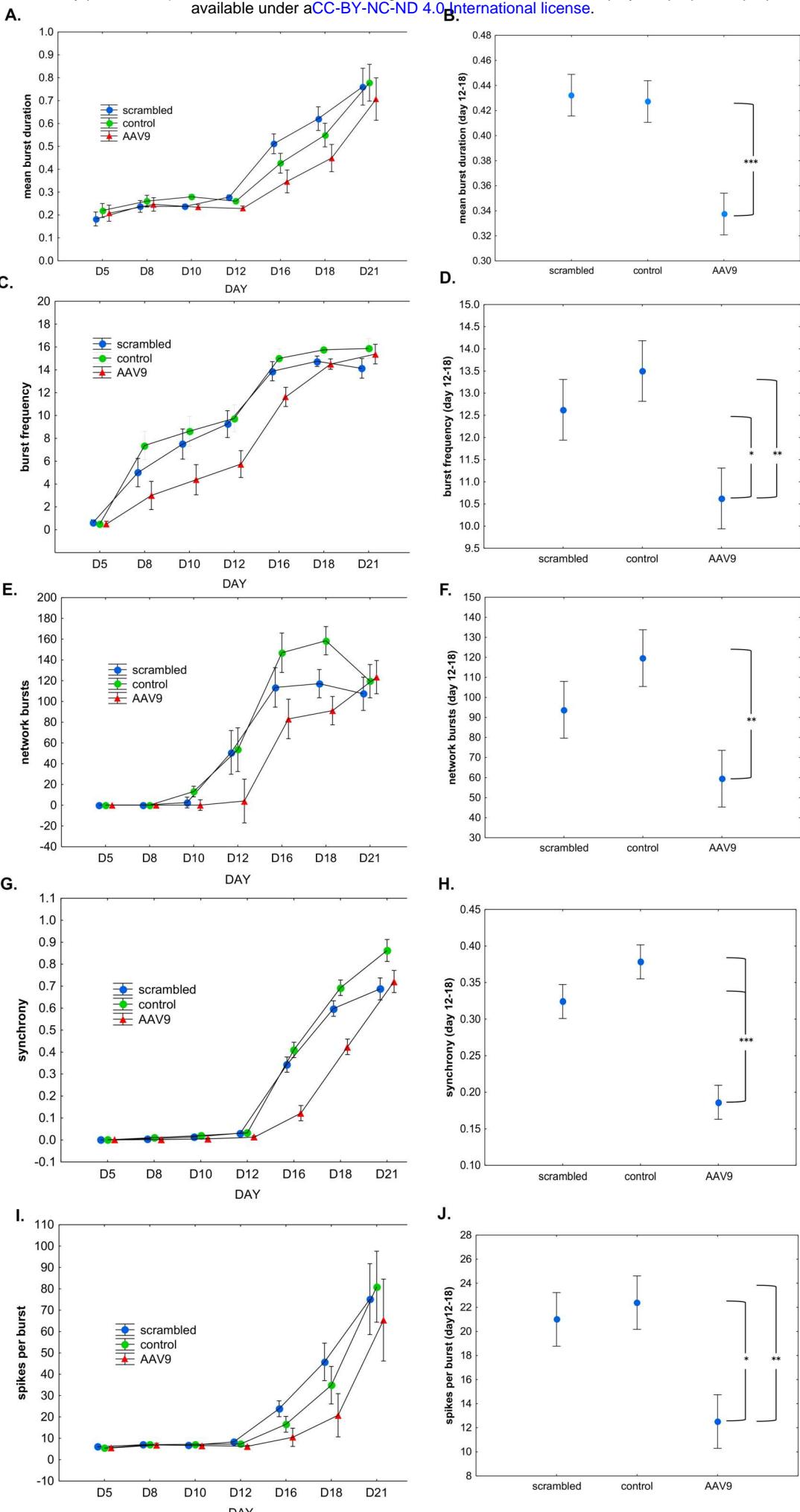
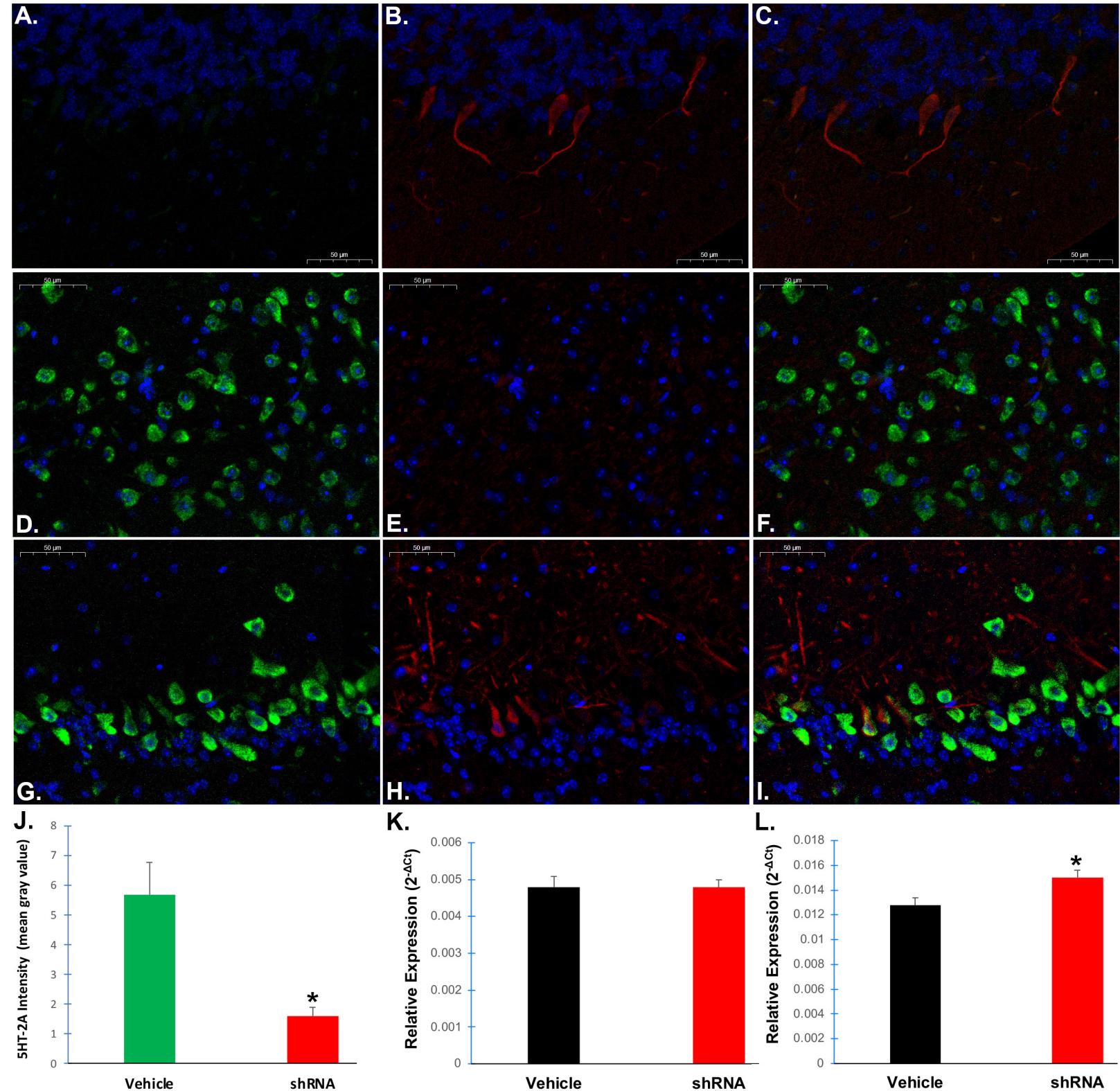
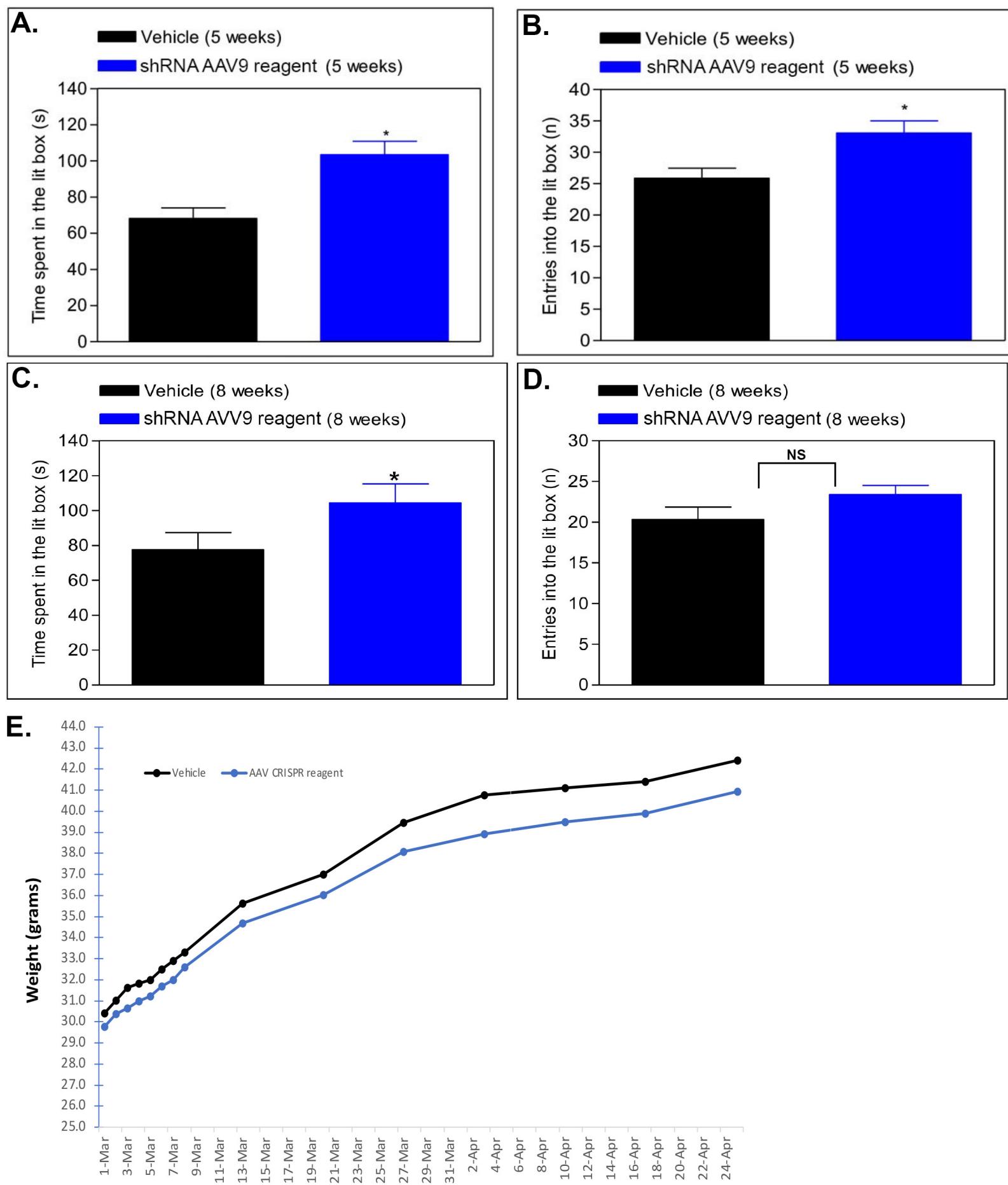




Figure 3, Rohn et al.

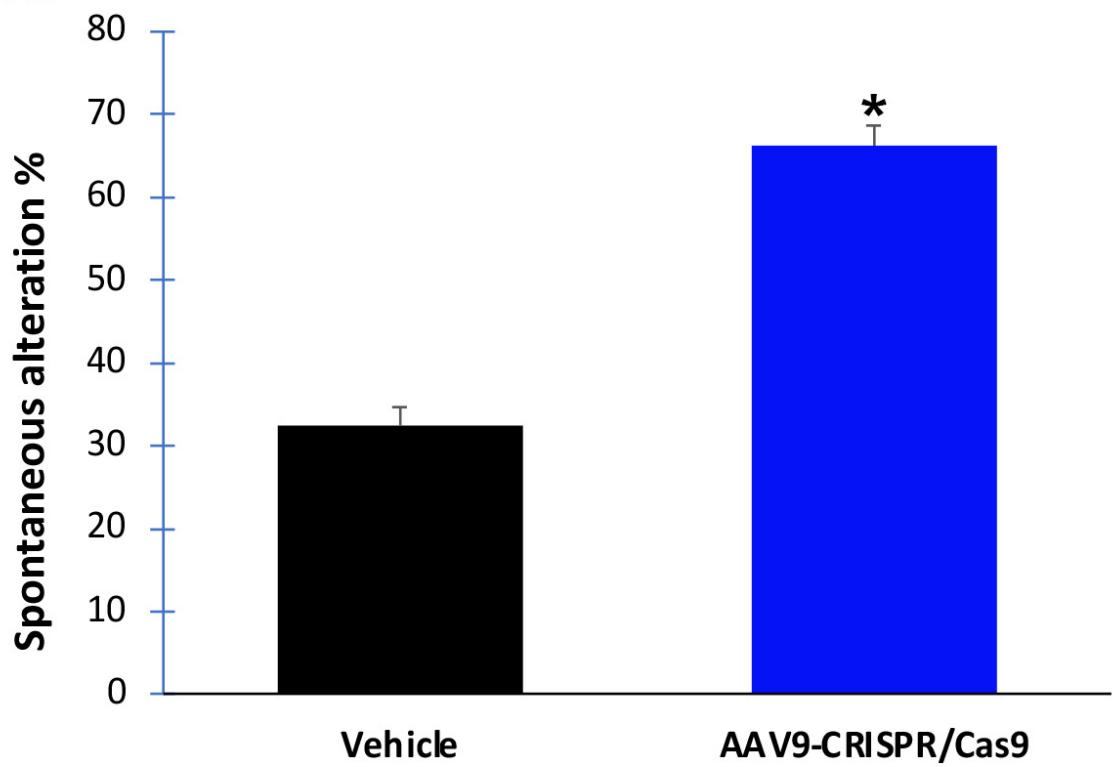
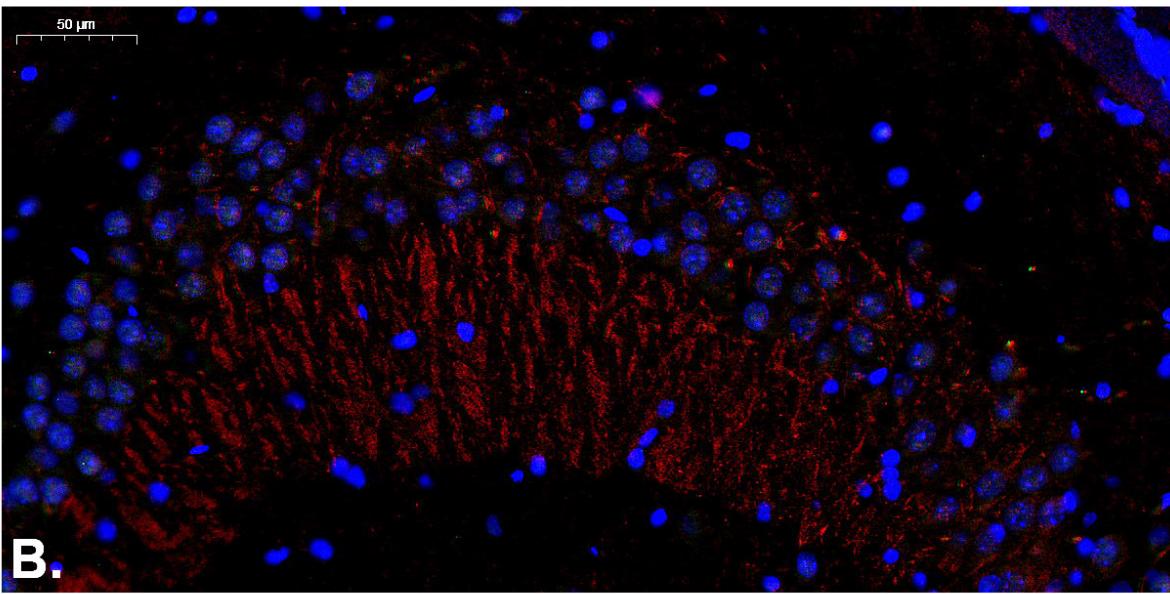
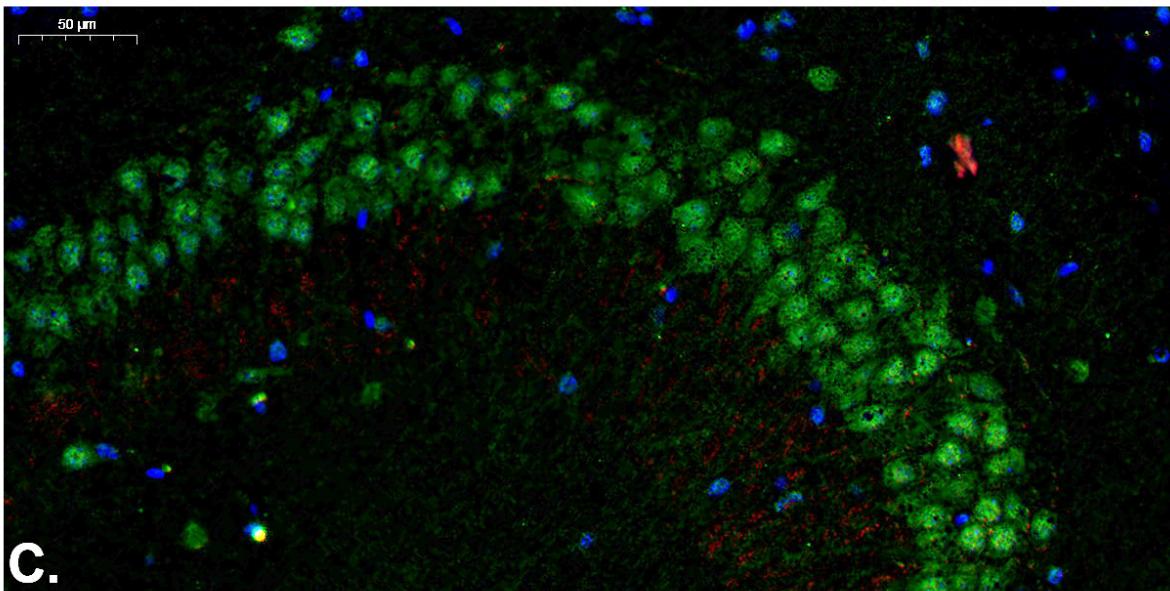
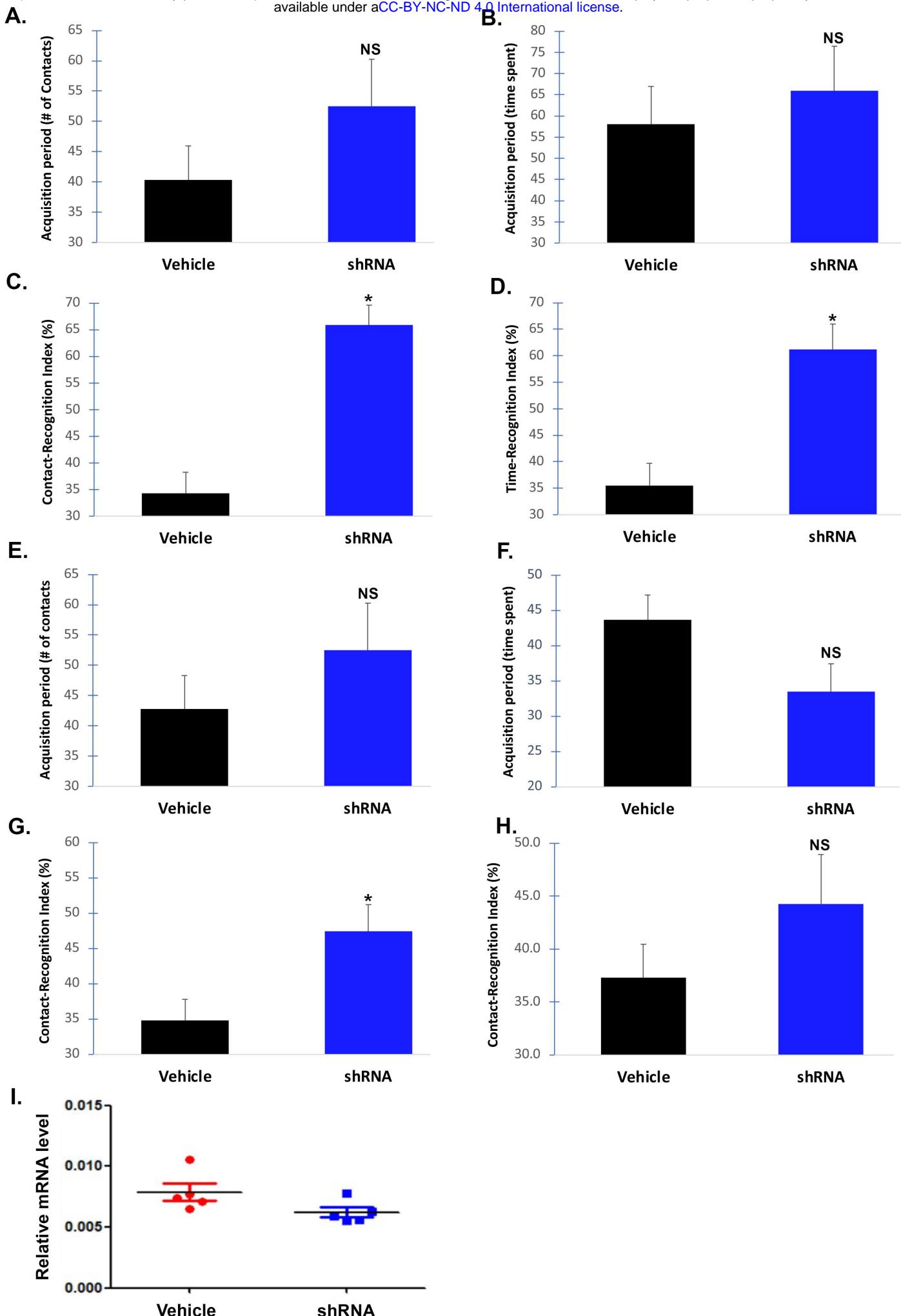


Figure 4, Rohn et al.



Rohn et al., Figure 5


A.


B.

C.

Figure 6. Rohm et al.

