

1 **Structure-based discovery of positive allosteric modulators for the calcium**
2 **sensing receptor**
3

4 Fangyu Liu^{1,†}, Cheng-Guo Wu^{2,†}, Chia-Ling Tu³, Isabella Glenn¹, Justin Meyerowitz²,

5 Anat Levit Kaplan¹, Jiankun Lyu^{1,4}, Zhiqiang Cheng³, Olga O. Tarkhanova⁵, Yurii S. Moroz^{5,6,7},

6 John J. Irwin¹, Wenhan Chang^{3,*}, Brian K. Shoichet^{1,*} & Georgios Skiniotis^{*,2,8}.

7 [†] Contributed equally.

8
9 * Corresponding authors: Wenhan.Chang@ucsf.edu, shoichet@cgl.ucsf.edu,
10 yiorgo@stanford.edu

11 **Affiliations:**

13 1. Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco
14 CA 94143, USA.

15 2. Department of Molecular and Cellular Physiology, Stanford University School of
16 Medicine, Stanford, CA, USA

17 3. San Francisco VA Medical Center, Dept. of Medicine, University of California, San
18 Francisco, San Francisco CA 94158, USA.

19 4. Current address: The Rockefeller University, New York, NY, 10065

20 5. Chemspace LLC, Kyiv, 02094, Ukraine

21 6. Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine

22 7. Enamine Ltd., Kyiv, 02094, Ukraine

23 8. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA,
24 USA

25

26

27

28

29

30 **Abstract**

31 Drugs acting as positive allosteric modulators (PAMs) to enhance the activation of the
32 calcium sensing receptor (CaSR) and to suppress parathyroid hormone (PTH) secretion can treat
33 hyperparathyroidism but suffer from side effects including hypocalcemia and arrhythmias.
34 Seeking new CaSR modulators, we docked libraries of 2.7 million and 1.2 billion molecules
35 against transforming pockets in the active-state receptor dimer structure. Consistent with the idea
36 that docking improves with library size, billion-molecule docking found new PAMs with a hit rate
37 that was 2.7-fold higher than the million-molecule library and with hits up to 37-fold more potent.
38 Structure-based optimization of ligands from both campaigns led to nanomolar leads, one of
39 which was advanced to animal testing. This PAM displays 100-fold the potency of the standard
40 of care, cinacalcet, in *ex vivo* organ assays, and reduces serum PTH levels in mice by up to 80%
41 without the hypocalcemia typical of CaSR drugs. Cryo-EM structures with the new PAMs show
42 that they promote CaSR dimer conformations that are closer to the G-protein coupled state
43 compared to established drugs. These findings highlight the promise of large library docking for
44 therapeutic leads, especially when combined with experimental structure determination and
45 mechanism.

46

47

48

49

50

51

52

53

54

55

56 **Introduction**

57 Well before the advent of molecular pharmacology, much effort had been directed toward
58 developing “calcimimetic” and “calcilytic” drugs to promote or suppress the calcium-sensing
59 abilities of parathyroid cells and to regulate PTH secretion and blood calcium levels. The activity
60 of these drugs on the calcium-sensing receptor (CaSR), a G protein-coupled receptor (GPCR),
61 was confirmed after its cloning¹. CaSR is present in almost every organ system but is most highly
62 expressed in the parathyroid gland and in the kidneys, where it maintains calcium homeostasis
63 by sensing changes in extracellular calcium levels to regulate PTH secretion, renal calcium
64 reabsorption, and excretion^{2,3}. Loss-of-function mutations or reduced CaSR expression cause
65 familial hypocalciuric hypercalcemia (FHH), neonatal severe primary hyperparathyroidism, or
66 adult primary hyperparathyroidism, respectively⁴. In FHH, the CaSR becomes less sensitive to
67 rising calcium levels, leading to increased PTH secretion *in lieu* of elevated blood calcium levels
68 and reduced calcium excretion. Conversely, oversensitivity to calcium from gain-of-function
69 mutations in autosomal dominant hypocalcemia (ADH) decreases PTH secretion and lowers
70 blood calcium levels⁵⁻⁷. Through its widespread expression, CaSR is also involved in other
71 physiological mechanisms, notably gastrointestinal nutrient sensing, vascular tone, and secretion
72 of insulin, with alterations in receptor activity implicated in the development of osteoporosis and
73 in several cancers³.

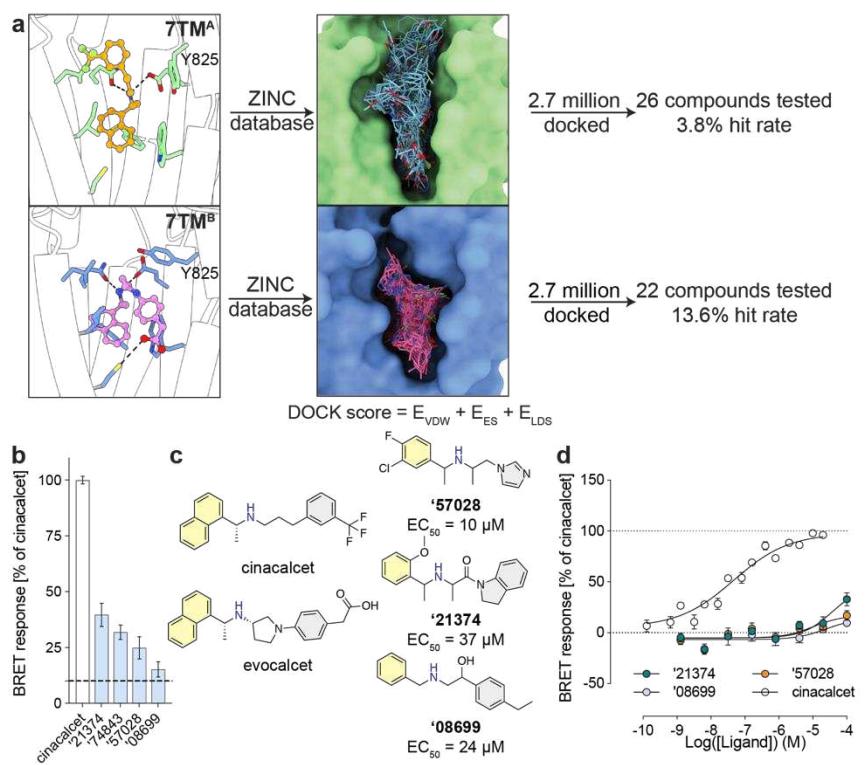
74

75 Efforts to target CaSR therapeutically have focused on the development of positive and
76 negative allosteric modulators (PAMs and NAMs), which potentiate the receptor’s activation or its
77 inactivation, respectively, while binding at a non-orthosteric site (here, a non-calcium site). PAMs
78 enhance the physiological response to calcium but display little or no agonist activity on their own.
79 In the past two decades, the small molecule PAM drug cinacalcet and the peptide-based PAM
80 drug etelcalcetide⁸ were approved for human use, but only for the treatment of secondary
81 hyperparathyroidism (HPT) in patients with chronic kidney disease (CKD) undergoing dialysis,

82 while cinacalcet is also approved to treat high levels of calcium in patients with parathyroid cancer.
83 The limited indications reflect the adverse side effects associated with the current PAMs, including
84 hypocalcemia, upper gastrointestinal bleeding, hypotension, and adynamic bone disease.
85 Hypocalcemia can be life-threatening as it can cause seizures and heart failure⁹⁻¹⁴, and thus drugs
86 that decrease PTH levels without this adverse effect are much needed.

87
88 The CaSR belongs to the Family C of GPCRs, a relatively exotic group that has the unique
89 property of operating as homo- or heterodimers with extracellular domains (ECDs) constituting
90 the orthosteric ligand binding site. The ECD of a CaSR monomer is connected through a linker
91 region to the seven transmembrane domain (7TM), which has been shown to activate primarily
92 to Gq/11 and Gi/o G protein subtypes^{15,16}. Upon calcium binding to the ECDs, the CaSR
93 homodimer undergoes extensive conformational transitions that bring the 7TMs in close proximity
94 with a TM6-TM6 interface, an overall configuration that has been shown to be associated with
95 receptor coupling to G protein^{17,18}. Our recent high resolution cryo-EM studies showed that in the
96 active-state receptor both cinacalcet and the related evocalcet, recently approved for therapeutic
97 use in Japan¹⁶, both adopt an “extended” conformation within the 7TM of one CaSR monomer,
98 and a “bent” conformation in the second monomer of the dimer. The two different conformations
99 by the same ligand reflect changes in the allosteric PAM binding pockets that are transforming to
100 accommodate the asymmetric juxtaposition of the two CaSR protomers upon activation¹⁶.

101
102 We sought to exploit these structures and our mechanistic insights on receptor activation
103 to discover new CaSR PAM chemotypes that are topologically unrelated to those previously
104 investigated. Such new chemotypes often lead to new pharmacology, and our hope was that they
105 might enhance CaSR activation and so modulate PTH secretion without leading to the dose-
106 limiting hypocalcemic actions of approved drugs. To address this, we adopted a structure-based,
107 library docking approach¹⁹. In the last four years, docking libraries have expanded over 1000-fold,


108 from millions to billions of molecules, and from these new libraries have emerged unusually potent
109 ligands, with activities often in the mid- to low-nM concentration range, straight from docking¹⁹⁻²⁵.
110 Indeed, simulations suggest that as the libraries expand, docking finds not only more but better
111 ligands, although this has not been experimentally tested. While our chief goal was the discovery
112 of efficacious CaSR PAMs with reduced side-effects, we took the opportunity to test how library
113 growth affected docking experimentally, comparing the *in vitro* results from docking a 2.7 million
114 library vs. a library of 1.2 billion molecules. This offers one of the first experimental tests for the
115 impact of library growth on experimental outcome. Mechanistically and therapeutically, potent
116 new PAMs emerged from these studies, active in the 3 nM range, with *in vivo* activities between
117 10 and 100-fold more potent than cinacalcet, and apparently without that drug's dose-limiting
118 hypocalcemia. Cryo-EM structures of the new PAMs illuminate their mechanism of action on
119 CaSR and may template future optimization and discovery toward better therapeutics.

120

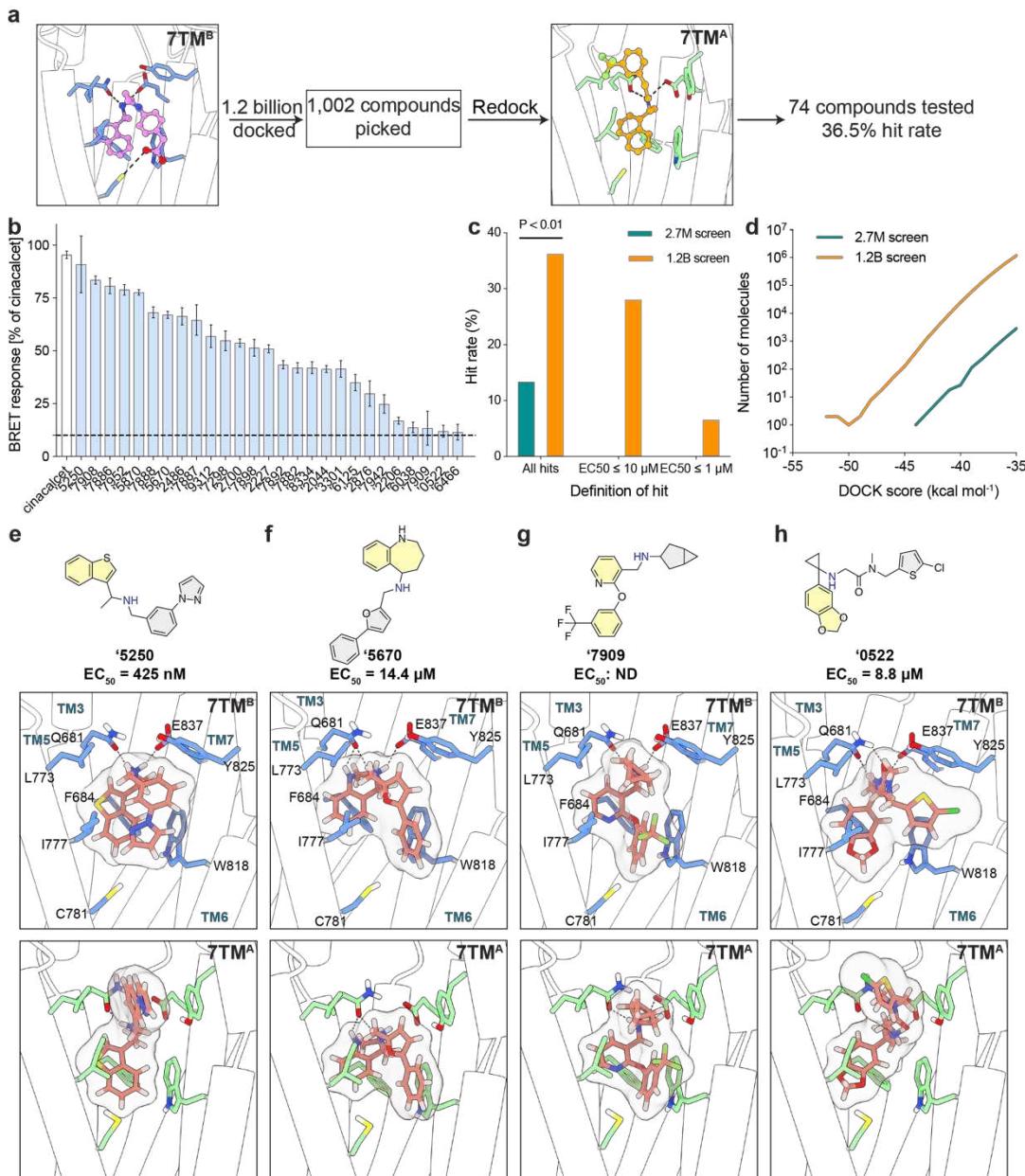
121 **Results**

122 **Docking a small in-stock library against CaSR.** We began by docking the smaller, in-
123 stock library of 2.7 million molecules at both 7TM sites of CaSR. In the site accommodating the
124 “bent” conformation of cinacalcet (7TM^B site), an average of 3,927 orientations of each library
125 ligand were sampled, each in an average of 333 conformations, or 1.2 trillion configurations
126 overall; the calculation took just under one hour of elapsed time on a 1000-core cluster, using
127 DOCK3.7²⁶. Molecules were scored for van der Waals²⁷ and Poisson-Boltzmann-based
128 electrostatic complementarity^{28,29} corrected for Generalized-Born ligand desolvation³⁰.
129 Conformationally strained molecules were deprioritized³¹, while high-ranking molecules were
130 clustered for similarity to each other using an ECFP4-based Tanimoto coefficient (Tc) of 0.5 and
131 filtered against similarity to known CaSR ligands. Comparable numbers of ligand orientations,
132 conformations, and docking configurations were sampled and calculated for the “extended” site
133 (7TM^A site). Ultimately, we selected 26 compounds with favorable interactions at the 7TM^A site,

134 and 22 compounds with interactions at the 7TM^B site. These were tested for CaSR-induced G_{i3}
135 activation³² using an extracellular calcium concentration of 0.5 mM. One PAM emerged from
136 those selected for the 7TM^A site with > 10% of *E*_{max} induced by cinacalcet, and three PAMs were
137 found for the 7TM^B site, representing hit rates of 3.8% (1/26) and 13.6% (3/22), respectively (Fig.
138 **1a, 1b**). The higher hit rate for the 7TM^B site may be attributed to its more enclosed pocket, which
139 better excluded molecules unlikely to bind and led to better ligand complementarity. While all four
140 compounds physically resemble known PAMs, containing a buried aromatic ring, a bridging
141 cationic linker, and a distal aromatic ring, they were topologically dissimilar to the known ligands
142 in the ChEMBL and IUPHAR databases, with ECFP4 Tc values ≤ 0.35 (Fig. 1c, **Extended Data**
143 **Table 1**). Even though the initial potency of these molecules was low (Fig. 1d), we were able to
144 optimize three of them to potencies in the 30-220 nM range (Fig. 3e, **Extended Data Fig. 2**),
145 supporting their authenticity as true PAMs.

146

147 **Fig. 1: Small-scale in-stock screens in the two 7TM sites of CaSR.** **a**, 2.7 million
148 molecules were docked against the allosteric 7TM sites of CaSR. Docking against 7TM^B
149 outperforms 7TM^A in terms of higher hit rate (13.6% versus 3.8%). Hit rates were defined by over
150 10% BRET response compared to cinacalcet at 100 μ M. E_{VDW} : van der Waals; E_{ES} : electrostatic;
151 E_{LDS} : ligand desolvation. Cinacalcet is in gold and evocalcet is in pink for illustration of the binding
152 sites (**PDB: 7MCF**). **b**, BRET response (normalized to cinacalcet) of the initial hits at 100 μ M. **c**,
153 Examples of the docking hits in comparison to the known PAMs cinacalcet and evocalcet. The
154 new hits have amine (in blue) flanking by hydrophobic groups (yellow: hydrophobic groups that
155 are stationary (either experimentally determined or by docking prediction); grey: hydrophobic
156 groups that can be flexible). **d**, Concentration response curves of the initial hits '21374', '57028'
157 and '08699. Estimated EC₅₀ for cinacalcet is 46 nM [28 – 74 nM].
158


159 **Large library docking on CaSR for new chemotypes.** To measure the impact of larger
160 libraries, and potentially identify more potent PAMs, we screened a library of 1.2 billion make-on-
161 demand (“tangible”) molecules³³ against the more enclosed 7TM^B site. Here, an average of 1,706
162 orientations were sampled for each library molecule, each in an average of 425 conformations,
163 or 682 trillion total configurations overall; this calculation took about 16 days of elapsed time on a
164 1,000-core cluster. Top-scoring molecules were filtered and clustered as for the smaller library,
165 and 1,002 cluster-heads passed all criteria. 96 molecules that score well in both sites were
166 prioritized for synthesis, of which 74 compounds were successfully made, a 77% fulfillment rate.
167 In BRET assays, 27 of the 74 compounds produced >10% of the *Emax* induced by cinacalcet, a
168 36.5% hit rate almost three-fold higher than did the 2.7 million molecule library (**Fig. 2a, b**).

169 The larger library also revealed hit molecules with higher potency than those from the
170 smaller library, with more than 70% having EC₅₀ values better than 10 μ M, and 20% having an
171 EC₅₀ better than 1 μ M (**Fig. 2c, Extended Data Table 1**), with the best having an EC₅₀ of 270 nM.
172 Given the number of molecules tested, the hit-rate difference between the larger and smaller
173 library screens was significant (*p*-value < 0.01), and in fact is only as good as it is for the smaller
174 library when we count as hits molecules with EC₅₀ values worse than 10 μ M. In the 1-10 μ M and
175 in the 0.1-1 μ M ranges, no hits emerged from the smaller library, whereas multiple ones did so
176 from the larger library. These results support the theoretical studies predicting better performance

177 from larger libraries³⁴, providing an experimental quantification for the impact of larger versus
178 smaller libraries.

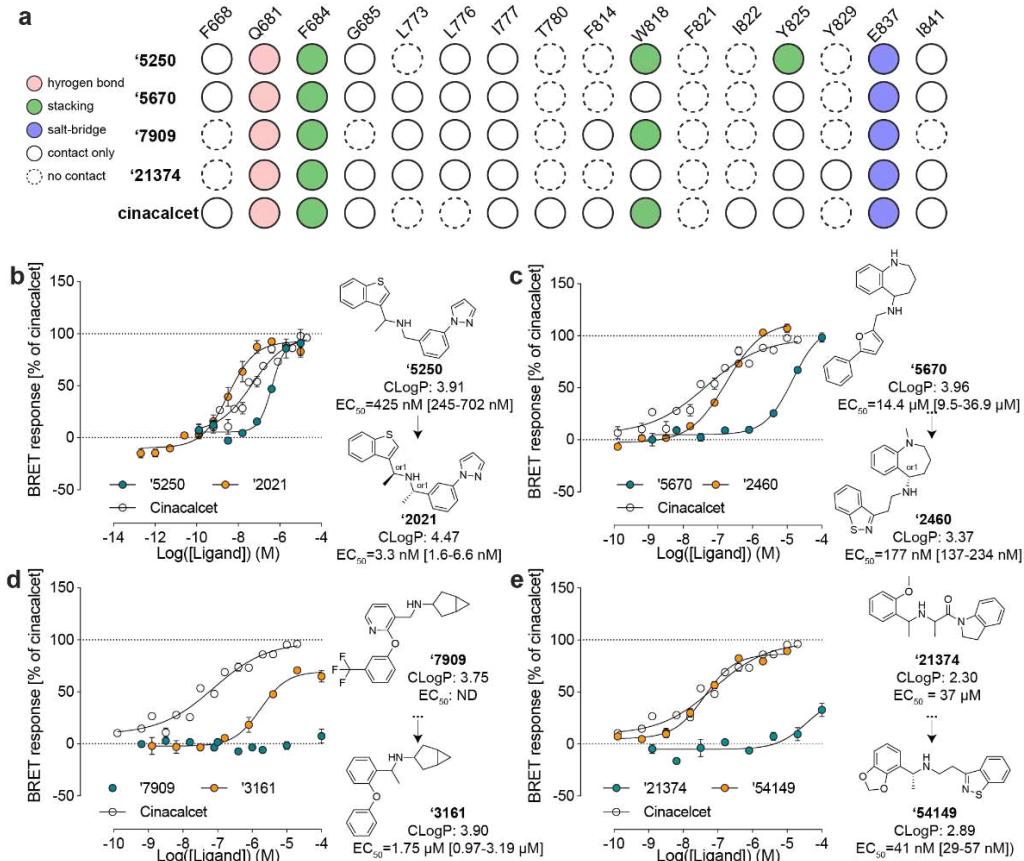
179

180 A core goal of this study was finding new chemotypes conferring new pharmacology. We
181 therefore prioritized high-ranking docked molecules based on both potency and topological
182 dissimilarity to known CaSR PAMs (**Fig. 2e-h, Extended Data Table 1**). Thus, while drugs like
183 cinacalcet and evocalcet are characterized by a naphthyl separated from a phenyl by a five-atom
184 cationic linker, the new PAMs explored different and typically heteroaromatic anchors, different
185 linkers, and frequently lacked the methyl α to the cation that is ubiquitous among CaSR PAMs.
186 Naturally, with the spatial and chemical restrictions of these pockets, there were physical
187 resemblances between the established drugs and the new PAMs (**Fig. 2e-h**). Cryo-EM structures
188 have shown that the cationic amine of cinacalcet and evocalcet hydrogen bonds and ion-pairs
189 with Q681^{3,33} and E837^{7,32} of CaSR, which are critical for PAM recognition^{16,35}. Meanwhile, the
190 highly conserved methyl group α to this cationic amine fits into a hydrophobic pocket formed by
191 I841^{7,36}, F684^{3,36}, F668^{2,56}, whose substitutions with alanine abolish or decrease binding affinities
192 for CaSR PAMs³⁶. In their bent conformations bound to 7TM^B, the naphthalene ring common to
193 both drugs T-stacks with F684^{3,36} and W818^{6,50}, while the trifluoromethylbenzene of cinacalcet
194 forms edge-to-pi interaction with W818^{6,50}. Remarkably, although their linker lengths differ from
195 the known drugs, most of the new PAMs also adopt “bent” conformations in their docked poses
196 within the 7TM^B CaSR pocket (**Fig. 2e-h, Extended Data Fig. 1**). While most of them retain
197 hydrophobic flanking groups that dock into the aryl sites defined by cinacalcet and evocalcet, all
198 do so with different moieties (compare **Fig. 1c** to **Fig. 2e-2h**).

199

200 **Fig. 2: Novel ligands are identified through docking 1.2 billion make-on-demand**
201 **library.** **a**, Workflow of an iterative docking campaign against CaSR. All compounds were first
202 docked in the 7TM^B site. **b**, BRET response (normalized to cinacalcet) of the hits. Hit rates were
203 determined by over 10% BRET response (compared to cinacalcet) at 10 μ M. **c**, Hit rate
204 comparison between 2.7 million and 1.2 billion screens. The overall hit rate of the 1.2 billion screen
205 is significantly better than the in-stock 2.7 million screen ($P < 0.01$ by z-test). **d**, Total docking
206 energies of top-scoring molecules out of LSD compared to in-stock screen (only molecules with
207 DOCK score < -35 kcal mol⁻¹ are plotted). **e-h**, Representative novel PAMs discovered from
208 docking (colors represent the different moieties that fulfill the same role). **Top:** 2D structures.
209 **Middle:** Docked poses in 7TM^B site. **Bottom:** Docked poses in 7TM^A site.

210 **Structure-based optimization of new PAMs.** To increase the affinity of the initial hits,
211 we sought to optimize interactions with residues that had proven important in other series³³,
212 including Q681^{3.33}, E837^{7.32}, I841^{7.36}, F668^{2.56}, F684^{3.36}, and W818^{6.50} (**Fig. 3a**). The greater
213 polarity of the docking hits, whose calculated octanol:water partition coefficient (clogP) ranged
214 from 2.3 to 4.0 vs. a clogP of 5.1 for the more hydrophobic cinacalcet, gave us freedom to operate
215 in the hydrophobic CaSR site.


216
217 To fill a gap in the interface with L773^{5.40}, Y825^{6.57} and to stiffen the linker in the docking-
218 derived PAM '**5250**' (EC₅₀ 415 nM), a second methyl was added proximal to the cationic nitrogen.
219 This improved potency five-fold, to an EC₅₀ of 90 nM, while synthetic resolution of the
220 diastereomers improved it another 130-fold. The resulting compound Z8554052021 ('**2021**'), with
221 an EC₅₀ of 3.3 nM, is among the most potent CaSR and indeed GPCR PAMs described (**Fig. 3b**).
222

223 The tetrahydrobenzazine of compound '**5670**' (**Fig. 2f**) separates it from the naphthalene
224 equivalent of cinacalcet and evocalcet and gives it a relatively polar and certainly three-
225 dimensional character compared to the equivalent groups of other CaSR PAMs. Substitution of
226 the terminal phenyl-furan with a more compact and more polar benzothiazole, which can be well-
227 accommodated in the hydrophobic site defined by residues I777^{5.44}, W818^{6.50} and Y825^{6.57},
228 improved potency seven-fold (compound Z2592185946 ('**5946**')), while its N-methylation led to
229 '**6218**' (EC₅₀ 0.25 μM) (**Extended Data Fig. 3b**). Enantiomeric purification led to '**2460**', a 177 nM
230 CaSR PAM (**Fig. 3c**). Despite its 80-fold potency improvement, the molecular weight and cLogP
231 values of '**2460**' were actually reduced versus the parental docking hit, improving Lipophilic Ligand
232 Efficiency (LLE) from 0.9 to 3.4. Similar changes in the equivalent aryl groups, binding in the
233 hydrophobic site defined by residues F668^{2.56} and I841^{7.36}, led to improvements in docking hits
234 Z5208267909 ('**7909**') and Z1591490522 ('**0522**') (**Fig. 2d, Extended Data Fig. 3c**). For the
235 former, the EC₅₀ improved from over 100 μM to 1.7 μM (Z6562953161 ('**3161**'), **Fig. 3d**), and

236 efficacy was much improved even though molecular weight was, again, decreased. Meanwhile,
237 the analog of **‘0522**, Z6923555526 (**‘5526**), saw the introduction of the same benzothiazole as in
238 **‘2460**, along with a simplification of the linker, giving better complementarity with the hydrophobic
239 site defined by I777^{5,44}, W818^{6,50} and Y825^{6,57} (**Extended Data Fig. 3c**), and improving EC₅₀ 95-
240 fold, to 0.48 μM.

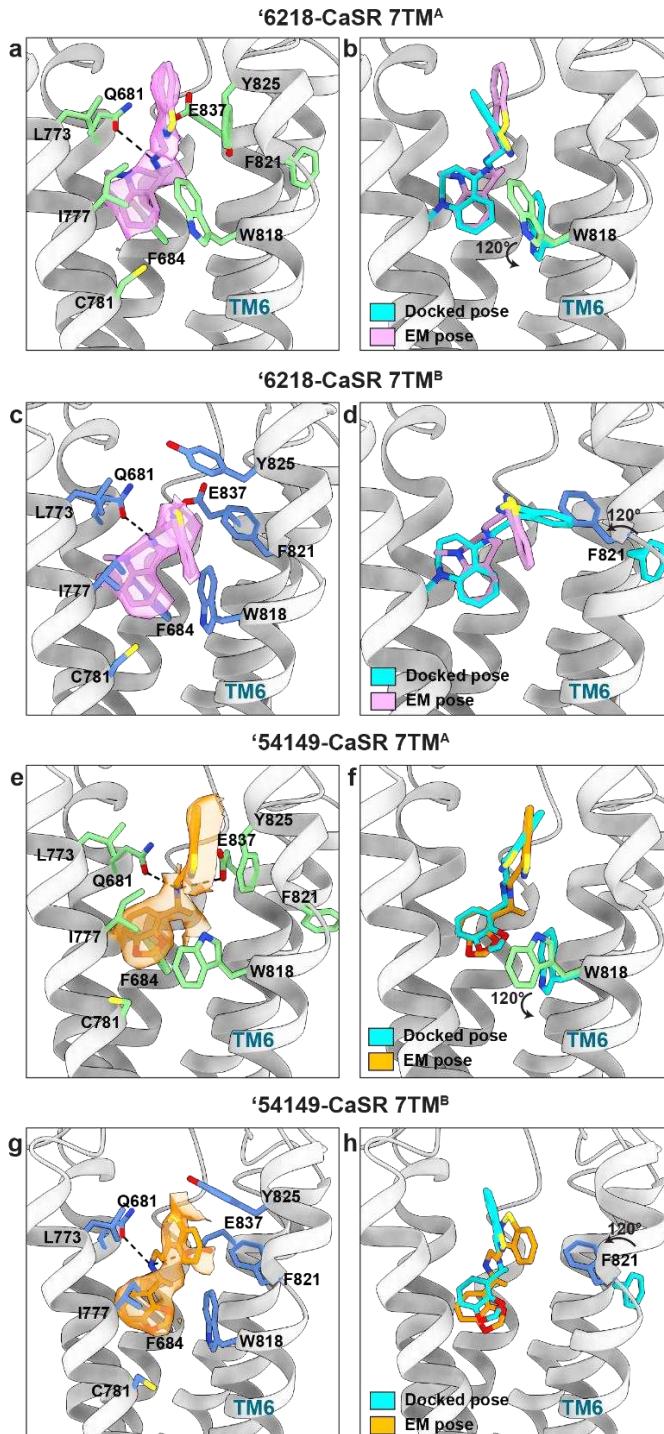
241

242 We also sought to optimize the early PAMs revealed by the “in-stock” library. Although
243 these molecules began with weak EC₅₀ values, we were able to optimize three of the four
244 molecules to EC₅₀ values 30-163 nM (**Fig. 3e, Extended Data Fig. 2a**). Most compelling was the
245 improvement of **‘21374**. Here, simplification of the linker and installation of a benzothiazole, as in
246 **‘6218** and **‘5526**, above, led to **‘85339**, with an EC₅₀ of 174 nM. Stereochemical purification to
247 (*R*)-**‘85339** (**‘54149**) revealed a 41 nM PAM. It was this molecule, with relatively high potency (4.5-
248 fold improved on that of cinacalcet), favorable cLogP (2.9), new chemotype, and novel receptor
249 contacts, that we ultimately took forward into *in vivo* studies.

250

251 **Fig. 3: Initial hits to high-affinity analogs. a**, Contact analyses of the initial docking hits
 252 versus cinacalcet. **b**, Docking hit '**5250** and its optimized analog '**2021** (a diastereomer of '**6783**).
 253 **c**, Docking hit '**5670** and its optimized analog '**2460** (an enantiomer of '**6218**). **d**, Docking hit '**7909**
 254 and its optimized analog '**3161**. **e**, In-stock docking hit '**21374** and its optimized analog '**54149**.
 255 EC₅₀ was determined by monitoring Gi activation by CaSR upon compound addition at [Ca²⁺] =
 256 0.5 mM. The efficacy of the compounds is normalized to the maximum BRET response induced
 257 by cinacalcet. Data represent means and SEMs of 3-27 replicates.
 258

259 **Cryo-EM structures of the '**6218**- and '**54149**-CaSR complexes.** To understand the
 260 molecular basis of recognition and to template subsequent optimization, we determined structures
 261 of CaSR in complex with two PAMs, '**6218** and '**54159** (*R*-'**85339**), derived from the 1.2 billion
 262 and the 2.7 million molecule screens, respectively. For CaSR-'**6218** complex, the map was
 263 determined at a global nominal resolution of 2.8 Å with locally refined maps at resolutions of 2.7
 264 Å and 3.4 Å for ECD-linker and linker-7TM regions, respectively (**Extended Data Fig. 4 and Fig.**
 265 **5**). For CaSR-'**54149** complex, the map was determined at a global nominal resolution of 2.7 Å

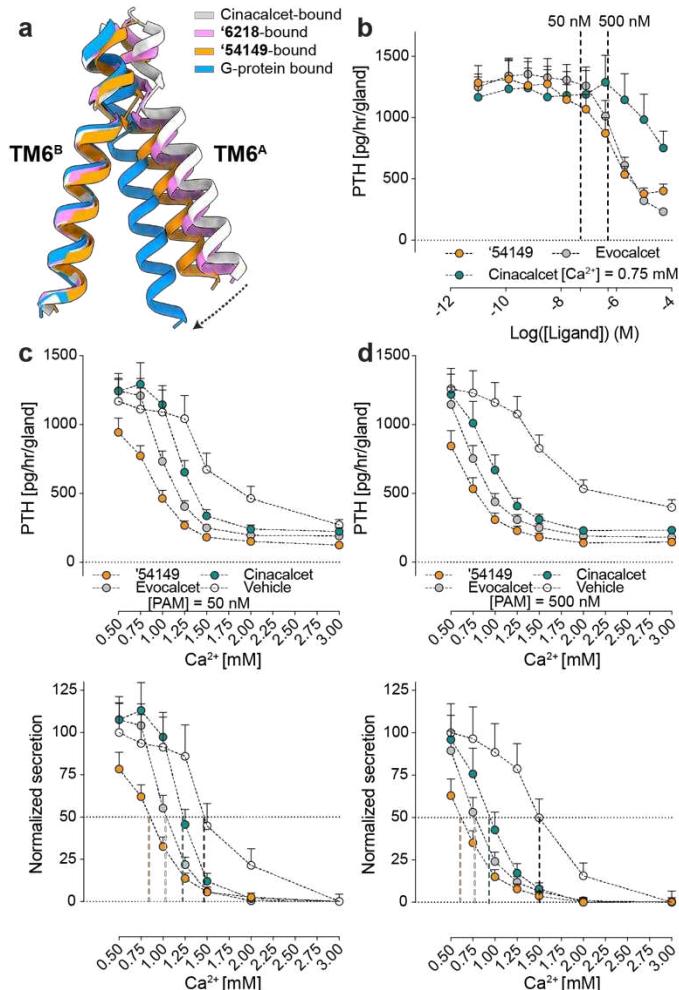

266 with locally refined maps at resolutions of 2.6 Å and 3.6 Å for ECD-linker and linker–7TM regions,
267 respectively (**Extended Data Fig. 4** and **Fig. 5**). Similar to the structures of cinacalcet- and
268 evocalcet-bound CaSR complexes¹⁶, the 7TMs between two protomers adopt an asymmetric
269 arrangement characterized by a raised position adopted by the TM6 of 7TM^A relative to the
270 opposing TM6 of 7TM^B (**Extended Data Fig. 6A, 6B**).

271 In the CaSR-‘**6218** complex, the PAM binding sites show density of ‘**6218** in “extended”
272 and “bent” conformations, recapitulating those of cinacalcet and evocalcet (**Fig. 4a, 4c**)¹⁶. ‘**6218**
273 interacts with the same overall residues in both monomers, making conserved as well as site-
274 specific interactions. In both sites, the cationic amine of the PAM ion-pairs with E837^{7,32} and
275 hydrogen-bonds with Q681^{3,33}. In the 7TM^B site, the methyl-benzazepine ring forms pi-pi
276 interactions with F684^{3,36} and W818^{6,50}, recapitulating the interactions formed by the naphthalene
277 in cinacalcet and evocalcet. The benzoisothiazole ring makes pi-pi interactions with F821^{6,53} and
278 Y825^{6,57} (**Fig. 4c**). In the 7TM^A site, while W818^{6,50} swings out by 120° and Y825^{6,57} moves down,
279 the pi-pi interactions are still maintained. Conversely, the interaction with F821^{6,53} is lost as it
280 swings out and is no longer part of the allosteric pocket (**Fig. 4a**). The docking predicted pose for
281 ‘**6218** superposes well with its experimental structure in both monomers (**Fig. 4b, 4d**). Both the
282 docked and experimental poses of ‘**6218** adopt an “extended” conformation in the 7TM^A site (**Fig.**
283 **4b**), while they have a “bent” conformation in the 7TM^B site (**Fig. 4d**). The same bent and extended
284 conformations were observed for the initial docking hits; in this sense, this level of geometric
285 fidelity emerged directly from the docking screen (**Fig. 2e-2h, Extended Data Fig. 1**). The docked
286 and experimental structures superimposed with a 1.88 Å root mean square deviation (RMSD) in
287 the bent conformation monomer, and with a 2.23 Å RMSD in the extended conformation monomer.
288 While the experimental results broadly support the docking prediction, there were important
289 differences in the receptor structures. Compared to the cinacalcet complex against which we
290 docked (7TM^B), F821^{6,53} swings 120° into the site to become part of the binding pocket, making

291 pi-pi interaction with the benzoisothiazole ring of **‘6218 (Fig. 4d)**. This conformation is not adopted
292 in the cinacalcet or the evocalcet complex, likely because the mobile groups of cinacalcet (1-
293 propyl-3-(trifluoromethyl) benzene) and evocalcet (2-phenylacetic acid) are bulkier and would
294 clash with this phenylalanine (**Extended Data Fig. 7**). Meanwhile, in the “extended” monomer’s
295 binding site (7TM^A), W818^{6.50} moves 120° to swing outside of the binding pocket in the **‘6218**
296 complex.

297 Similar to **‘6218**, **‘54149** can adopt an “extended” conformation in the 7TM^A site and a
298 “bent” conformation in the 7TM^B site, inducing similar rearrangements of W818^{6.50} and F821^{6.53} in
299 the 7TM^A and 7TM^B site, respectively (**Fig. 4e-4h**). **‘54149** and **‘6218** share a benzoisothiazole
300 group in their chemical structures that is flexible in the two sites, suggesting the conformational
301 changes of W818^{6.50} and F821^{6.53} are benzoisothiazole specific. At the 7TM^B site, the
302 benzodioxole group interacts with F684^{3.36} and W818^{6.50} through pi-pi stacking while the
303 benzoisothiazole forms pi-pi interactions with F821^{6.53} and Y825^{6.57}. The cationic amine hydrogen
304 bonds with Q681^{3.33} and ion-pairs with E837^{7.32}, and the adjacent methyl packs with I841^{7.36} (**Fig.**
305 **4g**). The interactions with F821^{6.53} and Y825^{6.57} are lost in the 7TM^A site as F821^{6.53} swings out of
306 the pocket and Y825 swings down (**Fig. 4e**). The docked and experimental structures superposed
307 to 0.91 Å RMSD in the 7TM^A site, and to 2.68 Å RMSD in the 7TM^B site (**Fig. 4g, h**). Docking
308 predicted **‘54149** to adopt both “extended” conformations in the binding pocket but we observe
309 signs of conformational heterogeneity in the 7TM^A site. The EM density suggests that **‘54149**
310 adopts an alternative “folded-over” conformation at this site, which has never been previously
311 observed (**Extended data Fig. 5c and Extended data Fig. 8**). In this “folded-over” configuration,
312 **‘54149** establishes favorable interactions with CaSR—the benzoisothiazole ring makes additional
313 contacts by edge-to-pi stacking with F814^{6.46} and is surrounded by a hydrophobic pocket created
314 by A840^{7.35}, I841^{7.36}, A844^{7.39} and V817^{6.49}. Among those residues, A840^{7.35} and I841^{7.36} are
315 important for the affinity of CaSR PAMs^{35,36}. Unlike methyl-benzazepine (in **‘6218**) and
316 naphthalene (in cinacalcet and evocalcet), **‘54149** uses a smaller benzodioxole as the stationary

317 binding component, possibly allowing more configurations in the pocket. Together, the
318 conformational disparity in the structure of these complexes highlights the ongoing importance of
319 cycles of docking and structure determination in drug discovery efforts.



321 **Fig. 4: Structural comparison between docked and experimentally determined**
322 **poses for '54149 and '6218.** **a**, Close-up view of '**6218** in the 7TM^A site, with its EM density
323 shown. Surrounding residues are in green. **b**, Superposition of docked and experimentally
324 determined pose of '**6218** in the 7TM^A site. **c**, Close-up view of '**6218** in the 7TM^B site, with its EM
325 density. Surrounding residues are shown in blue. The docked pose and its surrounding residues
326 are in silver. **d**, Superposition of docked and experimentally determined pose of '**6218** in the 7TM^B
327 site. **e**, Close-up view of '**54149** in the 7TM^A site, with its EM density. The surrounding residues
328 are in green. **f**, Superposition of docked and experimentally determined pose of '**54149** in the
329 7TM^A site. **g**, Close-up view of '**54149** in the 7TM^B site, with its EM density. The surrounding
330 residues are in blue. **h**, Superposition of docked and experimentally determined pose of '**54149**
331 in the 7TM^B site. (**b**, **d**, **f**, **h**) The residues undergoing conformational changes in the experimental
332 structures are shown. Docked poses and protein residues in the docked structures are in cyan.
333

334 **'54149 stabilizes a distinct active-state CaSR dimer conformation.** Compared to
335 CaSR-cinacalcet alone, the structure against which we docked, our recent structure of the
336 receptor in complex with cinacalcet and Gi $\beta\gamma$ (He et al., *accepted manuscript*, PDB: 8SZH)
337 revealed that G protein binding promotes an additional conformational change that brings the two
338 7TMs into closer contact, in a configuration that is in line with the activation of other Family C
339 receptors^{17,37}. From the inactive state to the G-protein-bound active state, the interface contact
340 area increases from 178.9 Å² (inactive; NPS-2143 bound; PDB: 7M3E) to 206.2 Å² (cinacalcet-
341 bound; PDB: 7M3F) to 682.7 Å² (cinacalcet, Gi $\beta\gamma$ -bound) (calculated by PDBePISA). By aligning
342 the 7TM^Bs, '**54149** and '**6218**'s 7TM^A moves down towards the cytoplasm associated with an
343 increase in interface contact area to 351.3 and 271.5 Å compared to cinacalcet-bound CaSR, as
344 illustrated by the relative positioning of the TM6 helices (**Fig. 5a**). The downward shift brings the
345 two 7TMs in a conformation that is closer to the G protein-bound structure, especially for that
346 induced by '**54149**, suggesting that '**54149** promotes a dimer configuration that may favor G-
347 protein activation compared to those stabilized by the other compounds (**Extended data Fig. 9**).
348 This may contribute to its efficacy and also potentially confer a different pharmacology.
349

350 **'54149 suppresses PTH secretion better than the approved PAM drugs.** Upon its
351 activation, CaSR suppresses PTH secretion from parathyroid glands³⁸, which is the primary target
352 of calcimimetic drugs. Since all PAM-bound structures were obtained under saturating calcium
353 concentrations (10 mM), the different conformations observed are specific to each PAM and may
354 be reflected in measurable functional differences. We thus investigated the functional effects of
355 the different PAM drugs and leads by monitoring PTH secretion in extracted parathyroid glands

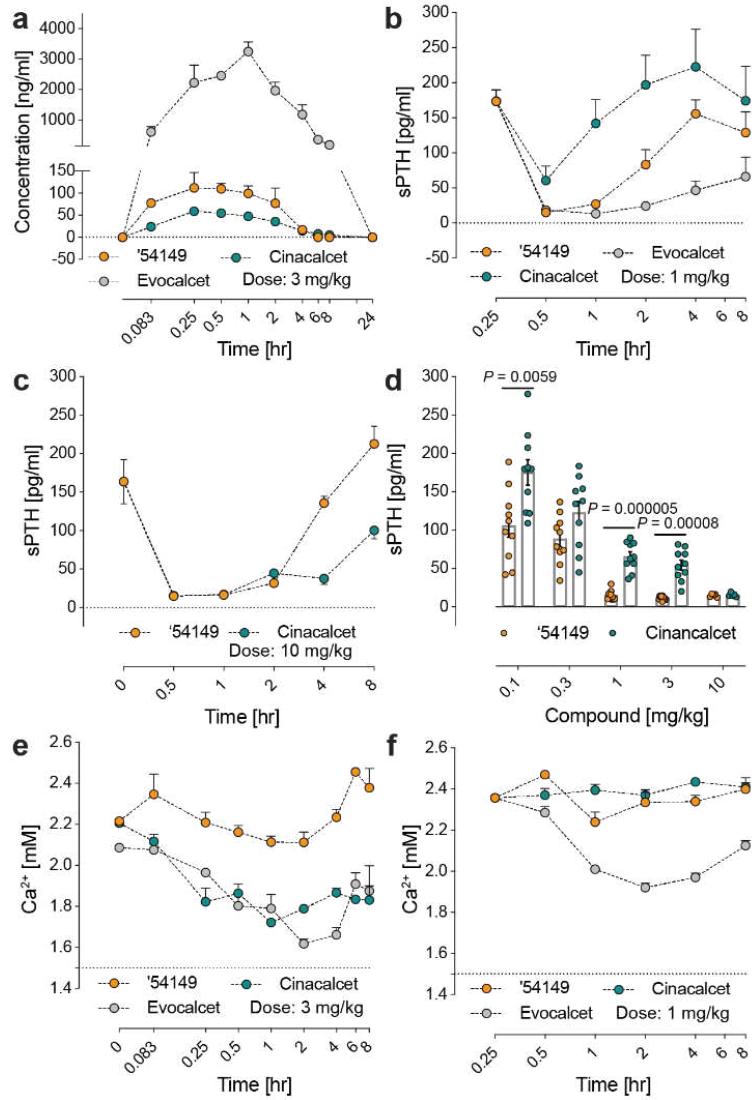
356 from wild-type (WT) C57/BL6 (B6) mice at a constant external calcium concentration of 0.75 mM.
357 All three of '**54149**', cinacalcet, and evocalcet inhibit PTH secretion dose-dependently, with
358 potencies of '**54149** (583 nM) ~ evocalcet (998 nM) >> cinacalcet (53 μ M) (**Fig. 5b**). As PAMs
359 positively regulate CaSR by lowering the required calcium for activation, we wanted to assess
360 how the different compounds shift the calcium set point for PTH secretion by the glands (**Fig. 5c**,
361 **5d**). For this assay we used two PAM concentrations, 500 and 50 nM, (dashed line in **Fig. 5b**).
362 At 500 nM, '**54149**' shifted the calcium set point from 1.5 mM to 0.62 mM, while at the same
363 concentration, cinacalcet shifted the set point to ~0.94 mM and evocalcet shifted it to 0.76 mM
364 (**Fig. 5d**). The same trend holds when the PAMs were administered at 50 nM, leading to shifts in
365 the calcium set-point from 1.47 (vehicle) to 1.23 (cinacalcet) to 1 (evocalcet) to 0.85 ('**54149**) mM
366 (**Fig. 5c**). It is worth noting that '**54149**' also suppresses the tonic secretion of PTH at 0.5 mM
367 calcium, an effect not observed with the two approved drugs.

368

369 **Fig. 5: '54149 increases the TM6-TM6 interface and is more effective in suppressing**
 370 **PTH secretion in ex vivo parathyroid glands. a,** The 7TM^A protomer experiences a downward
 371 and rotational movement bringing TM6 closer to the 7TM^B from cinacalcet-bound to '**54149**-bound
 372 structure to Gi-bound CaSR. Cinacalcet-bound CaSR is in grey, '**54149**-bound CaSR is in orange,
 373 '6218-bound CaSR is in pink and Gi-bound CaSR is in blue. **b,** Parathyroid glands of 4-week-old
 374 C57/B6 wild-type (B6:Wt) mice were sequentially incubated with increasing concentrations of
 375 '**54149**, cinacalcet and evocalcet from 0.01 nM to 50 μ M in the presence of 0.75 mM [Ca²⁺]_e. The
 376 IC₅₀s of '**54149**, evocalcet and cinacalcet in suppressing PTH secretion are 583 nM [122 -4727
 377 nM], 998 nM [412 – 4018 nM] and 53 μ M respectively. **c, d,** Parathyroid glands were sequentially
 378 incubated with increasing [Ca²⁺]_e from 0.5 mM to 3.0 mM in the presence of vehicle (0.1% DMSO),
 379 50 nM (**c**) or 500 nM (**d**) of '**54149**, cinacalcet or evocalcet. Top panels show changes in the rate
 380 of PTH secretion on a per-gland and per-hour basis with raising [Ca²⁺]_e to compare the PTH-max.
 381 Bottom panels show normalized PTH secretion rate (the highest rates are normalized to the basal
 382 rate at 0.5 mM [Ca²⁺]_e of the vehicle and the lowest rates are normalized to the rate at 3.0 mM
 383 [Ca²⁺]_e) to better assess changes in the Ca²⁺-set-point ([Ca²⁺]_e needed to suppress 50% of [Ca²⁺]_e-
 384 suppressible PTH secretion). Dotted vertical lines indicate Ca²⁺-set-points for the corresponding
 385 treatments. Mean \pm SEM of n = 8 groups of PTGs for each treatment.

387 **'54149 reduces serum PTH at lower doses with less hypocalcemia than cinacalcet**

388 Encouraged by its improved affinity and *ex vivo* organ efficacy, we investigated the *in vivo*
389 activity of **'54149**, beginning with pharmacokinetic (PK) studies in CD-1 mice. We administered
390 **'54149** at a dose of 3 mg/kg subcutaneously, and dosed cinacalcet and evocalcet in the same
391 manner for direct comparison (**Fig. 6a**). At this dose, **'54149** was found in appreciable amount in
392 plasma— $AUC_{0 \rightarrow \infty}$ 18,500 mg*min/ml. The C_{max} reaches 112 ng/ml (**340 nM**) at 15 min and stays
393 high until 60 min (100 ng/ml). Based on **'54149**'s EC_{50} , **'54149** is close to saturation at 3 mg/kg
394 dose over this period (**Fig. 3f**). By comparison, evocalcet has a much higher systemic exposure
395 at the same dose, with a C_{max} of 3,250 ng/ml (**8.68 μM**) at 60 min. On the other hand, cinacalcet
396 - which is far more widely used - has lower exposure than **'54149**, with C_{max} of 58.9 ng/ml (**149.5**
397 nM) 15 min after subcutaneous administration (**Fig. 6a**). We note that no effort has been made to
398 optimize **'54149** for pharmacokinetic exposure or clearance—to the extent that it has favorable
399 PK, this simply reflects the physical property constraints imposed in docking and ligand
400 optimization.


402

403 Based on the PK, we picked two doses to investigate the time course of PTH suppression
404 by the PAMs in WT B6 mice. At 1 mg (3.1 μ mol/kg), **'54149** and equimolar evocalcet fully suppress
405 PTH secretion, while cinacalcet is less effective at this dose (**Fig. 6b**). Only at 10 mg/kg (31
406 μ mole/kg) was cinacalcet able to fully suppress PTH secretion (**Fig. 6c, 6d**). Overall, **'54149** fully
407 suppresses serum PTH at 10 times lower dose than cinacalcet (**Fig. 6d**), consistent with its ability
408 to suppress releases of both tonic and Ca^{2+} -suppressible pools of PTH (**Fig. 5c, 5d**).

409

410 A key adverse effect of cinacalcet and etelcalcetide is decreased blood calcium³⁹. In
411 secondary hyperparathyroidism (SHPT), high PTH is accompanied by low or normal blood
412 calcium concentration. The overproduction of PTH and the proliferation of parathyroid cells in
413 patients with SHPT are largely driven by low blood calcium and high blood phosphate levels⁴⁰⁻⁴²

414 as well as reduced CaSR expression in parathyroid cells⁴³. We were thus keen to compare the
415 serum calcium concentration after injection of '**54149**' versus cinacalcet. At the dose of 3mg/kg,
416 '**54149**' did not significantly alter serum calcium concentration for 4 hrs, but slightly increased it
417 from 2.2 to 2.4 mM after the drug dissipated in circulation 6 hrs post-injection (**Fig. 6e**). In contrast,
418 the same dose of cinacalcet and evocalcet significantly lowered serum calcium for more than 8
419 hrs from 2.2 mM to the lowest levels of 1.7 mM and 1.6 mM, respectively. The hypocalcemic
420 action of evocalcet is particularly robust even at a lower dose of 3.1 μ mol/kg (~1 mg/kg) (**Fig. 6f**),
421 while the same dose of '**54149**' retained the ability to maximally suppress serum PTH without
422 producing hypocalcemia (**Fig. 6d**). Although the mechanisms underlying the different calcemic
423 actions of these 3 compounds remain to be determined, their common ability to suppress PTH
424 secretion suggests that differential calcemic actions likely take place in other calciotropic organs
425 outside of parathyroid glands.

426

427 **Fig. 6: '54149 suppresses serum PTH at lower dose and causes less hypocalcemia**
428 **effect than cinacalcet and evocalcet.** **a**, Pharmacokinetics of '54149' compared to cinacalcet
429 and evocalcet after 3 mg/kg subcutaneous injection. **b**, Serum PTH concentration change over 8
430 hours after 1 mg/kg subcutaneous injection of '54149', cinacalcet or evocalcet. **c**, Serum PTH
431 concentration change over 8 hours after 10 mg/kg subcutaneous injection '54149' or cinacalcet (n
432 = 5). **d**, Comparison of '54149' to cinacalcet in regulating serum PTH at different doses
433 (subcutaneous injection) after 30min of injection. Each dose consists of n = 10 mice except
434 injection at 10 mg/kg (n = 5). P-values were assessed by unpaired Student's t-test. **e**, Plasma
435 calcium concentration in mice after 3 mg/kg subcutaneous injection of '54149', cinacalcet or
436 evocalcet. **f**, Serum calcium concentration after 1 mg/kg subcutaneous injection of '54149',
437 cinacalcet or evocalcet. For experiments in panel **b-d**, **f**, the concentrations of evocalcet and
438 cinacalcet are corrected for their molecular weight difference with '54149'.
439

440

441 **Discussion**

442 Four key observations emerge from this study. **First**, from a structure-based screen of a
443 1.2 billion molecule tangible library emerged a spectrum of diverse chemotypes that potently
444 enhanced CaSR activation. The new molecules represent among the first positive allosteric
445 modulators (PAMs) discovered via large library docking, and among the first structure-based
446 ligands discovered for Family C GPCRs. The potency of the initial docking hits was relatively high,
447 with EC₅₀ values down to 270 nM, and all were topologically dissimilar to known CaSR PAMs.
448 Structure-based optimization improved affinity between 40 and 600-fold, leading to molecules that
449 were up to 50-fold more potent than cinacalcet *in vitro* and 10 to 100-fold more potent at
450 suppressing PTH secretion from organs *ex vivo* as well as *in vivo* in animals. **Second**, the docking
451 predictions were largely confirmed by the subsequent cryo-EM structures, with an important
452 exception (see below), including selecting for and correctly predicting extended and bent
453 conformations in the TM^A and TM^B sites of the CaSR dimer. **Third**, our direct comparison for the
454 impact of docking an ultra-large (1.2 billion) library versus a smaller (2.7 million) molecule library
455 in the same pocket shows the improvement in docking scores as the library size increases, an
456 effect that has been previously suggested by simulations³⁴ but not experimentally tested in a
457 controlled way (**Fig. 2d**). Here, experimental docking hit rates were 2.7-fold higher in the large
458 library screen than in the “in-stock” screen, and the best hits from the large library were up to 37-
459 fold more potent. **Fourth**, the new chemotypes make new interactions with the receptor,
460 promoting new active-state dimer interfaces that are closer to the G-protein coupled state which
461 were not observed with the established drugs. In this sense, the experimental structures provide
462 an additional layer of information in terms of global conformations that may help explain
463 differences in the relative efficacy and pharmacology of different ligands. Correspondingly, ‘**54149**
464 promotes a TM6-TM6 interface that is closest to the fully active G-protein coupled state of the
465 receptor dimer and is highly potent in suppressing PTH secretion, while also seemingly devoid of
466 the hypocalcemia that is the key dose-limiting side effect of approved calcimimetic drugs^{44,45}.

467 Several caveats merit mentioning. We do not pretend the molecules described here are
468 drugs, or even drug candidates. Whereas the pharmacokinetics of '**54149**' are sufficient to support
469 *in vivo* studies, and indeed in some ways to demonstrate superiority to cinacalcet, there is clearly
470 room for optimization of exposure and half-life of the molecule. While the relative lack of a
471 hypocalcemic effect is very encouraging, understanding the mechanism underlying this effect
472 requires systematic exploration of CaSR activation in other calcitropic organs, including bones
473 and kidneys. Further, whereas in three of the four cases the docking predicted structures of the
474 PAMs in the 7TM^A and 7TM^B monomers were confirmed by cryo-EM, in one site the docking pose
475 was different from the experimental result. Finally, while the improvement in docking hit rates and
476 docking potencies from billion molecules versus million molecule libraries seems compelling, the
477 numbers experimentally tested remain relatively low given the docking uncertainties. A more
478 expanded and strongly powered assessment merits investigation.

479

480 These caveats should not obscure the main observations: From docking 1.2 billion
481 molecules against the structure of CaSR emerged potent new positive allosteric modulators,
482 topologically dissimilar to the known ligands of this receptor. Structure-based optimization of the
483 new PAMs led to molecules with *in vitro* potencies in the low nM range, up to 14-fold more potent
484 than the standard of care for the calcimimetic drugs, cinacalcet. In *ex-vivo* organ studies this
485 increase in potency was retained, while *in vivo*, too, the new molecules were also substantially
486 more potent than cinacalcet. The novel chemotypes stabilized CaSR dimer conformations that
487 are not observed in the previous structures of established PAMs, which may underlie the ability
488 of the new chemotypes to support strong efficacy in suppressing parathyroid hormone secretion
489 without inducing their dose-limiting hypocalcemia. Finally, docking hits were 37-fold more potent,
490 and docking hit-rates 2.7-fold higher in the billion-molecule library campaign than for docking the
491 million-molecule scale library against the same site. While such a comparison merits further study,

492 certainly with more molecules being tested, it is consistent with theoretical studies³⁴, and supports
493 the continued expansion of readily testable libraries for drug discovery^{20,23}.

494

495 **Acknowledgements**

496 This work is supported by US NIH grants R01 NS122394, and R01 DK132902 (to G.S),
497 R35GM122481 (to BKS), R01GM133836 (to JJI), RF1AG075742, R01DK122259, BLR&D
498 I01BX005851 and IK6BX004835 (to WC), Damon Runyon Postdoctoral Research Fellowship (to
499 FL).

500

501 **Author Contributions**

502 F.L. conducted the docking screens and the ligand optimization, advised by B.K.S. C.G.W.
503 conducted the *in vitro* activity assays, with early assistance from J.M., and determined the
504 structures by cryo-EM, advised by G.S. C.-L.T., Z.C., and W.C. conducted *ex vivo* and *in vivo*
505 activity assays. Aggregation studies were conducted by I.G. A.L.K. and J.L. assisted the docking
506 screens. J.J.I. developed and prepared the make-on-demand library assisted with large library
507 docking strategies.

508

509 **Competing Interests**

510 B.K.S. is a founder of Epiodyne Inc, BlueDolphin LLC, and Deep Apple Therapeutics, serves on
511 the SAB of Schrodinger LLC and of Vilya Therapeutics, on the SRB of Genentech, and consults
512 for Levator Therapeutics, Hyku Therapeutics, and Great Point Ventures. G.S. is a founder and
513 consultant of Deep Apple Therapeutics.

514

515

516

517 **Data, Code & Material Availability**

518 DOCK3.7 and DOCK3.8 are available without charge for academic use
519 <https://dock.compbio.ucsf.edu/>. Most underlying data from this study are included among the
520 primary figures and tables, and in the SI, any not so included are available from the authors on
521 request. All molecules tested are available from Enamine and may be accessed via their ZINC
522 numbers (SI Tables 1). Plasmids and reagents to conduct BRET signaling assays are available
523 from G.S. Mouse lines are available from Jackson Laboratory.

524

525 **Materials and Methods**

526 **In-stock and ultra-large virtual ligand screening**

527 To investigate the effect of small versus large library docking and test the docking prediction of
528 the positive allosteric modulator (PAM) binding sites in complex with “extended” or “bent” PAMs,
529 we optimized two docking set ups based on the cryo-EM structures of cinacalcet- or evocalcet-
530 bound CaSR. CaSR/cinacalcet (PDB: 7M3F) is used for 7TM^A site, and CaSR/evocalcet (PDB:
531 7M3G) is used for 7TM^B site¹⁶. In both sites, the position of Q681 and E837 are manually adjusted
532 to form stronger hydrogen bonds or salt bridge with the secondary amine in cinacalcet or
533 evocalcet, and in the 7TM^B site, lipid tails were added in the docking set up based on the existing
534 electron density. 7TMs were protonated using Reduce⁴⁶ (7TM^B site) or by Protein Preparation
535 Wizard in Maestro (7TM^A site) (2020 release)⁴⁷. Energy grids for the different energy terms of the
536 scoring function were pre-generated--van der Waals term based on the AMBER force fields using
537 CHEMGRID²⁷; Poisson–Boltzmann-based electrostatic potentials using QNIFFT73^{29,48}; context-
538 dependent ligand desolvation was calculated using SOLVMAP³⁰. The volume of the low dielectric
539 and the desolvation volume was extended out 0.8 and 0.3 Å in 7TM^A site and 0.6 and 0.3 Å in
540 7TM^B site. The experimentally determined poses of cinacalcet and evocalcet were used to

541 generate matching spheres, which are later used by the docking software to fit pre-generated
542 ligands' conformations into the small molecule binding sites²⁶.

543 The resulting docking set-ups were evaluated for its ability to enrich known CaSR ligands over
544 property-matched decoys. Decoys are theoretical non-binders to the receptor as they are
545 topologically dissimilar to known ligands but retain similar physical properties. We extracted 10
546 known PAMs from CHEMBL (<https://www.ebi.ac.uk/chembl/>) including cinacalcet and evocalcet.
547 Four-hundred and eighty-five decoys were generated by using the DUDE-Z pipeline⁴⁹. high
548 logAUCs of 38.89 and 31.67 were achieved for 7TM^A site and 7TM^B site respectively. Moreover,
549 these docking set-ups offer fidelity in reproducing "extended" and "bent" poses of the known PAMs.
550 For example, by using the 7TM^A site set-up, 7 out of 10 PAMs adopt an "extended" conformations,
551 while making sensible interactions with the surrounding key residues. By using the 7TM^A site set-
552 up, 7 out of 10 PAMs adopt an "bent" conformations. We also used "extrema" set of 92,552
553 molecules using the DUDE-Z web server (<http://tldr.docking.org>) to ensure that the set ups do not
554 enrich extreme physical properties. Both set ups enrich over 90% neutrals or mono-cations
555 among the top-ranking molecules, which are two charges that have precedents of acting as CaSR
556 PAMs.

557 2.7 million "lead-like" molecules (molecular weight 300-350 Da and logP \leq 3.5), from ZINC15
558 database (<http://zinc15.docking.org/>), were docked against both sites using DOCK3.7²⁶. In the
559 docking screen against the 7TM^A site, each library molecule was sampled in about 3,927
560 orientations and, on average, 330 conformations. For the 7TM^B site, each library molecule was
561 sampled in about 3,612 orientations and, on average, 330 conformations. The best scoring
562 configuration for each docked molecule was relaxed by rigid-body minimization. The two screens
563 took 956 and 917 core hours respectively spread over 100 cores, or slightly more than 3 days.
564 For the 1.2-billion ultra-large library docking, each library from the ZINC22 database³³ was
565 sampled in about 1,707 orientations and 425 conformations in the 7TM^B site by using DOCK3.8²⁶.

566 Overall, over 681 trillion complexes were sampled and scored, spending 380,016 core hours
567 spreading over 2,000 cores, or around 7 days.

568

569 **Docking results' processing**

570 For the in-stock screen against the 7TM^B site, 5,208 molecules with dock energy \leq -35 kcal/mol
571 were filtered for novelty using the ECP4-based Tanimoto coefficient (Tc) against 662 CaSR
572 ligands in ChEMBL (<https://www.ebi.ac.uk/chembl/>). Molecules with Tc $>$ 0.35 were eliminated.
573 These molecules are filtered for internal strains with criteria of total strain energy $<$ 8 and
574 maximum dihedral torsion energy $<$ 3³¹. Moreover, the molecules are further filtered for key
575 interactions: hydrogen bond with Q681, salt bridge with E837 by interfilter.py based on OpenEye
576 Python Toolkits (<https://docs.eyesopen.com/toolkits/python/quickstart-python/linuxosx.html>).
577 After these three filters, 103 molecules were left for further examination. Upon clustering by an
578 ECP4-based Tc of 0.5, 79 molecules were visually inspected for pi-pi interactions with W818 and
579 F684. 28 molecules were picked, but only 22 molecules can be sourced from vendors and arrived
580 for *in vitro* testing.

581 For the in-stock screen against the 7TM^A site, 33,321 molecules with dock energy \leq -43 kcal/mol
582 were filtered against the same three filters, resulting in 2,540 molecules for further examination.
583 The 2,540 molecules were filtered against a vendor filter to assess their persuasibility, resulting
584 in 647 molecules for further examination. The 647 molecules were clustered based on ECP4-
585 based Tc of 0.5 and result in 413 clusterheads. The clusterheads were visually inspected in a
586 similar manner resulting in 28 candidates ordering for purchasing, and 26 molecules arrived for
587 testing. For the large-scale screen, 1.2 billion molecules were screened, and 1 billion molecules
588 scored in the 7TM^B site. The strain filter is incorporated as part of the new DOCK3.8 pipeline.
589 2,321,171 molecules with \leq -35 kcal/mol were filtered for key interactions with Q681, E837, W818
590 and F684 and novelty. The interaction filtering script for pi-pi interactions with W818 and F684 is

591 implemented based on LUNA (<https://github.com/keiserlab/LUNA>)⁵⁰. After visual inspection,
592 1,002 molecules were left. To reduce the number of candidate molecules for purchasing, these
593 1,002 molecules were re-docked against the 7TM^A site, and 907 molecules were scored in the
594 7TM^A site. To the end, the molecules were visually inspected again for their poses against both
595 sites, and the remaining 212 novel and non-strained molecules were clustered by the LUNA
596 1,024-length binary fingerprint of a $Tc = 0.3$, resulting in 112 clusterheads. Ultimately, 96
597 molecules were prioritized for purchasing based on a final round of visual inspection. The 96
598 molecules belong to three categories—(1) molecules that have 2 aromatic ends, and they usually
599 adopt “bent” pose in 7TM^B site and “extended” pose in 7TM^A site. (2) molecules that have aromatic
600 moiety in the pocket and non-ring structure at the distal end but scores well. (3) interesting or
601 neutral molecules.

602

603 **Synthesis of molecules**

604 The in-stock prioritized molecules were sourced from Enamine, Vitas-M laboratory, Ltd.,
605 UkrOrgSynthesis Ltd., ChemBridge Corporation and Sigma. Ninety-six molecules prioritized for
606 purchasing were synthesized by Enamine for a total fulfilment rate of 74%. Compounds were
607 sourced from the Enamine REAL database (<https://enamine.net/compound-collections/real-compounds>). The purities of active molecules were at least 90% and typically above 95%. The
609 detailed chemical synthesis can be found in the Chemical Synthesis and analytical investigations
610 section.

611

612 **Hit Optimization**

613 Potential analogs of the hits were identified through a combination of similarity and substructure
614 searches of the SmallWorld (<https://sw.docking.org/>) from the 46 billion make-on-demand library.
615 Potential analogs were docked to the CaSR 7TM^B binding site using DOCK3.8. As was true in the

616 primary screen, the resulting docked poses were manually evaluated for specific interactions and
617 compatibility with the site, and prioritized analogs were acquired and tested experimentally.

618

619 **Pharmacokinetics**

620 Pharmacokinetic experiments of '**54149**', cinacalcet and evocalcet were performed by Bienta
621 Enamine Biology Sciences (Kiev, Ukarine) in accordance with the Study Protocols P092622a,
622 P050723b and P050723a. Plasma pharmacokinetics of '**54149**', cinacalcet and evocalcet were
623 measured after a single 3 mg/kg dose, administered subcutaneously (SC) at time points of 5, 15,
624 30, 60, 120, 240, 360, 480 and 1,440 min. All animals were fasted for 4h before dosing. '**54149**
625 was formulated in 2-HPbCD – saline (30%:70%, v/v). Cinacalcet and evocalcet were formulated
626 in DMSO – 20% Captisol in saline w/v (10:90, v/v). Testing was done in healthy male CD-1 mice
627 (9 weeks old) weighing 32.7 ± 2.1 g, 32.8 ± 1.9 g or 32.9 ± 2.4 g in the three studies. For all three
628 studies, each of the time point treatment group included 3 animals with a control group of one
629 animal dosed with vehicle. In total, 28 animals were used in each study. Mice were injected IP
630 with 2,2,2-tribromoethanol at the dose of 150 mg/kg prior to drawing the blood. Blood collection
631 was performed from the orbital sinus in microtainers containing K3EDTA and tubes with clot
632 activator. Animals were sacrificed by cervical dislocation after the blood samples collection. Blood
633 samples were centrifuged for 10 min to obtain plasma (15 min to obtain serum) at 3000 rpm. All
634 samples were immediately processed, flash-frozen and stored at -70°C until subsequent analysis.
635 The concentrations of the test compound below the lower limits of quantitation (LLOQ = 2 ng/ml)
636 were designated as zero. The pharmacokinetic data analysis was performed using
637 noncompartmental, bolus injection or extravascular input analysis models in WinNonlin 5.2
638 (PharSight). Data below LLOQ were presented as missing to improve validity of T1/2 calculations.
639 For each treatment condition, the final concentration values obtained at each time point were
640 analyzed for outliers using Grubbs' test with the level of significance set at $p < 0.05$.

641

642 Sample Processing: Plasma samples (40 μ l) were mixed with 200 μ l of internal standard solution.
643 After mixing by pipetting and centrifuging for 4 min at 6,000 rpm, 2 μ l of each supernatant was
644 injected into LC-MS/MS system. Solution of compound Verapamil (200 ng/ml in water-methanol
645 mixture 1:9, v/v) was used as internal standard for quantification of ‘**54149**’ in plasma samples.
646 Solution of Prometryn (100 ng/ml in water-methanol mixture 1:9, v/v) was used as internal
647 standard for quantification of cinacalcet in plasma samples. Solution of Imipramine (50 ng/ml in
648 water-methanol mixture 1:9, v/v) was used as internal standard for quantification of evocalcet in
649 plasma samples.

650

651 Data Analysis: Peak plasma concentration (C_{max}) and time for the peak plasma concentration
652 (T_{max}) were the observed values. The areas under the concentration time curve (AUC_{last} and
653 AUC_{inf}) were calculated by the linear trapezoidal rule. The terminal elimination rate constant, ke
654 was determined by regression analysis of the linear terminal portion of the log plasma
655 concentration-time curve. Mean, SD and %CV was calculated for each analyte.

656

657 Serum Calcium Measurement: Serum Calcium level was determined using commercial kits
658 according to the manufacturer’s instructions. The principle of the method is the ability of calcium
659 forms a blue-colored complex with Arsenazo III dye at neutral pH, the intensity of which is
660 proportional to the concentration of calcium. Interference with magnesium is eliminated by the
661 addition of 8-hydroxyquinoline-5-sulfonic acid. Reproducibility: CV=2.91 %.

662

663 **Molecular cloning**

664 Full-length (FL) and the truncated CaSR (residues 20-894), were cloned into a pFastBac1 vector
665 (for expression in insect cells) or a pcDNA3.1(+) vector (for expression in HEK293S cells), with a
666 N-terminal haemagglutinin (HA) signal sequence followed by a FLAG tag. To improve the protein
667 yield of CaSR, the DNA sequence of the C-terminal tail from GABA_{B1} or GABA_{B2} and an

668 endoplasmic reticulum retention motif were inserted at the C-terminus of pFastBac1-FLAG-CaSR
669 (20-894) to generate CaSR-C1 and CaSR-C2 constructs, which have been shown to have
670 comparable G-protein signaling profiles as the WT CaSR homodimer¹⁶. The FLAG tag of CaSR-
671 C1 construct was then replaced by a Twin-Strep-tag
672 (WSHPQFEKGGGGGGSGGSAGSHPQFEK). All plasmids used were sequence-verified.

673

674 **Bioluminescence Resonance Energy Transfer (BRET) TRUPATH Assay**

675 BRET assays were performed and analyzed similar to previously described methods³². HEK-
676 293S cells grown in FreeStyle 293 suspension media (ThermoFisher) were co-transfected with
677 150 ng of pCDNA3.1-CaSR FL, Gai3, G β -RLuc8, and Gy-GFP2 per 1ml of cells at a density of 1
678 $\times 10^6$ cells ml⁻¹ using a DNA/polyethyleneimine ratio of 1:5, and incubated at 130 rpm., 37 °C. Cells
679 were harvested 48 h post-transfection, washed in assay buffer (Hank's balanced salt solution with
680 25 mM HEPES pH 7.5) supplemented with 0.5 mM EGTA, followed by another wash in assay
681 buffer. The cells were then resuspended in an assay buffer with 5 μ g ml⁻¹ coelenterazine 400a
682 (GoldBio) and placed in white 96-well plates (136101, Thermo Scientific) in a volume of 60 μ l per
683 well. 30 μ l of ligands prepared at 3-times the final concentrations in assay buffer with 1.5 mM
684 CaCl₂, 0.1% BSA, and 3% DMSO were added to plated cells (final concentrations of 0.5 mM CaCl₂,
685 0.33% BSA, and 1% DMSO). After 5 minutes of incubation, the emission at 410 and 515 nm were
686 read using a SpectraMax iD5 plate reader with a 1-s integration time per well. The BRET ratios
687 (GFP2/RLuc8 emission) were calculated and normalized to ligand-free control before further
688 analysis. The efficacy and potency of the molecules were calculated by fitting the concentrations
689 of molecules and the BRET ratios to a four-parameter logistic equation in Prism (Graphpad
690 Software).

691

692

693

694 **Protein expression and purification**

695 CaSR-C1 and CaSR-C2 were overexpressed in *Spodoptera frugiperda* Sf9 cells using a Bac-to-
696 Bac baculovirus expression system. Sf9 cells grown to a density of 3×10^6 cells ml⁻¹ were co-
697 infected with CaSR-C1 and CaSR-C2 baculoviruses for 48 h at 27°C. Cells were then harvested
698 and stored at -80° C. Purifications of CaSR in complex with compounds '54159 and '6218
699 followed a similar protocol. Cell pellets were thawed, resuspended, and lysed by nitrogen
700 cavitation in the lysis buffer containing 20 mM HEPES pH 7.5, 150 mM NaCl, 10 mM CaCl₂, 10%
701 glycerol, 10 mM L-Trp, protease inhibitors, benzonase, and 50 µM of a specific compound. The
702 lysates were centrifuged at 1,000g for 10 min to remove nuclei and unlysed cells. The membranes
703 were harvested by centrifugation at 100,000g for 30 min and solubilized in the lysis buffer
704 supplemented with 1% (w/v) Lauryl Maltose Neopentyl Glycol (LMNG, Anatrace) and 0.2% (w/v)
705 cholesteryl hemisuccinate (CHS, Anatrace) for 3 h, followed by the centrifugation at 100,000g for
706 30 min. The supernatant was incubated with Strep-Tactin®XT 4Flow® resin (IBA) for overnight at
707 4°C. The resin was then loaded into a gravity column and washed with 10 column volumes of the
708 washing buffer containing 20 mM HEPES 7.5, 150 mM NaCl, 10 mM CaCl₂, 5% glycerol, 40 µM
709 L-Trp, and 50 µM compound, supplemented with 0.01% (w/v) LMNG and 0.002% (w/v) CHS,
710 followed by a second wash with 10 column volumes of washing buffer with 0.001% (w/v) LMNG
711 and 0.0002% (w/v) CHS. Proteins were eluted by Strep-Tactin®XT elution buffer (IBA)
712 supplemented with 10 mM CaCl₂, 40 µM L-Trp, 50 µM compound, 0.00075% (w/v) LMNG,
713 0.00025% (w/v) GDN (CHS, Anatrace) and 0.00015% (w/v) CHS, and further purified by a
714 Superose 6 column (Cytiva) using a buffer containing 20 mM HEPES 7.5, 150 mM NaCl, 10 mM
715 CaCl₂, 40 µM L-Trp, 50 µM compound and 0.00075% (w/v) LMNG, 0.00025% (w/v) GDN and
716 0.00015% (w/v) CHS. The peak fractions were pooled and concentrated for cryo-EM studies.

717

718

719 **Cryo-EM data acquisition and data processing**

720 For cryo-EM imaging of the CaSR-'6218 complex, movies were collected using a Titan Krios G2
721 (Thermo Fisher Scientific) transmission electron microscope equipped with a Gatan K3 direct
722 detector and a post-column energy filter with a 20 eV slit width. The microscope was operated at
723 300 kV, with a nominal magnification of 130,000x, resulting in a pixel size of 0.8677 Å. Movies
724 were automatically recorded in counting mode using SerialEM⁵¹ with a total exposure of 55
725 electrons·Å⁻² over 60 frames, and the defocus range was set from -0.5 to -1.5 µm. For cryo-EM
726 imaging of the CaSR-'54159 complex, movies were collected using a Titan Krios G2 transmission
727 electron microscope equipped with a Falcon 4i Direct Electron Detector and a post-column energy
728 filter with a 20 eV slit width. The microscope was operated at 300 kV, with a nominal magnification
729 of 165,000x, resulting in a pixel size of 0.75 Å. Movies were recorded in counting mode using
730 EPU 3.6 (Thermo Fisher Scientific) with a total exposure of 50 electrons·Å⁻² over 50 frames, and
731 the defocus range was set from -0.5 to -1.5 µm.

732 For a detailed workflow of data processing, please refer to Extended Data Fig. 4. All data
733 underwent processing using similar strategies using cryoSPARC 3.0⁵² and Relion 3⁵³. Movies
734 were imported into cryoSPARC and subjected to patch motion correction, followed by the contrast
735 transfer function (CTF) estimation using patch CTF estimation. Micrographs with CTF estimations
736 worse than 4 Å were excluded, resulting in a total of 11,926 micrographs for the CaSR-'6218
737 complex, and 17,625 micrographs for the CaSR-'54149 complexes, which were selected for
738 further processing. Particles were autopicked, extracted from the micrographs, and subjected to
739 3-5 rounds of 2D classification. Particles classified into “good” classes were selected and
740 subjected to iterative rounds of 3D ab initio reconstruction using multiple classes, followed by 3D
741 heterogeneous refinement to remove particles from bad classes. For the early rounds of 3D
742 classification, particles from “bad” classes were further classified by 2D classification and good
743 particles were retained for subsequent heterogeneous refinement. The resulting high-quality
744 particle projections were then imported into Relion, where they were subjected to C2 symmetry

745 expansion, followed by 2-3 rounds of focused 3D classification (without applying symmetry)
746 without alignment with a mask covering the two 7TMs of CaSR. Finally, the particles from one of
747 the two best 3D classes with C1 symmetry were selected and imported to cryoSPARC for CTF
748 refinement and local nonuniform refinement with a soft mask covering CRD–7TM and ECD-CRD
749 to obtain high-resolution maps. The focused maps were used to generate composite maps for
750 refinement.

751

752 **Model building and refinement**

753 The initial models of CaSR were built on the structure of the active-state CaSR (PDB ID: 7M3F)
754 and manually docked into the cryo-EM maps in Chimera⁵⁴. The models were then subjected to
755 iterative rounds of manual refinement in Coot⁵⁵ and automatic real-space refinement in Phenix⁵⁶.
756 The models for CRD–7TM and ECD-CRD regions were refined using the focused maps that cover
757 these regions first and then combined for further refinement using the composite maps. The final
758 models were analyzed and validated using MolProbity⁵⁷. The refinement statistics are shown in
759 Extended Data Table 2. Structure figures were generated using ChimeraX⁵⁸.

760

761 **Animal studies**

762 Pharmacokinetics (PK) studies were performed on 10-weekold male CD1 mice by BIENTA
763 Enamine Biology Services (Kiev, Ukraine). Briefly, the animals were randomly assigned to
764 treatment groups for 9 time points (5, 15, 30, 60, 120, 240, 360, 480, and 1440 min) and fasted
765 for 4 h before dosing with each PAM by subcutaneous (SC) route. At each time point post-injection,
766 mice were injected IP with 2,2,2-tribromoethanol at the dose of 150 mg/kg prior to blood draws.
767 All other animal studied were performed on 12-16 weeks old male C57/B6 mice (Jackson
768 Laboratory; Bar Harbor, Maine, USA), approved by the Institutional Animal Care and Use
769 Committee of the San Francisco Department of Veteran Affairs Medical Center (Protocol numbers:
770 2021–005 and 2021–016). For the latter studies, test compounds with specified doses were

771 injected subcutaneously for 6 different time points (15, 30, 60, 120, 240, and 480 min), followed
772 by isoflurane overdose before blood collections by cardiac puncture. Sera were prepared by
773 centrifugation (2000xg) in microtainer (Becton Dickinson, SST 365967) and assayed for PTH
774 levels by ELISA (Quidel, 60-2305) and total calcium using Alfa Wassermann ACE Axl Vet
775 Chemistry Analyzer.

776

777 ***Ex vivo* parathyroid gland culture**

778 Mouse PTGs were isolated from 4-week-old male C57/B6 mice, dissected free of thyroid and
779 surrounding fibrous tissues, and cultured to assess PTH secretion rate (ng/gland/hr) and Ca^{2+} set-
780 point ($[\text{Ca}^{2+}]_e$ needed to suppress 50% of PTH_{max})^{59,60}. Briefly, PTGs were incubated sequentially
781 with a series of DMEM media containing increasing concentrations of PAM at 0.75 mM calcium
782 or containing increasing $[\text{Ca}^{2+}]_e$ with (50 or 500 nM) or without PAM to be tested. Intact PTH levels
783 in culture media were assessed by ELISA and used to calculate the EC_{50} or Ca^{2+} set-points for
784 each PAM.

785

786 **References**

- 787 1 Brown, E. M. *et al.* Cloning and characterization of an extracellular $\text{Ca}(2+)$ -sensing
788 receptor from bovine parathyroid. *Nature* **366**, 575-580, doi:10.1038/366575a0 (1993).
- 789 2 Leach, K. *et al.* International Union of Basic and Clinical Pharmacology. CVIII. Calcium-
790 Sensing Receptor Nomenclature, Pharmacology, and Function. *Pharmacol Rev* **72**, 558-
791 604, doi:10.1124/pr.119.018531 (2020).
- 792 3 Hannan, F. M., Kallay, E., Chang, W., Brandi, M. L. & Thakker, R. V. The calcium-sensing
793 receptor in physiology and in calcitropic and noncalcitropic diseases. *Nat Rev Endocrinol*
794 **15**, 33-51, doi:10.1038/s41574-018-0115-0 (2018).
- 795 4 Hannan, F. M. & Thakker, R. V. Calcium-sensing receptor (CaSR) mutations and
796 disorders of calcium, electrolyte and water metabolism. *Best Pract Res Clin Endocrinol
797 Metab* **27**, 359-371, doi:10.1016/j.beem.2013.04.007 (2013).
- 798 5 Pollak, M. R. *et al.* Autosomal dominant hypocalcaemia caused by a $\text{Ca}(2+)$ -sensing
799 receptor gene mutation. *Nat Genet* **8**, 303-307, doi:10.1038/ng1194-303 (1994).
- 800 6 Hannan, F. M. *et al.* Identification of 70 calcium-sensing receptor mutations in hyper- and
801 hypo-calcaemic patients: evidence for clustering of extracellular domain mutations at
802 calcium-binding sites. *Hum Mol Genet* **21**, 2768-2778, doi:10.1093/hmg/dds105 (2012).
- 803 7 Pearce, S. H. *et al.* A familial syndrome of hypocalcemia with hypercalciuria due to
804 mutations in the calcium-sensing receptor. *N Engl J Med* **335**, 1115-1122,
805 doi:10.1056/NEJM199610103351505 (1996).

806 8 Patel, J. & Bridgeman, M. B. Etelcalcetide (Parsabiv) for Secondary Hyperparathyroidism
807 in Adults With Chronic Kidney Disease on Hemodialysis. *P T* **43**, 396-399 (2018).

808 9 Sauter, T. C. *et al.* Calcium Disorders in the Emergency Department: Independent Risk
809 Factors for Mortality. *PLoS One* **10**, e0132788, doi:10.1371/journal.pone.0132788 (2015).

810 10 Zhang, Z., Xu, X., Ni, H. & Deng, H. Predictive value of ionized calcium in critically ill
811 patients: an analysis of a large clinical database MIMIC II. *PLoS One* **9**, e95204,
812 doi:10.1371/journal.pone.0095204 (2014).

813 11 Egi, M. *et al.* Ionized calcium concentration and outcome in critical illness. *Crit Care Med*
814 **39**, 314-321, doi:10.1097/CCM.0b013e3181ffe23e (2011).

815 12 Steele, T., Kolamunnage-Dona, R., Downey, C., Toh, C. H. & Welters, I. Assessment and
816 clinical course of hypocalcemia in critical illness. *Crit Care* **17**, R106, doi:10.1186/cc12756
817 (2013).

818 13 Husain, A., Simpson, R. J., Jr. & Joodi, G. Serum Calcium and Risk of Sudden Cardiac
819 Arrest in the General Population. *Mayo Clin Proc* **93**, 392,
820 doi:10.1016/j.mayocp.2017.12.022 (2018).

821 14 Nardone, R., Brigo, F. & Trinka, E. Acute Symptomatic Seizures Caused by Electrolyte
822 Disturbances. *J Clin Neurol* **12**, 21-33, doi:10.3988/jcn.2016.12.1.21 (2016).

823 15 Pin, J. P., Galvez, T. & Prezeau, L. Evolution, structure, and activation mechanism of
824 family 3/C G-protein-coupled receptors. *Pharmacol Ther* **98**, 325-354, doi:10.1016/s0163-
825 7258(03)00038-x (2003).

826 16 Gao, Y. *et al.* Asymmetric activation of the calcium-sensing receptor homodimer. *Nature*
827 **595**, 455-459, doi:10.1038/s41586-021-03691-0 (2021).

828 17 Seven, A. B. *et al.* G-protein activation by a metabotropic glutamate receptor. *Nature* **595**,
829 450-454, doi:10.1038/s41586-021-03680-3 (2021).

830 18 Papasergi-Scott, M. M. *et al.* Structures of metabotropic GABA(B) receptor. *Nature* **584**,
831 310-314, doi:10.1038/s41586-020-2469-4 (2020).

832 19 Lyu, J. *et al.* Ultra-large library docking for discovering new chemotypes. *Nature* **566**, 224-
833 229, doi:10.1038/s41586-019-0917-9 (2019).

834 20 Gorgulla, C. *et al.* An open-source drug discovery platform enables ultra-large virtual
835 screens. *Nature* **580**, 663-668, doi:10.1038/s41586-020-2117-z (2020).

836 21 Stein, R. M. *et al.* Virtual discovery of melatonin receptor ligands to modulate circadian
837 rhythms. *Nature* **579**, 609-614, doi:10.1038/s41586-020-2027-0 (2020).

838 22 Alon, A. *et al.* Structures of the sigma(2) receptor enable docking for bioactive ligand
839 discovery. *Nature* **600**, 759-764, doi:10.1038/s41586-021-04175-x (2021).

840 23 Sadybekov, A. A. *et al.* Synthon-based ligand discovery in virtual libraries of over 11 billion
841 compounds. *Nature* **601**, 452-459, doi:10.1038/s41586-021-04220-9 (2022).

842 24 Fink, E. A. *et al.* Structure-based discovery of nonopioid analgesics acting through the
843 alpha(2A)-adrenergic receptor. *Science* **377**, eabn7065, doi:10.1126/science.abn7065
844 (2022).

845 25 Singh, I. *et al.* Structure-based discovery of conformationally selective inhibitors of the
846 serotonin transporter. *Cell* **186**, 2160-2175 e2117, doi:10.1016/j.cell.2023.04.010 (2023).

847 26 Coleman, R. G., Carchia, M., Sterling, T., Irwin, J. J. & Shoichet, B. K. Ligand pose and
848 orientational sampling in molecular docking. *PLoS One* **8**, e75992,
849 doi:10.1371/journal.pone.0075992 (2013).

850 27 Meng, E. C., Shoichet, B. K. & Kuntz, I. D. Automated Docking with Grid-Based Energy
851 Evaluation. *J Comput Chem* **13**, 505-524, doi:DOI 10.1002/jcc.540130412 (1992).

852 28 Sharp, K. A., Friedman, R. A., Misra, V., Hecht, J. & Honig, B. Salt effects on
853 polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting
854 law/counterion binding models. *Biopolymers* **36**, 245-262, doi:10.1002/bip.360360211
855 (1995).

856 29 Gallagher, K. & Sharp, K. Electrostatic contributions to heat capacity changes of DNA-
857 ligand binding. *Biophys J* **75**, 769-776, doi:10.1016/S0006-3495(98)77566-6 (1998).
858 30 Mysinger, M. M. & Shoichet, B. K. Rapid context-dependent ligand desolvation in
859 molecular docking. *J Chem Inf Model* **50**, 1561-1573, doi:10.1021/ci100214a (2010).
860 31 Gu, S., Smith, M. S., Yang, Y., Irwin, J. J. & Shoichet, B. K. Ligand Strain Energy in Large
861 Library Docking. *J Chem Inf Model* **61**, 4331-4341, doi:10.1021/acs.jcim.1c00368 (2021).
862 32 Olsen, R. H. J. *et al.* TRUPATH, an open-source biosensor platform for interrogating the
863 GPCR transducerome. *Nat Chem Biol* **16**, 841-849, doi:10.1038/s41589-020-0535-8
864 (2020).
865 33 Tingle, B. I. *et al.* ZINC-22 horizontal line A Free Multi-Billion-Scale Database of Tangible
866 Compounds for Ligand Discovery. *J Chem Inf Model* **63**, 1166-1176,
867 doi:10.1021/acs.jcim.2c01253 (2023).
868 34 Lyu, J., Irwin, J. J. & Shoichet, B. K. Modeling the expansion of virtual screening libraries.
869 *Nat Chem Biol* **19**, 712-718, doi:10.1038/s41589-022-01234-w (2023).
870 35 Leach, K. *et al.* Towards a structural understanding of allosteric drugs at the human
871 calcium-sensing receptor. *Cell Res* **26**, 574-592, doi:10.1038/cr.2016.36 (2016).
872 36 Keller, A. N. *et al.* Identification of Global and Ligand-Specific Calcium Sensing Receptor
873 Activation Mechanisms. *Mol Pharmacol* **93**, 619-630, doi:10.1124/mol.118.112086 (2018).
874 37 Lin, S. *et al.* Structures of G(i)-bound metabotropic glutamate receptors mGlu2 and mGlu4.
875 *Nature* **594**, 583-588, doi:10.1038/s41586-021-03495-2 (2021).
876 38 Brown, E. M. Clinical lessons from the calcium-sensing receptor. *Nat Clin Pract Endocrinol
877 Metab* **3**, 122-133, doi:10.1038/ncpendmet0388 (2007).
878 39 Block, G. A. *et al.* Effect of Etelcalcetide vs Cinacalcet on Serum Parathyroid Hormone in
879 Patients Receiving Hemodialysis With Secondary Hyperparathyroidism: A Randomized
880 Clinical Trial. *JAMA* **317**, 156-164, doi:10.1001/jama.2016.19468 (2017).
881 40 Jamal, S. A. & Miller, P. D. Secondary and tertiary hyperparathyroidism. *J Clin Densitom*
882 **16**, 64-68, doi:10.1016/j.jocd.2012.11.012 (2013).
883 41 Rodriguez, M., Nemeth, E. & Martin, D. The calcium-sensing receptor: a key factor in the
884 pathogenesis of secondary hyperparathyroidism. *Am J Physiol Renal Physiol* **288**, F253-
885 264, doi:10.1152/ajprenal.00302.2004 (2005).
886 42 Centeno, P. P. *et al.* Phosphate acts directly on the calcium-sensing receptor to stimulate
887 parathyroid hormone secretion. *Nat Commun* **10**, 4693, doi:10.1038/s41467-019-12399-
888 9 (2019).
889 43 Gogusev, J. *et al.* Depressed expression of calcium receptor in parathyroid gland tissue
890 of patients with hyperparathyroidism. *Kidney Int* **51**, 328-336, doi:10.1038/ki.1997.41
891 (1997).
892 44 Schmidt, G. S., Weaver, T. D., Hoang, T. D. & Shakir, M. K. M. Severe Symptomatic
893 Hypocalcemia, complicating cardiac arrhythmia following Cinacalcet (Sensipar(TM))
894 administration: A Case Report. *Clin Case Rep* **9**, e04876, doi:10.1002/ccr3.4876 (2021).
895 45 Block, G. A. *et al.* Cinacalcet for secondary hyperparathyroidism in patients receiving
896 hemodialysis. *N Engl J Med* **350**, 1516-1525, doi:10.1056/NEJMoa031633 (2004).
897 46 Word, J. M., Lovell, S. C., Richardson, J. S. & Richardson, D. C. Asparagine and glutamine:
898 using hydrogen atom contacts in the choice of side-chain amide orientation. *J Mol Biol*
899 **285**, 1735-1747, doi:10.1006/jmbi.1998.2401 (1999).
900 47 Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand
901 preparation: parameters, protocols, and influence on virtual screening enrichments. *J
902 Comput Aided Mol Des* **27**, 221-234, doi:10.1007/s10822-013-9644-8 (2013).
903 48 Sharp, K. A. Polyelectrolyte Electrostatics - Salt Dependence, Entropic, and Enthalpic
904 Contributions to Free-Energy in the Nonlinear Poisson-Boltzmann Model. *Biopolymers* **36**,
905 227-243, doi:DOI 10.1002/bip.360360210 (1995).

906 49 Stein, R. M. *et al.* Property-Unmatched Decoys in Docking Benchmarks. *J Chem Inf Model*
907 **61**, 699-714, doi:10.1021/acs.jcim.0c00598 (2021).

908 50 Fassio, A. V. *et al.* Prioritizing Virtual Screening with Interpretable Interaction Fingerprints.
909 *J Chem Inf Model* **62**, 4300-4318, doi:10.1021/acs.jcim.2c00695 (2022).

910 51 Mastronarde, D. N. Automated electron microscope tomography using robust prediction
911 of specimen movements. *J Struct Biol* **152**, 36-51, doi:10.1016/j.jsb.2005.07.007 (2005).

912 52 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for
913 rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296,
914 doi:10.1038/nmeth.4169 (2017).

915 53 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure determination
916 in RELION-3. *eLife* **7**, doi:10.7554/eLife.42166 (2018).

917 54 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
918 analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).

919 55 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot.
920 *Acta Crystallogr D Biol Crystallogr* **66**, 486-501, doi:10.1107/S0907444910007493 (2010).

921 56 Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons and
922 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877,
923 doi:10.1107/S2059798319011471 (2019).

924 57 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular
925 crystallography. *Acta Crystallogr D Biol Crystallogr* **66**, 12-21,
926 doi:10.1107/S0907444909042073 (2010).

927 58 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators,
928 and developers. *Protein Sci* **30**, 70-82, doi:10.1002/pro.3943 (2021).

929 59 Chang, W., Tu, C., Chen, T. H., Bikle, D. & Shoback, D. The extracellular calcium-sensing
930 receptor (CaSR) is a critical modulator of skeletal development. *Sci Signal* **1**, ra1,
931 doi:10.1126/scisignal.1159945 (2008).

932 60 Chang, W. *et al.* PTH hypersecretion triggered by a GABA(B1) and Ca(2+)-sensing
933 receptor heterocomplex in hyperparathyroidism. *Nat Metab* **2**, 243-255,
934 doi:10.1038/s42255-020-0175-z (2020).