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Abstract

Microscopy-guided proteomics at an organelle-dimension resolution is desired for
revealing unknown protein constituents at specific disease- or functional-associated
regions at the molecular-molecular interactions level. Here, we achieve protein spatial
purification by introducing a firmware-integrated microscopy platform that triggers in
situ subcellular photo-biotinylation of proteins at user-defined regions of interest
(ROIs) one field of view (FOV) at a time for thousands of FOVs fully automatically.
An illumination pattern at the analogous ROIs of each FOV is calculated on the fly by
either machine learning or traditional image processing. Photoactivatable amino acid
crosslinkers are activated by a two-photon focal light one spot at a time at a sub-
millisecond illumination duration per spot. Imaging, pattern generation, targeted
illumination, and FOV movement are coordinated and cycled with high-speed
mechatronic control to complete illumination on millions of ROI spots within hours.
Once enough proteins are biotinylated in a cell or tissue sample, the sample is scraped
and lysed, and avidin pulldown is used to enrich proteins to achieve spatial protein
scooping at a 240-nm precision. Subsequent LC-MS/MS is implemented to reveal the
subcellular proteome in high sensitivity, specificity, and resolution. Using this
technology termed optoproteomics, we have revealed novel stress granule-localized
and amyloid B-localized proteins validated by immunostaining. Together, spatial
purification by ultra-content, high-speed microscopy-targeted photo-biotinylation
enables unprecedented subcellular spatial proteomics discovery in any

microscopically recognizable regions.
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Introduction

Pathology, neuroscience, oncology, cell biology, and other life science fields use
microscopy to recognize, localize, or map features of interest, where it is usually
challenging to physically isolate proteins in sifu and identify them at a specific
subcellular region of interest (ROI) that represents a disease signature or corresponds
to important molecular-molecular interactions. For example, it would be desired to
physically pull-down proteins from thousands or millions of microscopy-recognized
immune synapses, TDP-43 aggregates, focal adhesions, special-shaped dendritic
spines, tips of primary cilia, insulin granules, or mitochondria-lipid droplet contact
sites automatically and use mass spectrometry to determine the exact protein
constituents at these sites. The lack of this unbiased organelle-scale spatial proteomic
discovery capability hinders identification of novel disease-associated proteins,

especially when they are functionally localized or relatively low abundant.

Spatial proteomics allows protein mapping of a biological sample to reveal
geographic organization for underlying protein-protein interactions (/-3). Targeted
spatial proteomics mostly uses known antibody arrays aiming to localize known
proteins (4, 5), whereas de novo spatial proteomics requires spatial protein
identification without prior knowledge of what proteins to look for. Unlike
transcriptomics where PCR 1is capable of amplifying signals so that de novo
transcriptomics like RNAseq is possible, no PCR-equivalent technology is yet

available for proteomics.

Two major techniques are feasible for de novo spatial proteomics: large-scale
microscopy mapping and mass spectrometry (MS). The Protein Atlas Project mapped

thousands of protein species using large-scale immunostaining, effectively creating a
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de novo spatial proteomic database (6). The limitation of this approach is its
applications to specific biological problems, where a multi-month extensive staining
process must be implemented for each project if the proteome variation due to a
stimulation, a knockdown/knockout, or a mutation is of interest. Immunoprecipitation
(IP) and MS together is a widely used biochemical approach to identify a proteome
associated with a bait protein. Recent proximity labeling approaches provide further
improvement in spatial precision close to a bait protein (7-72). These are broadly
applicable for diverse biological problems when the biochemical isolation is specific.
For some applications when non-specific interactions of the pulldown process for IP
and proximity labeling introduce undesired proteins in the proteome, the specificity of
the methods will be impaired. In the case when an ROI can only be specified by
morphology characteristics without an apparent bait, proximity labeling approaches
will not work. For animal and human samples, expression of an exogenous enzyme
for proximity labeling requires significant transfection or knockin efforts (/3-18).
Laser capture microdissection (LCM) including the recent Al-guided deep visual
proteomics (DVP) enables protein isolation at specific ROIs and subsequent de novo
spatial proteome identification (/9-27). DVP provides a powerful improvement in
throughput for spatial proteomic discovery, whereas the beam diameter of the cutting
laser remains in a cutting speed-dependent micron size, requiring extra efforts for
subcellular dissection precision. Its non-discriminative vertical cutting collects non-
specific proteins in different axial planes and may affect specificlity. Recent
development of spatially targeted optical microproteomics (STOMP) and its
derivative approaches such as autoSTOMP offer another de novo spatial proteomics
technique to identify the proteome at specific ROIs under a microscope (22-24).
However, without a hardware change to speed up the process, it needs a long

experimental duration to reach the fundamental scaleup requirement for MS
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sensitivity and specificity due to the ROI illumination speed, making it feasible for
validating known high abundant proteins but difficult to fulfill the major discovery
goal, where sensitivity is required to unveil relatively low abundant proteins that are

unknown for a specific biological problem.

Here, we developed a novel technology termed optoproteomics, a proteomic
discovery approach enabled by fully automated and synchronized microscopy system
that performs high-speed ultra-content in situ protein photo-biotinylation.
Mechatronic integration of multiple processing steps at a synchronized sub-
millisecond time scale was implemented to assure manageable duration of hours for
the entire process of targeted illumination on millions of diffraction-limited spots.
Subsequent biochemical pulldown and nano-LC-MS/MS were implemented for
protein enrichment and proteome identification at the specified subcellular ROIs. This
optoproteomics method overcomes the protein amplification issue by targeted protein
accumulation and achieves de novo subcellular proteomic discovery in high

sensitivity, specificity, and resolution.

Results

Speed optimization is essential for vast spatial protein purification and
accumulation

To achieve high spatial resolution and high specificity of microscopy-guided
proteomics, two-photon-induced protein biotinylation at selected ROIs, one spot at a
time through mechatronic position control, as well as subsequent biochemical
pulldown and nano-LC-MS/MS were implemented, with detailed photochemistry
described below. The two-photon illumination was used because it achieved better

chemical labeling precision in the axial direction and negligible scattering-induced
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photochemical reaction in 3D. For MS-based proteomics, roughly ~10® molecules of
the same species of proteins are needed for the sensitivity of routinely used MS
platforms in a manageable dynamic range (25, 26). To achieve high sensitivity of de
novo subcellular proteomic discovery, one should collect proteins from myriad ROIs
of a large number of fields of view (FOVs) with analogous protein constituents. For a
relatively low copy number protein such as one with 1,000 copies per cell, and
assuming the photo-biotinylation efficiency is 10%, one needs to illuminate 10° cells
for MS sensitivity. Assuming a FOV of a 40X and 0.95 numerical aperture (NA)
objective that accommodates 50 cells, one should illuminate 2 x 10* FOVs. In terms
of the total number of illumination spots, approximately 0.1 pm? is covered per
diffraction-limited spot for a 40X NA 0.95 objective. The areas of ROIs largely vary
depending on problems, from 2 um? per cell (i.e., 20 illumination spots) for primary
cilia to ~20 um? per cell (i.e., 200 illumination spots) for nucleoli. That is, a total of 2
x 10® illumination spots is needed for nucleolar protein labeling. If one spot takes 0.1
sec for illumination, shutter on/off, and spot-to-spot movement, and one FOV takes 5
sec for imaging turret movement, focusing, pattern generation calculation, and stage
FOV movement, one will need a total of 2.01 x 107 sec, or ~230 days to collect

enough protein samples, too long to accomplish in a regular basis.

Here an ultra-content high-speed real-time targeted microscopy-based illumination
system was developed to significantly expedite the illumination speed. Photolabeling
on functionally analogous ROI locations was performed, under the assumption that
major protein constituents in specific functional sites are largely similar. These
functional sites are the sites whose morphological features or image contrasts are
recognizable under a microscope. Precision photochemical reactions assured targeted

protein labeling with a low background so that high-specificity microscopy-guided


https://doi.org/10.1101/2023.12.27.573388
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.27.573388; this version posted December 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

proteomics became feasible. There were four sequential steps repeating tens of
thousands of times needed for the entire process: 1. microscopy imaging at an FOV; 2.
ROI pattern generation of a FOV image on the fly by traditional image processing or
deep learning; 3. directed illumination toward the ROIs for photochemical labeling;
and 4. FOV change to the next one (Fig. 1a and Video 1-4). This repetitive process
effectively performed protein spatial purification, serving as the core to achieve
protein accumulation that overcame the fundamental problem of protein
amplification. Existing technology or system was not optimized to perform this
process repeatedly for so many times within a few hours. Without such a speed, one
will only be able to identify high-abundant proteins, which are mostly known and lack

novelty.

The optical system in this study contained a motorized inverted light microscope with
a drift-free focusing setup, an LED light source for multicolor fluorescence imaging
(e.g., 488 nm, 568 nm, 647 nm), an sSCMOS camera for imaging, a 780-nm
femtosecond light source for two-photon illumination that triggers a photochemical
reaction, an acousto-optic modulator (AOM) as a femtosecond light shutter, and a pair
of galvanometer scanning mirrors (galvos) to direct the femtosecond light
illumination (Fig. 1b and Fig. S1). Electronically switched LED and AOM minimized
color switching speed at the time scale of <20 us for LED triggering and 25 ns time
scale for AOM rise/fall. To avoid any slowdown due to mechanical movement,
multiband dichroic mirrors were used to allow multicolor imaging and femtosecond
light illumination without movement of mechanical elements such as a turret or a
shutter. FPGA with a 1-ps conversion time was used to control AOM and galvos to
assume synchronization for scanning, where 100-500 ps per illumination spot was

needed for the duration of a photochemical reaction illumination and the dwell time
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optionally required for galvo movement stabilization when labeling high-precision
objects. The only mechanical movements required in the process were the fast galvo
scanning and the relatively slower motorized focal adjustment and the stage

movement toward the next FOV.

A software-firmware integrated program was required to control imaging, pattern
generation calculation, photochemical illumination, and field change in a tight
coordination. 100-ms exposure time was used for widefield imaging of each color
when possible. The images were analyzed on the fly to segment the ROIs based on the
user’s interest using either traditional image processing or deep learning in the
software (Fig. 1b). When using traditional image processing, an image processing set
of steps with a combination of methods such as thresholding, filtering, or other
approaches was applied identically to all FOVs (Fig. 2a and Fig. S2). Some
segmentation tasks were more complex than others, and pre-processing or post-
processing might be added to normalize the image quality of different FOVs.
Example segmentation results are shown in Fig. 2b. This image processing step took
0.1 to 1 sec depending on the processing complexity and image quality. Coordinates
of all the grid points at the ROIs were then obtained. An optimized planned path was
calculated and used to direct the galvos to scan through these grid points. The galvos
and the AOM were synchronized at the ~100 ps scale to allow on and off labeling at
the right location with an exact illumination dwell time per spot to assure uniform
photochemical reaction duration (Fig. 2¢). For multiple ROIs, the scanning path went
through one ROI at a time from an initiation point of the peripheral spiraling
clockwise toward the center before moving to the initiation point of an adjacent ROI
to minimize the traveling time as well as to reduce motion jerk for galvo damage

protection (Fig. 2¢). For a 100-500-us illumination per spot, 107-10® illumination
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spots, 1-2 sec per FOV, and ~10* FOVs for a 2 cm x 4 cm sample well of ~5 x 10°
cells under a 40X NA 0.95 objective, one needs 1.1-7 x 10* sec, or 3-19.5 hr to
complete one photolabeling round. Depending on the problems and the needed level
of retrieving low abundant proteins, one to ten sample wells were needed to collect
enough proteins for MS analysis. Speed optimization of every step, full automated
synchronization, and mechatronic control made the de novo spatial proteomics

feasible to finish within a reasonable time.

Deep learning enables better pattern generation

When images were more complex, or image quality was worse, deep learning-based
image segmentation showed better accuracy in ROI pattern generation. A hundred of
annotated images were used to train a deep learning semantic segmentation
convolution neural network (Fig. 2d and Fig. S3), which was modified from U-Net
with pre-trained weights from ImageNet to facilitate convergence (27, 28). The
RMSprop optimizer was utilized to converge the dice coefficient loss function (29,
30). A heavier weight was assigned to false positives of the loss function at different
resolutions of the model output to minimize false positive photolabeling. After
multiple training epochs, we assessed the stability and accuracy of the model using a
modified metric, which was also calculated at different resolutions of the model

output.

The trained network was applied identically to each FOV, so that the image of each
FOV was segmented on the fly based on this trained network. The grid points of the
ROIs of an FOV were obtained and then path planning as well as labeling control
were implemented (Fig. 2d). Two examples of segmentation by deep learning are

shown in Fig. 2e.
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Photoactivatable amino acid crosslinking enables spatial photo-induced

biotinylation

To achieve photo-induced labeling of proteins at a microscopic illumination spot, the
sample was added with molecules containing three elements: a photocatalysis, a
photoactivatable amino acid linker to covalently bind to a protein, and a probing tag
for protein pulldown. One combination was to use biotin-phenol (BP) and a
photosensitizer such as Rose Bengal, riboflavin, or [Ru(bpy)]s>*, where the
photoactivated photosensitizer triggered a photoredox reaction to oxidize the phenol
functional group of BP molecules in the media and generated phenoxyl radicals,
which quickly formed phenol-tyrosine coupling with neighboring proteins, resulting
in in situ biotinylation of proteins near the illumination spot. Another way was to use
biotin-benzophenone (BBZP). Benzophenone at the illumination spot was excited to
become 1,2-diradical, which reacted with the C-H bond of a-carbon, forming a
covalent bond with the corresponding amino acid and resulting in targeted

biotinylation of proteins near the illumination spot.

There were two major challenges of photochemistry: reaction efficiency and spatial
labeling specificity. In addition to fast galvo movement, the photochemical reaction
also needed to be completed in as fast as 0.1-0.5 ms per spot to achieve ultra-content
labeling. The spatial labeling specificity was essential because the ROIs might only
occupy 1/10,000 or even smaller volume of the entire biological sample space. A tiny
fraction of non-specific binding at the non-illuminated regions would result in a
sizable collection of unwanted proteins, potentially overshadowing the accumulated

copies of desired proteins at the ROIs.
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We thus tested different photosensitizers, redox molecules, their concentrations, and
illumination intensities to satisfy the speed and specificity needs of photochemistry.
Among [Ru(bpy);]*", riboflavin, Rose Bengal, and Irgacure together with
desthiobiotin-phenol (DBP, desthiobiotin instead of biotin was used to make the later
elusion process easier), [Ru(bpy);]** gave the best reaction efficiency when
illuminating the entire FOV of U-20S cells with a 780-nm femtosecond laser,
illustrated by Dy488-NeutrAvidin imaging (Fig. S4a). The wavelength of 780 nm was
chosen because of its excitation efficiency (Fig. S4b). 100-mW laser power at the
back focal plane of a 40x 0.95 NA objective was enough for labeling. Addition of
methyl viologen further improved the labeling efficiency (Fig. S4a). When using
BBZP, labeling efficiency was similar to that of [Ru(bpy)s;]** and DBP, but the non-

specific labeling background was lower (Fig. S5), demonstrating that BBZP was a

better choice to optimize both reaction efficiency and spatial labeling specificity.

Subcellular spatial biotinylation is applicable to cell and tissue samples

To facilitate subcellular protein isolation, the labeling resolution should be at a
submicron level. Illumination of single lines was performed on U-20S cells and
super-resolution structured illumination microscopy was used to measure the
biotinylation labeling width (Fig. 3a). We were able to reach 240-nm labeling
resolution when using a 40x 0.95 NA objective (Fig. 3b). To demonstrate its broad
usage on cell samples, we photolabeled proteins at five subcellular locales including
nuclei, nucleoli, nuclear pore complexes, stress granules, and Golgi apparatuses.
Image segmentation was performed based on the characteristics of each structure
using traditional image processing. The segmented region was illuminated to induce
targeted biotinylation. The in situ biotinylated regions matched well with the

corresponding subcellular structures in lateral (xy) and axial (z) directions, suggesting
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a high spatial labeling specificity (Fig. 3¢). We also applied deep learning to segment
the region within F-actin rings of Jurkat T cells in a spreading assay on an anti-CD3
coated glass surface. Segmented illumination at a focal level within the glass allowed
photolabeling at a thin layer of the contact surface (Fig. 3d), allowing specific
biotinylation of proteins at the supramolecular activating complexes (SMACs) of the
immune synapses. Deep learning-based segmentation and targeted illumination were
also applied to conjugates of Jurkat-Raji co-culture cells with precise biotinylation of
proteins at thin immune synapses (Fig. 3e), illustrating the capability of photolabeling
upon multi-color imaging. We further examined the applicability of photolabeling on
tissue samples. Calbindin-D28K staining of a FFPE mouse brain tissue section
revealed a high abundance of Purkinje cells in cerebellum with clear axon and
dendrite architecture and a distinctive neuron cell body layer (Fig. 3f). Deep learning-
enabled segmentation and following targeted illumination resulted in biotinylation at

cell bodies (Fig. 3f), demonstrating photolabeling specificity for FFPE tissue samples.

Protein spatial purification enables subcellular spatial proteomics in high
sensitivity and specificity

To check whether ultra-content spatial biotinylation yielded isolation of enough
proteins for MS sensitivity, we first tested targeted photolabeling and pulldown of
nuclear proteins as a proof of principle. Three biological replicates of photolabeling
on proteins of fixed U-20S cells at the regions marked with DRAQS, a far-red
fluorescent DNA intercalating dye, were performed (Fig. 4a). After ~16-hour targeted
photolabeling for each replicate, cells were scraped, harvested, and lysed to extract
proteins. Biotinylated proteins were enriched by pulldown using streptavidin beads,
tryptically digested on beads, and subject to LC-MS/MS measurement (Fig. 4a). Dot-

blot analysis revealed that biotinylated proteins were enriched in the protein lysate
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and streptavidin beads pulldown when the photolabeling illumination was applied
(Fig. 4b), demonstrating effective photo-biotinylation of the sample. Furthermore, the
internal control a-tubulin was only present in the lysates and not in the pulldown,
indicating the efficiency of the pulldown for nuclear proteins. When BBZP were used
for photo-biotinylation, 4,820 proteins were identified with high confidence (Table
S1). A distribution of overall protein abundances was binned by the ratio of copies in
a photolabeled (PL) sample to those in a control (CTL) sample annotated as PL/CTL
ratio (Fig. 4c). The specificity of the spatially labeled nuclear proteome was
determined by calculating the percentage of the true positive proteins known as
nuclear proteins among the obtained proteome. A total of 1,316 proteins showed
differentially enriched, where 1,207 were annotated as nuclear proteins, accounting
for a 92% true positive rate. We termed the technique of integrating high-speed ultra-

content protein spatial purification and proteomics as optoproteomics.

Ability to identify low abundant proteins with high sensitivity is important for the
discovery of novel biomarkers. We found that more than 10% of the nuclear proteins
were identified as low abundant proteins with less than 10,000 copy number per cell
(Fig. 4d), illustrating the capability of optoproteomics to identify low abundant
proteins. We further examined the capability of protein complex discovery and carried
out CORUM complex analysis by employing differentially enriched proteins as seed
proteins to reveal protein complexes (Fig. 4e and Table S2) (37). The over-represented
protein complexes were within our nucleus-targeted region, such as spliceosome,
histone complex, and RNA polymerase complex, suggesting optoproteomics not only

identified site-specific proteins but also revealed spatially related protein complexes.

Antibody-conjugated photosensitizers enable high-precision subcellular spatial
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proteomics

To further test the method on smaller subcellular targets, we performed directed
photolabeling and following proteomic analysis of nucleoli, the small organelles
within the nuclei ranging in size from 0.5 to 3.5 um. When photolabeling tiny regions
like nucleoli, free-diffusing photosensitizers introduced slight expansion of
biotinylation areas, reducing the specificity of proteomics (Fig. 4f). To address this
issue, we used secondary antibody-conjugated [Ru(bpy)s]** to hybridize the
photosensitizer close to the ROIs along with DBP in the media (Fig. 4g). Anti-
nucleolin (NCL) primary antibody was employed as the nucleolar marker. Images
were analyzed to segment the nucleoli from the nuclei to avoid undesired labeling of
antibodies outside of the nucleoli. High-precision biotinylation at the nucleoli was
achieved using microscopy-guided photolabeling (Fig. 4h). Labeling background even
in the highly condensed nuclei was low, illustrating that the method of using antibody-
conjugated photosensitizers can be broadly applicable to subcellular affinity labeling.
Our proteomics results yielded 3,162 proteins with high confidence (Table S3). The
distribution of protein abundances was plotted by comparing the ratio of photolabeled
nucleoli (PL) against the control sample (CTL) (Fig. 41). The specificity of the
spatially labeled nucleolar proteome was determined by ranking the abundance based
on the PL/CTL ratio. Notably, within the top 200 ranked proteins, 180 were annotated

as nucleolar proteins, resulting in a true positive rate of 90% (Fig. 4j).

Optoproteomics enables the discovery of novel protein constituents of arsenite-
induced stress granules

Beyond validation of known proteomes, the key question is whether optoproteomics
has a discovery capability. Stress granules (SGs) are dynamic ribonucleoprotein

assemblies that are formed under cellular stress (32). Given their pathological
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implications in neoplastic and neurodegenerative processes, characterization of SG
composition is crucial for therapeutic explorations (33). The existing proteome was
obtained from biochemical fractionation and proximity labeling (34), but whether it is
extensive enough remains to be checked due to the diminutive, membrane-less
structure of SGs. Here, SGs were induced in U2-OS cells via arsenite exposure and
stained with SG marker G3BP1. Due to the small size of SGs (~ 200 nm for small
ones) (35), we used antibody-conjugated [Ru(bpy);]** hybridized to the G3BP1
primary antibody for confined spatial photolabeling (Fig. 5a and Fig. S6). In total,
2,785 proteins were identified with high confidence. With a high correlation across
replicates, 1,754 intersected proteins of three biological replicates were found (Fig. 5b
and Table S4). Applying the log> fold-changed cutoff of 0.585, the number of unique
peptides of 3, and the score sequest HT of 100 as the selection criteria, we retained
124 significantly enriched proteins (Fig. 5¢). Many well-known SG proteins including
hnRNPs, eRF3a, PABP1, TADBP, FXR1, and elF3s were enriched with high PL/CTL
ratios. Gene ontology enrichment analysis showed that the identified proteome was
highly associated with cellular macromolecule biosynthetic process, cellular
component biogenesis and organization, RNA and nucleobase-containing compound
metabolic process, and cellular protein localization (Table S5). Surprisingly, 40% of
these 124 proteins were absent in the existing SG proteome. These enriched proteins
without prior annotation support as SG proteins exhibited high interaction relationship

with the SG proteins in the association network (Fig. S7).

To examine whether the specificity of the proteomics result was not good enough or
we revealed novel SG-associated proteins, we used immunostaining to test
colocalization of G3BP1 and each of the proteins without prior annotation support as

SG proteins at a time (Fig. 5d). Among 13 proteins tested, 11 of them were
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colocalized with G3BP1, i.e., PDLIM7, EIF3CL, YWHAE, RPSA, MTA2, UGDH,
DDX17, ANLN, PSMD3, PSMA6, and MCM2 (Fig. 5¢). Considering all known SG
proteins and these validated SG-localized proteins, the SG specificity of the obtained
proteome reached 96% among the top 50 identified proteins, demonstrating the
discovery power of optoproteomics with its high specificity. Notably, the role of
PDLIM7, DDX17, and PSMAG® in cell differentiation illustrated a potential crosstalk
between stress response and cell development, as their arsenite-triggered cytosolic
localization suggests a pivot from normal cellular activity to stress management,

contributing to the SG formation.

Optoproteomics enables discovery of novel constituents in amyloid-f

To further examine optoproteomics usage on disease-related problems, we applied it
to amyloid-P (AP), peptides aggregating into insoluble plaques that characterize the
Alzheimer's disease (36). Targeted protein photo-biotinylation was performed at the
locations of AB1-42 aggregates overexpressed in differentiated human SH-SYSY
neuron-like cells, a cell model for neurodegenerative diseases (Fig. 5f). Applying
optoproteomics, we identified a total of 1,378 proteins associated with AB1-42 (Table
S6), inclusive of 23 established markers intrinsic to AP peptide aggregates (Fig. 5g).
Intriguingly, bioinformatic analysis unveiled a consistent enrichment of proteins tied
to key neurodegenerative diseases like Alzheimer's, Huntington's, Parkinson’s, and
amyotrophic lateral sclerosis across three biological replicates, with a notable focus
on acetylation and phosphorylation processes (Table S7) (37, 38). Among the high-
ranked enriched proteins, several candidates not previously directly associated with
AP aggregates were identified. Two of these candidates, DDX3X, a DEAD-box RNA
helicase, and Lon protease, a mitochondrial serine peptidase, were found to colocalize

with AB1-16 as shown by immunostaining, suggesting their potential association with
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amyloid-f (Fig. 5h). Aggregation of DDX3X in amyloid B may trigger inflammatory
cell death (39), whereas accumulation of Lon protease in amyloid f may impair
mitochondrial function and cause cell death (40). Although it is unclear whether these
two proteins a play substantial role in Alzheimer’s disease, optoproteomics was able
to reveal novel amyloid-B-localized proteins in a cell model for further functional

studies.

Discussion

Spatial proteomic discovery in submicron specificity and low-abundance sensitivity is
the unique strength of optoproteomics. With the platform’s ultra-content targeted
photo-biotinylation capability, identifying novel protein constituents at a specific
subcellular location under a microscope from cell or tissue samples becomes feasible,
giving scientists an unprecedented tool to largely and precisely expand the protein
“proximome” understanding for specified ROIs. The application scope of
optoproteomics is broad. For example, one can determine proteins at the tip of
primary cilia, cytosolic TDP-43 aggregates, kinetochore microtubules, PD-L1
adjacent sites of SOX2-enriched cells of a tumor tissue, the lipid droplet-mitochondria
interacting region of ballooning hepatocytes from a non-alcoholic steatohepatitis
(NASH) patient sample, to name a few. Although the finding is a proximome instead
of a direct interactome, the high specificity somewhat guarantees the appearance of
identified proteins in the neighboring region of an ROI, providing a robust list of
proteins for hypothesis testing and following mechanism investigations. Thus,
optoproteomics is expected to largely increase the total location-specific proteome
database useful for revealing potential disease-associated protein players and

providing testable hypotheses related to protein interaction partners for basic research.
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Currently the major alternatives of unbiased high-precision proteomics are proximity
labeling including the use of APEX2, BiolD, and TurbolD (10, 12, 41), as well as
LCM, especially the recent Al-enabled DVP dissection (27). For problems where a
highly specific bait can be used, proximity labeling has a strong advantage over
optoproteomics in sensitivity, capable of pooling from multiple 10-cm dishes to
collect enough proteins for MS analysis. It surprised us that the study of SGs
described above was able to identify tens of novel constituents compared to the
existing SG proteome database that incorporates results from a previous proximity
labeling study, potentially due to the purity of protein collection through microscopy-
guided spatial filtering. Another advantage of optoproteomics is to study human FFPE
tissue samples, where no exogenous expression is needed. Regarding the comparison
with LCM, if the area of interest is large such as a multicellular region of a cancer
tissue sample, DVP-based LCM should be the method of choice, because it has a
much better throughput than optoproteomics. Furthermore, LCM does not require the
pulldown step, largely reducing the sample loss through the enrichment process.
When the targeted region is in the submicron range, even though the LCM can aim
the targets in high precision, the required laser burning energy produces a varying
laser beam width of 2-4 pm depending on the laser moving speed, making it relatively
challenging to dissect small elements. Another difference between LCM and
optoproteomics is that the LCM collects samples from the entire dissecting column,
whereas optoproteomics specifies the axial location of the sample through either two-
photon focusing or antibody-conjugated confined reactions, excluding non-specific

proteins from undesired planes.

Optoproteomics supplements existing technologies in spatial biology with its

capability of unbiased subcellular spatial proteomics discovery. Several new methods
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have recently been developed for high-precision spatial biology, specifically for
targeted/de novo spatial transcriptomics and targeted spatial proteomics (/-4, 42-44).
When aiming to understand cell heterogeneity of a mm-scale tissue, several existing
spatial biology technologies are valuable and have advantageous throughputs to
generate an intercellular omics mapping. If a biological problem is to understand the
molecular mechanisms or the drug mechanisms of action at the protein level, one
would prefer to validate spatial transcriptomics results with further protein studies.
When subcellular localizations are crucial for understanding protein interactions,
locations of corresponding mRNAs and proteins may differ (45), and thus subcellular
proteomic discovery using a method such as optoproteomics becomes uniquely
valuable. Once a novel proteome is discovered by optoproteomics, existing antibody-
based spatial proteomics approaches will be useful for large-scale localization

validation.

Speed optimization enables the optoproteomics technology to perform subcellular
spatial discovery within a manageable time. Previously it would take years of work to
identify >10 high-specificity protein constituents at a ROI such as  amyloids from
Alzheimer’s patient samples. Now with optoproteomics, one can identify a series of
novel protein constituents specifically localized at B amyloids through three or more
repeats of rounds in about 2-3 months (including potential Al development), and then
bought the corresponding antibodies to perform colocalization validation within
another couple of months, largely increasing the throughputs of future disease-

associated protein identification.

There are rooms to improve the photolabeling speed of optoproteomics, because

~10 hours for labeling 5 x 10° cells still appear to be long. One way to accelerate the
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process is to use a widefield illumination instead of a point scanning one. It is possible
to increase the peak power of a femtosecond laser by using a lower repetition rate to
satisfy the energy requirement for widefield two-photon temporal focusing (46, 47),
but the setting will be more involved. If a single-photon light source is used instead of
a two-photo one, and with a widefield pattern illumination setup such as a digital
micromirror device, the process speed can also be expedited. However, scattering due
to heterogeneous refractive index of a biological sample remains to be a challenge for
high spatial precision photochemistry using a single-photon light source. Another
possibility is to improve the efficiency of photochemical reaction so that one can
improve the labeled protein copies with the same reaction illumination duration.
Development of new or modified photochemical probes will be needed to reach this
goal. Yet another possibility to accelerate the process is to push the sensitivity limit
toward single cell proteomics, including the use of nanoPOTS platform or the recent
advanced mass spectrometers for single cell proteomics (48-50). Although the goals
of single cell proteomics and subcellular proteomics are different, where single cell
proteomics aims to understand cell heterogeneity and subcellular proteomics aims to
discover location-specific protein constituents, the technology advent for single cell
proteomics does help improve the sensitivity of subcellular proteomics using a

method like optoproteomics.

In addition to photo-induced protein biotinylation, there are choices of tags other than
biotin, such as SNAP-tag, CLIP-tag, HaloTag, or click chemistry. The photoreactive
warheads also have different choices, including diazirine, phenyl azide, and CNVK
for RNA or DNA. Warheads reactive to different wavelengths are also possible. With
a combination of different tag and warhead choices, it is possible that the

optoproteomics method can be extended to spatial multi-omics studies such as for two
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or more species of proteome targets or proteome-transcriptome targets for a more

comprehensive omics understanding of a biological problem.
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Figure Legends

Fig. 1. The process and design of the microscopy-guided protein purification system.
a, Schematic overview of the workflow for ultra-content targeted photo-biotinylation.
The process includes: (1) light microscopy imaging of a field of view (FOV); (2)
pattern generation of the regions of interest (ROIs) on the fly; (3) precision
illumination on the selected ROIs for protein photo-biotinylation; (4) stage movement
to a next FOV; and (5) repeat of the steps 1-4 for each FOV until all FOVs of interest
are processed. b, The optical setup and its control diagram of the spatial purification
microscopy system. Two light sources are included in the system: an LED light source
for imaging and a femtosecond laser light source for two-photon photolabeling. The
femtosecond laser beam was directed by a pair of galvanometers to illuminate the
sample at selected points of interest (see Fig. S1 for details). FPGA is used to
synchronize the control of the fast galvanometer movement and acousto-optic
modulator (AOM) shuttering. Images acquired by the camera are processed in real
time by computer software with either traditional image processing or deep learning
to generate the patterns of ROIs. The coordinates of the patterns are used to configure
the FPGA for labeling control. DM, dichroic mirror; TL, tube lens; SL, scan lens;

QWP, quarter-wave plate; PBS, polarizing beam splitter; HWP, half-wave plate.

Fig. 2. Automatic pattern generation for targeted photo-biotinylation by either
traditional image processing or deep learning. a, Traditional image processing and
associated steps to determine the regions of interest (ROIs) on the acquired images.
Path planning is performed for all points of the generated pattern, and the array of the
point coordinates is used for labeling control using FPGA. b, Patterns generated for

various subcellular structures by traditional image processing. ¢, Paths of clockwise
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spiraling from the peripheral region are used to minimize the traveling time and
reduce motion jerk. AOM is used to control illumination on and off. d,
Implementation of deep learning for image segmentation of the ROIs. A U-Net model

is used for training. e, Example patterns generated by deep learning.

Fig. 3. Targeted photo-biotinylation. a, A line “cross” pattern is photolabeled on fixed
U-20S cells, and the biotinylated molecules are shown by Dy488-NeutrAvidin. b,
Photolabeling resolutions when using a 40x/0.95 NA objective, FWHM = 0.24 pm or
240 nm, as shown by super-resolution structured illumination microscopy. ¢, Photo-
biotinylation in xy (top view) and z (side view) directions of various subcellular
structures, visualized by confocal images. The ROIs are stained with Alexa Fluor 568
secondary antibody, and the photolabeled signals are shown with Dy488-NeutrAvidin.
d, Precision photo-biotinylation (Dy488-NeutrAvidin) at a thin layer of immune
synapses of Jurkat T cells, demonstrated in a spreading assay. e, Precision photo-
biotinylation (Dy488-NeutrAvidin) of immune synapse of co-cultured Jurkat T cells
and Raji B cells, illustrating the capability for two-color image analysis. f, Photo-
biotinylation (Dy488-NeutrAvidin) of proteins in an FFPE mouse brain tissue section.

Cell bodies of Purkinje cells are selected for photolabeling. Scale bar: 10 um.

Fig. 4. Subcellular proteomics by spatial purification. a, Steps of proteomic profiling
after targeted photo-biotinylation. Both photolabeled (PL) cells and control cells
(without illumination) are lysed, enriched using streptavidin beads, and then digested
with trypsin prior to LC-MS/MS measurement. b, Effective protein photo-
biotinylation as demonstrated by the dot-blot assay, showing desthiobiotin signals in
photolabeled (ON) cells but not in control cells (OFF). ¢, High specificity of nuclear

proteins obtained through spatial purification with targeted photo-biotinylation. A
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distribution of overall protein abundances is binned by the ratio of copies in a
photolabeled (PL) sample to those in a control (CTL) sample annotated as PL/CTL
ratio. High true positive rate of nuclear proteins in the PL enriched group (blue)
compared to the CTL sample. d, Distribution of protein copy numbers, with the low
copy number ones shown in blue (< 10,000 copy number per cell). e, CORUM
analysis of protein complexes, revealing major nuclear associated complexes. f-g,
Method comparison using a free photoactive probe (f) and an antibody-conjugated
photoactive probe (g). Non-specific biotinylation is reduced when using the antibody-
conjugated photoactive probe for photolabeling small compartment (nucleoli: 0.5-3.5
um). h, Precision photo-biotinylation using the antibody-conjugated probe. Confocal
images show photolabeled and non-labeled regions of interest (ROIs) within nucleoli,
showing precise labeling in xy and z directions using the antibody-conjugated
photoactive probe. i, Distribution of overall protein abundance according to the
PL/CTL ratio for the nucleolar proteome study. j, The true positive rate of nucleolar

proteins against the rank of PL/CTL for enriched proteins. Scale bar: 10 pm.

Fig. 5. Novel protein constituents discovered by optoproteomics. a, Confocal images
depicting precise and accurate photolabeled stress granules (SGs) by the antibody-
conjugated ruthenium probe. b, Venn diagram of three biological replicates of spatial
photolabeling SG proteomics. ¢, The percentage of true positives when comparing the
significantly enriched proteins from spatial purification versus the SG proteins in the
existing database. d, Identification of potentially novel SG protein constituents among
top-ranked spatially purified proteins using optoproteomics. Known SG proteins are
shown in green, whereas positively validated ones (see below) are shown in red. The
ones not validated are shown in gray. e, Validation of a series of novel SG proteins by

immunostaining. SG formation of U-20S cells is stimulated by arsenite stress.
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Proteins identified as potential SG proteins (green) are highly co-localized with SG
marker G3BP1 (red). f, Confocal images depicting precise and accurate photolabeling
of amyloid-B (AP) plagues using the BBZP probe. g, Distribution of overall protein
abundance according to the photolabeled/control (PL/CTL) ratio for the amyloid-$3
plague proteome study. h, Two highly ranked proteins (Lon protease and DDX3X) not
previously associated with AP aggregates were found to colocalize with AP in the

differentiated SH-SYS5Y cells. Scale bar: 10 pm.
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