

1 **Experience shapes initial exploration for non-generalizable spatial learning**

2

3 Michelle P. Awh¹, Kenneth W. Latimer^{1, 2, 3}, Nan Zhou^{4, 5}, Zachary M. Leveroni^{14, 5}, Zoe M. Stephens⁶

4 and Jai Y. Yu^{1, 4, 5, #}

5

6 1 Neuroscience Institute, University of Chicago

7 2 Department of Neurobiology, University of Chicago

8 3 Grossman Center for Quantitative Biology and Human Behavior, University of Chicago

9 4 Department of Psychology, University of Chicago

10 5 Institute for Mind and Biology, University of Chicago

11 6 University of Chicago Laboratory Schools

12

13 # Corresponding author

14

15 **Abstract**

16 Experience can change how individuals learn. Learning to solve a new problem can be
17 accelerated by generalizing known rules in the new context, but the impact of experience on solving
18 problems where generalization cannot be applied remains unclear. To study the impact of experience on
19 solving new problems that are distinct from previously learned tasks, we examined how rats learned a
20 new spatial navigation task after having previously learned different sets of spatial navigation tasks. The
21 new task differed from the previous tasks in spatial layout and navigation rule, and could not be solved by
22 applying previously learned rules. We found that different experience histories did not impact task
23 performance in the new task. However, by examining navigation choices made by rats, we found
24 exploration patterns during the early stage of learning in the new task was dependent on experience
25 history. We identified these behavioral differences by analyzing each rat's navigation choices and by
26 modeling their choice sequences with a modified distance dependent Chinese restaurant process. We

27 further pinpointed the behavioral difference to sequential turn/no turn decisions made at choice points.
28 Our results indicate that experience can influence problem-solving strategies when learning to solve new
29 problems. Individuals with distinct experience histories can approach new problems from different
30 starting points but converge on the same solution.

31

32 **Introduction**

33 Individuals learn from distinct and diverse experiences to build general knowledge, which can be
34 applied to new problems (Alonso et al., 2020). New problems can be solved faster when aspects of
35 previous experience, such as learned rules, can be directly applied (Thorndike and Woodworth, 1901a;
36 Harlow, 1949). When the new problem is distinct from previous experience, the effect of past experience
37 becomes challenging to understand since improvements in performance on these problems are less
38 consistent (Thorndike and Woodworth, 1901b; Wiltbank, 1919).

39 Two lines of research provide different perspectives. At the cognitive level, diverse experiences
40 are thought to improve general problem-solving ability. Experiential diversity in the form of
41 environmental enrichment has revealed neuroanatomical (Bennett et al., 1964; Diamond et al., 1964;
42 Heller et al., 2020; Urban-Wojcik et al., 2021; Bogado Lopes et al., 2023) and behavioral changes
43 (Leggio et al., 2005; Nithianantharajah and Hannan, 2006; Petrosini et al., 2009; Freund et al., 2013;
44 Gelfo, 2019) in humans and animals. These findings support the hypothesis that having diverse
45 interactions with the environment leads to brain-wide changes that are not linked to specific experiences.
46 Alternatively, studies in the early 20th century found rats, non-human primates, and humans could solve
47 new problems faster after previously encountering related but not identical problems (Thorndike and
48 Woodworth, 1901a; Thorndike and Woodworth, 1901c; Thorndike and Woodworth, 1901b; Wiltbank,
49 1919; Ho, 1928; Thorndike, 1935; Harlow, 1949).

50 A proposed explanation for this effect is “transfer” of learning, which is generally quantified by
51 changes in performance metrics, such as the number of attempts to reach criterion, the number of errors
52 made, or the time needed to solve a task. A range of transfer outcomes have been observed, ranging from

53 positive transfer (improvement in performance) to neutral effect (no change) to negative transfer
54 (worsening) (Webb, 1917; Wiltbank, 1919; Dennis et al., 1932). Further, transfer was reported for
55 different degrees of experience: rats performed fewer errors when learning a new maze even with partial
56 training of a different maze (Ho, 1928; Bunch and Lang, 1939) or after training in multiple mazes
57 (Dashiell, 1920; Rashid et al., 2017). Further, solving new problems can also improve when rats had
58 dissimilar past experience, such as prior operant learning improving new spatial learning (Adams, 2003)
59 or positive transfer between mazes with different rules (Gallup and Diamond, 1960). Thus, previous
60 experience has complex effects on future problem-solving. Although these experiments identified
61 differences in performance in new tasks depending on the experience of the animals, it is unclear how
62 aspects of learning behavior were affected. Specifically, does the absence of transfer, as defined by a lack
63 of performance changes, indicate previous experience had no effect on future learning?

64 Performance metrics across time, such as speed or accuracy, are used in these studies to
65 determine the impact of past experience on solving new problems. Reductions in the numbers of errors or
66 in the time or trials taken to solve the task were taken as evidence of the transfer of previous knowledge to
67 the solving of novel tasks. In experiments involving learning multiple tasks over time, improvements in
68 performance metrics across consecutive learning sessions were not always observed (Wiltbank, 1919;
69 Dennis et al., 1932). On one hand, this could indicate a lack of consistent transfer or generalization
70 between some tasks. Alternatively, the metrics used to quantify performance may have failed to capture
71 aspects of behavior that did differ. This is especially relevant to exploration in structured environments
72 since humans and non-human animals show intricate exploratory patterns (Uster et al., 1976; Alonso et
73 al., 2021; Rosenberg et al., 2021; Brunec et al., 2023). Thus, examining detailed aspects of behavioral
74 choices in addition to traditional performance metrics can provide important insight on how learning
75 occurs.

76 Here, we investigate how past experience affects the way animals learn a new task that could not
77 be solved by directly applying previously learned rules. We compare spatial learning in a novel task
78 between groups of rats that previously learned either one or two spatial tasks that differed in topology and

79 rule. We did not find experience-dependent differences in performance based on reward rate over time.
80 However, we reasoned that differences could lie in strategic choices during exploration that may not be
81 reflected in gross performance measures. To search for additional experience-dependent influences on
82 learning, we quantified patterns of spatial decisions during exploration. Surprisingly, we found
83 experience-dependent differences in these spatial exploration patterns only during initial learning. These
84 differences disappeared after rats discovered the rule and their behavior converged in the new spatial task.
85 Our results show experience alters the starting state of animals, affecting how they discover rules for
86 unfamiliar problems, and this can occur without affecting learning performance.

87

88 **Results**

89 To understand how learning a novel task depends on previous experience, we designed a two-
90 phase spatial learning experiment. The first phase of the experiment is the differential experience phase,
91 where rats were assigned to “diverse” or “uniform” experience conditions (Fig. 1A). In the diverse
92 experience groups (n=9), rats were trained on two mazes each day, the H maze (H) or the double T maze
93 (2T), counterbalanced for session order (n=5 and n=4). During training, the rat could explore all arms of
94 the mazes, but the task rule required rats to visit two specified arm ends in alternation to receive reward.
95 Uniform group rats (n=10) were trained on only the H or 2T maze, twice per day (Fig. 1A) (n=5 for each
96 maze). To create distinct spatial navigation experiences that took similar physical effort, the H and 2T
97 mazes differed in geometry but shared the same topology. The mazes each featured two intersections, and
98 the rewarded trajectories had the same path lengths. After training, all animals achieved similar levels of
99 performance in their Phase 1 tasks (Fig. 1C). The second phase of the experiment is the common
100 experience phase, where all animals were given the same new spatial task: a Plus maze with an alternation
101 rule (Fig. 1B) for two sessions per day over 5 days. The new task differed from the H and 2T tasks in
102 topology, geometry, and reward rule, and thus could not be solved by applying spatial navigation rules
103 from phase 1.

104 We asked whether performance on the Plus maze in experiment phase 2 differed between the
105 diverse or uniform experience groups. Based on findings that diverse experiences can benefit cognitive
106 performance (Petrosini et al., 2009), we first predicted that the diverse and uniform groups may differ in
107 performance metrics. Alternatively, given that the maze structure and task rules are sufficiently different
108 between phases 1 and 2 that neither group has any advantages from experience, both groups may show
109 similar performance. We analyzed the reward rate across sessions on the Plus maze and did not find
110 statistically significant differences between experience or task groups (pairwise Wilcoxon rank-sum tests
111 with Benjamini/Hochberg false discovery rate correction: $p>0.44$ for experience or $p>0.83$ for task across
112 sessions) (Fig. 1D).

113 While reward rate did not differ, this metric only quantifies whether the animal's behavior
114 matches to experimenter-imposed rules and fails to describe the choices made by rats as they learn. Since
115 the tasks required the animals to sequentially visit locations, we hypothesized that the patterns of choices
116 of location visits could provide further insight into the learning process. This may be especially relevant
117 during early learning, when the animals are trying to discover the task rule. We reasoned that the
118 sequence of transitions between consecutive locations may contain patterns at multiple orders (Fig. 2A-
119 B). We defined first-order behavior as the sequence of locations visits. For example, visiting locations 1
120 and then 2 would comprise a first-order sequence of length 2. Second-order behavior is the egocentric
121 action required to travel between locations: left turn (L), straight (S), or right turn (R). One unit of third-
122 order behavior is created by a pair of two actions, such as a left turn followed by another left turn. We
123 further classified these action pairs into two categories: "similar" corresponds to two turns in a row (for
124 example, R->L) or two straight actions (S->S), and a "dissimilar" action pair, or switch trial, contains a
125 turn and a straight action (for example, R->S or S->L). These categorizations were useful since all mazes
126 in both phases of the experiment had intersections allowing for turns and/or going straight. In contrast,
127 spatial features, such as rewarded locations, were not directly comparable since tasks across experiment
128 differed in topology, geometry, and task rule.

129 Inspection of the raw results shows animals in the diverse group made switch trials more
130 frequently (Fig. 2C-D, Supp. Fig. 1, switch trials indicated with triangles). The proportion of switch trials
131 was greater in the diverse experience group than in the uniform experience group (Fig. 2E), despite both
132 groups having similar reward rates (Fig. 2F). Interestingly, the difference was significant only for the first
133 session (Fig. 2E). This indicates that the diverse experience group were potentially more varied in their
134 choices, switching between turning and not turning at the intersection on consecutive trials, during early
135 learning. These differences disappeared once the animals learned the new rule in later sessions.

136 The difference in switch trials raised the possibility that the two experience groups made different
137 sequences of choices during phase 2 training. To gain further insight on each animal's choice sequence,
138 we calculated the probability of each choice sequences for all possible 3-trial sequences. Given sequential
139 choice probability arrays are difficult to visually inspect, we found the dendrogram provides an intuitive
140 visualization (Fig. 3A, Supp. Fig. 2-3), where each node represents a choice, and the connected nodes are
141 subsequent choices (Fig. 3B). The thickness of the edge connecting two nodes indicates the probability of
142 that choice, where thicker lines indicate higher probability (see Methods).

143 The sequential choice probability dendograms for the first 30 trials, corresponding to early
144 learning in the Plus maze, revealed distinct patterns within and between groups with uniform or diverse
145 experience in phase 1 (Fig. 3C). To visualize and quantify differences between patterns across the two
146 experience groups, we applied Principal Component Analysis (PCA) on the sequential choice probability
147 array (Fig. 3D). The scatter plots of the first three principal components showed a separation between the
148 uniform and diverse experience groups. We confirmed this separation by calculating the cosine similarity
149 between the principal components of rats. We found that the distance between the uniform experience rats
150 and diverse experience rats was greater than the distance between rats within each experience group,
151 uniform or diverse (Fig. 3E). This is consistent with the idea that uniform and diverse experience groups
152 differ in choice sequence patterns, and we have shown this difference both by the distinct branch
153 structures in the probability dendograms and by the cosine similarities of the principal components.
154 Dendograms. We next asked if these differences were experience-dependent or reflected preexisting

155 biases in behavior choices (Kastner et al., 2022). We ruled out the latter explanation since the choice
156 patterns for the first 30 trials on the H or 2T mazes in phase 1 did not differ between the groups (Fig. 3C).
157 Using the same set of analyses, we confirmed all rats had similar behavior choices towards the end of
158 their training when the rule had been learned (Fig. 4, Supp. Fig. 3), consistent with the rats performing the
159 task rule to achieve similar reward rates (Fig. 1C-D).

160 We next asked what differences in the underlying processes could give rise to these distinct
161 behavior patterns. Our goal is to characterize the structure of the rats' choice sequences from the early
162 learning period in the Plus maze. We therefore fitted statistical models with a small set of interpretable
163 parameters that relate choice history with future choices using the observed choice sequences for each rat.
164 We then determined whether models from each experience group had different estimated parameter
165 values. Between group differences in model parameters can reveal differences in the statistical processes
166 that generated the sequences. We chose the distance-dependent Chinese Restaurant Process (Blei and
167 Frazier, 2011), which assumes each choice in a sequence is sampled from a distribution of possible
168 choices that is dependent on past choices on two different timescales (Fig. 5A). The model contains a
169 time constant (τ) that determines how influential all past choices are on the next choice, as modeled by an
170 exponential decay. Given that we have found differences in the likelihood of switching between different
171 choices, we added a parameter that determines the relative influence of the previous choice on the next
172 choice (C). The model also included a parameter that determined how closely the probability of choices is
173 biased towards a "base" distribution (a). The base distribution was parameterized to account for simple
174 behavioral strategies based on varying likelihood of repetition (β) without taking more specific trial
175 history into account. Our goal was to compare features of behavioral patterns observed within each
176 experience group during the early learning period by fitting the model to each animal's behavior during
177 the first 50 trials and comparing the fitted parameters across groups. We performed simulations to show
178 differences in parameters can be recovered from the models (Supp. Fig. 4).

179 The model fits showed that the ability of previous choices to predict future choices depended on
180 the experience group. The uniform and diverse groups differed in the estimated time constant (τ), where

181 the diverse group had a significantly longer time constant, indicating that past choices were more
182 predictive of future choices in the diverse group (Fig. 5B). The two groups also differed in how the
183 immediate past affected the upcoming choice (C): the previous choice had a stronger influence for the
184 diverse group of compared with the uniform group. This supports our previous observation that the
185 groups differed in how often they switched between turning and not turning (Fig. 2E). The bias towards
186 selecting the next trial from the base distribution (α) was not significantly different between the two
187 groups. The base distribution was trending to having less repetition (β) in the diverse compared with the
188 uniform group. We confirmed the behavior of both groups converged in the last 50 trials with the model
189 fits producing parameter values (τ , C and α). We found a significant difference in the repetition parameter
190 (β) but the magnitude of the difference is small. This parameter is less influential when the choices are not
191 strongly biased towards the base distribution (α), which is observed for both groups.

192 Given both statistical and modelling approaches identified differences in choice patterns, we next
193 identified the specific difference in how they switched between choices. Since the diverse experience
194 group had a higher proportion of switch trials at the intersection compared with the uniform experience
195 group (Fig. 2E), we asked whether this can be explained by a higher preference to choose actions not
196 taken previously, an example of which could be turning after going straight on the previous trial or vice
197 versa. Surprisingly, we found the two experience groups differed in the likelihood of switching actions
198 after turning but not after going straight (Fig. 6A). The diverse experience group was more likely to go
199 straight after turning compared with the uniform experience group. Both groups had similar likelihood to
200 turn after going straight. This difference was specific to early exploration in the Plus maze. All groups
201 had similar transition probabilities for the H and 2T mazes and comparable switching likelihoods in the
202 last 50 trials of all mazes, during which behavior across both groups converged (Fig. 6B). We next
203 confirmed this difference was experience-dependent rather than a preexisting difference between the
204 groups. For the animal's first exposure to the 2T or H mazes, the switching likelihood was similar
205 between groups (Fig. 6A). Further, we found the switching likelihoods in the first or last sessions of the H
206 or 2T mazes was not correlated with those in the Plus maze (Fig. 6C-F). These results indicate different

207 experiences can lead to different specific exploratory choices during searching for solutions to a new
208 problem.

209

210 **Discussion**

211 There are multiple mechanisms through which past experience influences future behavior.
212 Memory is a vessel through which relevant knowledge from one experience can be applied to another,
213 and we can quantify the impact of memory through tests of recall. Generalization involves integrating the
214 memories of multiple experiences to form a broader representation of the concept shared between those
215 experiences, and it is quantified by measuring an individual's approach to a novel situation that shares
216 attributes, but is not identical, to previous experiences. In the case of multiple problems that share rules or
217 layouts, memory and generalization can allow for the application of previously learned rules, allowing the
218 new problem to be solved faster (Webb, 1917). Our findings reveal that animals' experience histories can
219 influence their exploratory behavior in a new task. However, the tasks in our experiment did not share
220 spatial topology or navigation rules, removing the utility of directly applying learned spatial layouts or
221 tasks rules from phase 1 to the phase 2. We observed differences in navigation choices during exploration,
222 not performance enhancement. Given this, what could explain the differences in choices made during
223 early exploration in phase 2?

224 Despite the topological and rule differences between the maze tasks in phases 1 and 2, all mazes
225 have junctions where the rat must decide whether to turn. We hypothesize that the junctions represent a
226 feature shared between mazes, allowing the rats to form abstractions that carry to future tasks. The H, 2T,
227 and Plus mazes all require the rats to make sequences of spatial trajectory choices at junctions, and a
228 sequential turn-based strategy could emerge as they explore and learn. The previous adoption of such a
229 strategy could influence how animals initially explore a new environment that shares the concept of
230 trajectory choices at junctions, even when past spatial geometry and topology are not informative. The
231 turn-based strategy reinforced in the H maze is repeated turns, while turning and going straight is most
232 advantageous in the 2T maze. In phase 2, direct application of these exact sequences of previously learned

233 turns are not possible given the topology of the new maze. However, we hypothesize that previously
234 learned strategies can still bias the likelihood of making certain sequential decisions at junctions in future
235 tasks. This may be particularly applicable to exploration during early learning, before the cognitive map
236 of the new maze has developed. We observed this initial impact through the diverse experience rats'
237 higher switch trial frequency in the first session.

238 We hypothesize that experience changed the rats' approach to exploration throughout the
239 experiment as they were introduced to and learned different tasks. When rats were first introduced to the
240 H and 2T mazes in phase 1, there was variability in choice patterns, which is expected given that rats
241 show preexisting biases in spatial exploration (Kastner et al., 2022). At the end of phase 1, rewarded
242 choice patterns for each task had been reinforced for each animal, and its behavior converged. Their
243 experience in phase 1 determined how they approached exploring a new maze at the start of phase 2.
244 Then, as they learned the new task, their behavior was constrained by the new phase 2 rule, and the
245 behavior across groups converged again.

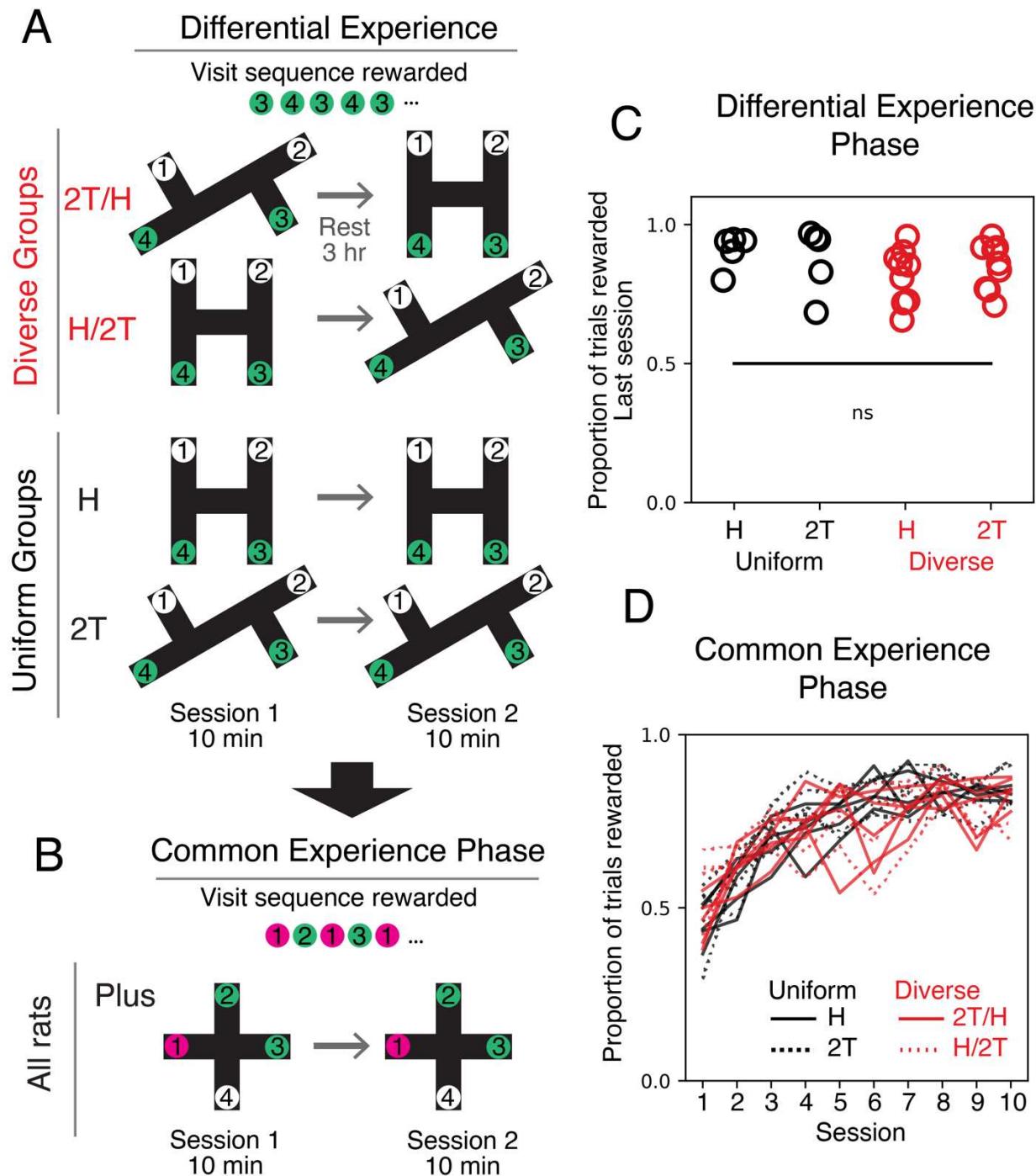
246 An important direction for future research is to understand the experience-dependent neural
247 processes that shape learning when neither the application nor the generalization of memory is beneficial
248 or possible. Nonetheless, the animals showed experience-dependent differences in behavior in a novel
249 task. Recent findings show that neural representations of decision-making tasks are dependent on
250 experience (Latimer and Freedman, 2023). Animals with different training histories have distinct cortical
251 task dynamics even when performing the same task with similar behavior. Frontal cortical and
252 hippocampal networks are implicated in representing task rules and modulating generalization (Winocur
253 and Moscovitch, 1990; Freedman, 2001; Wallis et al., 2001; Rich and Shapiro, 2009; Tse et al., 2011;
254 Wang et al., 2012; Xu and Südhof, 2013; Morrissey et al., 2017; Yu et al., 2018; Kaefer et al., 2020;
255 Samborska et al., 2022). These networks could modulate strategic exploratory decisions when learning to
256 solve new problems. When previously learned rules are not applicable, these networks could discard the
257 application of existing rules in favor of more flexible choice policies (Karlsson et al., 2012; Tervo et al.,
258 2014). Experience-dependent changes to neural networks enable the brain to retain information from the

259 past. At any moment, the state of the network is a product of the individual's unique experience history.
260 We hypothesize that the experience-dependent configuration of the network provides priors for generating
261 new behaviors with a range unique to each individual.

262 In our experiment, different experience histories led to distinct exploratory patterns in a novel
263 task. Our results suggest that the legacy of past experiences extends beyond the recall of specific
264 memories or the direct application of previously learned concepts. Instead, unique experience histories
265 create unique starting points for how individuals approach new situations. Our findings challenge us to
266 consider the mechanisms through which experience shapes the differences between each individual and to
267 look beyond memory and generalization for the vessels of transfer between experiences.

268
269

270 Figures



271

272 **Figure 1. Rats with diverse or uniform experience had similar performance in a novel task.**

273 A. Experiment schematic for the differential experience phase. In this phase, all rats were trained for two
274 sessions per day for up to 10 days. Uniform group rats (H and 2T) learned a single task, either the H

275 maze or the 2T maze, and they trained on the same maze during each training session, twice per day.

276 Diverse group (H/2T and 2T/H) rats learned both alternation tasks, H and 2T, counterbalanced for the

277 order of maze sessions. Both the H and 2T mazes have four arm ends. Two of the ends are reward

278 locations (green circles). Visits to the other maze ends (white circles) are not rewarded. The rewarded

279 visit sequence is shown.

280 B. Experiment schematic for the common experience phase. All groups of rats, diverse and uniform,

281 learned to navigate the same maze task for two sessions per day. This was a Plus maze. The rewarded

282 visit sequence is shown.

283 C. Reward rate on the final session of differential experience phase. A two-way ANOVA did not show a

284 significant effect on final performance from experience ($p=0.13$) or task ($p=0.79$), or their interaction

285 ($F_{1,1}=0.70$, $p=0.41$).

286 D. Proportion of trials rewarded per session on the Plus maze grouped by experience and task in phase 1.

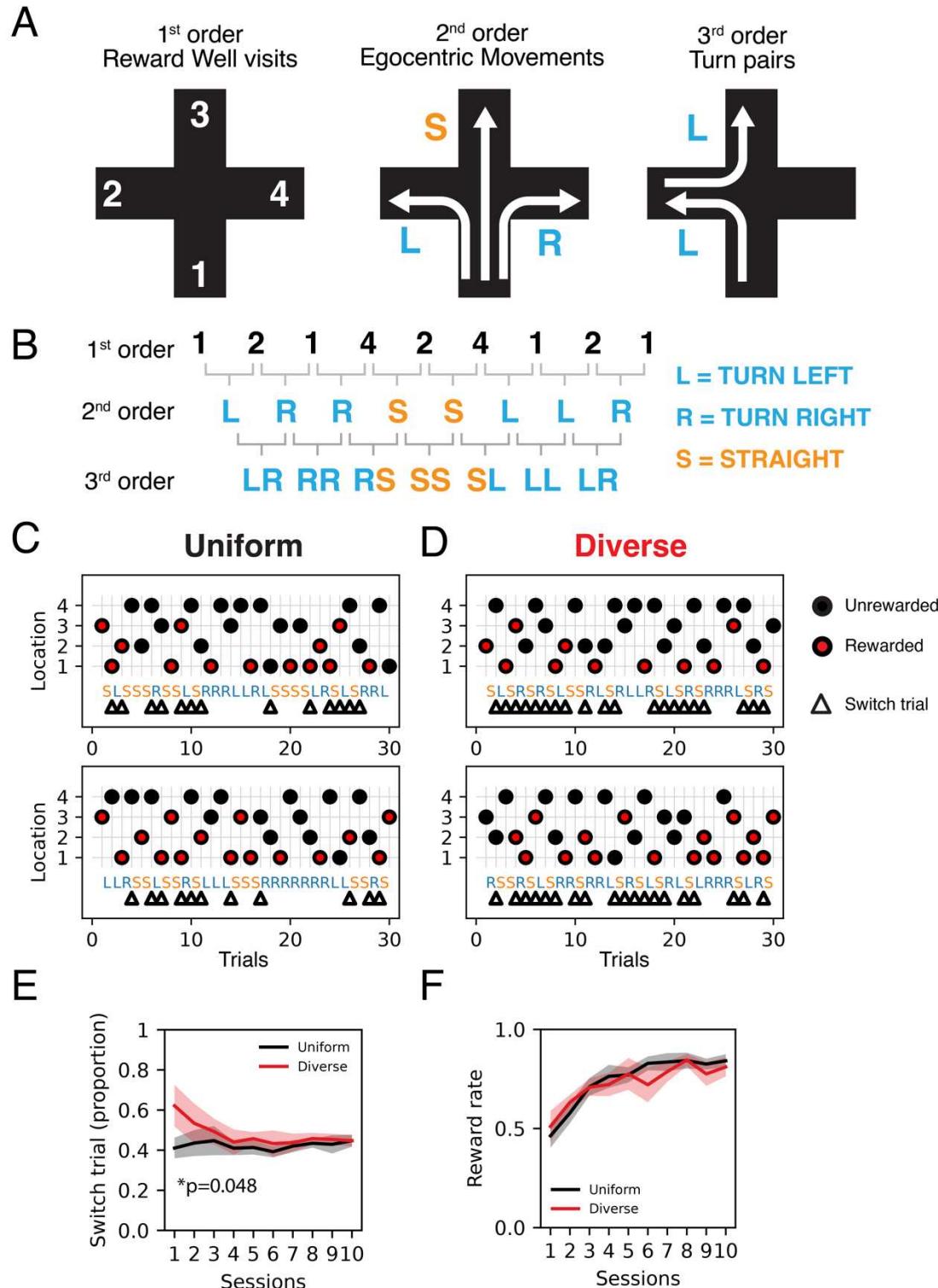
287 Pairwise Wilcoxon rank-sum test with Benjamini/Hochberg false discovery rate correction did not

288 show a significant difference between experience ($p>0.44$ for all pairs) or task ($p>0.83$ for all pairs)

289 across sessions.

290

291



292

293 **Figure 2. Behavior choice pattern classification for the Plus maze.**

294 A. Schematic of 1st, 2nd and 3rd order description of behavior choices, which are individual location visits,

295 egocentric movements at junctions, and pairs of turns, respectively.

296 B. Example behavior choice sequence and corresponding higher order descriptions.

297 C. Example behavior choices for the first 30 trials in the Plus maze for 2 animals in the uniform group. 1st
298 order transitions shown by the circles that indicate the maze location visited by the rat. Red circles
299 indicate the rewarded visits. 2nd order transitions convert the location visit pairs into left turns (L), right
300 turns (R) and straight (S). L and R are marked blue and S is in orange. Triangles correspond to switch
301 trials, or 3rd order transitions that involve changes between L/R and S.

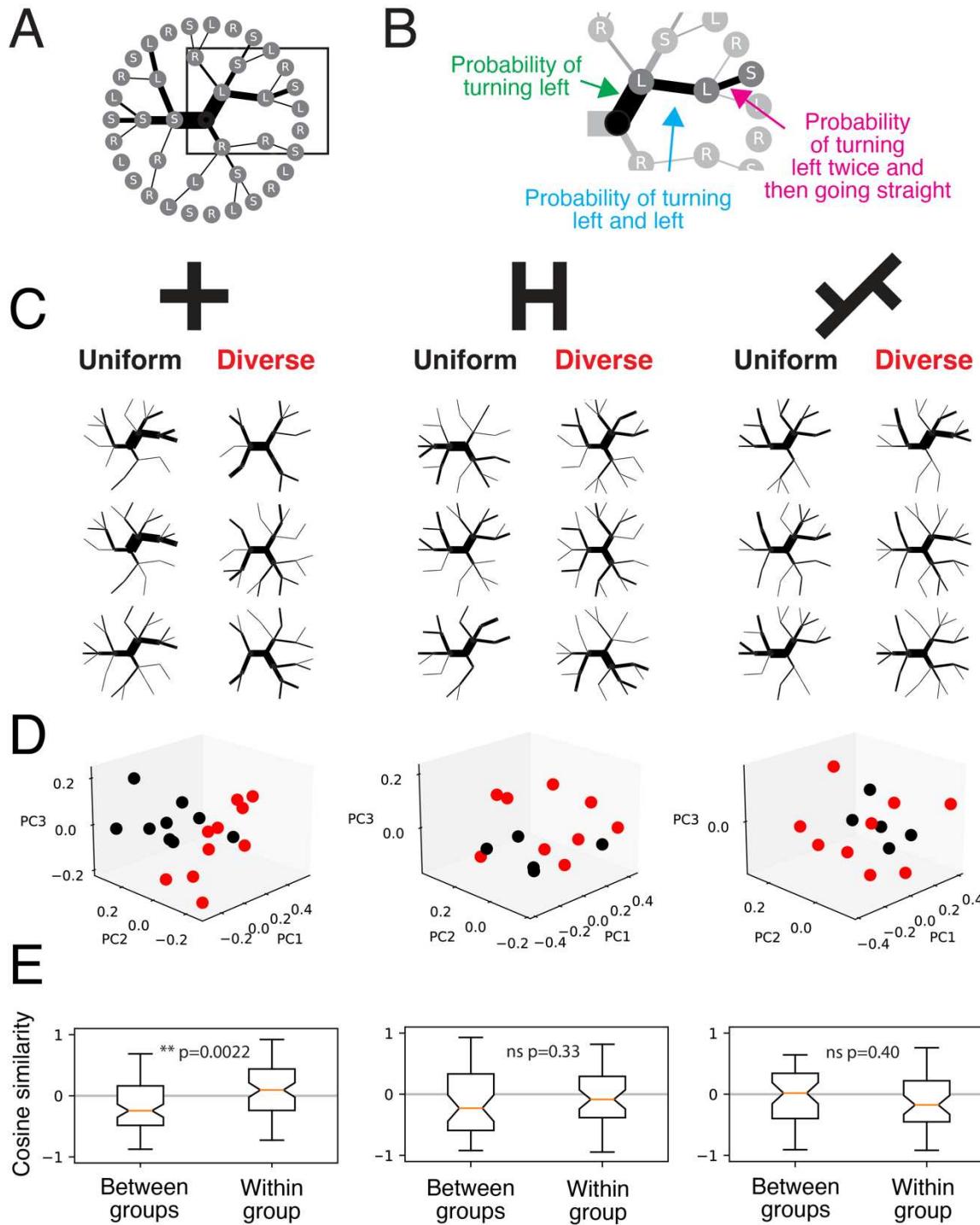
302 D. Example behavior choices for the first 30 trials in the Plus maze for 2 animals in the diverse group.

303 E. Proportion of switch trials (mean and 95% confidence interval of the mean) for each session. These are
304 the frequencies of the trial pairs marked by triangles in C and D. Wilcoxon rank-sum test with
305 Benjamin/Hochberg false discovery rate correction, $p=0.048$ for the first session only.

306 F. Reward rate for each session (mean and 95% confidence interval of the mean) for each session. Data
307 from Fig 1D. is plotted by experience group. Pairwise Wilcoxon rank-sum test with
308 Benjamini/Hochberg false discovery rate correction did not show a significant difference between
309 experience ($p>0.44$ for all pairs).

310

311



312

313 **Figure 3. Visualizing sequential behavior choice probabilities.**

314 A. Example dendrogram of conditional probabilities for 3-trial choice sequences. Edges represent the
 315 conditional probability and nodes represent the choices.

316 B. Example showing the probabilities of sequences with one, two or three trials.

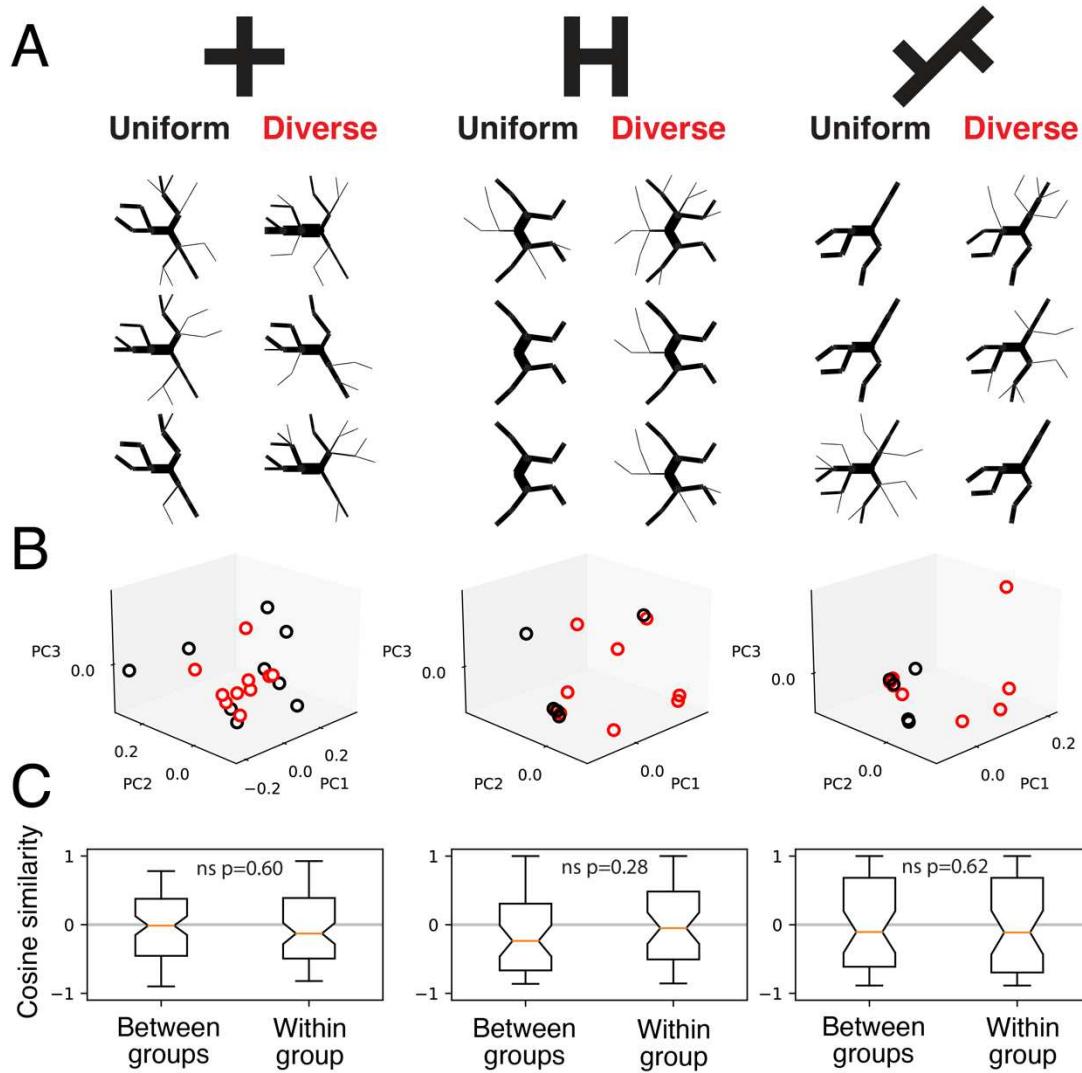
317 C. Choice probability dendograms for the first 30 trials of the Plus, H and 2T mazes. Three example
318 animals from the uniform (left column) and diverse (right column) are shown.

319 D. Scatter of the first three principal components of the choice probabilities between uniform (black) and
320 diverse (red) groups for the first 30 trials on each maze. To improve visualization of overlapping
321 points, a small jitter (Gaussian noise with standard deviation = 0.003) was added to the values.

322 E. Cosine similarity across all principal components of choice probabilities for between and within
323 groups for the first 30 trials. Wilcoxon rank sum test for Plus ($p=0.0022$), H ($p=0.33$) and 2T
324 ($p=0.40$).

325

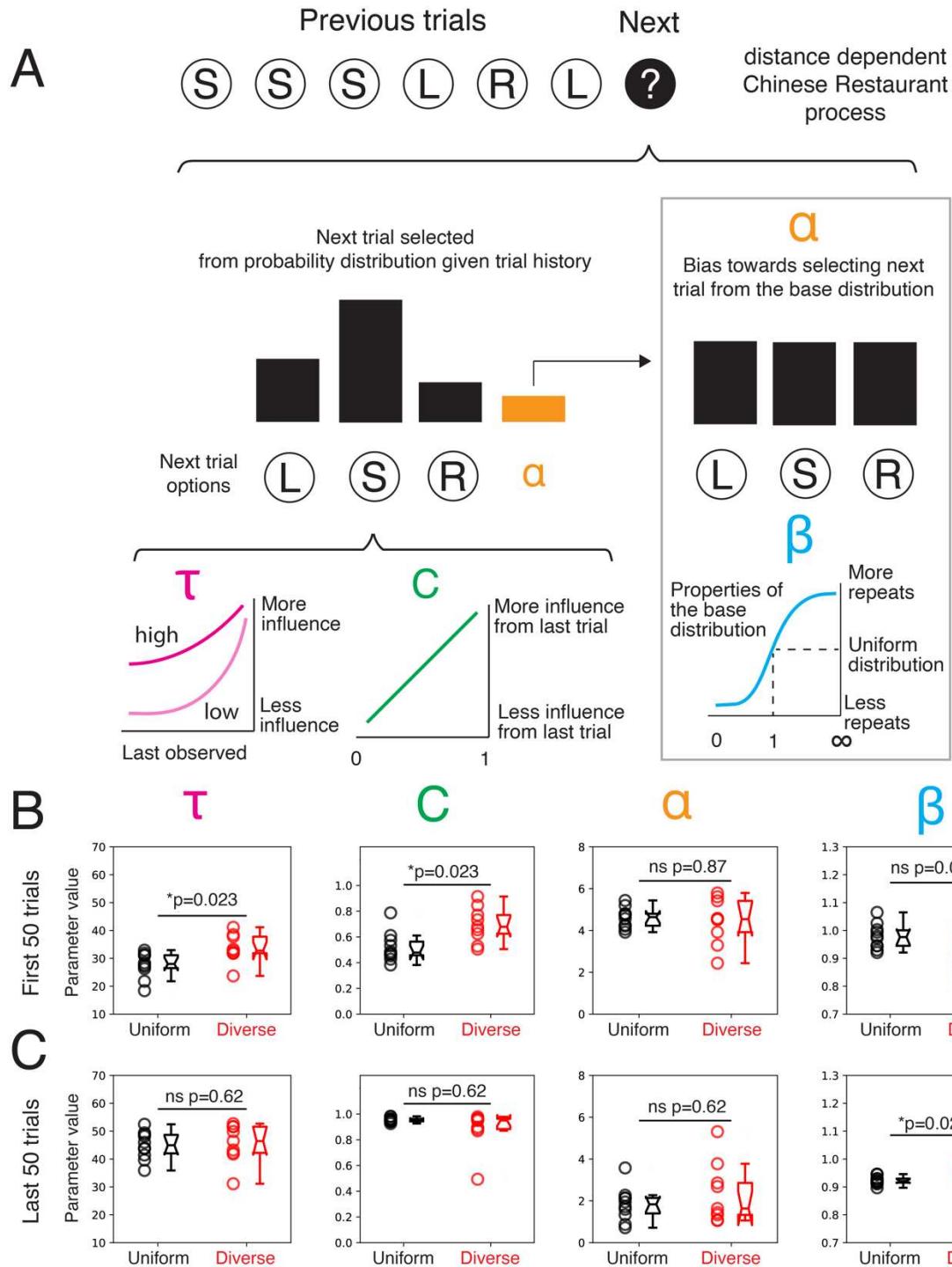
326



327

328 **Figure 4. Uniform and diverse groups both converge on the same pattern after training.**

329 A. Choice probability dendograms for the last 30 trials of the Plus, H and 2T mazes. Three animals from
330 the uniform (left column) and diverse (right column) are shown.
331 B. Scatter of the first 3 principal components of the choice probabilities between uniform (black) and
332 diverse (red) groups for the last 30 trials on each maze. To improve visualization of overlapping
333 points, a small jitter (Gaussian noise with standard deviation = 0.003) was added to the values.
334 C. Cosine similarity across all principal components of choice probabilities for between and within
335 groups for the last 30 trials. Wilcoxon rank sum tests for Plus ($p=0.60$), H ($p=0.28$) and 2T ($p=0.62$)
336 mazes.



337

338 **Figure 5. Models of uniform and diverse groups show distinct parameters that control how past
339 trials influence future trials.**

340 A. Schematic of a modified distance dependent Chinese Restaurant process model. τ modulates the
341 distance dependent influence of all previous trials on the next trial. C modulates the dependence of

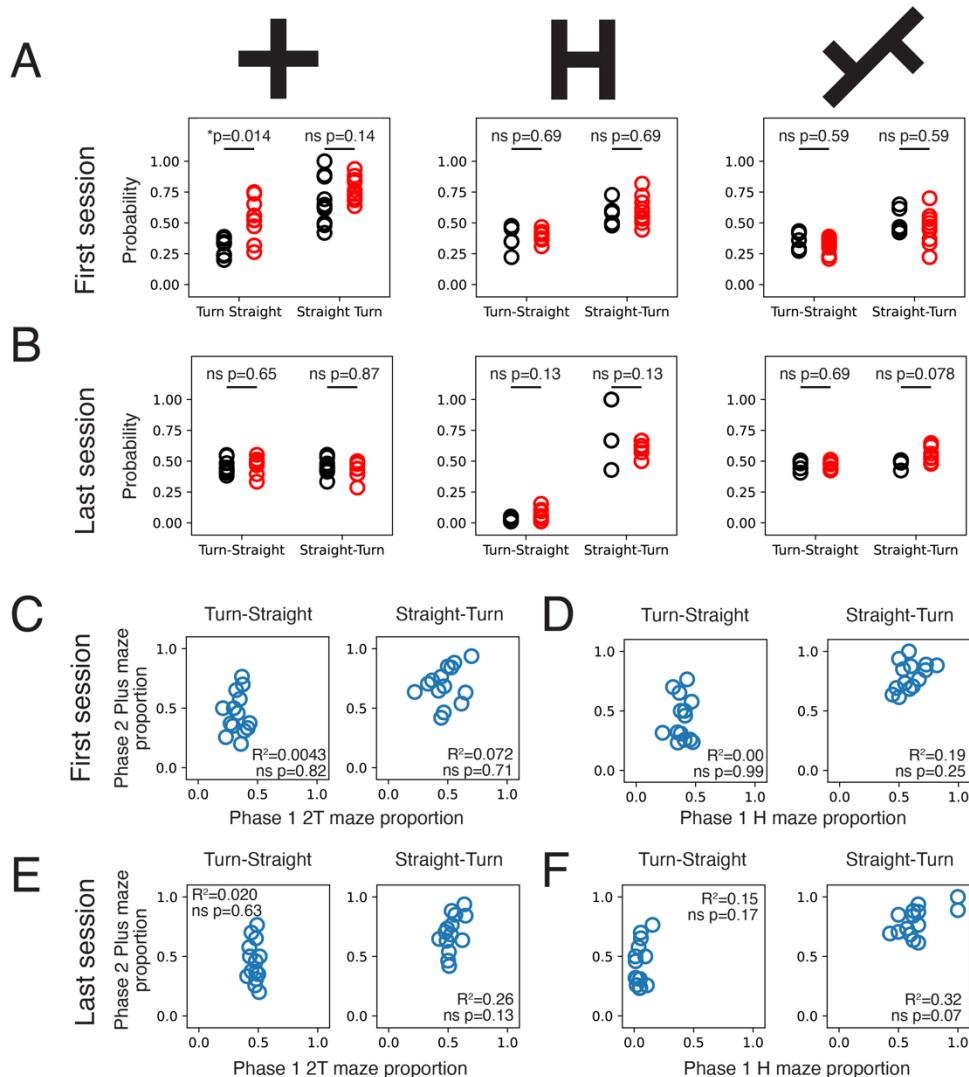
342 the next trial on the immediate previous trial. α determines likelihood the next trial is drawn from a
343 base distribution instead of trial history. β determines the likelihood the base distribution is governed
344 by a uniform distribution or a distribution that is biased to repeat or avoid previous choices.

345 B. Scatter and boxplots of model parameters from model fit to each animal's first 50 trials on the Plus
346 maze. Wilcoxon rank-sum test with Benjamini/Hochberg false discovery rate correction for τ
347 ($p=0.023$), C ($p=0.023$), α ($p=0.87$) and β ($p=0.055$).

348 C. Scatter and boxplots of model parameters from model fit to each animal's last 50 trials on the Plus
349 maze. Wilcoxon rank-sum test with Benjamini/Hochberg false discovery rate correction for τ
350 ($p=0.62$), C ($p=0.62$), α ($p=0.62$) and β ($p=0.022$).

351

352



353

354 **Figure 6. Uniform and diverse groups show distinct likelihood of action switching.**

355 A. Probability for turn-straight and straight-turn transitions for the first session on the Plus, H and 2T
356 mazes. Wilcoxon rank-sum p values with Benjamini/Hochberg false discovery rate correction are
357 shown.

358 B. Probability for turn-straight and straight-turn transitions for the last session on the Plus, H and 2T
359 mazes. Wilcoxon rank-sum p values with Benjamini/Hochberg false discovery rate correction are
360 shown.

361 C. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the first
362 sessions on 2T maze and the first session on the Plus maze.

363 D. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the first
364 sessions on H maze and the first session on the Plus maze.

365 E. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the last
366 sessions on 2T maze and the first session on the Plus maze.

367 F. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the last
368 sessions on H maze and the first session on the Plus maze.

369 All p values for C-F are corrected values using the Benjamini/Hochberg false discovery rate
370 correction.

371

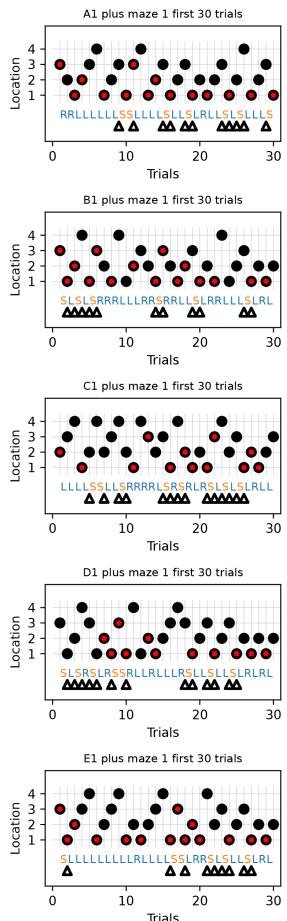
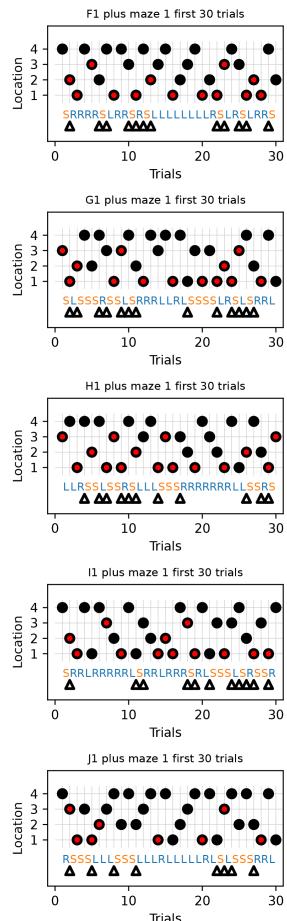
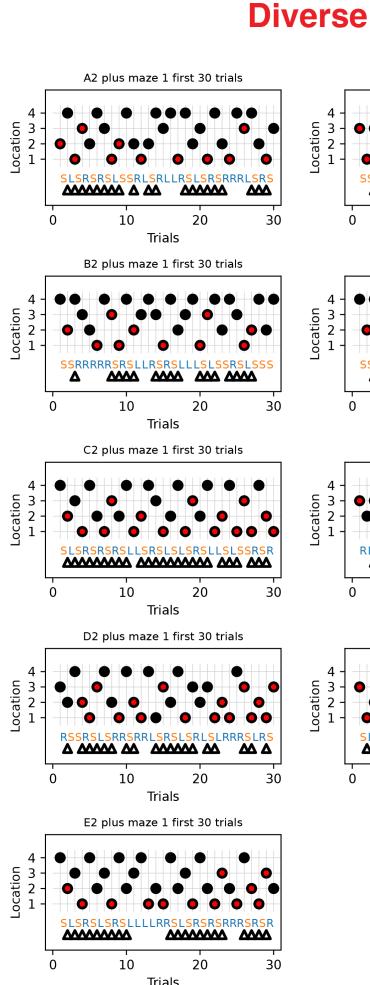
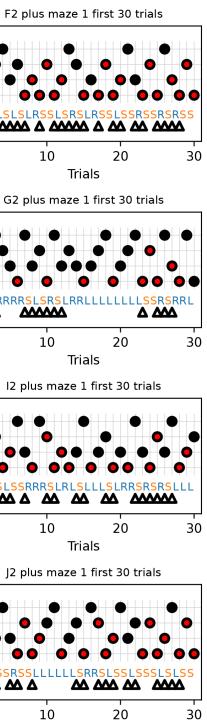
372

373

374 **Supplementary Figures**

375

Uniform



376

377 Supplementary Figure 1.

378 Behavior choices for the first 30 trials of the Plus maze for all animals, shown in the same format as Fig. 2

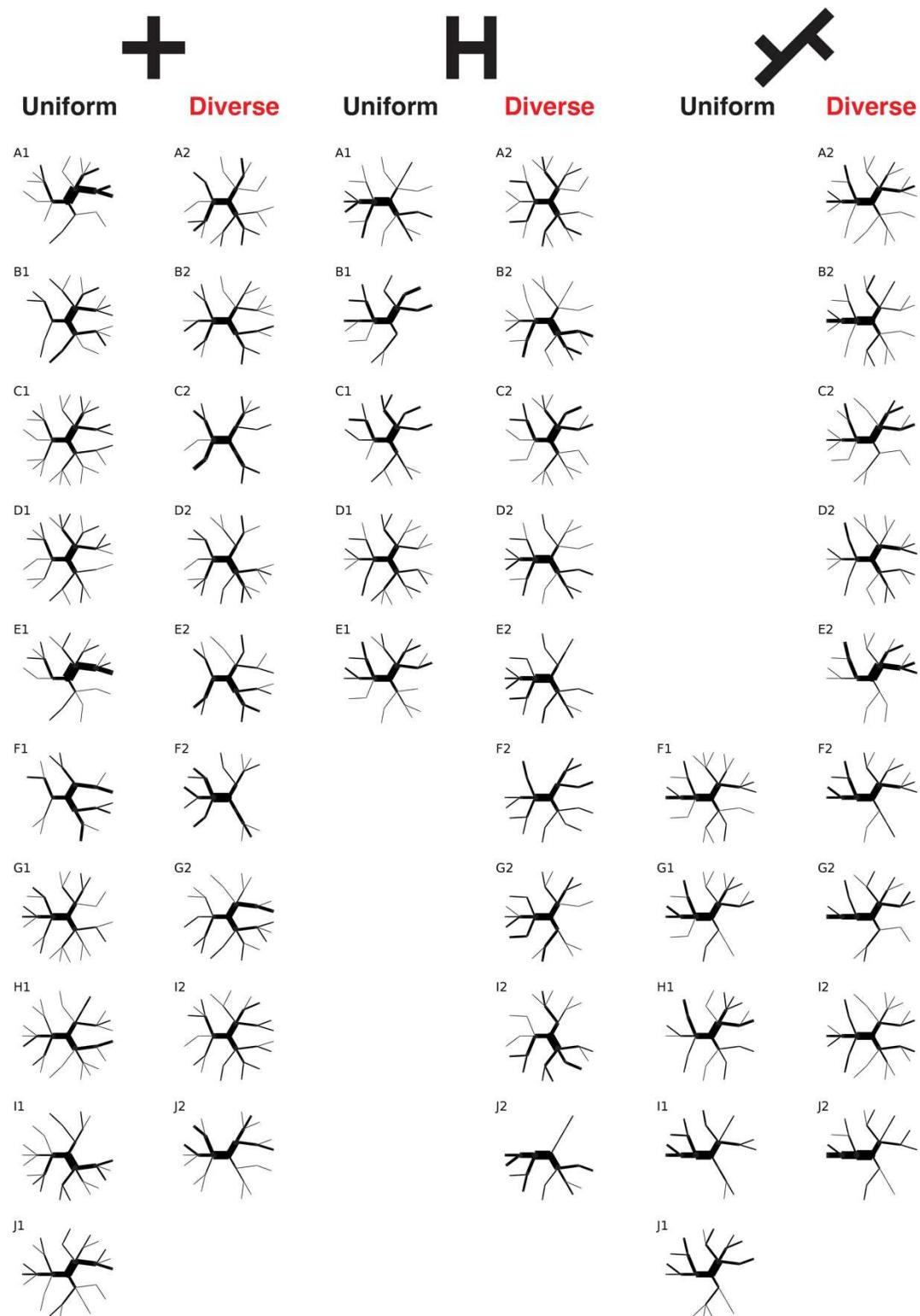
379 C-D. 1st order transitions shown by the circles that indicate the maze location visited by the rat. Red circles

380 indicate the rewarded visits. 2nd order transitions convert the location visit pairs into left turns (L), right

381 turns (R) and straight (S). L and R are marked blue and S is in orange. Triangles correspond to switch trials,

382 or 3rd order transitions that involve changes between L/R and S.

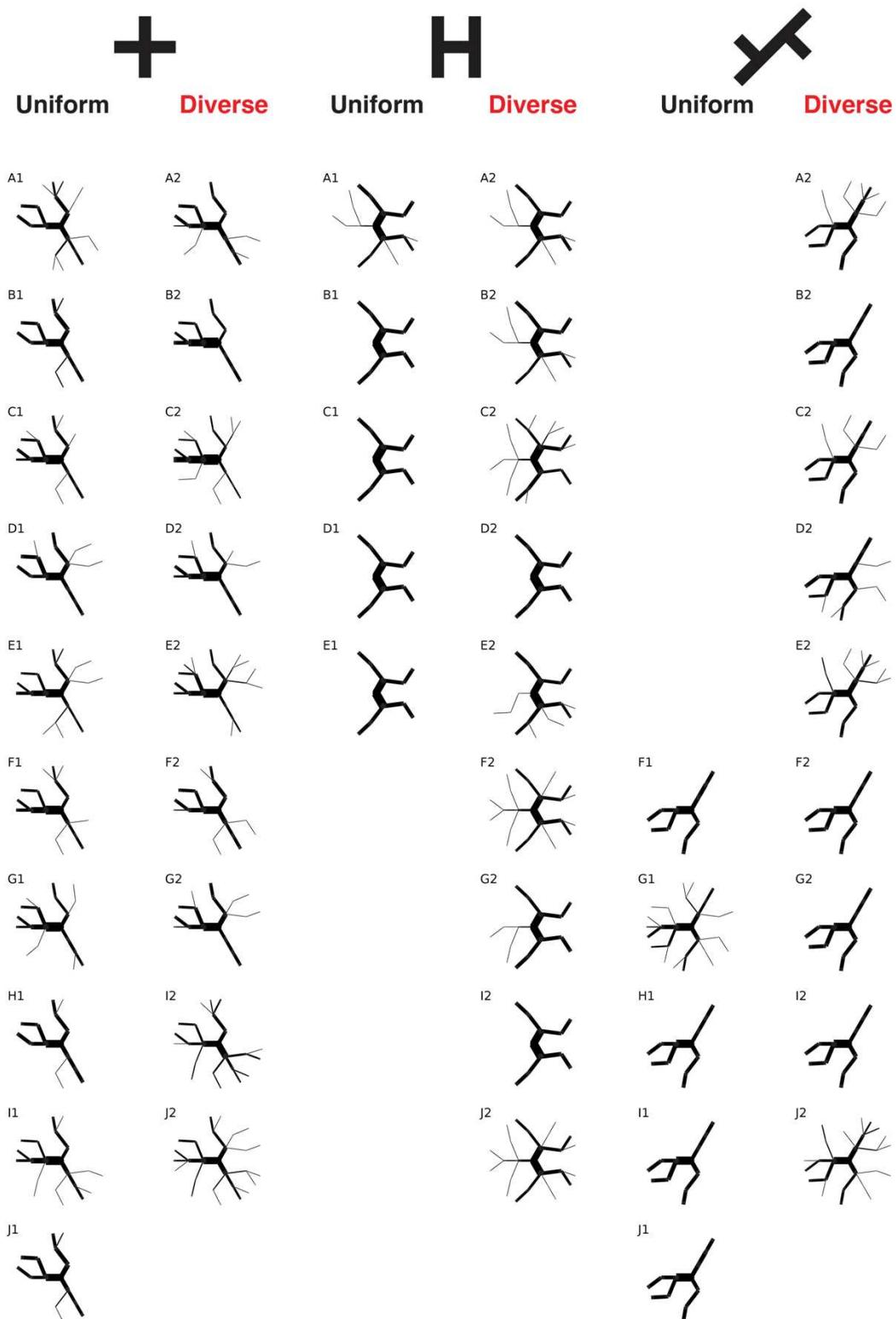
383



384

385 **Supplementary Figure 2.**

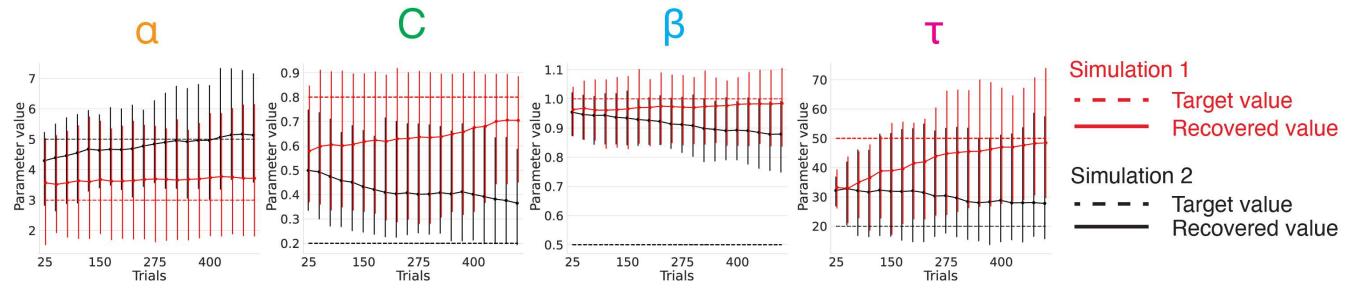
386 Choice probability dendograms for the first 30 trials of the Plus, H and 2T mazes for all animals.



387

388 **Supplementary Figure 3.**

389 Choice probability dendograms for the last 30 trials of the Plus, H and 2T mazes for all animals.



390

391 **Supplementary Figure 4.**

392 Simulations confirm that the model parameters can be recovered from sequences of actions. We simulated
393 from the distance-dependent Chinese restaurant process using two different sets of parameters
394 (simulations 1 and 2, dashed lines indicate the true parameters). For each set of parameters, we generated
395 50 independent simulations. The parameters were then fit with an increasing number of trials using the
396 posterior median as the estimate. The points give the mean estimates and the error bars show a 90%
397 interval over simulations. The estimated parameters remained close to the prior distribution with few
398 trials, and tended towards the true parameters with increasing amounts of data. We found that the context
399 dependency parameter (C) required the fewest number of trials to separate across these two
400 simulations. Given low values of the chosen base distribution bias (α), which meant the base distribution
401 was unlikely to be chosen in the generated sequences compared with the history-dependent distributions,
402 we did not expect the repetition bias parameter (β) to be effectively recovered.

403

404 **Author Contributions**

405 JYY, NZ and ZML designed the experiment. NZ and ZML collected the data. MPA, JYY and ZS
406 performed the statistical analyses. KWL and JYY performed the computational modelling. MPA, KWL,
407 NZ, ZML and JYY wrote the manuscript.

408

409 **Acknowledgements**

410 This work was supported by the University of Chicago Center for Data and Computing Summer Lab
411 program (MPA, ZS) and a Brain Research Foundation Seed Grant BRFSG-2021-11 (JYY).

412 **Methods**

413 **Pre training**

414 A total of 19 male Long-Evans rats (14~16 weeks old, 475~525g) were used in this study. All procedures
415 were performed under approval by the Institute Animal Care and Use Committee at the University of
416 Chicago, according to the guidelines of the Association for Assessment and Accreditation of Laboratory.
417 Animals were kept in a temperature (21°C) and humidity (50%) controlled colony room on a 12/12 h
418 light/dark cycle (lights were on from 8:00 to 20:00). Experiments were performed during the light period.
419 Animals were handled over 4 weeks for habituation to human interaction. Animals were familiarized to
420 foraging for evaporated milk (Carnation) with 5% added sucrose in an elevated black open field box (H:
421 31cm, W: 61cm, L: 61cm), 10 minutes per day for 3 days. Reward was randomly dropped inside the open
422 box to encourage foraging. Animals were then food restricted to 90% of their baseline weight for 3 days
423 and trained to run back and forth on an elevated linear track (H: 76cm, W: 8cm, L: 60cm) to consume
424 reward from the ends of the track. Animals were trained for 10 minutes per day until a performance
425 criterion of 20 rewards per session (for 4 to 8 days).

426

427 **Behavior training**

428 Animals were food restricted to maintain above 85% of their baseline weight. Behavior training was
429 conducted on custom built mazes with interconnecting acrylic track sections (8cm in width) elevated
430 76cm from the floor. Reward was delivered by a syringe pump (100µl at 20ml/min, NE-500, New Era
431 Pump Systems Inc, New York, USA). Behavior data was recorded using the SpikeGadgets data
432 acquisition system (SpikeGadgets LLC, California, USA). Our experiment was split into two phases. Rats
433 first were exposed to a differential experience phase and then the common experience phase. The
434 common experience phase started 2 days after the end of the differential experience phase.

435

436 **Differential experience phase**

437 Animals were randomly assigned to the uniform (n=10) and diverse group (n=9). A H-maze and a double
438 T-maze (2T) were used for the differential experience phase training (Figure 1A). Animals obtained
439 reward from the ends of the maze only when visiting two of the four ends in alternation. Animals
440 performed two 10-minute training sessions separated by 3 hours, during which the rats were returned to
441 their cages. Training continued until performance exceeded 80% or up to 10 days. The diverse group
442 trained on two mazes per day, while the uniform group trained on one maze twice per day. For the diverse
443 group, we controlled in the order the rats learned the tasks across each day by assigning 5 rats to 2T maze
444 first then H maze. The remaining 4 rats learned the task in reverse order.

445

446 **Common experience phase**

447 After the differential experience phase, all animals (n=19) were trained on a Plus maze with a different
448 rule (Fig. 1B). Both groups were trained to visit three of the four wells in a specific sequence to receive
449 reward at those three wells (Fig. 1B). The sequence involves alternating visits between well 1 and wells 2
450 and 3. Animals underwent two 10-minute training sessions per day, for 5 days. The rats were returned to
451 their cages for 3 hours between the two sessions.

452

453 **Data processing and analysis**

454 We registered reward well visits based on sensor trigger events and reward delivery based on pump
455 trigger events. All analyses were performed in Python using Numpy, Scipy and scikit-learn.

456

457 **Behavior pattern classification**

458 We started with a sequence of reward location visits, which represent first-order patterns. We converted
459 this sequence into second-order behavior patterns given each pair of transitions requires one to two
460 movement choices: left turn (L), straight (S), or right turn (R). We then classified third-order patterns as
461 the transition between 2nd order actions, such as a left turn followed by another left turn. We can further

462 classify these action pairs into similar, corresponding to turn followed by turn or straight followed by
463 straight, versus dissimilar, or a switch trial, corresponding to turn followed by straight or vice versa.

464

465 **Choice sequence probabilities**

466 We calculated the probability of observing a specific choice sequence for all possible 3-trial sequences,
467 for example (left, left left, left left left, ...). Data for all rats is in the form of a $m \times n$ matrix with m being
468 each animal and n being all the possible sequences. To visualize the probability matrix as a dendrogram,
469 we used the Python networkx package (<https://networkx.org/>). To visualize the similarity between the
470 probability matrices for the uniform and diverse groups, we then used Principal Component Analysis to
471 reduce the dimensionality of this matrix. To quantify similarity, we calculated the pairwise cosine
472 similarity for a pair of animals across all principal components. This was done for within (diverse to
473 diverse, uniform to uniform) and across (diverse to uniform) group comparisons.

474

475 **Modified distance-dependent Chinese restaurant process model**

476 We aimed to summarize statistically how the actions of each rat in the Plus maze depended on the recent
477 trials and how the distribution of choices changed over the course of learning. Given the sequence of trials
478 performed by an animal, we modeled the action on a trial as a probability distribution that depended on
479 the past trial and the number of trials performed. The dependency of the number of trials allowed the
480 model to account for the changes in the animals' behavior during learning. This contrasts to a typical
481 Markov model, which assumes behavior only depends on the past trials but not the history of trials
482 performed.

483

484 To accomplish this, we modeled the sequence of actions (left, right, or straight) performed by each rat
485 using a sequential distance-dependent Chinese restaurant process model (ddCRP) (Blei and Frazier,
486 2011). We modified the model by adding a parameter that specifically controls the contribution of the last
487 trial to the upcoming choice. The ddCRP defines a generative stochastic process in which the probability

488 of the action on the i th trial depends on the outcomes of the previous trials. The probability of observing
489 action A on trial i (y_i) is given as:

490

$$p(y_i = A | y_{1:i-1}, \theta) \propto \alpha G_i(A) + \sum_{j=1}^{i-1} f(i, j)$$

491 Where the distance function between trials i and j is

492

$$f(i, j) = \exp\left(-\frac{|i - j|}{\tau}\right) \prod_{d=1}^2 (1 - C_d)^{m_d(i, j)}$$

493 Where $m_d(i, j) = 0$ if trials i and j share the same context of depth d : that is, the sequence of d actions
494 immediately preceding trials i and j are the same. Otherwise, we set $m_d(i, j) = 1$. The timescale
495 parameter of the distance function, $\tau > 0$, determines how predictive actions from the past are of the
496 current trial. Low values of τ indicate that the actions at the beginning of the session are not informative
497 of the animals' behavior at the end of the session. This timescale gives the process the "distance
498 dependent" property in comparison to the standard Chinese restaurant process, which weighs all previous
499 observations with weight 1. The context parameters, $C_d \in [0, 1]$, determine how much choice depends on
500 specific actions permed on the d previous trials (the context). If $C_d = 1$, then context is weighted heavily
501 by the model: the actions performed in one context do not inform the actions in a different context. If
502 $C_d = 0$, context is not predictive of the actions.

503

504 The remaining two parameters define the *base measure*, G_i : the prior probability over the actions.
505 $G_i(A) \propto \beta$ if $y_{i-1} = A$ and $G_i(A) \propto 1$ if $y_{i-1} \neq A$
506 The concentration parameter, $\alpha > 0$, determines bias for selecting the choice on each trial from the base
507 distribution. The bias parameter, $\beta > 0$, is included to alter the base distribution. The value of this
508 parameter account for how a fixed switch-stay bias could account for the animals' sequence of actions.
509 Actions are drawn from the uniform distribution *a priori* if $\beta = 1$. For $\beta < 1$, actions are less likely to be
510 repeated, and for $\beta > 1$, choices are more likely to be repeated.

511

512 Our approach extends the ddCRP model for sequences to include recent context within the distance
513 function. This approach is inspired by models that use hierarchical Dirichlet priors to regularize
514 estimation of Markov models (Wood, 2009). However, our method takes advantage of the fact that the
515 distance function already weighs the previous observations differently. Thus, we could incorporate
516 dependencies on recent actions without a more complex hierarchical model in contrast to a recently
517 proposed statistical model of behavioral sequences (Éltető et al., 2022).

518

519 We fit the model Markov chain Monte Carlo (MCMC) methods in a Bayesian framework implemented
520 using the Stan modeling platform (STAN Development Team, 2023). Convergence of the MCMC
521 procedure was assessed using the \hat{R} metric (Vehtari, 2021) with four independent chains of 1000 samples
522 each. We used the posterior median as a point estimate for individual parameters. The prior distributions
523 for the parameters were independent for each parameter:

524

525 $\tau \sim \text{Gamma}(2,20)$

526 $C_d \sim \text{Uniform}(0,1)$

527 $\alpha \sim \text{Gamma}(2,2)$

528 $\beta \sim \text{Gamma}(20,1/20)$

529

530 where the gamma distributions are parameterized as shape and scale.
531

532 **References**

533 Adams A (2003) The impact of previous operant learning on subsequent maze learning in rats.
534 Modern Psychological Studies 9:10.

535 Alonso A, van der Meij J, Tse D, Genzel L (2020) Naïve to expert: Considering the role of
536 previous knowledge in memory. *Brain Neurosci Adv* 4:2398212820948686.

537 Alonso A, Bokeria L, van der Meij J, Samanta A, Eichler R, Lotfi A, Spooner P, Navarro Lobato
538 I, Genzel L (2021) The HexMaze: A Previous Knowledge Task on Map Learning for
539 Mice. *eNeuro* 8.

540 Bennett EL, Diamond MC, Krech D, Rosenzweig MR (1964) Chemical and Anatomical
541 Plasticity *Brain. Science* 146:610-619.

542 Blei DM, Frazier PI (2011) Distance Dependent Chinese Restaurant Processes. *J Mach Learn
543 Res* 12:2461–2488 , numpages = 2428.

544 Bogado Lopes J, Senko AN, Bahnsen K, Geisler D, Kim E, Bernanos M, Cash D, Ehrlich S,
545 Vernon AC, Kempermann G (2023) Individual behavioral trajectories shape whole-brain
546 connectivity in mice. *Elife* 12.

547 Brunec IK, Nantais MM, Sutton JE, Epstein RA, Newcombe NS (2023) Exploration patterns
548 shape cognitive map learning. *Cognition* 233:105360.

549 Bunch ME, Lang ES (1939) The amount of transfer of training from partial learning after
550 varying intervals of time. *Journal of Comparative Psychology* 27:449-459.

551 Dashiell JF (1920) Some Transfer Factors in Maze Learning by the White Rat. *Psychobiology*
552 2:329.

553 Dennis W, Henneman RH, Varner WB (1932) A further study of the initial maze behavior of
554 rats. *The Pedagogical Seminary and Journal of Genetic Psychology* 41:358-368.

555 Diamond MC, Krech D, Rosenzweig MR (1964) The effects of an enriched environment on the
556 histology of the rat cerebral cortex. *J Comp Neurol* 123:111-120.

557 Freedman DJ (2001) Categorical Representation of Visual Stimuli in the Primate Prefrontal
558 Cortex. *Science* 291:312-316.

559 Freund J, Brandmaier AM, Lewejohann L, Kirste I, Kritzler M, Krüger A, Sachser N,
560 Lindenberger U, Kempermann G (2013) Emergence of individuality in genetically
561 identical mice. *Science* 340:756-759.

562 Gallup HK, Diamond L (1960) Transfer of double alternation behavior of rats in a temporal
563 maze. *The American Journal of Psychology* 73:256-261.

564 Gelfo F (2019) Does Experience Enhance Cognitive Flexibility? An Overview of the Evidence
565 Provided by the Environmental Enrichment Studies. *Front Behav Neurosci* 13:150.

566 Harlow HF (1949) The formation of learning sets. *Psychological Review* 56:51-65.

567 Heller AS, Shi TC, Ezie CC, Reneau TR, Baez LM, Gibbons CJ, Hartley CA (2020) Association
568 between real-world experiential diversity and positive affect relates to hippocampal–
569 striatal functional connectivity. *Nature Neuroscience* 23:800-804.

570 Ho YH (1928) Transfer and degree of integration. *Journal of Comparative Psychology* 8:87-99.

571 Kaefer K, Nardin M, Blahna K, Csicsvari J (2020) Replay of Behavioral Sequences in the
572 Medial Prefrontal Cortex during Rule Switching. *Neuron* 106:154-165.e156.

573 Karlsson MP, Tervo DGR, Karpova AY (2012) Network resets in medial prefrontal cortex mark
574 the onset of behavioral uncertainty. *Science (New York, NY)* 338:135-139.

575 Kastner DB, Miller EA, Yang Z, Roumis DK, Liu DF, Frank LM, Dayan P (2022) Spatial
576 preferences account for inter-animal variability during the continual learning of a
577 dynamic cognitive task. *Cell Rep* 39:110708.

578 Latimer KW, Freedman DJ (2023) Low-dimensional encoding of decisions in parietal cortex
579 reflects long-term training history. *Nat Commun* 14:1010.

580 Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L (2005)
581 Environmental enrichment promotes improved spatial abilities and enhanced dendritic
582 growth in the rat. *Behav Brain Res* 163:78-90.

583 Morrissey MD, Insel N, Takehara-Nishiuchi K (2017) Generalizable knowledge outweighs
584 incidental details in prefrontal ensemble code over time. *Elife* 6:e22177.

585 Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity
586 and disorders of the nervous system. *Nat Rev Neurosci* 7:697-709.

587 Petrosini L, De Bartolo P, Foti F, Gelfo F, Cutuli D, Leggio MG, Mandolesi L (2009) On
588 whether the environmental enrichment may provide cognitive and brain reserves. *Brain*
589 *Res Rev* 61:221-239.

590 Rashid K, Delfan Beyranvand A, Farhadi M (2017) Comparing learning speed of new mazes in
591 rats with and without prior maze learning experience. *International Journal of Education*
592 and Learning

593 6:1-10.

594 Rich EL, Shapiro M (2009) Rat prefrontal cortical neurons selectively code strategy switches. *J*
595 *Neurosci* 29:7208-7219.

596 Rosenberg M, Zhang T, Perona P, Meister M (2021) Mice in a labyrinth show rapid learning,
597 sudden insight, and efficient exploration. *Elife* 10.

598 Samborska V, Butler JL, Walton ME, Behrens TEJ, Akam T (2022) Complementary task
599 representations in hippocampus and prefrontal cortex for generalizing the structure of
600 problems. *Nat Neurosci* 25:1314-1326.

601 Tervo DGR, Proskurin M, Manakov M, Kabra M, Vollmer A, Branson K, Karpova AY (2014)
602 Behavioral variability through stochastic choice and its gating by anterior cingulate
603 cortex. *Cell* 159:21-32.

604 Thorndike E, Woodworth R (1901a) The influence of improvement in one mental function upon
605 the efficiency of other functions. (I). *Psychological Review* 8:247-261.

606 Thorndike EL, Woodworth RS (1901b) The influence of improvement in one mental function
607 upon the efficiency of other functions. II. The estimation of magnitudes. *Psychological*
608 *Review* 8:384-395.

609 Thorndike EL, Woodworth RS (1901c) The influence of improvement in one mental function
610 upon the efficiency of other functions: III. Functions involving attention, observation and
611 discrimination. *Psychological Review* 8:553-564.

612 Thorndike RL (1935) Organization of behavior in the albino rat. *Genetic Psychology*
613 *Monographs* 17:1-70.

614 Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RG (2011)
615 Schema-dependent gene activation and memory encoding in neocortex. *Science* (New
616 York, NY) 333:891-895.

617 Urban-Wojcik EJ, Lee S, Grupe DW, Quinlan L, Gresham L, Hammond A, Charles ST,
618 Lachman ME, Almeida DM, Davidson RJ (2021) Diversity of daily activities is
619 associated with greater hippocampal volume. *Cognitive, Affective, & Behavioral*
620 *Neuroscience*:1-13.

621 Uster HJ, Bättig K, Nägeli HH (1976) Effects of maze geometry and experience on exploratory
behavior in the rat. *Animal Learning & Behavior* 4:84-88.

622 Vehtari AaGAaSDaCBaBP-C (2021) Rank-normalization, folding, and localization: An
623 improved R $\hat{}$ for assessing convergence of MCMC (with discussion). Bayesian analysis
624 16:667--718.

625 Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract
626 rules. *Nature* 411:953-956.

627 Wang HS, Tse D, Morris RGM (2012) Anterior cingulate cortex in schema assimilation and
628 expression. *Learning & Memory* 19:315-318.

629 Webb L (1917) TRANSFER OF TRAINING AND RETROACTION. *Psychological*
630 *Monographs* 24:1-90.

631 Wiltbank RT (1919) Transfer of training in white rats upon various series of mazes. In. [New
632 York,: University of Chicago, 1917.

633 Winocur G, Moscovitch M (1990) Hippocampal and prefrontal cortex contributions to learning
634 and memory: Analysis of lesion and aging effects on maze learning in rats. *Behavioral*
635 *Neuroscience* 104:544.

636 Wood FaACdaGJaJLaTYW (2009) A Stochastic Memoizer for Sequence Data. In: *Proceedings*
637 of the 26th Annual International Conference on Machine Learning

638 , pp 1129–1136 , numpages = 1128: Association for Computing Machinery.

639 Xu W, Südhof TC (2013) A Neural Circuit for Memory Specificity and Generalization. *Science*
640 339:1290-1295.

641 Yu JY, Liu DF, Loback A, Grossrubatscher I, Frank LM (2018) Specific hippocampal
642 representations are linked to generalized cortical representations in memory. *Nat*
643 *Commun* 9:2209.

644 Éltető N, Nemeth D, Janacsek K, Dayan P (2022) Tracking human skill learning with a
645 hierarchical Bayesian sequence model. *PLoS Comput Biol* 18:e1009866.

646