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Abstract 15 

Experience can change how individuals learn. Learning to solve a new problem can be 16 

accelerated by generalizing known rules in the new context, but the impact of experience on solving 17 

problems where generalization cannot be applied remains unclear. To study the impact of experience on 18 

solving new problems that are distinct from previously learned tasks, we examined how rats learned a 19 

new spatial navigation task after having previously learned different sets of spatial navigation tasks. The 20 

new task differed from the previous tasks in spatial layout and navigation rule, and could not be solved by 21 

applying previously learned rules. We found that different experience histories did not impact task 22 

performance in the new task. However, by examining navigation choices made by rats, we found 23 

exploration patterns during the early stage of learning in the new task was dependent on experience 24 

history. We identified these behavioral differences by analyzing each rat9s navigation choices and by 25 

modeling their choice sequences with a modified distance dependent Chinese restaurant process. We 26 
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further pinpointed the behavioral difference to sequential turn/no turn decisions made at choice points. 27 

Our results indicate that experience can influence problem-solving strategies when learning to solve new 28 

problems. Individuals with distinct experience histories can approach new problems from different 29 

starting points but converge on the same solution. 30 

 31 

Introduction 32 

Individuals learn from distinct and diverse experiences to build general knowledge, which can be 33 

applied to new problems (Alonso et al., 2020). New problems can be solved faster when aspects of 34 

previous experience, such as learned rules, can be directly applied (Thorndike and Woodworth, 1901a; 35 

Harlow, 1949). When the new problem is distinct from previous experience, the effect of past experience 36 

becomes challenging to understand since improvements in performance on these problems are less 37 

consistent (Thorndike and Woodworth, 1901b; Wiltbank, 1919).  38 

Two lines of research provide different perspectives. At the cognitive level, diverse experiences 39 

are thought to improve general problem-solving ability. Experiential diversity in the form of 40 

environmental enrichment has revealed neuroanatomical (Bennett et al., 1964; Diamond et al., 1964; 41 

Heller et al., 2020; Urban-Wojcik et al., 2021; Bogado Lopes et al., 2023) and behavioral changes 42 

(Leggio et al., 2005; Nithianantharajah and Hannan, 2006; Petrosini et al., 2009; Freund et al., 2013; 43 

Gelfo, 2019) in humans and animals. These findings support the hypothesis that having diverse 44 

interactions with the environment leads to brain-wide changes that are not linked to specific experiences. 45 

Alternatively, studies in the early 20th century found rats, non-human primates, and humans could solve 46 

new problems faster after previously encountering related but not identical problems (Thorndike and 47 

Woodworth, 1901a; Thorndike and Woodworth, 1901c; Thorndike and Woodworth, 1901b; Wiltbank, 48 

1919; Ho, 1928; Thorndike, 1935; Harlow, 1949).  49 

A proposed explanation for this effect is <transfer= of learning, which is generally quantified by 50 

changes in performance metrics, such as the number of attempts to reach criterion, the number of errors 51 

made, or the time needed to solve a task. A range of transfer outcomes have been observed, ranging from 52 
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positive transfer (improvement in performance) to neutral effect (no change) to negative transfer 53 

(worsening) (Webb, 1917; Wiltbank, 1919; Dennis et al., 1932). Further, transfer was reported for 54 

different degrees of experience: rats performed fewer errors when learning a new maze even with partial 55 

training of a different maze (Ho, 1928; Bunch and Lang, 1939) or after training in multiple mazes 56 

(Dashiell, 1920; Rashid et al., 2017). Further, solving new problems can also improve when rats had 57 

dissimilar past experience, such as prior operant learning improving new spatial learning (Adams, 2003) 58 

or positive transfer between mazes with different rules (Gallup and Diamond, 1960). Thus, previous 59 

experience has complex effects on future problem-solving. Although these experiments identified 60 

differences in performance in new tasks depending on the experience of the animals, it is unclear how 61 

aspects of learning behavior were affected. Specifically, does the absence of transfer, as defined by a lack 62 

of performance changes, indicate previous experience had no effect on future learning? 63 

Performance metrics across time, such as speed or accuracy, are used in these studies to 64 

determine the impact of past experience on solving new problems. Reductions in the numbers of errors or 65 

in the time or trials taken to solve the task were taken as evidence of the transfer of previous knowledge to 66 

the solving of novel tasks. In experiments involving learning multiple tasks over time, improvements in 67 

performance metrics across consecutive learning sessions were not always observed (Wiltbank, 1919; 68 

Dennis et al., 1932). On one hand, this could indicate a lack of consistent transfer or generalization 69 

between some tasks. Alternatively, the metrics used to quantify performance may have failed to capture 70 

aspects of behavior that did differ. This is especially relevant to exploration in structured environments 71 

since humans and non-human animals show intricate exploratory patterns (Uster et al., 1976; Alonso et 72 

al., 2021; Rosenberg et al., 2021; Brunec et al., 2023). Thus, examining detailed aspects of behavioral 73 

choices in addition to traditional performance metrics can provide important insight on how learning 74 

occurs.  75 

Here, we investigate how past experience affects the way animals learn a new task that could not 76 

be solved by directly applying previously learned rules. We compare spatial learning in a novel task 77 

between groups of rats that previously learned either one or two spatial tasks that differed in topology and 78 
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rule. We did not find experience-dependent differences in performance based on reward rate over time. 79 

However, we reasoned that differences could lie in strategic choices during exploration that may not be 80 

reflected in gross performance measures. To search for additional experience-dependent influences on 81 

learning, we quantified patterns of spatial decisions during exploration. Surprisingly, we found 82 

experience-dependent differences in these spatial exploration patterns only during initial learning. These 83 

differences disappeared after rats discovered the rule and their behavior converged in the new spatial task. 84 

Our results show experience alters the starting state of animals, affecting how they discover rules for 85 

unfamiliar problems, and this can occur without affecting learning performance. 86 

 87 

Results 88 

To understand how learning a novel task depends on previous experience, we designed a two-89 

phase spatial learning experiment. The first phase of the experiment is the differential experience phase, 90 

where rats were assigned to <diverse= or <uniform= experience conditions (Fig. 1A). In the diverse 91 

experience groups (n=9), rats were trained on two mazes each day, the H maze (H) or the double T maze 92 

(2T), counterbalanced for session order (n=5 and n=4). During training, the rat could explore all arms of 93 

the mazes, but the task rule required rats to visit two specified arm ends in alternation to receive reward. 94 

Uniform group rats (n=10) were trained on only the H or 2T maze, twice per day (Fig. 1A) (n=5 for each 95 

maze). To create distinct spatial navigation experiences that took similar physical effort, the H and 2T 96 

mazes differed in geometry but shared the same topology. The mazes each featured two intersections, and 97 

the rewarded trajectories had the same path lengths. After training, all animals achieved similar levels of 98 

performance in their Phase 1 tasks (Fig. 1C). The second phase of the experiment is the common 99 

experience phase, where all animals were given the same new spatial task: a Plus maze with an alternation 100 

rule (Fig. 1B) for two sessions per day over 5 days. The new task differed from the H and 2T tasks in 101 

topology, geometry, and reward rule, and thus could not be solved by applying spatial navigation rules 102 

from phase 1. 103 
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We asked whether performance on the Plus maze in experiment phase 2 differed between the 104 

diverse or uniform experience groups. Based on findings that diverse experiences can benefit cognitive 105 

performance (Petrosini et al., 2009), we first predicted that the diverse and uniform groups may differ in 106 

performance metrics. Alternatively, given that the maze structure and task rules are sufficiently different 107 

between phases 1 and 2 that neither group has any advantages from experience, both groups may show 108 

similar performance. We analyzed the reward rate across sessions on the Plus maze and did not find 109 

statistically significant differences between experience or task groups (pairwise Wilcoxon rank-sum tests 110 

with Benjamini/Hochberg false discovery rate correction: p>0.44 for experience or p>0.83 for task across 111 

sessions) (Fig. 1D).  112 

While reward rate did not differ, this metric only quantifies whether the animal9s behavior 113 

matches to experimenter-imposed rules and fails to describe the choices made by rats as they learn. Since 114 

the tasks required the animals to sequentially visit locations, we hypothesized that the patterns of choices 115 

of location visits could provide further insight into the learning process. This may be especially relevant 116 

during early learning, when the animals are trying to discover the task rule. We reasoned that the 117 

sequence of transitions between consecutive locations may contain patterns at multiple orders (Fig. 2A-118 

B). We defined first-order behavior as the sequence of locations visits. For example, visiting locations 1 119 

and then 2 would comprise a first-order sequence of length 2. Second-order behavior is the egocentric 120 

action required to travel between locations: left turn (L), straight (S), or right turn (R). One unit of third-121 

order behavior is created by a pair of two actions, such as a left turn followed by another left turn. We 122 

further classified these action pairs into two categories: <similar= corresponds to two turns in a row (for 123 

example, R->L) or two straight actions (S->S), and a <dissimilar= action pair, or switch trial, contains a 124 

turn and a straight action (for example, R->S or S->L). These categorizations were useful since all mazes 125 

in both phases of the experiment had intersections allowing for turns and/or going straight. In contrast, 126 

spatial features, such as rewarded locations, were not directly comparable since tasks across experiment 127 

differed in topology, geometry, and task rule.  128 
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Inspection of the raw results shows animals in the diverse group made switch trials more 129 

frequently (Fig. 2C-D, Supp. Fig. 1, switch trials indicated with triangles). The proportion of switch trials 130 

was greater in the diverse experience group than in the uniform experience group (Fig. 2E), despite both 131 

groups having similar reward rates (Fig. 2F). Interestingly, the difference was significant only for the first 132 

session (Fig. 2E). This indicates that the diverse experience group were potentially more varied in their 133 

choices, switching between turning and not turning at the intersection on consecutive trials, during early 134 

learning. These differences disappeared once the animals learned the new rule in later sessions.  135 

The difference in switch trials raised the possibility that the two experience groups made different 136 

sequences of choices during phase 2 training. To gain further insight on each animal9s choice sequence, 137 

we calculated the probability of each choice sequences for all possible 3-trial sequences. Given sequential 138 

choice probability arrays are difficult to visually inspect, we found the dendrogram provides an intuitive 139 

visualization (Fig. 3A, Supp. Fig. 2-3), where each node represents a choice, and the connected nodes are 140 

subsequent choices (Fig. 3B). The thickness of the edge connecting two nodes indicates the probability of 141 

that choice, where thicker lines indicate higher probability (see Methods).  142 

The sequential choice probability dendrograms for the first 30 trials, corresponding to early 143 

learning in the Plus maze, revealed distinct patterns within and between groups with uniform or diverse 144 

experience in phase 1 (Fig. 3C). To visualize and quantify differences between patterns across the two 145 

experience groups, we applied Principal Component Analysis (PCA) on the sequential choice probability 146 

array (Fig. 3D). The scatter plots of the first three principal components showed a separation between the 147 

uniform and diverse experience groups. We confirmed this separation by calculating the cosine similarity 148 

between the principal components of rats. We found that the distance between the uniform experience rats 149 

and diverse experience rats was greater than the distance between rats within each experience group, 150 

uniform or diverse (Fig. 3E). This is consistent with the idea that uniform and diverse experience groups 151 

differ in choice sequence patterns, and we have shown this difference both by the distinct branch 152 

structures in the probability dendrograms and by the cosine similarities of the principal components. 153 

Dendrograms. We next asked if these differences were experience-dependent or reflected preexisting 154 
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biases in behavior choices (Kastner et al., 2022). We ruled out the latter explanation since the choice 155 

patterns for the first 30 trials on the H or 2T mazes in phase 1 did not differ between the groups (Fig. 3C). 156 

Using the same set of analyses, we confirmed all rats had similar behavior choices towards the end of 157 

their training when the rule had been learned (Fig. 4, Supp. Fig. 3), consistent with the rats performing the 158 

task rule to achieve similar reward rates (Fig. 1C-D). 159 

We next asked what differences in the underlying processes could give rise to these distinct 160 

behavior patterns. Our goal is to characterize the structure of the rats9 choice sequences from the early 161 

learning period in the Plus maze. We therefore fitted statistical models with a small set of interpretable 162 

parameters that relate choice history with future choices using the observed choice sequences for each rat. 163 

We then determined whether models from each experience group had different estimated parameter 164 

values. Between group differences in model parameters can reveal differences in the statistical processes 165 

that generated the sequences. We chose the distance-dependent Chinese Restaurant Process (Blei and 166 

Frazier, 2011), which assumes each choice in a sequence is sampled from a distribution of possible 167 

choices that is dependent on past choices on two different timescales (Fig. 5A). The model contains a 168 

time constant (Ç) that determines how influential all past choices are on the next choice, as modeled by an 169 

exponential decay. Given that we have found differences in the likelihood of switching between different 170 

choices, we added a parameter that determines the relative influence of the previous choice on the next 171 

choice (C). The model also included a parameter that determined how closely the probability of choices is 172 

biased towards a <base= distribution (S). The base distribution was parameterized to account for simple 173 

behavioral strategies based on varying likelihood of repetition (³) without taking more specific trial 174 

history into account. Our goal was to compare features of behavioral patterns observed within each 175 

experience group during the early learning period by fitting the model to each animal9s behavior during 176 

the first 50 trials and comparing the fitted parameters across groups. We performed simulations to show 177 

differences in parameters can be recovered from the models (Supp. Fig. 4). 178 

The model fits showed that the ability of previous choices to predict future choices depended on 179 

the experience group. The uniform and diverse groups differed in the estimated time constant (Ç), where 180 
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the diverse group had a significantly longer time constant, indicating that past choices were more 181 

predictive of future choices in the diverse group (Fig. 5B). The two groups also differed in how the 182 

immediate past affected the upcoming choice (C): the previous choice had a stronger influence for the 183 

diverse group of compared with the uniform group. This supports our previous observation that the 184 

groups differed in how often they switched between turning and not turning (Fig. 2E). The bias towards 185 

selecting the next trial from the base distribution (S) was not significantly different between the two 186 

groups. The base distribution was trending to having less repetition (³) in the diverse compared with the 187 

uniform group. We confirmed the behavior of both groups converged in the last 50 trials with the model 188 

fits producing parameter values (Ç, C and S). We found a significant difference in the repetition parameter 189 

(³) but the magnitude of the difference is small. This parameter is less influential when the choices are not 190 

strongly biased towards the base distribution (S), which is observed for both groups. 191 

Given both statistical and modelling approaches identified differences in choice patterns, we next 192 

identified the specific difference in how they switched between choices. Since the diverse experience 193 

group had a higher proportion of switch trials at the intersection compared with the uniform experience 194 

group (Fig. 2E), we asked whether this can be explained by a higher preference to choose actions not 195 

taken previously, an example of which could be turning after going straight on the previous trial or vice 196 

versa. Surprisingly, we found the two experience groups differed in the likelihood of switching actions 197 

after turning but not after going straight (Fig. 6A). The diverse experience group was more likely to go 198 

straight after turning compared with the uniform experience group. Both groups had similar likelihood to 199 

turn after going straight. This difference was specific to early exploration in the Plus maze. All groups 200 

had similar transition probabilities for the H and 2T mazes and comparable switching likelihoods in the 201 

last 50 trials of all mazes, during which behavior across both groups converged (Fig. 6B). We next 202 

confirmed this difference was experience-dependent rather than a preexisting difference between the 203 

groups. For the animal9s first exposure to the 2T or H mazes, the switching likelihood was similar 204 

between groups (Fig. 6A). Further, we found the switching likelihoods in the first or last sessions of the H 205 

or 2T mazes was not correlated with those in the Plus maze (Fig. 6C-F). These results indicate different 206 
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experiences can lead to different specific exploratory choices during searching for solutions to a new 207 

problem. 208 

 209 

Discussion 210 

There are multiple mechanisms through which past experience influences future behavior. 211 

Memory is a vessel through which relevant knowledge from one experience can be applied to another, 212 

and we can quantify the impact of memory through tests of recall. Generalization involves integrating the 213 

memories of multiple experiences to form a broader representation of the concept shared between those 214 

experiences, and it is quantified by measuring an individual9s approach to a novel situation that shares 215 

attributes, but is not identical, to previous experiences. In the case of multiple problems that share rules or 216 

layouts, memory and generalization can allow for the application of previously learned rules, allowing the 217 

new problem to be solved faster (Webb, 1917). Our findings reveal that animals9 experience histories can 218 

influence their exploratory behavior in a new task. However, the tasks in our experiment did not share 219 

spatial topology or navigation rules, removing the utility of directly applying learned spatial layouts or 220 

tasks rules from phase 1 to the phase 2. We observed differences in navigation choices during exploration, 221 

not performance enhancement. Given this, what could explain the differences in choices made during 222 

early exploration in phase 2?  223 

Despite the topological and rule differences between the maze tasks in phases 1 and 2, all mazes 224 

have junctions where the rat must decide whether to turn. We hypothesize that the junctions represent a 225 

feature shared between mazes, allowing the rats to form abstractions that carry to future tasks. The H, 2T, 226 

and Plus mazes all require the rats to make sequences of spatial trajectory choices at junctions, and a 227 

sequential turn-based strategy could emerge as they explore and learn. The previous adoption of such a 228 

strategy could influence how animals initially explore a new environment that shares the concept of 229 

trajectory choices at junctions, even when past spatial geometry and topology are not informative. The 230 

turn-based strategy reinforced in the H maze is repeated turns, while turning and going straight is most 231 

advantageous in the 2T maze. In phase 2, direct application of these exact sequences of previously learned 232 
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turns are not possible given the topology of the new maze. However, we hypothesize that previously 233 

learned strategies can still bias the likelihood of making certain sequential decisions at junctions in future 234 

tasks. This may be particularly applicable to exploration during early learning, before the cognitive map 235 

of the new maze has developed. We observed this initial impact through the diverse experience rats9 236 

higher switch trial frequency in the first session. 237 

We hypothesize that experience changed the rats9 approach to exploration throughout the 238 

experiment as they were introduced to and learned different tasks. When rats were first introduced to the 239 

H and 2T mazes in phase 1, there was variability in choice patterns, which is expected given that rats 240 

show preexisting biases in spatial exploration (Kastner et al., 2022). At the end of phase 1, rewarded 241 

choice patterns for each task had been reinforced for each animal, and its behavior converged. Their 242 

experience in phase 1 determined how they approached exploring a new maze at the start of phase 2. 243 

Then, as they learned the new task, their behavior was constrained by the new phase 2 rule, and the 244 

behavior across groups converged again. 245 

An important direction for future research is to understand the experience-dependent neural 246 

processes that shape learning when neither the application nor the generalization of memory is beneficial 247 

or possible. Nonetheless, the animals showed experience-dependent differences in behavior in a novel 248 

task. Recent findings show that neural representations of decision-making tasks are dependent on 249 

experience (Latimer and Freedman, 2023). Animals with different training histories have distinct cortical 250 

task dynamics even when performing the same task with similar behavior. Frontal cortical and 251 

hippocampal networks are implicated in representing task rules and modulating generalization (Winocur 252 

and Moscovitch, 1990; Freedman, 2001; Wallis et al., 2001; Rich and Shapiro, 2009; Tse et al., 2011; 253 

Wang et al., 2012; Xu and Südhof, 2013; Morrissey et al., 2017; Yu et al., 2018; Kaefer et al., 2020; 254 

Samborska et al., 2022). These networks could modulate strategic exploratory decisions when learning to 255 

solve new problems. When previously learned rules are not applicable, these networks could discard the 256 

application of existing rules in favor of more flexible choice policies (Karlsson et al., 2012; Tervo et al., 257 

2014). Experience-dependent changes to neural networks enable the brain to retain information from the 258 
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past. At any moment, the state of the network is a product of the individual9s unique experience history. 259 

We hypothesize that the experience-dependent configuration of the network provides priors for generating 260 

new behaviors with a range unique to each individual. 261 

In our experiment, different experience histories led to distinct exploratory patterns in a novel 262 

task. Our results suggest that the legacy of past experiences extends beyond the recall of specific 263 

memories or the direct application of previously learned concepts. Instead, unique experience histories 264 

create unique starting points for how individuals approach new situations. Ours findings challenge us to 265 

consider the mechanisms through which experience shapes the differences between each individual and to 266 

look beyond memory and generalization for the vessels of transfer between experiences.  267 

 268 

  269 
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Figures 270 

 271 

Figure 1. Rats with diverse or uniform experience had similar performance in a novel task. 272 

A. Experiment schematic for the differential experience phase. In this phase, all rats were trained for two 273 

sessions per day for up to 10 days. Uniform group rats (H and 2T) learned a single task, either the H 274 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 27, 2023. ; https://doi.org/10.1101/2023.12.26.573368doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.26.573368
http://creativecommons.org/licenses/by-nc-nd/4.0/


maze or the 2T maze, and they trained on the same maze during each training session, twice per day. 275 

Diverse group (H/2T and 2T/H) rats learned both alternation tasks, H and 2T, counterbalanced for the 276 

order of maze sessions. Both the H and 2T mazes have four arm ends. Two of the ends are reward 277 

locations (green circles). Visits to the other maze ends (white circles) are not rewarded. The rewarded 278 

visit sequence is shown.  279 

B. Experiment schematic for the common experience phase. All groups of rats, diverse and uniform, 280 

learned to navigate the same maze task for two sessions per day. This was a Plus maze. The rewarded 281 

visit sequence is shown. 282 

C. Reward rate on the final session of differential experience phase. A two-way ANOVA did not show a 283 

significant effect on final performance from experience (p=0.13) or task (p=0.79), or their interaction 284 

(F1, 1=0.70, p=0.41). 285 

D. Proportion of trials rewarded per session on the Plus maze grouped by experience and task in phase 1. 286 

Pairwise Wilcoxon rank-sum test with Benjamini/Hochberg false discovery rate correction did not 287 

show a significant difference between experience (p>0.44 for all pairs) or task (p>0.83 for all pairs) 288 

across sessions. 289 

 290 

  291 
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 292 

Figure 2. Behavior choice pattern classification for the Plus maze. 293 

A. Schematic of 1st, 2nd and 3rd order description of behavior choices, which are individual location visits, 294 

egocentric movements at junctions, and pairs of turns, respectively. 295 
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B. Example behavior choice sequence and corresponding higher order descriptions.  296 

C. Example behavior choices for the first 30 trials in the Plus maze for 2 animals in the uniform group. 1st 297 

order transitions shown by the circles that indicate the maze location visited by the rat. Red circles 298 

indicate the rewarded visits. 2nd order transitions convert the location visit pairs into left turns (L), right 299 

turns (R) and straight (S). L and R are marked blue and S is in orange. Triangles correspond to switch 300 

trials, or 3rd order transitions that involve changes between L/R and S. 301 

D. Example behavior choices for the first 30 trials in the Plus maze for 2 animals in the diverse group. 302 

E. Proportion of switch trials (mean and 95% confidence interval of the mean) for each session. These are 303 

the frequencies of the trial pairs marked by triangles in C and D. Wilcoxon rank-sum test with 304 

Benjamin/Hochberg false discovery rate correction, p=0.048 for the first session only.  305 

F. Reward rate for each session (mean and 95% confidence interval of the mean) for each session. Data 306 

from Fig 1D. is plotted by experience group. Pairwise Wilcoxon rank-sum test with 307 

Benjamini/Hochberg false discovery rate correction did not show a significant difference between 308 

experience (p>0.44 for all pairs). 309 

 310 
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 312 

Figure 3. Visualizing sequential behavior choice probabilities. 313 

A. Example dendrogram of conditional probabilities for 3-trial choice sequences. Edges represent the 314 

conditional probability and nodes represent the choices. 315 

B. Example showing the probabilities of sequences with one, two or three trials. 316 
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C. Choice probability dendrograms for the first 30 trials of the Plus, H and 2T mazes. Three example 317 

animals from the uniform (left column) and diverse (right column) are shown. 318 

D. Scatter of the first three principal components of the choice probabilities between uniform (black) and 319 

diverse (red) groups for the first 30 trials on each maze. To improve visualization of overlapping 320 

points, a small jitter (Gaussian noise with standard deviation = 0.003) was added to the values. 321 

E. Cosine similarity across all principal components of choice probabilities for between and within 322 

groups for the first 30 trials. Wilcoxon rank sum test for Plus (p=0.0022), H (p=0.33) and 2T 323 

(p=0.40). 324 

 325 
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 327 

Figure 4. Uniform and diverse groups both converge on the same pattern after training. 328 

A. Choice probability dendrograms for the last 30 trials of the Plus, H and 2T mazes. Three animals from 329 

the uniform (left column) and diverse (right column) are shown. 330 

B. Scatter of the first 3 principal components of the choice probabilities between uniform (black) and 331 

diverse (red) groups for the last 30 trials on each maze. To improve visualization of overlapping 332 

points, a small jitter (Gaussian noise with standard deviation = 0.003) was added to the values. 333 

C. Cosine similarity across all principal components of choice probabilities for between and within 334 

groups for the last 30 trials. Wilcoxon rank sum tests for Plus (p=0.60), H (p=0.28) and 2T (p=0.62) 335 

mazes. 336 
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 337 

Figure 5. Models of uniform and diverse groups show distinct parameters that control how past 338 

trials influence future trials. 339 

A. Schematic of a modified distance dependent Chinese Restaurant process model. Ç modulates the 340 

distance dependent influence of all previous trials on the next trial. C modulates the dependence of 341 
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the next trial on the immediate previous trial.  S determines likelihood the next trial is drawn from a 342 

base distribution instead of trial history. ³ determines the likelihood the base distribution is governed 343 

by a uniform distribution or a distribution that is biased to repeat or avoid previous choices. 344 

B. Scatter and boxplots of model parameters from model fit to each animal9s first 50 trials on the Plus 345 

maze. Wilcoxon rank-sum test with Benjamini/Hochberg false discovery rate correction for Ç 346 

(p=0.023), C (p=0.023), S (p=0.87) and ³ (p=0.055). 347 

C. Scatter and boxplots of model parameters from model fit to each animal9s last 50 trials on the Plus 348 

maze. Wilcoxon rank-sum test with Benjamini/Hochberg false discovery rate correction for Ç 349 

(p=0.62), C (p=0.62), S (p=0.62) and ³ (p=0.022). 350 

 351 
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 353 

Figure 6. Uniform and diverse groups show distinct likelihood of action switching. 354 

A. Probability for turn-straight and straight-turn transitions for the first session on the Plus, H and 2T 355 

mazes. Wilcoxon rank-sum p values with Benjamini/Hochberg false discovery rate correction are 356 

shown. 357 

B. Probability for turn-straight and straight-turn transitions for the last session on the Plus, H and 2T 358 

mazes. Wilcoxon rank-sum p values with Benjamini/Hochberg false discovery rate correction are 359 

shown. 360 

C. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the first 361 

sessions on 2T maze and the first session on the Plus maze. 362 
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D. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the first 363 

sessions on H maze and the first session on the Plus maze. 364 

E. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the last 365 

sessions on 2T maze and the first session on the Plus maze. 366 

F. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the last 367 

sessions on H maze and the first session on the Plus maze.  368 

All p values for C-F are corrected values using the Benjamini/Hochberg false discovery rate 369 

correction. 370 

 371 

 372 
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Supplementary Figures 374 

 375 

 376 

Supplementary Figure 1. 377 

Behavior choices for the first 30 trials of the Plus maze for all animals, shown in the same format as Fig. 2 378 

C-D. 1st order transitions shown by the circles that indicate the maze location visited by the rat. Red circles 379 

indicate the rewarded visits. 2nd order transitions convert the location visit pairs into left turns (L), right 380 

turns (R) and straight (S). L and R are marked blue and S is in orange. Triangles correspond to switch trials, 381 

or 3rd order transitions that involve changes between L/R and S. 382 

 383 
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 384 

Supplementary Figure 2.  385 

Choice probability dendrograms for the first 30 trials of the Plus, H and 2T mazes for all animals. 386 
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 387 

Supplementary Figure 3.  388 

Choice probability dendrograms for the last 30 trials of the Plus, H and 2T mazes for all animals. 389 
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 390 

Supplementary Figure 4.  391 

Simulations confirm that the model parameters can be recovered from sequences of actions. We simulated 392 

from the distance-dependent Chinese restaurant process using two different sets of parameters 393 

(simulations 1 and 2, dashed lines indicate the true parameters). For each set of parameters, we generated 394 

50 independent simulations. The parameters were then fit with an increasing number of trials using the 395 

posterior median as the estimate. The points give the mean estimates and the error bars show a 90% 396 

interval over simulations. The estimated parameters remained close to the prior distribution with few 397 

trials, and tended towards the true parameters with increasing amounts of data. We found that the context 398 

dependency parameter (C) required the fewest number of trials to separate across these two 399 

simulations. Given low values of the chosen base distribution bias (S), which meant the base distribution 400 

was unlikely to be chosen in the generated sequences compared with the history-dependent distributions, 401 

we did not expect the repetition bias parameter (³) to be effectively recovered.  402 
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Methods 412 

Pre training 413 

A total of 19 male Long-Evans rats (14~16 weeks old, 475~525g) were used in this study. All procedures 414 

were performed under approval by the Institute Animal Care and Use Committee at the University of 415 

Chicago, according to the guidelines of the Association for Assessment and Accreditation of Laboratory. 416 

Animals were kept in a temperature (21°C) and humidity (50%) controlled colony room on a 12/12 h 417 

light/dark cycle (lights were on from 8:00 to 20:00). Experiments were performed during the light period. 418 

Animals were handled over 4 weeks for habituation to human interaction. Animals were familiarized to 419 

foraging for evaporated milk (Carnation) with 5% added sucrose in an elevated black open field box (H: 420 

31cm, W: 61cm, L: 61cm), 10 minutes per day for 3 days. Reward was randomly dropped inside the open 421 

box to encourage foraging. Animals were then food restricted to 90% of their baseline weight for 3 days 422 

and trained to run back and forth on an elevated linear track (H: 76cm, W: 8cm, L: 60cm) to consume 423 

reward from the ends of the track. Animals were trained for 10 minutes per day until a performance 424 

criterion of 20 rewards per session (for 4 to 8 days).  425 

 426 

Behavior training 427 

Animals were food restricted to maintain above 85% of their baseline weight. Behavior training was 428 

conducted on custom built mazes with interconnecting acrylic track sections (8cm in width) elevated 429 

76cm from the floor. Reward was delivered by a syringe pump (100¿l at 20ml/min, NE-500, New Era 430 

Pump Systems Inc, New York, USA). Behavior data was recorded using the SpikeGadgets data 431 

acquisition system (SpikeGadgets LLC, California, USA). Our experiment was split into two phases. Rats 432 

first were exposed to a differential experience phase and then the common experience phase. The 433 

common experience phase started 2 days after the end of the differential experience phase. 434 

 435 

Differential experience phase 436 
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Animals were randomly assigned to the uniform (n=10) and diverse group (n=9). A H-maze and a double 437 

T-maze (2T) were used for the differential experience phase training (Figure 1A). Animals obtained 438 

reward from the ends of the maze only when visiting two of the four ends in alternation. Animals 439 

performed two 10-minute training sessions separated by 3 hours, during which the rats were returned to 440 

their cages. Training continued until performance exceeded 80% or up to 10 days. The diverse group 441 

trained on two mazes per day, while the uniform group trained on one maze twice per day. For the diverse 442 

group, we controlled in the order the rats learned the tasks across each day by assigning 5 rats to 2T maze 443 

first then H maze. The remaining 4 rats learned the task in reverse order. 444 

 445 

Common experience phase 446 

After the differential experience phase, all animals (n=19) were trained on a Plus maze with a different 447 

rule (Fig. 1B). Both groups were trained to visit three of the four wells in a specific sequence to receive 448 

reward at those three wells (Fig. 1B). The sequence involves alternating visits between well 1 and wells 2 449 

and 3. Animals underwent two 10-minute training sessions per day, for 5 days. The rats were returned to 450 

their cages for 3 hours between the two sessions. 451 

 452 

Data processing and analysis 453 

We registered reward well visits based on sensor trigger events and reward delivery based on pump 454 

trigger events. All analyses were performed in Python using Numpy, Scipy and scikit-learn. 455 

 456 

Behavior pattern classification 457 

We started with a sequence of reward location visits, which represent first-order patterns. We converted 458 

this sequence into second-order behavior patterns given each pair of transitions requires one to two 459 

movement choices: left turn (L), straight (S), or right turn (R). We then classified third-order patterns as 460 

the transition between 2nd order actions, such as a left turn followed by another left turn. We can further 461 
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classify these action pairs into similar, corresponding to turn followed by turn or straight followed by 462 

straight, versus dissimilar, or a switch trial, corresponding to turn followed by straight or vice versa. 463 

 464 

Choice sequence probabilities 465 

We calculated the probability of observing a specific choice sequence for all possible 3-trial sequences, 466 

for example (left, left left, left left left, &). Data for all rats is in the form of a m×n matrix with m being 467 

each animal and n being all the possible sequences. To visualize the probability matrix as a dendrogram, 468 

we used the Python networkx package (https://networkx.org/). To visualize the similarity between the 469 

probability matrices for the uniform and diverse groups, we then used Principal Component Analysis to 470 

reduce the dimensionality of this matrix.  To quantify similarity, we calculated the pairwise cosine 471 

similarity for a pair of animals across all principal components. This was done for within (diverse to 472 

diverse, uniform to uniform) and across (diverse to uniform) group comparisons.  473 

 474 

Modified distance-dependent Chinese restaurant process model 475 

We aimed to summarize statistically how the actions of each rat in the Plus maze depended on the recent 476 

trials and how the distribution of choices changed over the course of learning. Given the sequence of trials 477 

performed by an animal, we modeled the action on a trial as a probability distribution that depended on 478 

the past trial and the number of trials performed. The dependency of the number of trials allowed the 479 

model to account for the changes in the animals9 behavior during learning. This contrasts to a typical 480 

Markov model, which assumes behavior only depends on the past trials but not the history of trials 481 

performed. 482 

 483 

To accomplish this, we modeled the sequence of actions (left, right, or straight) performed by each rat 484 

using a sequential distance-dependent Chinese restaurant process model (ddCRP) (Blei and Frazier, 485 

2011). We modified the model by adding a parameter that specifically controls the contribution of the last 486 

trial to the upcoming choice. The ddCRP defines a generative stochastic process in which the probability 487 
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of the action on the �th trial depends on the outcomes of the previous trials. The probability of observing 488 

action � on trial � (�!) is given as: 489 

�(�! = 	�	|�":!$", �) 	? 	 	��!(�) 	+	 0 �(�, �)
!$"

%&"	!,	)!&	*

	 490 

Where the distance function between trials � and � is 491 

�(�, �) 	= 	��� 52 |� 2 �|
� 89(1 2	�+),"(!,%)

/

+&"

 492 

Where �+(�, �) = 	0 if trials � and � share the same context of depth �: that is, the sequence of � actions 493 

immediately preceding trials � and � are the same. Otherwise, we set �+(�, �) = 	1. The timescale 494 

parameter of the distance function, � > 0, determines how predictive actions from the past are of the 495 

current trial. Low values of � indicate that the actions at the beginning of the session are not informative 496 

of the animals9 behavior at the end of the session. This timescale gives the process the <distance 497 

dependent= property in comparison to the standard Chinese restaurant process, which weighs all previous 498 

observations with weight 1. The context parameters, �+ 	 * 	 [0,1], determine how much choice depends on 499 

specific actions permed on the d previous trials (the context). If �+ 	= 	1, then context is weighted heavily 500 

by the model: the actions performed in one context do not inform the actions in a different context. If 501 

�+ 	= 	0, context is not predictive of the actions. 502 

 503 

The remaining two parameters define the base measure, �!: the prior probability over the actions. 504 

�!(�) ? � if �!$" = �  and �!(�) ? 	1 if �!$" b �   505 

The concentration parameter, � > 0, determines bias for selecting the choice on each trial from the base 506 

distribution. The bias parameter, � > 0, is included to alter the base distribution. The value of this 507 

parameter account for how a fixed switch-stay bias could account for the animals9 sequence of actions. 508 

Actions are drawn from the uniform distribution a priori if � = 1. For � < 1, actions are less likely to be 509 

repeated, and for � > 1, choices are more likely to be repeated. 510 
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 511 

Our approach extends the ddCRP model for sequences to include recent context within the distance 512 

function. This approach is inspired by models that use hierarchical Dirichlet priors to regularize 513 

estimation of Markov models (Wood, 2009). However, our method takes advantage of the fact that the 514 

distance function already weighs the previous observations differently. Thus, we could incorporate 515 

dependencies on recent actions without a more complex hierarchical model in contrast to a recently 516 

proposed statistical model of behavioral sequences (ÉltetQ et al., 2022). 517 

 518 

We fit the model Markov chain Monte Carlo (MCMC) methods in a Bayesian framework implemented 519 

using the Stan modeling platform (STAN Development Team, 2023). Convergence of the MCMC 520 

procedure was assessed using the �G metric (Vehtari, 2021) with four independent chains of 1000 samples 521 

each. We used the posterior median as a point estimate for individual parameters. The prior distributions 522 

for the parameters were independent for each parameter: 523 

 524 

� > �����(2,20) 525 

�+ > �������(0,1) 526 

� > �����(2,2) 527 

� > �����(20,1/20) 528 

 529 

where the gamma distributions are parameterized as shape and scale. 530 

  531 
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