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Abstract

Experience can change how individuals learn. Learning to solve a new problem can be
accelerated by generalizing known rules in the new context, but the impact of experience on solving
problems where generalization cannot be applied remains unclear. To study the impact of experience on
solving new problems that are distinct from previously learned tasks, we examined how rats learned a
new spatial navigation task after having previously learned different sets of spatial navigation tasks. The
new task differed from the previous tasks in spatial layout and navigation rule, and could not be solved by
applying previously learned rules. We found that different experience histories did not impact task
performance in the new task. However, by examining navigation choices made by rats, we found
exploration patterns during the early stage of learning in the new task was dependent on experience
history. We identified these behavioral differences by analyzing each rat’s navigation choices and by

modeling their choice sequences with a modified distance dependent Chinese restaurant process. We
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further pinpointed the behavioral difference to sequential turn/no turn decisions made at choice points.
Our results indicate that experience can influence problem-solving strategies when learning to solve new
problems. Individuals with distinct experience histories can approach new problems from different

starting points but converge on the same solution.

Introduction

Individuals learn from distinct and diverse experiences to build general knowledge, which can be
applied to new problems (Alonso et al., 2020). New problems can be solved faster when aspects of
previous experience, such as learned rules, can be directly applied (Thorndike and Woodworth, 1901a;
Harlow, 1949). When the new problem is distinct from previous experience, the effect of past experience
becomes challenging to understand since improvements in performance on these problems are less
consistent (Thorndike and Woodworth, 1901b; Wiltbank, 1919).

Two lines of research provide different perspectives. At the cognitive level, diverse experiences
are thought to improve general problem-solving ability. Experiential diversity in the form of
environmental enrichment has revealed neuroanatomical (Bennett et al., 1964; Diamond et al., 1964;
Heller et al., 2020; Urban-Wojcik et al., 2021; Bogado Lopes et al., 2023) and behavioral changes
(Leggio et al., 2005; Nithianantharajah and Hannan, 2006; Petrosini et al., 2009; Freund et al., 2013;
Gelfo, 2019) in humans and animals. These findings support the hypothesis that having diverse
interactions with the environment leads to brain-wide changes that are not linked to specific experiences.
Alternatively, studies in the early 20™ century found rats, non-human primates, and humans could solve
new problems faster after previously encountering related but not identical problems (Thorndike and
Woodworth, 1901a; Thorndike and Woodworth, 1901c; Thorndike and Woodworth, 1901b; Wiltbank,
1919; Ho, 1928; Thorndike, 1935; Harlow, 1949).

A proposed explanation for this effect is “transfer” of learning, which is generally quantified by
changes in performance metrics, such as the number of attempts to reach criterion, the number of errors

made, or the time needed to solve a task. A range of transfer outcomes have been observed, ranging from
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positive transfer (improvement in performance) to neutral effect (no change) to negative transfer
(worsening) (Webb, 1917; Wiltbank, 1919; Dennis et al., 1932). Further, transfer was reported for
different degrees of experience: rats performed fewer errors when learning a new maze even with partial
training of a different maze (Ho, 1928; Bunch and Lang, 1939) or after training in multiple mazes
(Dashiell, 1920; Rashid et al., 2017). Further, solving new problems can also improve when rats had
dissimilar past experience, such as prior operant learning improving new spatial learning (Adams, 2003)
or positive transfer between mazes with different rules (Gallup and Diamond, 1960). Thus, previous
experience has complex effects on future problem-solving. Although these experiments identified
differences in performance in new tasks depending on the experience of the animals, it is unclear how
aspects of learning behavior were affected. Specifically, does the absence of transfer, as defined by a lack
of performance changes, indicate previous experience had no effect on future learning?

Performance metrics across time, such as speed or accuracy, are used in these studies to
determine the impact of past experience on solving new problems. Reductions in the numbers of errors or
in the time or trials taken to solve the task were taken as evidence of the transfer of previous knowledge to
the solving of novel tasks. In experiments involving learning multiple tasks over time, improvements in
performance metrics across consecutive learning sessions were not always observed (Wiltbank, 1919;
Dennis et al., 1932). On one hand, this could indicate a lack of consistent transfer or generalization
between some tasks. Alternatively, the metrics used to quantify performance may have failed to capture
aspects of behavior that did differ. This is especially relevant to exploration in structured environments
since humans and non-human animals show intricate exploratory patterns (Uster et al., 1976; Alonso et
al., 2021; Rosenberg et al., 2021; Brunec et al., 2023). Thus, examining detailed aspects of behavioral
choices in addition to traditional performance metrics can provide important insight on how learning
occurs.

Here, we investigate how past experience affects the way animals learn a new task that could not
be solved by directly applying previously learned rules. We compare spatial learning in a novel task

between groups of rats that previously learned either one or two spatial tasks that differed in topology and


https://doi.org/10.1101/2023.12.26.573368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.26.573368; this version posted December 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

available under aCC-BY-NC-ND 4.0 International license.

rule. We did not find experience-dependent differences in performance based on reward rate over time.
However, we reasoned that differences could lie in strategic choices during exploration that may not be
reflected in gross performance measures. To search for additional experience-dependent influences on
learning, we quantified patterns of spatial decisions during exploration. Surprisingly, we found
experience-dependent differences in these spatial exploration patterns only during initial learning. These
differences disappeared after rats discovered the rule and their behavior converged in the new spatial task.
Our results show experience alters the starting state of animals, affecting how they discover rules for

unfamiliar problems, and this can occur without affecting learning performance.

Results

To understand how learning a novel task depends on previous experience, we designed a two-
phase spatial learning experiment. The first phase of the experiment is the differential experience phase,
where rats were assigned to “diverse” or “uniform” experience conditions (Fig. 1A). In the diverse
experience groups (n=9), rats were trained on two mazes each day, the H maze (H) or the double T maze
(2T), counterbalanced for session order (n=5 and n=4). During training, the rat could explore all arms of
the mazes, but the task rule required rats to visit two specified arm ends in alternation to receive reward.
Uniform group rats (n=10) were trained on only the H or 2T maze, twice per day (Fig. 1A) (n=5 for each
maze). To create distinct spatial navigation experiences that took similar physical effort, the H and 2T
mazes differed in geometry but shared the same topology. The mazes each featured two intersections, and
the rewarded trajectories had the same path lengths. After training, all animals achieved similar levels of
performance in their Phase 1 tasks (Fig. 1C). The second phase of the experiment is the common
experience phase, where all animals were given the same new spatial task: a Plus maze with an alternation
rule (Fig. 1B) for two sessions per day over 5 days. The new task differed from the H and 2T tasks in
topology, geometry, and reward rule, and thus could not be solved by applying spatial navigation rules

from phase 1.
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104 We asked whether performance on the Plus maze in experiment phase 2 differed between the
105  diverse or uniform experience groups. Based on findings that diverse experiences can benefit cognitive
106  performance (Petrosini et al., 2009), we first predicted that the diverse and uniform groups may differ in
107  performance metrics. Alternatively, given that the maze structure and task rules are sufficiently different
108  Dbetween phases 1 and 2 that neither group has any advantages from experience, both groups may show
109  similar performance. We analyzed the reward rate across sessions on the Plus maze and did not find

110  statistically significant differences between experience or task groups (pairwise Wilcoxon rank-sum tests
111  with Benjamini/Hochberg false discovery rate correction: p>0.44 for experience or p>0.83 for task across
112 sessions) (Fig. 1D).

113 While reward rate did not differ, this metric only quantifies whether the animal’s behavior

114  matches to experimenter-imposed rules and fails to describe the choices made by rats as they learn. Since
115  the tasks required the animals to sequentially visit locations, we hypothesized that the patterns of choices
116  of location visits could provide further insight into the learning process. This may be especially relevant
117  during early learning, when the animals are trying to discover the task rule. We reasoned that the

118  sequence of transitions between consecutive locations may contain patterns at multiple orders (Fig. 2A-
119  B). We defined first-order behavior as the sequence of locations visits. For example, visiting locations 1
120  and then 2 would comprise a first-order sequence of length 2. Second-order behavior is the egocentric
121  action required to travel between locations: left turn (L), straight (S), or right turn (R). One unit of third-
122 order behavior is created by a pair of two actions, such as a left turn followed by another left turn. We
123 further classified these action pairs into two categories: “similar” corresponds to two turns in a row (for
124  example, R->L) or two straight actions (S->S), and a “dissimilar” action pair, or switch trial, contains a
125  turn and a straight action (for example, R->S or S->L). These categorizations were useful since all mazes
126  in both phases of the experiment had intersections allowing for turns and/or going straight. In contrast,
127  spatial features, such as rewarded locations, were not directly comparable since tasks across experiment

128  differed in topology, geometry, and task rule.
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129 Inspection of the raw results shows animals in the diverse group made switch trials more

130  frequently (Fig. 2C-D, Supp. Fig. 1, switch trials indicated with triangles). The proportion of switch trials
131  was greater in the diverse experience group than in the uniform experience group (Fig. 2E), despite both
132 groups having similar reward rates (Fig. 2F). Interestingly, the difference was significant only for the first
133  session (Fig. 2E). This indicates that the diverse experience group were potentially more varied in their
134  choices, switching between turning and not turning at the intersection on consecutive trials, during early
135  learning. These differences disappeared once the animals learned the new rule in later sessions.

136 The difference in switch trials raised the possibility that the two experience groups made different
137  sequences of choices during phase 2 training. To gain further insight on each animal’s choice sequence,
138  we calculated the probability of each choice sequences for all possible 3-trial sequences. Given sequential
139  choice probability arrays are difficult to visually inspect, we found the dendrogram provides an intuitive
140  visualization (Fig. 3A, Supp. Fig. 2-3), where each node represents a choice, and the connected nodes are
141  subsequent choices (Fig. 3B). The thickness of the edge connecting two nodes indicates the probability of
142  that choice, where thicker lines indicate higher probability (see Methods).

143 The sequential choice probability dendrograms for the first 30 trials, corresponding to early

144  learning in the Plus maze, revealed distinct patterns within and between groups with uniform or diverse
145  experience in phase 1 (Fig. 3C). To visualize and quantify differences between patterns across the two
146  experience groups, we applied Principal Component Analysis (PCA) on the sequential choice probability
147  array (Fig. 3D). The scatter plots of the first three principal components showed a separation between the
148  uniform and diverse experience groups. We confirmed this separation by calculating the cosine similarity
149  between the principal components of rats. We found that the distance between the uniform experience rats
150 and diverse experience rats was greater than the distance between rats within each experience group,

151  uniform or diverse (Fig. 3E). This is consistent with the idea that uniform and diverse experience groups
152  differ in choice sequence patterns, and we have shown this difference both by the distinct branch

153  structures in the probability dendrograms and by the cosine similarities of the principal components.

154  Dendrograms. We next asked if these differences were experience-dependent or reflected preexisting
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155  biases in behavior choices (Kastner et al., 2022). We ruled out the latter explanation since the choice

156  patterns for the first 30 trials on the H or 2T mazes in phase 1 did not differ between the groups (Fig. 3C).
157  Using the same set of analyses, we confirmed all rats had similar behavior choices towards the end of
158  their training when the rule had been learned (Fig. 4, Supp. Fig. 3), consistent with the rats performing the
159  task rule to achieve similar reward rates (Fig. 1C-D).

160 We next asked what differences in the underlying processes could give rise to these distinct

161  Dbehavior patterns. Our goal is to characterize the structure of the rats’ choice sequences from the early
162  learning period in the Plus maze. We therefore fitted statistical models with a small set of interpretable
163  parameters that relate choice history with future choices using the observed choice sequences for each rat.
164  We then determined whether models from each experience group had different estimated parameter

165  values. Between group differences in model parameters can reveal differences in the statistical processes
166  that generated the sequences. We chose the distance-dependent Chinese Restaurant Process (Blei and
167  Frazier, 2011), which assumes each choice in a sequence is sampled from a distribution of possible

168  choices that is dependent on past choices on two different timescales (Fig. SA). The model contains a
169 time constant (1) that determines how influential all past choices are on the next choice, as modeled by an
170  exponential decay. Given that we have found differences in the likelihood of switching between different
171  choices, we added a parameter that determines the relative influence of the previous choice on the next
172 choice (C). The model also included a parameter that determined how closely the probability of choices is
173  Dbiased towards a “base” distribution (a). The base distribution was parameterized to account for simple
174  behavioral strategies based on varying likelihood of repetition () without taking more specific trial

175  history into account. Our goal was to compare features of behavioral patterns observed within each

176  experience group during the early learning period by fitting the model to each animal’s behavior during
177  the first 50 trials and comparing the fitted parameters across groups. We performed simulations to show
178  differences in parameters can be recovered from the models (Supp. Fig. 4).

179 The model fits showed that the ability of previous choices to predict future choices depended on

180  the experience group. The uniform and diverse groups differed in the estimated time constant (t), where
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181  the diverse group had a significantly longer time constant, indicating that past choices were more

182  predictive of future choices in the diverse group (Fig. 5B). The two groups also differed in how the

183  immediate past affected the upcoming choice (C): the previous choice had a stronger influence for the
184  diverse group of compared with the uniform group. This supports our previous observation that the

185  groups differed in how often they switched between turning and not turning (Fig. 2E). The bias towards
186  selecting the next trial from the base distribution (a) was not significantly different between the two

187  groups. The base distribution was trending to having less repetition (B) in the diverse compared with the
188  uniform group. We confirmed the behavior of both groups converged in the last 50 trials with the model
189 fits producing parameter values (1, C and a). We found a significant difference in the repetition parameter
190  (B) but the magnitude of the difference is small. This parameter is less influential when the choices are not
191  strongly biased towards the base distribution (a), which is observed for both groups.

192 Given both statistical and modelling approaches identified differences in choice patterns, we next
193  identified the specific difference in how they switched between choices. Since the diverse experience

194  group had a higher proportion of switch trials at the intersection compared with the uniform experience
195  group (Fig. 2E), we asked whether this can be explained by a higher preference to choose actions not

196  taken previously, an example of which could be turning after going straight on the previous trial or vice
197  versa. Surprisingly, we found the two experience groups differed in the likelihood of switching actions
198  after turning but not after going straight (Fig. 6A). The diverse experience group was more likely to go
199  straight after turning compared with the uniform experience group. Both groups had similar likelihood to
200 turn after going straight. This difference was specific to early exploration in the Plus maze. All groups
201  had similar transition probabilities for the H and 2T mazes and comparable switching likelihoods in the
202  last 50 trials of all mazes, during which behavior across both groups converged (Fig. 6B). We next

203  confirmed this difference was experience-dependent rather than a preexisting difference between the

204  groups. For the animal’s first exposure to the 2T or H mazes, the switching likelihood was similar

205  Dbetween groups (Fig. 6A). Further, we found the switching likelihoods in the first or last sessions of the H

206  or 2T mazes was not correlated with those in the Plus maze (Fig. 6C-F). These results indicate different
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207  experiences can lead to different specific exploratory choices during searching for solutions to a new

208  problem.

209

210  Discussion

211 There are multiple mechanisms through which past experience influences future behavior.

212  Memory is a vessel through which relevant knowledge from one experience can be applied to another,
213  and we can quantify the impact of memory through tests of recall. Generalization involves integrating the
214  memories of multiple experiences to form a broader representation of the concept shared between those
215  experiences, and it is quantified by measuring an individual’s approach to a novel situation that shares
216  attributes, but is not identical, to previous experiences. In the case of multiple problems that share rules or
217  layouts, memory and generalization can allow for the application of previously learned rules, allowing the
218  new problem to be solved faster (Webb, 1917). Our findings reveal that animals’ experience histories can
219  influence their exploratory behavior in a new task. However, the tasks in our experiment did not share
220  spatial topology or navigation rules, removing the utility of directly applying learned spatial layouts or
221  tasks rules from phase 1 to the phase 2. We observed differences in navigation choices during exploration,
222  not performance enhancement. Given this, what could explain the differences in choices made during
223  carly exploration in phase 2?

224 Despite the topological and rule differences between the maze tasks in phases 1 and 2, all mazes
225  have junctions where the rat must decide whether to turn. We hypothesize that the junctions represent a
226  feature shared between mazes, allowing the rats to form abstractions that carry to future tasks. The H, 2T,
227  and Plus mazes all require the rats to make sequences of spatial trajectory choices at junctions, and a

228  sequential turn-based strategy could emerge as they explore and learn. The previous adoption of such a
229  strategy could influence how animals initially explore a new environment that shares the concept of

230 trajectory choices at junctions, even when past spatial geometry and topology are not informative. The
231  turn-based strategy reinforced in the H maze is repeated turns, while turning and going straight is most

232  advantageous in the 2T maze. In phase 2, direct application of these exact sequences of previously learned
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233 turns are not possible given the topology of the new maze. However, we hypothesize that previously

234 learned strategies can still bias the likelihood of making certain sequential decisions at junctions in future
235  tasks. This may be particularly applicable to exploration during early learning, before the cognitive map
236  of the new maze has developed. We observed this initial impact through the diverse experience rats’

237  higher switch trial frequency in the first session.

238 We hypothesize that experience changed the rats’ approach to exploration throughout the

239  experiment as they were introduced to and learned different tasks. When rats were first introduced to the
240  H and 2T mazes in phase 1, there was variability in choice patterns, which is expected given that rats
241  show preexisting biases in spatial exploration (Kastner et al., 2022). At the end of phase 1, rewarded

242  choice patterns for each task had been reinforced for each animal, and its behavior converged. Their

243 experience in phase 1 determined how they approached exploring a new maze at the start of phase 2.
244  Then, as they learned the new task, their behavior was constrained by the new phase 2 rule, and the

245  behavior across groups converged again.

246 An important direction for future research is to understand the experience-dependent neural

247  processes that shape learning when neither the application nor the generalization of memory is beneficial
248  or possible. Nonetheless, the animals showed experience-dependent differences in behavior in a novel
249  task. Recent findings show that neural representations of decision-making tasks are dependent on

250  experience (Latimer and Freedman, 2023). Animals with different training histories have distinct cortical
251  task dynamics even when performing the same task with similar behavior. Frontal cortical and

252  hippocampal networks are implicated in representing task rules and modulating generalization (Winocur
253  and Moscovitch, 1990; Freedman, 2001; Wallis et al., 2001; Rich and Shapiro, 2009; Tse et al., 2011;
254  Wang et al., 2012; Xu and Siidhof, 2013; Morrissey et al., 2017; Yu et al., 2018; Kaefer et al., 2020;

255  Samborska et al., 2022). These networks could modulate strategic exploratory decisions when learning to
256  solve new problems. When previously learned rules are not applicable, these networks could discard the
257  application of existing rules in favor of more flexible choice policies (Karlsson et al., 2012; Tervo et al.,

258  2014). Experience-dependent changes to neural networks enable the brain to retain information from the


https://doi.org/10.1101/2023.12.26.573368
http://creativecommons.org/licenses/by-nc-nd/4.0/

259

260

261

262

263

264

265

266

267

268

269

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.26.573368; this version posted December 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

past. At any moment, the state of the network is a product of the individual’s unique experience history.
We hypothesize that the experience-dependent configuration of the network provides priors for generating
new behaviors with a range unique to each individual.

In our experiment, different experience histories led to distinct exploratory patterns in a novel
task. Our results suggest that the legacy of past experiences extends beyond the recall of specific
memories or the direct application of previously learned concepts. Instead, unique experience histories
create unique starting points for how individuals approach new situations. Ours findings challenge us to
consider the mechanisms through which experience shapes the differences between each individual and to

look beyond memory and generalization for the vessels of transfer between experiences.
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271

272  Figure 1. Rats with diverse or uniform experience had similar performance in a novel task.
273  A. Experiment schematic for the differential experience phase. In this phase, all rats were trained for two

274 sessions per day for up to 10 days. Uniform group rats (H and 2T) learned a single task, either the H
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275 maze or the 2T maze, and they trained on the same maze during each training session, twice per day.
276 Diverse group (H/2T and 2T/H) rats learned both alternation tasks, H and 2T, counterbalanced for the
277 order of maze sessions. Both the H and 2T mazes have four arm ends. Two of the ends are reward
278 locations (green circles). Visits to the other maze ends (white circles) are not rewarded. The rewarded
279 visit sequence is shown.

280 B. Experiment schematic for the common experience phase. All groups of rats, diverse and uniform,
281 learned to navigate the same maze task for two sessions per day. This was a Plus maze. The rewarded
282 visit sequence is shown.

283  C. Reward rate on the final session of differential experience phase. A two-way ANOVA did not show a
284 significant effect on final performance from experience (p=0.13) or task (p=0.79), or their interaction
285 (F1,1=0.70, p=0.41).

286  D. Proportion of trials rewarded per session on the Plus maze grouped by experience and task in phase 1.

287 Pairwise Wilcoxon rank-sum test with Benjamini/Hochberg false discovery rate correction did not
288 show a significant difference between experience (p>0.44 for all pairs) or task (p>0.83 for all pairs)
289 across sessions.

290
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293  Figure 2. Behavior choice pattern classification for the Plus maze.
294  A. Schematic of 1%, 2" and 3" order description of behavior choices, which are individual location visits,

295 egocentric movements at junctions, and pairs of turns, respectively.
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296 B. Example behavior choice sequence and corresponding higher order descriptions.

297  C. Example behavior choices for the first 30 trials in the Plus maze for 2 animals in the uniform group. 1%

298 order transitions shown by the circles that indicate the maze location visited by the rat. Red circles
299 indicate the rewarded visits. 2™ order transitions convert the location visit pairs into left turns (L), right
300 turns (R) and straight (S). L and R are marked blue and S is in orange. Triangles correspond to switch
301 trials, or 3™ order transitions that involve changes between L/R and S.

302 D. Example behavior choices for the first 30 trials in the Plus maze for 2 animals in the diverse group.
303 E. Proportion of switch trials (mean and 95% confidence interval of the mean) for each session. These are
304 the frequencies of the trial pairs marked by triangles in C and D. Wilcoxon rank-sum test with
305 Benjamin/Hochberg false discovery rate correction, p=0.048 for the first session only.

306 F. Reward rate for each session (mean and 95% confidence interval of the mean) for each session. Data

307 from Fig 1D. is plotted by experience group. Pairwise Wilcoxon rank-sum test with

308 Benjamini/Hochberg false discovery rate correction did not show a significant difference between
309 experience (p>0.44 for all pairs).

310

311
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313  Figure 3. Visualizing sequential behavior choice probabilities.
314  A. Example dendrogram of conditional probabilities for 3-trial choice sequences. Edges represent the
315 conditional probability and nodes represent the choices.

316 B. Example showing the probabilities of sequences with one, two or three trials.
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C. Choice probability dendrograms for the first 30 trials of the Plus, H and 2T mazes. Three example
animals from the uniform (left column) and diverse (right column) are shown.

D. Scatter of the first three principal components of the choice probabilities between uniform (black) and
diverse (red) groups for the first 30 trials on each maze. To improve visualization of overlapping
points, a small jitter (Gaussian noise with standard deviation = 0.003) was added to the values.

E. Cosine similarity across all principal components of choice probabilities for between and within
groups for the first 30 trials. Wilcoxon rank sum test for Plus (p=0.0022), H (p=0.33) and 2T

(p=0.40).
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328  Figure 4. Uniform and diverse groups both converge on the same pattern after training.

329  A. Choice probability dendrograms for the last 30 trials of the Plus, H and 2T mazes. Three animals from
330 the uniform (left column) and diverse (right column) are shown.

331  B. Scatter of the first 3 principal components of the choice probabilities between uniform (black) and
332 diverse (red) groups for the last 30 trials on each maze. To improve visualization of overlapping

333 points, a small jitter (Gaussian noise with standard deviation = 0.003) was added to the values.

334 C. Cosine similarity across all principal components of choice probabilities for between and within

335 groups for the last 30 trials. Wilcoxon rank sum tests for Plus (p=0.60), H (p=0.28) and 2T (p=0.62)

336 mazes.
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338  Figure 5. Models of uniform and diverse groups show distinct parameters that control how past
339 trials influence future trials.
340 A. Schematic of a modified distance dependent Chinese Restaurant process model. T modulates the

341 distance dependent influence of all previous trials on the next trial. C modulates the dependence of
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342 the next trial on the immediate previous trial. a determines likelihood the next trial is drawn from a
343 base distribution instead of trial history. § determines the likelihood the base distribution is governed
344 by a uniform distribution or a distribution that is biased to repeat or avoid previous choices.

345  B. Scatter and boxplots of model parameters from model fit to each animal’s first 50 trials on the Plus
346 maze. Wilcoxon rank-sum test with Benjamini/Hochberg false discovery rate correction for 1
347 (p=0.023), C (p=0.023), a (p=0.87) and B (p=0.055).

348  C. Scatter and boxplots of model parameters from model fit to each animal’s last 50 trials on the Plus

349 maze. Wilcoxon rank-sum test with Benjamini/Hochberg false discovery rate correction for t
350 (p=0.62), C (p=0.62), a (p=0.62) and B (p=0.022).
351

352
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354  Figure 6. Uniform and diverse groups show distinct likelihood of action switching.

355  A. Probability for turn-straight and straight-turn transitions for the first session on the Plus, H and 2T
356 mazes. Wilcoxon rank-sum p values with Benjamini/Hochberg false discovery rate correction are
357 shown.

358  B. Probability for turn-straight and straight-turn transitions for the last session on the Plus, H and 2T
359 mazes. Wilcoxon rank-sum p values with Benjamini/Hochberg false discovery rate correction are
360 shown.

361  C. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the first

362 sessions on 2T maze and the first session on the Plus maze.
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363  D. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the first
364 sessions on H maze and the first session on the Plus maze.

365 E. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the last
366 sessions on 2T maze and the first session on the Plus maze.

367 F. Scatter of the proportion of turn-straight and straight-turn transitions across all trials for the last

368 sessions on H maze and the first session on the Plus maze.

369 All p values for C-F are corrected values using the Benjamini/Hochberg false discovery rate
370 correction.

371

372
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377  Supplementary Figure 1.

378  Behavior choices for the first 30 trials of the Plus maze for all animals, shown in the same format as Fig. 2
379  C-D. 1% order transitions shown by the circles that indicate the maze location visited by the rat. Red circles
380 indicate the rewarded visits. 2™ order transitions convert the location visit pairs into left turns (L), right
381  tumns (R) and straight (S). L and R are marked blue and S is in orange. Triangles correspond to switch trials,

382  or 3" order transitions that involve changes between L/R and S.

383
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385  Supplementary Figure 2.

386  Choice probability dendrograms for the first 30 trials of the Plus, H and 2T mazes for all animals.
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389  Choice probability dendrograms for the last 30 trials of the Plus, H and 2T mazes for all animals.
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388  Supplementary Figure 3.
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391  Supplementary Figure 4.

392  Simulations confirm that the model parameters can be recovered from sequences of actions. We simulated
393  from the distance-dependent Chinese restaurant process using two different sets of parameters

394  (simulations 1 and 2, dashed lines indicate the true parameters). For each set of parameters, we generated
395 50 independent simulations. The parameters were then fit with an increasing number of trials using the
396  posterior median as the estimate. The points give the mean estimates and the error bars show a 90%

397  interval over simulations. The estimated parameters remained close to the prior distribution with few
398 trials, and tended towards the true parameters with increasing amounts of data. We found that the context
399  dependency parameter (C) required the fewest number of trials to separate across these two

400  simulations. Given low values of the chosen base distribution bias (a), which meant the base distribution
401  was unlikely to be chosen in the generated sequences compared with the history-dependent distributions,
402  we did not expect the repetition bias parameter () to be effectively recovered.
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412  Methods

413  Pre training

414 A total of 19 male Long-Evans rats (14~16 weeks old, 475~525g) were used in this study. All procedures
415  were performed under approval by the Institute Animal Care and Use Committee at the University of
416  Chicago, according to the guidelines of the Association for Assessment and Accreditation of Laboratory.
417  Animals were kept in a temperature (21°C) and humidity (50%) controlled colony room on a 12/12 h
418  light/dark cycle (lights were on from 8:00 to 20:00). Experiments were performed during the light period.
419  Animals were handled over 4 weeks for habituation to human interaction. Animals were familiarized to
420  foraging for evaporated milk (Carnation) with 5% added sucrose in an elevated black open field box (H:
421  3lcm, W: 6lcm, L: 61cm), 10 minutes per day for 3 days. Reward was randomly dropped inside the open
422  box to encourage foraging. Animals were then food restricted to 90% of their baseline weight for 3 days
423 and trained to run back and forth on an elevated linear track (H: 76cm, W: 8cm, L: 60cm) to consume
424  reward from the ends of the track. Animals were trained for 10 minutes per day until a performance

425  criterion of 20 rewards per session (for 4 to 8 days).

426

427  Behavior training

428  Animals were food restricted to maintain above 85% of their baseline weight. Behavior training was

429  conducted on custom built mazes with interconnecting acrylic track sections (8cm in width) elevated

430  76cm from the floor. Reward was delivered by a syringe pump (100pl at 20ml/min, NE-500, New Era
431  Pump Systems Inc, New York, USA). Behavior data was recorded using the SpikeGadgets data

432  acquisition system (SpikeGadgets LLC, California, USA). Our experiment was split into two phases. Rats
433  first were exposed to a differential experience phase and then the common experience phase. The

434  common experience phase started 2 days after the end of the differential experience phase.

435

436  Differential experience phase
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437  Animals were randomly assigned to the uniform (n=10) and diverse group (n=9). A H-maze and a double
438  T-maze (2T) were used for the differential experience phase training (Figure 1A). Animals obtained

439  reward from the ends of the maze only when visiting two of the four ends in alternation. Animals

440  performed two 10-minute training sessions separated by 3 hours, during which the rats were returned to
441  their cages. Training continued until performance exceeded 80% or up to 10 days. The diverse group

442  trained on two mazes per day, while the uniform group trained on one maze twice per day. For the diverse
443  group, we controlled in the order the rats learned the tasks across each day by assigning 5 rats to 2T maze
444  first then H maze. The remaining 4 rats learned the task in reverse order.

445

446  Common experience phase

447  After the differential experience phase, all animals (n=19) were trained on a Plus maze with a different
448  rule (Fig. 1B). Both groups were trained to visit three of the four wells in a specific sequence to receive
449  reward at those three wells (Fig. 1B). The sequence involves alternating visits between well 1 and wells 2
450  and 3. Animals underwent two 10-minute training sessions per day, for 5 days. The rats were returned to
451  their cages for 3 hours between the two sessions.

452

453  Data processing and analysis

454  We registered reward well visits based on sensor trigger events and reward delivery based on pump

455  trigger events. All analyses were performed in Python using Numpy, Scipy and scikit-learn.

456

457  Behavior pattern classification

458  We started with a sequence of reward location visits, which represent first-order patterns. We converted
459  this sequence into second-order behavior patterns given each pair of transitions requires one to two

460 movement choices: left turn (L), straight (S), or right turn (R). We then classified third-order patterns as

461 the transition between 2™ order actions, such as a left turn followed by another left turn. We can further
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462  classify these action pairs into similar, corresponding to turn followed by turn or straight followed by
463  straight, versus dissimilar, or a switch trial, corresponding to turn followed by straight or vice versa.

464

465  Choice sequence probabilities

466  We calculated the probability of observing a specific choice sequence for all possible 3-trial sequences,
467 for example (left, left left, left left left, ...). Data for all rats is in the form of a m xn matrix with m being
468  each animal and # being all the possible sequences. To visualize the probability matrix as a dendrogram,
469  we used the Python networkx package (https://networkx.org/). To visualize the similarity between the
470  probability matrices for the uniform and diverse groups, we then used Principal Component Analysis to
471  reduce the dimensionality of this matrix. To quantify similarity, we calculated the pairwise cosine

472  similarity for a pair of animals across all principal components. This was done for within (diverse to
473  diverse, uniform to uniform) and across (diverse to uniform) group comparisons.

474

475  Modified distance-dependent Chinese restaurant process model

476  We aimed to summarize statistically how the actions of each rat in the Plus maze depended on the recent
477  trials and how the distribution of choices changed over the course of learning. Given the sequence of trials
478  performed by an animal, we modeled the action on a trial as a probability distribution that depended on
479  the past trial and the number of trials performed. The dependency of the number of trials allowed the
480  model to account for the changes in the animals’ behavior during learning. This contrasts to a typical
481  Markov model, which assumes behavior only depends on the past trials but not the history of trials

482  performed.

483

484  To accomplish this, we modeled the sequence of actions (left, right, or straight) performed by each rat
485  using a sequential distance-dependent Chinese restaurant process model (ddCRP) (Blei and Frazier,

486  2011). We modified the model by adding a parameter that specifically controls the contribution of the last

487  trial to the upcoming choice. The ddCRP defines a generative stochastic process in which the probability
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488  of the action on the ith trial depends on the outcomes of the previous trials. The probability of observing

489  action A on trial i (y;) is given as:

i-1
490 PO = Ay 8) ® @G + ) fQ))
j=1 i,ijA
491  Where the distance function between trials i and j is
. 2

LN |l _]l ma(i,j)

492 f@,j) = exp B—— (1= Cy)matJ
d=1

493  Where my(i,j) = 0 if trials i and j share the same context of depth d: that is, the sequence of d actions
494  immediately preceding trials i and j are the same. Otherwise, we set m;(Z,j) = 1. The timescale

495  parameter of the distance function, T > 0, determines how predictive actions from the past are of the

496  current trial. Low values of 7 indicate that the actions at the beginning of the session are not informative
497  of the animals’ behavior at the end of the session. This timescale gives the process the “distance

498  dependent” property in comparison to the standard Chinese restaurant process, which weighs all previous
499  observations with weight 1. The context parameters, C; € [0,1], determine how much choice depends on
500  specific actions permed on the d previous trials (the context). If C; = 1, then context is weighted heavily
501 by the model: the actions performed in one context do not inform the actions in a different context. If
502 (C; = 0, context is not predictive of the actions.

503

504  The remaining two parameters define the base measure, G;: the prior probability over the actions.

505 Gi(A)xpBify; 1 =4 andG;(A) x 1ify; 1 #A

506  The concentration parameter, @ > 0, determines bias for selecting the choice on each trial from the base
507  distribution. The bias parameter, § > 0, is included to alter the base distribution. The value of this

508  parameter account for how a fixed switch-stay bias could account for the animals’ sequence of actions.
509  Actions are drawn from the uniform distribution a priori if § = 1. For § < 1, actions are less likely to be

510  repeated, and for § > 1, choices are more likely to be repeated.
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511

512 Our approach extends the ddCRP model for sequences to include recent context within the distance

513  function. This approach is inspired by models that use hierarchical Dirichlet priors to regularize

514  estimation of Markov models (Wood, 2009). However, our method takes advantage of the fact that the
515  distance function already weighs the previous observations differently. Thus, we could incorporate

516  dependencies on recent actions without a more complex hierarchical model in contrast to a recently

517  proposed statistical model of behavioral sequences (Eltet6 et al., 2022).

518

519  We fit the model Markov chain Monte Carlo (MCMC) methods in a Bayesian framework implemented
520  using the Stan modeling platform (STAN Development Team, 2023). Convergence of the MCMC

521  procedure was assessed using the R metric (Vehtari, 2021) with four independent chains of 1000 samples
522  each. We used the posterior median as a point estimate for individual parameters. The prior distributions

523  for the parameters were independent for each parameter:

524

525 T ~ Gamma(2,20)
526 Cq4 ~ Uniform(0,1)
527 a ~ Gamma(2,2)
528 B ~ Gamma(20,1/20)
529

530  where the gamma distributions are parameterized as shape and scale.
531
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