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Abstract
“Pavlovian” or “motivational” biases are the phenomenon that the valence of prospective outcomes
modulates action invigoration: Reward prospect invigorates action, while punishment prospect
suppresses it. While effects of the valence of prospective outcomes are well established, it is unclear
how the magnitude of outcomes modulates these biases. In this pre-registered study (N = 55), we
manipulated stake magnitude (high vs. low) in an orthogonalized Motivational Go/ NoGo Task. We
tested whether higher stakes (a) strengthen biases or (b) elicit cognitive control recruitment, enhancing
the suppression of biases in motivationally incongruent conditions. Confirmatory tests yielded that high
stakes slowed down responses independently of the Pavlovian biases, especially in motivationally
incongruent conditions, without affecting response selection. Reinforcement-learning drift-diffusion
models (RL-DDMs) fit to the data suggested that this effect was best captured by stakes prolonging the
non-decision time, but not affecting the response threshold as in typical speed-accuracy tradeoffs. In
sum, these results suggest that high stakes result in a slowing-down of the decision process without
affecting the expression of Pavlovian biases in behavior. We speculate that this slowing under high
stakes might reflect heightened cognitive control, which is however ineffectively used, or reflect
positive conditioned suppression, i.e., the suppression of locomotion by high-value immanent rewards,
as phenomenon previously observed in rodents that might also exist in humans. Pavlovian biases and

slowing under high stakes seem to arise in parallel to each other.

Key words: Pavlovian biases, motivation, cognitive control, choking, incentive
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Introduction

The behavior of humans and other animals reflects the interplay of multiple, partly independent
decision-making systems (Collins & Cockburn, 2020; Daw, Niv, & Dayan, 2005; Dickinson & Balleine,
1994; Metcalfe & Mischel, 1999; Shiffrin & Schneider, 1977; Strack & Deutsch, 2004). One such
system is the Pavlovian system which rigidly triggers response invigoration to the prospect of reward
and response inhibition to the threat of punishment (Boureau & Dayan, 2011; Dayan, Niv, Seymour, &
Daw, 2006; O’Doherty, Cockburn, & Pauli, 2017). Its actions are visible in the form or “Pavlovian” or
“motivational” biases, which have been proposed to underlie many seemingly maladaptive behaviors

in humans and other animals (Dayan et al., 2006).

Pavlovian mechanisms might explain seemingly “irrational” behaviors in animals, including
the facilitation of instrumental approach behavior by unrelated, but reward-predictive cues (Estes, 1943,
1948; LoLordo, McMillan, & Riley, 1974; Lovibond, 1983; Rescorla & Solomon, 1967; Schwartz,
1976), or the development of “sign-tracking” behavior, i.e., reward-predictive cues distracting an
animal from a focal task (Hearst & Jenkins, 1974; Jenkins & Moore, 1973). Recently, sign-tracking has
been suggested to constitute a phenomenon shared across species, including humans (Colaizzi et al.,
2020; Garofalo & di Pellegrino, 2015), which might contribute to the etiology and maintenance of drug
abuse (Flagel & Robinson, 2017; Flagel, Watson, Robinson, & Akil, 2007). A better understanding of
when Pavlovian biases occur and how they interact with other systems regulating behavior promises
insights into the development and maintenance of psychiatry conditions such as alcohol or drug abuse

(Chen, Garbusow, Sebold, Zech, et al., 2022; Schad et al., 2020).

There are several proposed accounts for the ecological rationality of Pavlovian biases, i.e.,
under which circumstances strong biases are adaptive. Pavlovian control is generally contrasted against
instrumental control, i.e. the ability to flexibly adapt behavior to different response-outcome
contingencies. There is agreement that Pavlovian control is both faster and cheaper, but at the same
time more rigid than instrumental control (Boureau & Dayan, 2011; Dayan et al., 2006). It might thus
be particularly adaptive in situations in which instrumental control yields no benefits beyond Pavlovian

control, e.g. in novel, unfamiliar, or uncontrollable environments (Dorfman & Gershman, 2019).
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77  Another idea is Pavlovian control acts as an “emergency action control system” in high-stakes situations
78 that are critical for survival (O’Doherty et al., 2017), such as when facing a lethal predator, in which it
79  overrides instrumental systems. Yet another idea is that Pavlovian and instrumental control do not
80  compete, but can act in synergy, with instrumental control recruiting Pavlovian control to achieve
81 responses that are faster and more robust to inference (Algermissen & den Ouden, 2023). Hence, besides

82  selecting an appropriate action, strong Pavlovian biases could provide advantages in speed or caution.

83 However, none of these accounts specifies how behavior is guided in the presence of rewards
84  and/or threats of different magnitudes. Several arguments suggest that these biases should be sensitive
85  to the magnitude of these prospective outcomes (or “stakes’). Agents frequently face situations in which
86  they have to select amongst multiple rewards of varying magnitude. It could be beneficial if Pavlovian
87  biases would automatically direct the agent towards the largest reward. Particularly, on its way to
88  attaining the largest reward, an agent might have to ignore smaller, more proximal rewards. Hence,
89  Pavlovian biases should not be triggered by any reward, but distinguish between smaller rewards on the
90  one hand, which might be arbitrated against other goals an agent pursues using deliberational processes,
91  and sufficiently large rewards on the other hand, which escape such an arbitration and instead elicit
92  unconditional approach behavior. Similar, the danger level of potential threats (or “threat magnitude”™)
93 needs to be considered: A human hunter who freezes upon the sight of a lion might have a competitive
94  advantage over someone who continues to forage. However, a hunter who freezes upon the sight of a
95  small spider might have a disadvantage compared to other foragers, demonstrating again that Pavlovian
96  biases can only be adaptive if they take the magnitude of rewards and threats into account and ignore

97  smaller outcomes in service of pursuing larger outcomes.

98 Evidence that the strength of Pavlovian biases varies with stake magnitude has been mixed so
99  far. A few studies using Pavlovian-to-Instrumental Transfer (PIT) tasks, in which task-irrelevant cues
100  associated with rewards/ punishments are presented in the background, have observed slight increases
101  in response rates and somewhat faster reaction times for higher rewards (Algermissen & den Ouden,
102 2023; Schad et al., 2020) as well as decreased response rates and slower reaction times for larger

103 punishments (Geurts, Huys, den Ouden, & Cools, 2013b, 2013a). However, many other studies have
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104 not observed such modulations (Chen, Garbusow, Sebold, Kuitunen-Paul, et al., 2022; Chen,
105 Schlagenhauf, et al., 2022; Garbusow et al., 2019, 2016; Sommer et al., 2020, 2017). Other tasks varying
106  the reward on offer, specifically versions of the monetary incentive delay task (Knutson, Adams, Fong,
107 & Hommer, 2001; Luo, Ainslie, Giragosian, & Monterosso, 2009) have observed faster reaction times
108  to larger rewards. A study using a virtual predation game found slower reaction times under larger
109 threats (Bach, 2015). However, in the latter studies, it remained unclear whether reward-induced
110  invigoration/ punishment-induced slowing followed from automatic, Pavlovian effects or rather
111 participants’ deliberate strategies, reflecting their beliefs about which behavior was conducive to reward
112 attainment/ punishment avoidance (Mahlberg et al., 2021; Westbrook, Frank, & Cools, 2021). To
113 disentangle automatic from strategic effects, there must be task conditions that incentivize the

114  suppression of Pavlovian biases—a unique feature of the Motivational Go/NoGo Task.

115 Pavlovian biases can most unequivocally be measured with the (orthogonalized) Motivational
116  Go/NoGo Task. In this task, individuals learn through trial-and-error to perform either a Go or NoGo
117  response to a number of different cues. For some cues ( “Win cues”), they can gain points for correct
118  performance (with no change in score for incorrect performance), while for other cues (“Avoid” cues),
119  they can lose points for incorrect performance (with no change in score for correct performance; Fig.
120 1A-C). In this task, humans typically show higher accuracy in performing active “Go” actions to Win
121 cues than passive “NoGo” actions to Win cues, while the reverse is true for Avoid cues, reflecting the
122 influence of Pavlovian biases (Guitart-Masip, Duzel, Dolan, & Dayan, 2014; Guitart-Masip et al., 2012;
123 Swart et al., 2017). Beyond differences in accuracy, humans also show faster responses to Win than
124 Avoid cues. In order to perform well on this task, participants need to detect when Pavlovian biases are
125  incongruent with the required response and inhibit their biases on these trials (Cavanagh, Eisenberg,
126 Guitart-Masip, Huys, & Frank, 2013; Swart et al., 2018). Unlike PIT tasks, every cue signaling whether
127 to perform a Go or NoGo response has a fixed valence, either providing the chance to win or to lose
128  points, typically eliciting stronger biases than tasks in which task-irrelevant cues are presented in the

129  background.
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130 While Pavlovian biases might lead to adaptive behavior in a number of situations, their
131  influence becomes most apparent in situations in which they conflict with optimal behavior: Sometimes,
132 agents have to wait to secure a reward, e.g., in situations akin to the Marshmallow Test (Mischel &
133 Ebbesen, 1970), or they have to take active steps to prevent or fight a threat, e.g., in exposure therapy
134 to treat arachnophobia. In such circumstances, agents have to suppress Pavlovian biases, a requirement
135  animals usually struggle with (Breland & Breland, 1961; Hershberger, 1986) and even humans only
136  imperfectly master (Cavanagh et al., 2013; Swart et al., 2018). The ability to suppress automatic,
137  unwanted action tendencies is usually regarded to require cognitive control (Cohen, 2017). For several
138 decades, cognitive control has been seen as a limited resource or ability that can fail, leading to action
139 slips and undesired behavior (Hofmann, Friese, & Strack, 2009). In contrast, more recent perspectives,
140 most notably the expected value of control theory (EVC) (Lieder, Shenhav, Musslick, & Griffiths, 2018;
141 Shenhav, Botvinick, & Cohen, 2013) have suggested that cognitive control is not inherently limited,
142 but follows from a cost-benefit trade-off that weighs the potential benefits of exerting additional control
143 against the costs of doing so. In line with this idea, a number of studies using conflict tasks, such as the
144 Stroop, Simon, or Flanker task, have shown that compatibility effects—taken to reflect cognitive control
145  limitations—become smaller when participants are offered financial incentives for recruiting control
146 (Boehler, Hopf, Stoppel, & Krebs, 2012; Chiew & Braver, 2014; Dixon & Christoff, 2012; Frober &
147 Dreisbach, 2016; Krebs, Boehler, & Woldorff, 2010). From this perspective, higher stakes should
148  motivate an agent to exert additional cognitive control in order to suppress biases in situations in which
149 those are maladaptive. In these situations, notably, the EVC theory makes predictions directly opposite
150  to the above-described case of high stakes strengthening biases: while ecological considerations suggest
151  that higher stakes should lead to stronger biases, EVC predicts more control and thus weaker biases. To
152 suppress biases, additional time might be required to recruit control processes, leading to higher
153 accuracy on behalf of longer RTs, i.e., a speed-accuracy tradeoff. In contrast, in situations in which

154  biases lead to adaptive behavior, EVC predicts no effect of stakes on behavior.

155 In this study, we directly tested these two opposing predictions against each other. We collected

156  data from 55 participants performing the motivational Go/NoGo Task in which the magnitude of stakes
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157  (high or low) was manipulated on a trial-by-trial basis. Following the first hypothesis that higher stakes
158  drive stronger Pavlovian biases, we predicted an interaction between congruency and the stakes
159  magnitude, with a stronger congruency effect (indicative of the Pavlovian bias) and higher performance
160  on congruent, but lower performance on incongruent trials under high compared to low stakes (Fig.
161 1D). In contrast, following the EVC hypothesis, we predicted an interaction effect in the opposite
162 direction, with a weaker congruency effect (reflecting cognitive control recruitment) and selectively

163 higher performance on incongruent trials (but slower RTs) under high compared to low stakes (Fig.

164  1E).
165
A Trial timeline B. Action x valence conditions C. Feedback validity
Go-to-Win Go-to-Avoid Win cues Avoid cues
Q +10 W +/0 | 0/- comect  80% +10/+50| 80% O
L. ? X response 20% 0 20% -10/-50
+ i
NoGo-to-Win |NoGo-to-Avoid
+ 5 0 o incorrect 80% 0 80%
E 3 ¥ = response 20% +10/+50| 20%
W0 (w0
e e
’l i L
ITI Cue + response’ Blank Outcome _ required action is
1300-1700 ms 1300 ms  500-900 ms 700 ms valence-incongruent
D. H, Bias strengthening E. H, Higher motivation for control
1.0 1.0
0.9 B9
Zos Stakes  §08
3 high g
f07 low £07
0.6 06
0.5 0.5
cong incong cong incong
Congruency Congruency

Figure 1. Task and behavioral predictions. A. Time course of each trial. Participant see one of four cues (“gems”) and have to decide whether
to respond to it with a button press (“Go”) or not (“NoGo”). On half of the trials, the cue is surrounded by a red circle, indicating that stakes
are five times as high and points gained/ lost in this trial will be multiplied with 5. After a variable interval, participants receive an outcome
(increase in points, no change, or decrease in points). B. Task conditions. Half of the cues are “Win” cues for which points can be gained (or
no change in the point score occurs), while the other half are “Avoid” cues for which points can be lost (or no change in the point score occurs).
Orthogonal to cue valence is the correct action required for each cue, which is either Go or NoGo. C. Feedback given cue valence and response
accuracy. For Win cues, correct responses mostly lead to an increase in points (+10 or +50, depending on whether the trial was high or low
stakes), but occasionally lead to no change in score (0). For Avoid cues, correct responses mostly lead to no change in score (0), while
occasionally lead to a loss of points (-10 or -50, depending on whether the trial was high or low stakes). For incorrect responses, probabilities
are reversed. D. Prediction from a “bias strengthening” hypothesis. High stakes strengthen biases, leading to higher accuracy for bias-congruent
cues (for which required action and valence match), but lower accuracy for bias-incongruent cues. E. Prediction from the “motivation for
control” hypothesis. High stakes motivate cognitive control, which inhibits biases when they are incongruent with the required action, leading
to higher accuracy selectively for bias-incongruent cues (for which the bias-triggered response has to be inhibited).
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166 Methods
167  Participants and Exclusion Criteria
168 Fifty-five human participants (Mage = 22.31, SDqge = 2.21, range 18-29; 42 women, 13 men; 47

169  right-handed, 8 left-handed) participated in an experiment of about 45 minutes. The study design,

170  hypotheses, and analysis plan were pre-registered on OSF under https://osf.io/ue397. Individuals who

171  were 18-30 years old, spoke and understood English, and did not suffer from colorblindness were
172 recruited via the SONA Radboud Research Participation System of Radboud University. Their data
173 were excluded from all analyses for two (pre-registered) reasons: (a) guessing the hypotheses of the
174  experiment on the first question of the debriefing, which was not the case for any participant; (b)
175  performance not significantly above chance (tested by using required action to predict performed action
176  with a logistic regression; only participants with p < .05 were included), which was the case for one
177  participant. All the results presented in the main text are thus based on a final sample of N = 54. See the
178  Supplementary Material SO3 for results based on all 55 participants, which led to identical conclusions.
179  This research was approved by the local ethics committee of the Faculty of Social Sciences at Radboud

180  University (proposal no. ECSW-2018-171) in accordance with the Declaration of Helsinki.

181 The sample size was not based on a power analysis, but on lab availability for this project (three
182 weeks). This study was conducted as part of final year thesis projects, which received special lab access
183  in this period. The final sample size of N = 54 was larger than previous studies investigating Pavlovian
184 biases with the same task (Algermissen, Swart, Scheeringa, Cools, & den Ouden, 2022; Swart et al.,
185  2018) and more than twice as large as comparable studies investigating the effect of incentives on
186  cognitive control recruitment (Chiew & Braver, 2016; Krebs et al., 2010). A post-hoc sensitivity power
187  analysis yielded that, given 54 participants providing 320 trials, thus 17,280 trials in total, assuming an
188 intra-cluster coefficient of 0.043 for responses and 0.094 for RTs (estimated from the data), the effective
189  sample size was n = 5,281 for responses and n = 2,877 for RTs, which allowed us to detect effects of 3
190 > .039 (standardized regression coefficient) for responses and > .052 for RTs with 80% power (Aarts,

191 Verhage, Veenvliet, Dolan, & van der Sluis, 2014).
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192 Procedure

193 Participants completed a single experimental session that lasted about 45 minutes. After
194  providing informed consent, participants received computerized instructions and performed four
195  practice trials for each of the four task conditions. Afterwards, they completed 320 trials of the
196  Motivational Go/NoGo Task. After the task, participants performed the V5-D MESA Digit Span Test
197  measuring forward and backward digit span (Fitzpatrick et al., 2015) and filled in the non-planning
198 subscale of the Barratt Impulsiveness Scale (Patton, Stanford, & Barratt, 1995) and the neuroticism sub-
199  scale of the Big Five Aspects Scales (DeYoung, Quilty, & Peterson, 2007). These measures were part
200  of final year thesis projects and not of focal interest (see the pre-registration); results are reported in
201  Supplementary Material SO5. Finally, participants went through a funnel debriefing asking them about
202 their guesses of the hypothesis of the study, whether they used specific strategies to perform the task,
203  whether they found the task more or less difficult to perform on high stakes trials, and if so, whether
204  they had an explanation of why this was the case. At the end, they received course credit for participation
205  as well as a small extra candy reward when they scored more than 960 points (equivalent to 67%

206  accuracy across trials, equivalence unknown to participants), which was announced in the instructions.

207 Task

208 Participants completed 320 trials (80 per condition; 40 each with high and low stakes
209  respectively) of the Motivational Go/ NoGo learning task. Each trial started with one of four abstract
210  geometric cues presented for 1,300 ms (Fig. 1A). The assignment of cues to task conditions was
211  counterbalanced across participants. Participants needed to learn from trial-and-error about the cue
212 valence, i.e., whether the cue was a Win cue (point gain for correct responses; no change in point score
213 for incorrect responses) or an Avoid cue (no change in point score for correct responses; point loss for
214 incorrect responses), and the required action, i.e., whether the correct response was Go (a key press of
215  the space bar) or NoGo (no action; Fig. 1B). Participants could perform Go responses while the cue was
216 on the screen. In 50% of trials, the cue was surrounded by a dark red circle (RGB [255, 0, 0]), signaling
217  the chance to win or avoid losing 50 points (high stakes condition). On all other trials, 10 points could

218  be won or lost (low stakes condition). After a variable inter-stimulus interval of 500-900 ms (uniform
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219  distribution in steps of 100 ms), numerical feedback was presented for 700 ms (+10/450 in green font
220  for point wins, -10/-50 in red font for point losses; 000 in grey font for no change in point score).
221  Feedback was probabilistic such that correct responses were followed by favorable outcomes (point win
222 for Win cues, no change for Avoid cues) on only 80% of trials, while on the other 20% of trials,
223 participants received unfavorable outcomes (no change for Win cues, point loss for Avoid cues; Fig.
224 1C). These probabilities were reversed for incorrect responses. Probabilistic feedback was used to make
225  learning more difficult and induce a slower learning curve. Trials ended with a variable inter-trial

226  interval of 1,300-1,700 ms (uniform distribution in steps of 100 ms).

227 The task was administered in four blocks of 80 trials each. Each block featured a distinct set of
228  four cues for which participants had to learn the correct response. Probabilistic feedback and renewal
229  of the cue set were used to slow down learning, given previous findings that biases disappear when

230  accuracy approaches 100% (Swart et al., 2017).

231  Data Analysis

232 Data Preprocessing

233 (Trials with) RTs faster than 300 ms were excluded from all analyses as those were assumed to
234 be too fast to reflect processing of the cue. This was the case for 103 out of 17,600 trials (per participant:
235 M =191, SD =5.89, range 0—41). See Supplementary Material SO2 for results using all reaction times

236 from all trials.

237  Mixed-effects Regression Models

238 We tested hypotheses using mixed-effects linear regression (function Imer) and logistic
239  regression (function glmer) as implemented in the package Ime4 in R (Bates, Michler, Bolker, &
240  Walker, 2015). We used generalized linear models with a binomial link function (i.e., logistic
241  regression) for binary dependent variables such as accuracy (correct vs. incorrect) and response (Go vs.
242 NoGo), and linear models for continuous variables such as RTs. We used zero-sum coding for
243 categorical independent variables. All continuous dependent and independent variables were
244 standardized such that regression weights can be interpreted as standardized regression coefficients. All

245  regression models contained a fixed intercept. We added all possible random intercepts, slopes, and
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246 correlations to achieve a maximal random effects structure (Barr, Levy, Scheepers, & Tily, 2013). P-
247  values were computed using likelihood ratio tests with the package afex (Singmann, Bolker, Westfall,

248 & Aust, 2018). We considered p-values smaller than o = 0.05 as statistically significant.

249  Evidence for absence of an effect
250 We plot the condition means for each participant and provide confidence intervals for every
251  effect. Every possible point estimate of an effect that would fall outside the estimated confidence

252 interval can be rejected at a level of o = 0.05.

253  Computational modeling of responses and reaction times

254 Combining reinforcement learning with a drift-diffusion choice rule. A class of
255  computational models that allows to jointly model both responses and reaction times are so called
256  “evidence accumulation” or “sequential sampling” models such as the drift-diffusion model (DDM)
257 (Ratcliff, 1978). These models formalize a decision process in which evidence for two (or more)
258  response options is accumulated until a fixed threshold, and a response is elicited upon reaching this
259  threshold. The process is captured through four parameters (Wabersich & Vandekerckhove, 2014): the
260 drift rate o, reflecting the speed with which evidence is accumulated; the decision threshold a,
261  describing the distance of the threshold from the starting point; the starting point bias B, reflecting if the
262  accumulation process starts in the middle between both bounds (B = 0.5) or closer to one of the
263  boundaries, reflecting an overall response bias; and the non-decision time t; capturing the duration of

264  all perceptual or motor processes that contribute to RT, but are not part of the decision process itself.

265 Typically, DDMs aim to explain choices when response requirements given a certain visual
266  input are clear to the participant. However, in the current study, participants learn the correct response
267  for each cue over time, leading to progressively faster and more accurate responses. Recent advances
268  in computational modeling propose that it is possible to combine drift-diffusion models with a
269  reinforcement learning (RL) process, yielding a reinforcement-learning drift-diffusion model (RL-
270 DDM) (Fontanesi, Gluth, Spektor, & Rieskamp, 2019; Mileti¢, Boag, & Forstmann, 2020; Pedersen,

271  Frank, & Biele, 2017). We employed a simple Rescorla-Wagner model which uses outcomes r (+1 for
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272 rewards, O for neutral outcomes, -1 for punishments) to compute prediction errors r — Q, which we then

273 used to update the action value Q for the chosen action a towards cue s:

274 Qc(ag, s¢) = Qe—1(as, s¢) + & * (r — Qe—1(as, s¢)) (D

275 Here, the difference in Q-values between choice options (Qco — Qnoco) Serves as the input to
276  the drift rate. This difference is initially zero, but grows with learning (positive difference if “Go” leads
277  to more rewards, and negative difference if “NoGo” leads to more rewards). This Q-value difference is
278  then multiplied with a constant drift rate parameter. At the beginning of the learning process, the
279 resulting low drift rates lead to more stochastic choices and slow RTs, but, as the Q-value difference
280  grows, higher drift rates result in more deterministic choices and faster RTs. The learning process
281  requires an additional free parameter, i.e., the learning rate parameter €, which determines the impact
282  of the prediction error on belief updating. The drift rate parameter acts akin to the inverse temperature

283  parameter used in the softmax choice rule, with higher drift rates leading to more deterministic choices.

284 One peculiarity of the Motivational Go-NoGo Task is the NoGo response option, which by
285  definition does not yield RTs. Variants of the DDM allow for such responses by integrating over the
286 latent RT distribution of the implicit NoGo decision boundary (Gomez, Ratcliff, & Perea, 2007
287 Ratcliff, Huang-Pollock, & McKoon, 2018), for which an approximation exists (Blurton, Kesselmeier,
288 & Gondan, 2012). This implementation has previously been used to model another variant of
289 motivational Go/ NoGo task (Millner, Gershman, Nock, & den Ouden, 2017) and is implemented in the

290 HDDM toolbox (Wiecki, Sofer, & Frank, 2013).

291 Note that RL-DDMs were not mentioned in the pre-registration, which only mentioned
292  reinforcement learning models to-be fitted to participants’ choices. In light of the results from the
293  regression analyses, incorporating RTs into the model and testing alternative mechanisms by which

294  stakes could influence the choice process seemed warranted.

295 Model space. We fit a series of increasingly complex models. We first tested whether an RL-
296  DDM fit the data better than a standard DDM; then tested the computational implementation of the

297  Pavlovian bias, and lastly tested the effect of stakes on model parameters. Model M1 (parameters a, ,
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298 P, o) just featured the DDM model with a constant drift rate parameter, but no learning, assuming
299  that participants have a constant propensity to make a Go response for any trial, irrespective of the
300  presented cue. M2 (parameters o, T, B, dint, Osrope, €) added a reinforcement learning process, updating
301  Q-values for Go and NoGo for each cue with the observed feedback, multiplying the Q-value difference
302 (Qco— Qnoco) With the drift rate parameter dsLope and finally adding it to the drift-rate intercept dint to
303  obtain the net drift rate. Including a drift-rate intercept dinr, i.€., an overall tendency towards making a
304 Go/NoGo response even when the Q-value difference was zero, which is similar to an overall Go bias
305  parameter, yielded considerably better fit than models without such an intercept. If people learned the
306 task, model M2 should fit their data better than M1. Next, M3 and M4 comprised different
307  implementations of the Pavlovian bias, either assuming separate starting point biases (M3; parameters
308  a, T, PwiN, Pavom, 0N, OsLopE, €) Or alternatively separate drift rate intercepts (M4; parameters a, T, [3,
309 dwin, 0avoip, OsLopg, €) for Win and Avoid cues, two plausible implementations considered in previous
310  literature (Millner et al., 2017). Next, models M5-M8 (parameters a, T, 3, dwin, davoi, OSLOPE, €, ONe
311  additional parameter n for high stakes) extended M4 and tested possible effects of the stakes on a single
312  parameter, implementing effect of the stakes on the threshold (MS), the non-decision time (M6), the
313 bias (M7) and the drift rate intercept (M8). As a control, models M9-M11 (parameters a, T, B, owin,
314 davop, OsLope, €, two additional parameters m and 0 for high stakes) tested effects of stakes on two
315  parameters (only combinations that could potentially give rise to response slowing), namely on both the
316  threshold and the non-decision time (M9), the threshold and the drift rate (M10; i.e. the two parameters
317  typically modulated by speed-accuracy trade-offs), and the non-decision time and drift rate (M11).
318  Finally, given the results from model comparison of these earlier models, M12 tested whether the effect

319  of stakes of non-decision time was different for congruent and incongruent cues.

320 Priors, transformations, parameterization, and starting values. We fitted models in a
321  hierarchical Bayesian fashion, modeling group-level parameters (means and standard deviations) that
322 served as priors for the subject-level parameters using the probabilistic programming language Stan
323 (Carpenter et al., 2017) in R (rstan). Stan implements a Hamiltonian Monte-Carlo (HMC) Markov-

324 chain algorithm with a No-U-Turn sampler (NUTS). We used the following group-level hyperpriors:
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325 M~ NG5, 2), M ~ N(O, 1), Mg ~ N(O, 1), M: ~ N(O, 1), M ~ N(O, 1), Mz ~ N(O, 1), Ms ~ N(O, 1), and
326  for all SDs: SD ~ N(0, 1). The parameters 9, a, T were constrained to be positive by using the y = log(1
327  +exp(x)) transformation, which is y = 0 for negative numbers, smoothly asymptotes O for small positive
328  numbers, and is roughly y = x for large positive numbers. The parameters  and € were constrained to
329  bein the range [0, 1] by using a softmax transformation y = exp(x) / (1 + exp(x)). In line with previous
330 DDM implementations in Stan (Fontanesi et al., 2019; Kraemer, Fontanesi, Spektor, & Gluth, 2021),
331  we used a non-centered parameterization in which individual-subject parameters are modeled with a
332 standard normal prior N(0, 1) that is first multiplied with the group-level standard deviation and then
333  added to the group-level mean parameter. Furthermore, again in line with previous DDM
334 implementations in Stan (Fontanesi et al., 2019; Kraemer et al., 2021), we set the following starting
335  values: M, =-0.18, M: =-10, Mg ~ N(0.5, 0.1), Msint ~ N(O, 1), MssLope~ N(0, 1), Mz~ N(O, 0.1), Mg ~
336  N(O, 0.1), all group-level SDs = 0.001, all subject level parameters as ~ N(0, 1). For models with an
337  effect of stakes on the non-decision-time (M6, M9, M11), T (low stakes) had to be initialized to be

338  considerably smaller than 7 (high stakes), which was accomplished by M ~ N(0, 1e-6) and SD: = 1e-6.

339 Model fitting and convergence checks. For each model, we used four chains with 10,000
340  iterations each (5,000 as warm-up), yielding a total of 20,000 samples contributing to the posteriors.
341  We checked that Rhats for all parameters were below 1.01, effective sample sizes for all parameters
342 were at least 400, that chains were stationary and well-mixing (using trace plots), that the Bayesian
343 fraction of missing information (BFMI) for each chain was above 0.2, and that (if possible) no divergent
344  transitions occurred (Baribault & Collins, 2023). To minimize the occurrence of divergent transitions,
345  we increased the target average proposal acceptance probability (adapt_delta) to 0.99. We visually
346  inspected that posterior densities were unimodal and no strong trade-offs between parameters across

347  samples occurred.

348 Model comparison. For model comparison, we used the LOO-IC (efficient approximate leave-
349  one-out cross-validation information criterion) based on Pareto-smoothed importance sampling (PSIS)
350  (Vehtari, Gelman, & Gabry, 2017). For completeness, we also report the WAIC (widely applicable

351  information criterion) in Supplementary Material SO7, but give priority to the LOO-IC, which is more
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352  robust to weak priors or influential observations (Vehtari et al., 2017). Both WAIC and LOO-IC behave

353  like the negative log-likelihood, with lower numbers indicating better model fit.

354 Posterior predictive checks. For the winning model M12, we randomly drew 1,000 samples
355  from the posteriors of each participants’ subject-level parameters, simulated a data set for each
356  participant for each of these 1,000 parameter settings, and computed the mean simulated p(Go),
357  p(Correct), and RT for each participant for each trial across parameter settings. We then plotted the
358 mean simulated p(Go), p(Correct), and RT as a function of relevant task conditions to verify that the
359  model could reproduce key qualitative patterns from the empirical data (Palminteri, Wyart, & Koechlin,

360  2017).

361 Parameter recovery. For the winning model M 12, we fitted a multivariate normal distribution
362  tothe mean subject-level parameters across participants and sampled 1,000 new parameter settings from
363  this distribution. We simulated a data set for each parameter setting and fitted model M12 to the
364  simulated data. We then correlated the “ground-truth” generative parameters used to simulate each data
365  set to the fitted parameters obtained when fitting M12 to it. To evaluate whether correlations were
366  significantly higher than expectable by chance, we computed a permutation null distribution of the on-
367  diagonal correlations. For this purpose, over 1,000 iterations, we randomly permuted the assignment of
368 fitted parameter values to data sets, correlated generative and fitted parameter values, and saved the on-
369  diagonal correlations. We tested empirical correlations against the 95" percentile of this permutation

370 null distribution.

371 Model recovery. For each of the 12 models, we fitted a multivariate normal distribution to the
372 mean subject-level parameters across participants and sampled 1,000 new parameter settings from it
373 (with the constraints that learning rates were required to be > 0.05 and parameter differences sampled
374 from the upper 50% of the parameter distribution to keep models distinguishable). We simulated a new
375  data set for each parameter setting, resulting in total in 12,000 data sets. We fitted each of the 12 models
376 to each data set, resulting in 144,000 model fits. For each data set, we identified the model with the
377  lowest LOO-IC. We counted how often each fitted model Y emerged as the winning model for the data

378  sets of each generative model X, computing the forward confusion matrix containing conditional
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379  probabilities p(best fitting model = Y | generative model = X) for each combination of generative model
380 X and fitted model Y (Wilson & Collins, 2019). We also computed the inverse confusion matrix
381  containing p(generative model = X | best-fitting model = Y; see Supplementary Material SO7). To
382  evaluate whether these probabilities were significantly higher than expectable by chance, we computed
383  apermutation null distribution of the on-diagonal probabilities. For this purpose, over 1,000 iterations,
384  we randomly permuted the LOO-IC values of all fitted models for a given data set, counted how often
385  each fitted model emerged as the winning model for the data sets of each generative model, and
386  extracted the on-diagonal probabilities. We tested empirical probabilities against the 95" percentile of

387 this null distribution.

388  Transparency and openness
389 We report how we determined our sample size, all data exclusions, all manipulations, and all measures
390  in the study. All data, analysis code, and research materials will be shared upon publication. The study

391  design, hypotheses, and analysis plan were pre-registered on OSF under https://osf.io/ue397. Data were

392  analyzed using R, version 4.1.3 (R Core Team, 2022). Models were fitted with the package lme4,

393  version 1.1.31 (Bates et al., 2015). Plots were generated with ggplot, version 3.4.2 (Wickham, 2016).

394 Results

395  Manipulation checks: Learning and Pavlovian biases

396 As a manipulation check and in order to compare the results from this study to previous studies
397 (Algermissen et al., 2022; Swart et al., 2018, 2017), we fitted a mixed-effects logistic regression with
398 responses (Go/ NoGo) as dependent variable as well as required action (Go/ NoGo) and valence (Win/
399  Avoid) and independent variables (see Supplementary Material SO1 for an overview of all regression
400  results; see Supplementary Material S04 for means and standard deviations per condition). Participants
401  made significantly more Go responses to Go cues than NoGo cues (required action), b = 1.441, 95%-
402 CI [1.252, 1.630], y*(1) = 87.873, p < .001, indicating that they learned the task. They also showed
403 significantly more Go responses to Win than Avoid cues (cue valence), b = 0.750, 95%-CI [0.609,

404  0.889], ¢*(1) =59.587, p < .001, reflecting a Pavlovian bias (Fig. 2A—C). There was no evidence for the
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405  Pavlovian bias being stronger for either Go or NoGo cues (required action x valence), b = 0.019, 95%-

406  CI[-0.100, 0.137], %*(1) = 0.093, p = .760.

407 Next, we performed a similar mixed-effects linear regression with reaction times (RTs) as
408  dependent variable. Note that RTs were naturally only available for (correct and incorrect) Go
409  responses. Participants showed significantly faster (correct) responses to Go cues than (incorrect)
410 responses to NoGo cues (required action), b = -0.109, 95%-CI1 [-0.145, -0.073], x*(1) = 27.494, p < .001,
411  and significantly faster responses to Win than Avoid cues (cue valence), b =-0.191, 95%-CI [-0.227, -
412 0.155],%*(1) =59.204, p < .001, again reflecting the Pavlovian bias (Fig. 3A—C). The cue valence effect
413 (Pavlovian bias) on RTs was slightly stronger for (correct) response to Go cues than (incorrect)
414  responses to NoGo cues (required action x cue valence) , b = -0.032, 95%-CI [-0.061, -0.003], x*(1) =
415  4.384, p = .036. The strength of the Pavlovian bias (both in responses and RTs) was neither correlated
416  with working memory span, nor impulsivity, nor neuroticism (Supplementary Material S05). In sum,

417  participants learned the task and exhibited a Pavlovian bias in both responses and RTs.

418

419

420

421

422

423

424

425

426

427
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Figure 2. Effect on propensity of Go responses. A. Learning curves per cue condition. B. Proportion of Go responses per cue condition
(individual dots are individual participant means). Participants show more Go responses to Go than NoGo cues (indicative of learning the
task) and more Go responses to Win cues than Avoid cues (indicative of Pavlovian biases). C. Group-level (colored dot, 95%-CI) and
individual-participant (grey dots) regression coefficients from a mixed-effects logistic regression of responses on required action, cue
valence, and their interaction. D. Accuracy per cue condition and stakes condition. There is no effect of stakes on responses for any cue
condition. E. Accuracy per valence-action congruency and stakes condition. Accuracy is higher for congruent than incongruent conditions,
but this congruency effect is not modulated by stakes. F. Group-level and individual-participant regression coefficients from a mixed-
effects logistic regression of responses on congruency, stakes, and their interaction.

428

429  Confirmatory analyses: Modulation by stakes

430 As the first set of confirmatory, pre-registered analyses, we fitted a mixed-effects logistic
431  regression with accuracy (correct/ incorrect) as dependent variable and congruency (congruent/
432 incongruent) and stakes (high/ low) as independent variables. There was a significant main effect of
433 congruency, b = 0.600, 95%-CI [0.499, 0.702], x*(1) = 67.867, p < .001, with higher accuracy to
434 congruent than incongruent cues, again reflecting the Pavlovian bias. However, neither the main effect
435 of stakes, b = -0.026, 95%-CI [-0.065, 0.013], ¥*(1) = 1.430, p = .232, nor the interaction between
436  congruency and stakes, b =-0.007, 95%-CI [0.046, 0.032], x*(1) = 0.094, p = .759, was significant (Fig.

437  2E,F).

438 Exploratory post-hoc tests for each cue condition separately did not show any effect of stakes
439  on responses for any cue condition (Go-to-Win: z =-0.590, p = .555; Go-to-Avoid: z =-0.184, p = .854;
440  NoGo-to-Win: z = -0.145, p = .885; NoGo-to-Avoid: z = -0.963, p = .3357; Fig. 2D). In further

441  exploratory analyses, we tested whether an effect of stakes on responses emerged (or disappeared) over
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442 time, either within the learning trajectory of a cue (cue repetition; 1 — 20) or across the entire task (trial
443 number: 1-320). Neither the interaction between cue repetition and stakes, b = -0.002, 95%-CI [-0.039,
444 0.035], ¥*(1) = 0.020, p = .898, nor the interaction between trial number and stakes, b = -0.012, 95%-
445 CI [-0.048, 0.023], x*(1) = 0.401, p = .527, was significant, providing no evidence for stakes influencing
446  responses selectively at certain time points during learning or during the task. In sum, there was no

447  evidence for stakes modulating the Pavlovian bias in participants’ responses.

448 As the second set of confirmatory, pre-registered analyses, we fitted a mixed-effects linear
449  regression with RTs as dependent variable and congruency (congruent/ incongruent) and stakes (high/
450  low) as independent variables. Participants responded significantly faster to congruent than incongruent
451 cues (congruency), b = -0.131, 95%-CI [-0.160, -0.102], y*(1) = 49.546, p < .001, reflecting the
452  Pavlovian bias. Furthermore, they responded significantly more slowly under high compared to low
453  stakes (stakes), b = 0.072, 95%-CI [0.051, 0.092], ¥*(1) = 33.702, p < .001 (Fig 3E, F). Finally, the
454  interaction between congruency and stakes was significant, b = -0.019, 95%-CI [-0.037, -0.001], x*(1)
455  =3.856, p =.049, with a stronger congruency effect under high compared to low stakes. This effect was
456  also significant (p = .046) when including RTs < 300 ms (see Supplementary Material S02), but only
457  marginally significant (p = .060) when adding the data of remaining participant with not-above-chance
458  performance (see Supplementary Material SO3). The effect of stakes on RTs was correlated neither with

459  working memory span, impulsivity, or neuroticism (Supplementary Material SO5).

460 Exploratory post-hoc tests for each cue condition separately yielded a significant effect of
461  stakes on RTs for three out of four cue conditions, including in particular the two incongruent conditions
462 Go-to-Avoid and NoGo-to-Win (Go-to-Win: z = 2.973, p = .003; Go-to-Avoid: z = 4.528, p < .001;
463 NoGo-to-Win: z=4.975, p < .001; NoGo-to-Avoid: z = 1.414, p = .158; Fig. 3D). In further exploratory
464  analyses, we tested whether the effect of stakes on responses got stronger or weaker with time, either
465  within the learning trajectory of a cue (cue repetition) or across the entire task (trial number). Neither
466 the interaction between stakes and cue repetition, b = -0.012, 95%-CI [-0.030, 0.006], x*(1) = 1.599, p
467 =206, nor the interaction between stakes and trial number, b = 0.025, 95%-CI [-0.021, 0.018], ¥*(1) =

468  0.480, p = .489, was significant, providing no evidence for a change in the effect of stakes on RTs over
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469  time. See Supplementary Material SO6 for tests for non-linear changes with time, again finding no
470  evidence for changes in the effect of stakes over time. In sum, these results suggest that high stakes
471  affected participant responses in that they overall slowed down responses. This slowing was slightly
472  stronger for incongruent than congruent cues and appeared to be constant over time. However, stakes
473  did not affect response accuracy nor the degree of Pavlovian bias as indexed by the decisions to make

474  a Go or NoGo response.

A. Effect of stakes on RTs B. Pav. bias in RTs C. Lin. regression on RTs (base model)
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Figure 3. Effect on propensity of reaction times (RTs). A. Distribution of RTs for high and low stakes. RTs are slower under high stakes.
B. RTs per cue condition. Participants show faster RTs for (correct) Go responses to Go cues than (incorrect) Go responses to NoGo cues
and faster RTs for Go to Win cues than Avoid cues (indicative of Pavlovian biases). C. Group-level (colored dot, 95%-CI) and individual-
participant (grey dots) regression coefficients from a mixed-effects linear regression of RTs on required action, cue valence, and their
interaction. D. RTs per cue condition and stakes condition. RTs are significantly slower under high stakes in the Go-to-Win (G2W), Go-
to-Avoid (G2A), and NoGo-to-Win (NG2W) conditions. E. RTs per valence-action congruency and stakes condition. RTs after
significantly slower under high compared to low stakes. This effect is significantly stronger for incongruent than congruent cue conditions.
F. Group-level and individual-participant regression coefficients from a mixed-eftects linear regression of RTs on congruency, stakes, and

their interaction.

475

476  Computational Modeling of Responses and RTs (RL-DDMs)

477 To better understand the mechanisms by which cue valence and stakes influenced responses
478  and RTs, we fit a series of increasingly complex reinforcement-learning drift-diffusion models (RL-
479  DDMs). A past study using a similar paradigm found evidence for cue valence modulating the starting
480  point bias in an evidence-accumulation framework rather than the drift rate (Millner et al., 2017),

481  although evidence in that study remained mixed. Furthermore, past studies suggested that response-
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482  slowing might reflect a speed-accuracy trade-off, with stakes leading to response caution and higher
483  decision thresholds, leading to higher accuracy at the cost of slower responses (Bogacz, Brown,
484 Moehlis, Holmes, & Cohen, 2006; Shevlin, Smith, Hausfeld, & Krajbich, 2022; Wiecki & Frank, 2013).
485  We implemented different mechanisms of how cue valence and stakes might influence the various
486  parameters (decision threshold, non-decision time, starting point bias, drift rate intercept) in an evidence

487  accumulation framework and compared the fit of different, increasingly complex models.

488 Behavior was better described by an RL-DDM (M2) in which participants learned cue-specific
489  Q-values rather than an standard DDM (M1) with a fixed propensity to emit Go/ NoGo responses (Fig.
490  4A), reflecting that participants learned the task and that learned affected responses and RTs. Model fit
491  was further improved when incorporating a Pavlovian bias (M3-M4), specifically when fitting separate
492 drift rate intercepts for Win and Avoid cues (M4; with high drift rate intercepts for Win than Avoid
493  cues, see Fig. 4B). Next, we assessed different mechanisms through which stake magnitude could affect
494  responding, which further improved model fit (M5-M8). Here, the best model was one in which stakes
495  modulate the non-decision time (M6). Note that, although M6 showed a superior fit to M4, group-level
496  non-decision times for high and low stakes were not significantly different from each other (Muy =
497 0.012, 95%-CI [-0.017, 0.041]), suggestive of the presence of individual differences with an overall
498  mean close to zero. Allowing stakes to modulate two instead of one parameter did not yield any
499  substantial improvement in fit (M9-M11). Specifically, a model implementing a “classical” speed-
500  accuracy tradeoff by allowing stakes to influence both the threshold and the drift rate (M10) performed
501  worse than a model allowing stakes to influence the non-decision time (M6). Lastly, model fit was
502  further improved by when splitting the effect of stakes into separate parameters for congruent and
503  incongruent cues (M12), which was overall the best fitting model in the model comparison. Note that
504  MI12 has the same number of parameters as models M9-M11, suggesting that the increase in fit is not
505  due to a mere increase in the number of parameters, but due to the specific mechanism implemented.
506  Also note that, although M12 with separate non-decision times under high stakes for congruent and

507  incongruent cues outperformed M6 with a single non-decision time under high stakes, there was no
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508  group-level difference between the parameters for congruent vs. incongruent cues (M gy = -0.003, 95%-

509  CI[-0.033, 0.027], Fig. 4B), suggestive of individual differences with a group-level mean close to 0.

510 We performed several model validation checks to verify that the winning model M12 was able
511  to capture key qualitative features of the empirical data (posterior predictive checks), could identify
512 data-generating parameters reliably (parameter recovery), and could be distinguished from other models
513  (model recovery). Data simulated from M12 reproduced a Pavlovian bias in responses and RTs,
514  reproduced an overall slowing under high stakes, but somewhat underestimated the difference in RT
515  slowing between congruent and incongruent cues (Fig. 4C; see also Supplementary Material SO7 for
516  further plots). Furthermore, generative and fitted parameters were overall highly correlated, indicative
517  of a successful parameter recovery (M, = 0.83, SD, = 0.14, range 0.62-0.98; 95" percentile of
518  permutation null distribution: » = 0.08; Fig. 4D; see Supplementary Material SO7 for scatter plots of on-
519  diagonal correlations). Besides correlations between generative parameters with their corresponding
520  fitted parameters, there were two notable cases of off-diagonal correlations: first, the different non-
521  decision times (under low stakes, under high stakes for congruent cues, and under high stakes for
522 incongruent cues) were correlated (r = 0.71 and r = 0.77; Fig. 4D), reflecting an overall tendency
523  towards faster/ slower responses that is naturally shared across all three parameters. Second, learning
524  rates and drift rate slopes were negatively correlated across parameter settings (r = -0.56; Fig. 4D),
525  which mimics the frequently observed trade-off between learning rate and inverse temperature
526  parameters in more classic reinforcement learning models of choices (Ballard & McClure, 2019). In
527  RL-DDMs, the drift rate slope is multiplied with the Q-value difference, so that steeper slopes lead to
528 more deterministic choices and shallower slopes lead to more stochastic choices, similar to an inverse
529  temperature parameter. Finally, model recovery was successful, particularly for the winning model
530  M12, which was the best fitting model for 98% of data sets for which it was the generative model
531  (forward confusion matrix; Fig. 4E). Recovery for the other models was not quite as high, though still
532  significantly above chance for all models (M, = 0.31, SD, = 0.32, range 0.13-0.98; 95™ percentile of
533 permutation null distribution: p = 0.10). See Supplementary Material SO7 for matrices involving only

534 the five nested sub-versions of M12 (i.e., M1, M2, M4, M6, M12). In this restricted subset, recovery
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was much higher (M, = 0.74, SD, = 0.24, range 0.44-0.99; 95" percentile of permutation null

distribution: p = 0.22). Also, see Supplementary Material SO7 also for the inverse confusion matrix.

In sum, model comparison results were in line with the regression results, yielding a selective
effect of stakes in prolonging the non-decision time, and separately so for incongruent and congruent
cues. Stakes did not affect the threshold and/or the drift rate as typically observed in a speed-accuracy
trade-off. Hence, we conclude that stakes do not shift the speed-accuracy trade-off, but rather lead to a

response slowing independent of response selection.

A. Model comparison B. Best-fitting parameters per participant M12
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Figure 4. Reinforcement-learning drift-diffusion models. A. Model comparison. LOO-IC favors model M12, implementing separate drift
rate intercepts for Win and Avoid cues and separate non-decision times for low stakes, congruent cues under high stakes, and incongruent
cues under high stakes. B. Densities of best fitting parameters for model M12 per participant. Drift rate intercepts for Win cues are
consistently higher than drift rate intercepts for Avoid cues. Note that, although the winning model implements separate non-decision times
for high/ low stakes and congruent/ incongruent cues, the parameter values for these different conditions are not significantly different
from each other. C. Posterior predictive checks for the winning model M12. Left panel: Simulated proportion of Go responses per required
action and cue valence averaged over simulations and participants. The winning model M 12 reproduces Pavlovian biases in responses and
RTs (see Supplementary Material SO7). Right panel: Simulated RTs per cue congruency per stakes level averaged over simulations and
participants. The winning model M 12 reproduces the overall slowing under high stakes as well as differences in slowing between congruent
and incongruent cues, but underestimates this difference compared to the empirical data. For further plots, see Supplementary Material
S07. D. Parameter recovery for the winning model M12. Correlations between generative parameters used for simulating 1,000 data sets
based on M12 and parameters obtained when fitting M12 to simulated data. All correlations between generative and fitted parameters (on-
diagonal correlations) are significantly above chance. E. Model recovery for model M1-M12. The forward confusion matrix displays the
conditional probabilities that model Y is the best fitting model (columns) if model X (rows) is the underlying generative model used to
simulate a given data set. On-diagonal probabilities indicate the probability of reidentifying the generative model. All on-diagonal
probabilities are significantly above chance. Especially recovery for M12 is exceptionally high. For the inverse confusion matrix and matrix
on subsets of models, see Supplementary Material SO7.

Discussion
In this pre-registered experiment, we found evidence that increasing stake magnitude slowed

down responses in a Motivational Go/NoGo Learning Task, especially for incongruent cue conditions,
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545  without affecting whether participants responded or not. In line with previous literature, participants
546 exhibited a Pavlovian bias in both responses and RTs (Algermissen et al., 2022; Swart et al., 2017),
547  with more and faster Go responses to Win than Avoid cues. On trials with high stakes (i.e., larger
548  rewards or punishments at stake), they slowed down, particularly for the two incongruent conditions
549  Go-to-Avoid and NoGo-to-Win. This response slowing was best described by high stakes prolonging
550  the non-decision time in a drift-diffusion model framework, particularly so for incongruent trials. This
551  finding is inconsistent with both hypotheses put forward in the introduction, i.e., high stakes
552 strengthening Pavlovian biases or high stakes motivating cognitive control to suppress them on
553  incongruent trials. In sum, higher stakes slow down response selection, but neither strengthen nor
554  weaken Pavlovian biases in responses. We propose two possible explanations for this (somewhat
555  surprising) result: response slowing under high stakes might reflect (flexibly recruited) cognitive
556  control, which is however ineffectively used, or it might reflect (automatic/ reflexive) positive condition
557  suppression, i.e., the suppression of locomotion by large immanent rewards as previously observed in

558 animal studies.

559  No evidence for bias strengthening or bias suppression

560 On trials with high stakes, participants took longer to make a Go response, but did not exhibit
561  any altered tendency for Go/ NoGo responses, i.e. no reduction or enhancement of Pavlovian biases.
562  Apart from the null effect on responses, RTs slowed down under high stakes, an effect that was highly
563  consistent across participants (Fig. 3E, F). These two findings are incompatible with the first hypothesis
564  posited, i.e., high stakes strengthening Pavlovian biases. Slowing (instead of speeding) of responses
565  under high rewards might appear quite surprising given a large body of literature showing higher
566 incentives to speed up responses (Fontanesi et al., 2019; Knutson et al., 2001; Luo et al., 2009; Pirrone,
567 Azab, Hayden, Stafford, & Marshall, 2018; Smith & Krajbich, 2018) and some evidence for larger PIT
568 effects for high compared to low value cues (Algermissen & den Ouden, 2023; Schad et al., 2020).
569  Notably, response slowing occurred for both appetite and aversive cues, suggesting that the effect is
570  independent of cue valence and orthogonal to the Pavlovian biases. Note that 50% of trials were high

571  stake trials, arguing against the possibility of surprise (i.e., oddball effects) driving the response
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572 slowing. High and low stake trials were visually very distinct, arguing against differences in processing
573  demands between both trial types. In sum, the size of Pavlovian biases in the Motivational Go/NoGo
574  Task appears to be unaffected by stake magnitude, which instead induced a response slowing orthogonal

575 to the biases.

576 Response slowing under high stakes might be partly compatible with the second hypothesis
577  (EVO), i.e., high stakes increasing cognitive control in order to suppress biases, given that heightened
578  cognitive control recruitment is often inferred from/ accompanied by prolonged reaction times (Frank,
579  2006; Shenhav et al., 2013; Wessel & Aron, 2017). Specifically, in line with our preregistered
580  hypothesis that high stakes increase cognitive control recruitment, response slowing was stronger on
581  motivationally incongruent trials on which Pavlovian biases had to be suppressed in order to execute
582  the correct response. This effect suggests that participants did distinguish the different cue conditions
583  with respect to whether they could benefit from increased cognitive control recruitment and prolonged
584  deliberation times (i.e., situations in which control could in theory change the emitted response) or not.
585  However, the increased deliberation time putatively afforded by cognitive control recruitment was
586  inconsequential for response selection, and the size of Pavlovian biases (in terms of the proportion of
587  Go responses for Win vs. Avoid cues) was unaltered under high stakes. One might thus conclude that
588  participants recruited additional cognitive control, but did not effectively use it to suppress their

589  Pavlovian biases when they were unhelpful.

590 An alternative explanation for response slowing under high stakes might be the phenomenon
591  of “choking under pressure”, i.e., the fear of failure in high-stakes situations inducing rumination and
592 thus decreasing performance (Beilock & Carr, 2001, 2005), an option we had considered in our pre-
593  registration. Choking under pressure predicts a pattern opposite to the second hypothesis (EVC), with
594 high stakes undermining cognitive control recruitment and leading to lower performance in incongruent
595  conditions. While the observed slowing of RTs could be interpreted as a kind of “choking under
596  pressure”, we did not observe corresponding performance decrements. Hence, this finding does not fall

597  under the phenomenon of “choking under pressure” as investigated in previous literature. In sum, these
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598  results are most compatible with the idea of high stakes leading to increased cognitive control

599  recruitment, though without any consequences for response selection and accuracy.

600  No evidence for a speed-accuracy tradeoff

601 Past computational models have proposed mechanisms of how decision accuracy—which is
602  particularly warranted in high stakes situations—can be prioritized over speed by increasing decision
603 thresholds in an evidence accumulation framework (Bogacz et al., 2006). Such increased decision
604  bounds have been typically investigated in situations in which choice options are close in value and
605 thus eliciting cognitive conflict. Neuro-computational models suggest that such conflict is detected by
606  the anterior cingulate cortex and presupplementary motor area, which—via the hyperdirect pathway
607  involving the subthalamic nucleus—project to the globus pallidus and increase decision thresholds in
608 the basal ganglia action selection circuits, leading to a higher requirement for positive evidence to elicit
609 a response (Cavanagh et al., 2011; Forstmann et al., 2008; Frank, 2006; Frank et al., 2015; Wiecki &
610  Frank, 2013). This decision threshold adjustment will lead to a higher proportion of correct, but overall
611  slower responses. It is plausible that the same mechanism could lead to response caution in the context
612  of high-value cues. In fact, a series of recent studies found that cues indicating an upcoming choice
613  between high-value options (but not the presence of high-value options per se) slowed down of RTs,
614  which was best captured by a heightened decision threshold (Shevlin et al., 2022). However, in contrast,
615  the data of the present study were best explained by a model embodying prolonged non-decision times
616  rather than heightened response thresholds. It is thus unclear whether the same computational and neural
617  mechanisms proposed for implementing speed-accuracy tradeoffs are also responsible for the response
618  slowing observed in this data. Future studies using neuroimaging of cortical and subcortical activity
619  (Algermissen et al., 2022) and instructions to prioritize speed or accuracy during the task (Forstmann
620 et al., 2008) while simultaneously manipulating stakes could shed light on shared vs. separate neural

621 mechanisms.

622  Response slowing as positive conditioned suppression
623 Another possible interpretation of our findings is that the response slowing under large stake

624  magnitudes is an instance of positive conditioned suppression as previously reported in rodents (Azrin
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625 & Hake, 1969; Marshall, Halbout, Munson, Hutson, & Ostlund, 2023; Van Dyne, 1971). In positive
626  conditioned suppression, cues signaling the immanent receipt of a reward suppress responding.
627  Specifically, a cue announcing an immanent reward suppresses exploratory behavior that would move
628  the animal away from a food site, and instead invigorates and prolongs engagement with the site of
629 reward delivery until the reward is obtained (Marshall, Munson, Maidment, & Ostlund, 2020).
630  However, this suppression can extend backwards in time such that it even affects the instrumental
631  response required to obtain the reward (i.e., a lever press). A recent study found small rewards to
632  invigorate responding in line with classical PIT findings (Marshall et al., 2023). However, large rewards
633  suppressed instrumental lever pressing and diminished PIT effects, suggestive of positive conditioned

634  suppression interfering with PIT in a way similar of our findings.

635 One speculation on the adaptive nature of this phenomenon is that it may prevent agents to
636  become distracted by other reward opportunities and forget to collect the reward they previously worked
637  for (Timberlake, Wahl, & King, 1982). Notably, the prolongation of RTs in the present data was
638  particularly strong for motivationally incongruent cues, which perhaps argues against a purely
639  automatic, “reflexive” nature of the observed effect of stake magnitude on RTs (such as positive
640  conditioned suppression), and instead in favor of an adaptive effect that is (at least partially) sensitive
641  to task requirements. It is thus possible that both (automatic) positive conditioned suppression and
642  (voluntary) heightened cognitive control recruitment triggered by motivational conflict are present, or
643  that positive conditioned suppression is (partially) a consequence of cognitive control recruitment.
644  Future studies could test whether the slowing induced by high stakes is sensitive to the temporal delay
645  between response execution and outcome delivery, which would argue for interference between reward
646 collection and response selection as the cause of slowing (Delamater & Holland, 2008; Marshall et al.,

647 2023; Marshall & Ostlund, 2018; Meltzer & Hamm, 1978; Miczek & Grossman, 1971).

648 Furthermore, conditioned suppression has yet not been studied in the context of avoiding
649  aversive outcomes. Slowing induced by conditioned suppression will look highly similar to slowing
650  induced by the Pavlovian bias itself. In our data, the finding that effects of action-valence congruency

651  (i.e. Pavlovian bias) and stake magnitude on RTs were additive suggests independent mechanisms.
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652  Future research might try to disentangle these two effects further by using an “escape” context in which
653  participants must select actions to terminate an ongoing punishment (e.g. loud noise), which typically
654  inverts the Pavlovian bias and leads to an increased tendency towards action (Millner et al., 2017).
655  Varying the punishment magnitude in such a context could potentially elucidate joint or independent

656  contributions of Pavlovian biases and conditioned suppression on RTs.

657  Normative aspects

658 The presented results suggest that high stakes do not strengthen or weaken Pavlovian biases per
659  se; rather, they globally slow or pause behavior. This slowing down can be adaptive in high threat
660  situations in which response postponement mimics nonresponding, similar to freezing itself (Bach,
661  2015), although in our data, the slowing did not affect participants’ eventual propensity to execute a Go
662  response. This slowing might also be adaptive from the perspective of positive conditioned suppression
663  in focusing an agent on reward collection and consumption rather than exploring other options in the
664  meantime (Marshall et al., 2023). The ability to inhibit behavior and wait for rewards has been proposed
665  to be serotonergic in nature, as serotonin is likely implicated in mediating aversive inhibition (Crockett,
666 Clark, Apergis-Schoute, Morein-Zamir, & Robbins, 2012; Crockett, Clark, & Robbins, 2009; Geurts et
667  al., 2013b). Indeed, serotonin depletion has been shown to abolish the slowing observed under high
668 reward stakes (Bari & Robbins, 2013; den Ouden et al., 2015; Soubrié, 1986), while the activation of
669  serotonergic neurons facilitates waiting for rewards (K. Miyazaki, Miyazaki, & Doya, 2011; K.
670  Miyazaki et al., 2020; K. W. Miyazaki et al., 2014) and persistence in foraging (Lottem et al., 2018).
671  Future research should explicitly test the putatively serotonergic nature of high stakes-induced response
672  slowing in the Motivational Go/NoGo Task in particular and of positive conditioned suppression, more

673  generally.

674  Limitations and relations to other stakes manipulations

675 A limitation of the current study is that high stakes were explicitly signaled via a red circle
676  around the task cue. In this way, the task mimicked situations in which high stakes can be inferred
677  directly from simple visual features, e.g. when telling apart a lion from a spider. However, it does not

678  mimic situations in which high value must be inferred indirectly from past experiences or by combining
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679  set of features, e.g., in detecting a good bargain house or car. In the context of the Motivational
680 Go/NoGo Task, stakes were irrelevant for selection the optimal action, and evidence from a similar task
681  (Algermissen & den Ouden, 2023) suggests that participants ignore differences in outcome value when
682  learning about the optimal action. Hence, stakes might only play a role when explicitly signaled or
683  easily perceivable from the environment, but not when they have to be inferred from past experiences.
684  This is an important consideration for task designs that might explain the mixed literature on stakes
685  effects in PIT tasks. Finally, the presented finding mimics cases where “high stakes™ describes the entire
686  situation rather than a single option (Shevlin et al., 2022), but is unlike cases where only a single option

687  is more valuable and dominates all other options.

688 Another limitation might be that stakes were not varied in a continuous fashion, but
689  categorically as two discrete levels. Again, it might be plausible that agents represent situations (e.g.
690 trials) as overall “high stakes” or not, irrespective of the particular value of single options (Shevlin et
691  al., 2022). Varying the stakes magnitude in a continuous fashion would increase processing demands
692  and thus already slow down responses due to perceptual (irrespective of additional decision) difficulty.
693  Furthermore, participants might subjectively recode stakes levels relative to the mean stake level,
694  representing low rewards as disappointing and thus akin to punishments, while perceiving low
695 punishments as a relief and thus akin to rewards (Klein, Ullsperger, & Jocham, 2017; Palminteri,
696  Khamassi, Joffily, & Coricelli, 2015). These considerations support the ecological validity of
697  dichotomizing stakes into high and low levels. However, it remains to be empirically tested whether

698 continuous stakes levels lead to similar or different effects.

699  Conclusion

700 In sum, while possibilities to gain rewards/ avoid punishments induce Pavlovian biases,
701  increasing the stakes of these prospects does not alter the strength of the bias. However, high stakes
702 motivate humans to slow down their responses. One interpretation is that this slowing is adaptive in
703 allowing time for conflict detection and cognitive control recruitment in case motivational biases have
704  to be suppressed. However, the slowing is not associated with changes in response selection, i.e., also

705  not with the degree to which participants suppress their Pavlovian biases when these are unhelpful,
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suggesting that humans do not use this additional time effectively. An alternative interpretation is that
prolonged reaction times reflect positive conditioned suppression, i.e. attraction by the reward value
that interferes with action selection itself as previously observed in rodents. Taken together, this study
suggests that high stakes might have a similar effect in both humans and rodents in the context of

Pavlovian/ instrumental interactions on action selection.
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1 Supplemental Material SO1: Overview results mixed-effects
2 regression models

3 Here, we report an overview over all major statistical results reported in the main text and the
4 supplementary material. For details on how mixed-effects regression were performed, see the Methods

5 section of the main text.

Model ID | DV [ IV | b|] SE| 1] p
1 Response Required action 1.441 0.096 87.873 <.001
Valence 0.749  0.072  59.587 <.001
Required action x cue valence 0.019  0.060 0.093 .760
2 RT Required action -0.109  0.019 27.494 <.001
Valence -0.191  0.019 59204 <.001
Required action x cue valence 0.031 0.015 4.384 .036
3 Accuracy Congruency 0.600 0.052 67.867 <.001
Stakes -0.026  0.020 1.430 232
Congruency x Stakes -0.007  0.020 0.094 759
4 RT Congruency -0.131  0.015  49.546 <.001
Stakes 0.072 0.010 33.702  <.001
Congruency x Stakes -0.019  0.010 3.856 .049
Table SO1. Overview of the results from all mixed-effects regression models reported the main text of the manuscript.
Featuring data from N = 54 participants, trial with RTs < 0.300 sec. are excluded from RT analyses.
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23 Supplemental Material SO2: Overview results mixed-effects

24 regression models on reaction times on all trials
25

Model ID | DV [ 1V | b|] SE| 1] p
1 RT Required action -0.103  0.019 23.936 <.001
Valence -0.183  0.019  53.550 <.001
Required action x cue valence -0.039  0.015 6.138 .013
2 RT Congruency -0.133  0.014  51.704 <.001
Stakes 0.070  0.011 31.210 <.001
Congruency x Stakes -0.019  0.010 3.982 .046
Table S02. Overview of RT regression models from N = 54 participants when including all trials (also those with RTs < 0.3
sec.).
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Supplemental Material SO3: Overview results mixed-effects

regression models including additional participant

Model ID | DV [ IV | b|] SE| 1] p
1 Response Required action 1.417  0.098 86.250 <.001
Valence 0.736  0.071 59.174 <.001
Required action x cue valence 0.019  0.059 0.097 756
2 RT Required action -0.105  0.018  26.984 <.001
Valence -0.189  0.018  60.877 <.001
Required action x cue valence -0.033  0.015 4.824 .028
3 Accuracy Congruency 0.591 0.052 67.189 <.001
Stakes -0.025  0.019 1.365 0.243
Congruency x Stakes -0.009  0.020 0.169 0.681
4 RT Congruency -0.130  0.014  50.997 <.001
Stakes 0.071 0.010 34.566  <.001
Congruency x Stakes -0.018  0.009 3.527 .060
Table S03. Overview of all regression models when including data from all N = 55 participants (also the one participant
excluded from analyses reported in the main text for not performing above chance level).
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STAKE MAGNITUDE IN PAVLOVIAN BIASES 4
76 Supplemental Material SO4: Overview response, accuracy, and RT
77 means and standard deviations per condition
Responses
Regq. Act. Go Go NoGo NoGo
Valence Win Avoid Win Avoid
Mean 0.888 0.771 0.475 0.194
SD 0.140 0.111 0.261 0.107
Table SO4. Means and standard deviations of Go/NoGo responses across participants per required action x valence
condition.
78
Responses
Regq. Act. Go Go Go Go NoGo NoGo NoGo NoGo
Valence | Win Win Avoid Avoid Win Win Avoid Avoid
Stakes | High Low High Low High Low High Low
Mean 0.883 0.893 0.767 0.774 0.477 0.474 0.200 0.187
SD = 0.151 0.138 0.125 0.114 0.253 0.276 0.116 0.109
Table SO5. Means and standard deviations of Go/NoGo responses across participants per required action x valence x
stakes condition.
79
Accuracy
Req. Act. Go Go NoGo NoGo ‘
Valence Win Avoid Win Avoid
Mean 0.888 0.771 0.525 0.806
SD 0.140 0.111 0.261 0.107
Table S06. Means and standard deviations of accuracy across participants per required action x valence condition.
80
Accuracy
Regq. Act. Go Go Go Go NoGo NoGo NoGo NoGo
Valence | Win Win Avoid Avoid Win Win Avoid Avoid
Stakes | High Low High Low High Low High Low
Mean | 0.883 0.893 0.767 0.774 0.523 0.526 0.800 0.813
SD | 0.151 0.138 0.125 0.114 0.253 0.276 0.116 0.109
Table S07. Means and standard deviations of accuracy across participants per required action x valence x stakes
condition.
81
RTs
Regq. Act. Go Go NoGo NoGo
Valence Win Avoid Win Avoid
Mean 0.578 0.660 0.641 0.687
SD 0.059 0.062 0.085 0.098
Table SO8. Means and standard deviations of reaction times across participants per required action x valence condition.
82
RTs
Regq. Act. Go Go Go Go NoGo NoGo NoGo NoGo
Valence Win Win Avoid Avoid Win Win Avoid Avoid
Stakes High Low High Low High Low High Low

Mean | 0.585 0.570 0.675 0.645 0.660 0.620 0.695 0.681
SD | 0.064 0.063 0.072 0.063 0.098 0.099 0.117 0.122

Table S09. Means and standard deviations of reaction times across participants per required action x valence x stakes
condition.


https://doi.org/10.1101/2023.12.26.573351
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.26.573351,; this version posted December 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

STAKE MAGNITUDE IN PAVLOVIAN BIASES 5

83 Supplemental Material SO5: Correlations with questionnaires
84 In line with the exploratory analysis plans in mentioned in our pre-registration, we extracted the

85  per-participant coefficients (fixed plus random effects) for (a) the effect of cue valence on responses
86  (Pavlovian bias), (b) the effect of stakes on accuracy, (c) the effect of valence on RTs (Pavlovian bias),
87 and (d) the effect of stakes on RTs. We then computed correlations of these coefficients with forward
88  memory span (Fitzpatrick et al., 2015), backwards memory span, the non-planning subscale of the
89 Barratt Impulsiveness Scale (Patton, Stanford, & Barratt, 1995), and the neuroticism subscale of the
90  neuroticism sub-scale of the Big Five Aspects Scales (DeYoung, Quilty, & Peterson, 2007). One might
91  plausibly hypothesize that impulsivity is related to the Pavlovian bias since many impulsive behaviors
92  can be conceptualized as automatic, cue-triggered behaviors. Hence, individuals high on impulsivity
93  might show stronger Pavlovian biases in responses and reaction times. Furthermore, one might
94  hypothesize that the phenomenon of choking under pressure arises from rumination and worrying, which
95  is typically increased in individuals scoring high on neuroticism (DeCaro, Thomas, Albert, & Beilock,
96  2011). Also, the effects of rumination on performance might be stronger in individuals with a low
97 working memory score (Beilock & Carr, 2005; Bijleveld & Veling, 2014; DeCaro et al., 2011). Hence,
98  individuals high on neuroticism and/or low on working memory span might show stronger effects of
99  stakes on behavior.

100 See Figures SO1 and S02 for scatterplots of all bivariate associations. None of the correlations

101  were significant, providing no evidence for the strength of the Pavlovian bias or the effect of stakes on

102 responses and RTs being related to either working memory span, impulsivity, or neuroticism.

103
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Figure SO1. Association of memory performance, impulsivity, and neuroticism with the valence and stakes effects on responses. Correlations
between the effect of valence on responses (A-D), reflecting Pavlovian biases, and the effect of stakes on accuracy (E-H) with (A/F)
forward working memory span, (B/F) backwards working memory span, (C/G) impulsivity (Barratt Impulsiveness Scale, non-planning
subscale) and (D/H) neuroticism. Black dots represent per-participant scores, the red line the best-fitting regression line, they grey shade
the 95%-confidence interval. None of the displayed correlations is significant at o = .05.
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Figure S03. Association of memory performance, impulsivity, and neuroticism with the valence and stakes effects on RTs. Correlations
between the effect of valence on RTs (A-D), reflecting Pavlovian biases, and the effect of stakes on RTs (E-H) with (A/F) forward working
memory span, (B/F) backwards working memory span, (C/G) impulsivity (Barratt Impulsiveness Scale, non-planning subscale) and (D/H)
neuroticism. Black dots represent per-participant scores, the red line the best-fitting regression line, they grey shade the 95%-confidence
interval. None of the displayed correlations is significant at o = .05.
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126 Supplemental Material SO6: Effect of stakes on RTs over time

127 In the results in the main text, we report linear associations between time on task (cue repetition,
128 trial number with blocks, trial number across blocks) and reaction time. All associations were non-significant.
129 A more sensitive approach to detect possible non-linear changes over time are so called additive models,
130 which model a time series as a mixture of smooth functions (i.e., thin plate regression splines) for each
131 condition, and allow to test whether (a) a given time series is significant different from a flat line, and (b)
132 whether the time series of different conditions are significantly different from each other (Baayen et al., 2017,
133 Wood, 2017). A smooth function regularizes a raw times series and suppresses high-frequency (i.e., trial-by-
134 trial) noise. Furthermore, it allows for non-zero auto-correlation between residuals, which are assumed to be
135  zero in linear models.

136 In order to test whether the effect of task conditions of stakes on RTs changed over time, we fit three
137 generalized additive mixed-effects models with the z-standardized trial-by-trial RT as dependent variable,
138 modelled as an effect of cue repetition (1-20) with separate time series for (a) each cue condition (Go-to-
139 Win, Go-to-Avoid, NoGo-to-Win, NoGo-to-Avoid), (b) for each stakes condition (high, low), or (c) the
140  interaction between congruency (congruent, incongruent) and stakes (high, low). We modeled the time course
141 of cue repetition as a factor smooth (which has a similar, but potentially non-linear effect as adding a random
142 intercept and a random slope) for each participant for each block, allowing for the possibility that condition
143 differences were different in different participants in different blocks (equivalent to a full random-effects
144 structure). We used a scaled ¢-distribution instead of a Gaussian distribution for the RT variable as it led to
145  lower AIC values. We also investigated whether fit further improved by adding an AR(1) auto-regressive
146 model, which was not the case. For all fitted models, We visually checked that residuals were approximately
147  normally distributed using quantile-quantile plots and whether auto-correlation was near zero using auto-
148  correlation plots (van Rij et al., 2019).

149 The model testing for differences between cue conditions suggested that RTs overall significantly
150 decreased over time in all conditions (see Table S10; Fig. SO3A). Further, RTs started to differ between cue
151 conditions from repetition 1 or 2 onwards (see Table S11). Overall, RTs were faster for responses to Win
152 than Avoid cues and faster for (correct) responses to Go cues than (incorrect) responses to NoGo cues.
153 Overall, RT differences between conditions persisted throughout the block.

154 The model testing for differences between stakes levels suggested again that RTs overall

155  significantly decreased over time in both conditions (Table S10; Fig. SO3B). Furthermore, throughout the


https://doi.org/10.1101/2023.12.26.573351
http://creativecommons.org/licenses/by/4.0/

156

157

158

159

160

161

162

163

164

165

166

167

168

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.26.573351,; this version posted December 27, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

STAKE MAGNITUDE IN PAVLOVIAN BIASES 9

block, RTs were slower for responses on high-stakes trials than for responses on low-stakes trials (Table
S11). This difference persisted throughout the block.

Finally, the model testing for differences between congruency conditions and stakes levels found
again a significant decrease in RTs over time (Table S10; Fig. SO3C). RTs were slower for responses to
incongruent than to congruent cues, and slower on high-stakes trials than on low-stakes trials. Importantly,
RTs were slower on high-stakes trials compared to low-stakes trials both for congruent and for incongruent
cues, similarly, although this differences tended to be bigger for incongruent trials. These differences
persisted throughout the task.

In sum, these results show that condition differences and differences between stakes in RTs emerge
on the very first trials (cue repetitions) of a task and persist until the end of a block, with little change in these

condition differences.

A. RT per cue condition over time B. RT per stakes over time C. RT per cue condition x stakes over time

0.704
0.651
_ 065 _
g 3]
@ @
7] w
£0.60 £0.60-
= =
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0.55
0.554
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Cue repetition Cue repetition Cue repetition
— Win Go High = High congruent
e A0 = = NoGo Low Low = == nCONgruent

Figure S03. Time course of RTs over cue repetitions within a block as predicted by a generalized additive mixed-effects
model, separated by conditions. Overall, RTs speed up over time. A. Differences between cue conditions as predicted by
the fit of a . RTs are significantly faster for responses to Win than responses to Avoid cues, and faster for (correct) responses
to Go cues than (incorrect) responses to NoGo cues throughout a block. B. Differences between stakes levels. RTs are
significantly slower on high-stakes trials compared to low-stakes trials throughout a block. C. Differences between stakes
levels separately per condition. Both for congruent and incongruent cues, RTs on high-stakes trials are significantly slower
than RTs on low-stakes trials. This difference tends to be larger for incongruent cues.

Parametric coefficient Smooth

Model (Linear change within condition) (non-linear change within each condition)
Cue conditions:

Go-to-Win #(3,0.103) = 115.249, p <.001 F(3.094, 3.788) = 27.370, p <.001
Go-to-Avoid 1(3, 0.103) =22.778, p < .001 F(1.000, 1.000) = 35.715, p <.001
NoGo-to-Win #(3, 0.103) = 8.036, p <.001 F(2.497,3.061) = 26.894, p <.001
NoGo-toAvoid (3, 0.103) = 12.887, p <.001 F(2.963, 3.629) = 1.530, p = .107
Stakes:

High #(3,0.107) = 122.148, p < .001 F(2.266, 2.746) = 35.926, p <.001
Low 1(3, 0.107) =-9.346, p < .001 F(2.857,3.478) = 24.505, p <.001
Congruency x Stakes:

Congruent /high #(3,0.104) = 108.940, p < .001 F(2.426, 2.973) = 30.546, p <.001
Congruent/ low (3, 0.104) =-4.957, p < .001 F(2.679, 3,284) =22.242, p < .001
Incongruent/ high 1#(3,0.104) = 15.148, p <.001 F(1.000, 1.000) = 44.597, p <.001
Incongruent/ low 1(3, 0.104) = 6.496, p < .001 F(1.947,2.381) = 15.505, p <.001

Table S10. Results from generalized additive mixed models (GAMMSs) with separate smooth per condition. The parametric term reflects a

linear change in time, while the smooth terms reflects any non-linear changes. Both add up to the total term.
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Windows of
Parametric coefficient Smooth significant
Model (Intercept difference) (non-linear differences) differences
Cue conditions:
G2W - G2A #(3, 0.096) = 23.320, p < .001 F(3.779, 4.618) = 5.052, p < .001 1-20
G2W - NG2W #(3,0.081) = 8.383, p <.001 F(1.000, 1.000) = 0.606, p = .436 0-20
G2W - NG2A #(3, 0.081) = 12.400, p < .001 F(3.255,3.933) = 14.710, p <.001 2-20
G2A - NG2W #(3,0.108) = -9.870, p < .001 F(2.587,3.168) = 5.080, p = .001 2-20
G2A - NG2A 1(3,0.112) = 3.234, p = .001 F(2.878,3.476) = 7.412, p < .001 0-2,5-16
NG2W - NG2A #(3,0.098) = 6.939, p <.001 F(3.376,4.042) = 11.760, p < .001 0-1,3-20
Stakes:
High — Low #(3,0.107) = -9.317, p < .001 F(1.424,1.706) = 1.715, p = .278 0-20
Congruency x Stakes:
Cong/High — Cong/Low 1(3,0.081) = -4.997, p < .001 F(1.000, 1.000) = 0.039, p = .844 0-20
Incong/High — Incong/Low | #(3,0.108) =-8.337, p <.001 F(1.000, 1.000) = 0.369, p = .543 0-20
Cong/High — Incong/High 1(3,0.999) = 15.430, p < .001 F(1.711, 2.085) =2.757, p = .061 0-20
Cong/Low — Incong/Low #(3,0.102) = 11.470, p < .001 F(1.000, 1.000) =5.196, p = .023 0-20

Table S11. Results from generalized additive mixed models (GAMM:s) with difference smooths between two conditions. The parametric term
reflects a linear difference between conditions, while the smooth terms reflects any non-linear difference. Both add up to the total term. The
time window of significant condition differences is automatically returned by the model.
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189 Supplemental Material SO7: Reinforcement-learning drift diffusion
190 models
191

MoO1 Mo2 Mo3 Mo4 MO5 MO06 Mo7 Mo M09 M10 Mi1 Mi12
WAIC | 14501 9284 8011 7029 7023 6848 7082 6996 6821 7025 6843 6682
LOO-IC | 14365 8970 7611 6734 6656 6512 6722 6706 6420 6646 6494 6278
a | 2.011 1.377 1.466 1.442 1.409 1.430 1.444 1.408 1.379
[1.97, [1.372, [1.449, [1.428, [1.397, [1.417, [1.430, [1.396, [1.367,
2.02] 1.404] 1.482] 1.456] 1.421] 1.444] 1.457] 1.421] 1.390]
OLow 1.406 1.375 1.410
[1.393, [1.361, [1.397,
1.420] 1.389] 1.424]
OHigh 1.479 1.429 1.475
[1.466, [1.414, | [L.462,
1.492] 1.444] 1.488]
7 | 0.128 0.234 0.228 0.232 0.233 0.234 0.231 0.233
[0.119, [0.226, [0.220, [0.224, [0.226, [0.227, [0.224, [0.225,
0.136] 0.241] 0.236] 0.239] 0.240] 0.241] 0.239] 0.240]
TLow 0.237 0.243 0.238 0.244
[0.230, [0.236, [0.231, [0.237,
0.245] 0.250] 0.245] 0.251]
THigh 0.249 0.247 0.249
[0.242, [0.240, [0.241,
0.256] 0.254] 0.256]
THigh/Cong 0.266
[0.260,
0.273]
THigh/Incong 0.264
[0.256,
0.271]
£ | 0.061 0.259 0.251 0.250 0.264 0.249 0.266 0.250 0.264 0.277
[0.058, [0.251, [0.244, [0.243, [0.257, [0.243, [0.259, [0.243, [0.257, [0.270,
0.063] 0.267] 0.258] 0.257] 0.270] 0.256] 0.273] 0.256] 0.271] 0.284]
Pwin 0.318
[0.308,
0.328]
Pavoid 0.167
[0.161,
0.172]
Prow 0.268
[0.262,
0.274]
Pigh 0.247
[0.241,
0.253]
ome | 3.617 1.358 1.542
[3.558, [1.310, [1.483,
3.675] 1.407] 1.602]
Owin 2.086 2.100 2.037 2.041 2.159 2.026 2.130 2.074 1.981
[2.018, [2.032, [1.890, [1.971, [2.091, [1.957, [2.061, [2.005, [1.910,
2.152] 2.167] 2.105] 2.112] 2.228] 2.094] 2.199] 2.142] 2.053]
OAvoid 0.796 0.803 0.736 0.763 0.867 0.727 0.831 0.774 0.684
[0.757, [0.765, [0.698, [0.726, [0.827, [0.691, [0.791, [0.736, [0.645,
0.834] | 0.841] 0.774] 0.799] 0.908] | 0.764] 0.871] 0.813] 0.723]
Oslope 6.823 6.283 6.093 6.149 6.191 6.102 6.109 6.218 6.151 6.219 6.273
[6.354, [5.872, [5.718, [5.773, [5.810, [5.734, [5.741, [5.834, [5.777, [5.834, [5.896,
7.267] 6.681] 6.446] 6.508] 6.550] 6.458] 6.464] 6.590] 6.510] 6.586] 6.633]
OHigh -0.128 -0.054 -0.075
[-0.148, [-0.076, | [-0.096,
-0.108] -0.033] | -0.054]
€ 0.100 0.102 0.121 0.121 0.120 0.120 0.122 0.120 0.121 0.120 0.119
[0.088, [0.092, [0.110, [0.109, [0.108, [0.109, [0.110, [0.109, [0.109, [0.109, [0.108,
0.110] 0.112] 0.131] 0.131] 0.130] 0.130] 0.132] 0.130] 0.131] 0.131] 0.129]

Table S12. Mean [25" percentile, 75" percentile] of the posterior densities of group-level parameters. o = decision threshold, T = non-

decision time, 3 = starting point bias, § = drift rate, € = learning rate. WAIC and LOO-IC are reported as measures of model fit, with

smaller values indicating a better fit.
192
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Posterior densities of group-level parameters M12
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Figure SO4. Posterior densities of the group-level parameters of the winning model M12. o. = decision threshold, T = non-
decision time, § = starting point bias, 6 = drift rate, ¢ = learning rate.
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Figure SO5. Posterior predictive checks for data simulated from the winning model M12. A. Both in empirical data (left
panel) and data simulated from the winning model M 12 (right panel), (simulated) participants performed more Go responses
to Go than NoGo cues (learning) and more Go responses to Win than Avoid cues (Pavlovian bias). Simulated data matched
the empirical data pattern. B. Both in empirical and simulated data, (simulated) participants showed faster responses to Go
than NoGo cues and to Win than Avoid cues. Simulated data matched the empirical data pattern. C. Both in empirical and
simulated data, (simulated) participants performed more accurately for congruent than incongruent cues, with no difference
between high and low stakes. D. Both in empirical and simulated data, (simulated) participants performed faster for
congruent than incongruent cues and under low compared to high stakes. In empirical participants, the stakes effect was
stronger for incongruent than congruent cues, but this difference was somewhat underestimated by the winning model M12.
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Parameter recovery M12
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Figure S06. Parameter recovery results for the winning model M12. The correlation between generative and fitted
parameters is overall very high. Recovery is overall very high. It is least optimal (but still strongly significant) for dsiope and
€, which trade off against each other (see Fig. 4D main text). a = decision threshold, T = non-decision time, = starting point

bias, § = drift rate, € = learning rate.
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Figure SO7. Forward and inverse confusion matrices from model recovery of all models and of nested sub-versions of the
winning model M12. A. The forward confusion matrix displays the conditional probabilities that model Y is the best fitting
model (columns) if model X (rows) is the underlying generative model used to simulate a given data set (identical to Fig.
4E main text). Rows sum to 100%. On-diagonal probabilities indicate the probability of reidentifying the generative model.
All on-diagonal probabilities are significantly above chance (range 0.13-0.98; 95th percentile of permutation null
distribution: p = 0.10). Especially recovery for M12 is exceptionally high (98%). B. The inverse confusion matrix displays
the conditional probabilities that model X is the generative model (rows) if model Y (rows) is the best fitting model for a
given data set. Columns sum to 100%. On-diagonal probabilities indicate the probability of reidentifying the generative
model. All on-diagonal probabilities are significantly above chance (range 0.30-1.00; 95th percentile of permutation null
distribution: p = 0.10). C. Forward confusion matrix only for the five models that are nested sub-versions of M12 (i.e., M1,
M2, M4, M6, M12). Recovery is overall much higher (range 0.44-0.99; 95" percentile of permutation null distribution: p =
0.22). D. Inverse confusion matrix only for the five models that are nested sub-versions of M12. Recovery is overall much
higher (range 0.58-0.99; 95" percentile of permutation null distribution: p = 0.22).
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