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Between brain areas, axonal projections carry
channels of information that can be mixed to vary-
ing degrees. Here, we assess the rules for the net-
work consisting of the primary visual cortex and
higher visual areas (V1-HVA). We use large field-
of-view two-photon calcium imaging to measure
correlated variability (i.e., noise correlations, NCs)
among thousands of neurons, forming over a mil-
lion unique pairs, distributed across multiple corti-
cal areas simultaneously. The amplitude of NCs is
proportional to functional network connectivity, and
we find that they are robust, reproducible statistical
measures, and are remarkably similar across stim-
uli. We used these NCs to measure the statistics
of functional connectivity among tuning classes of
neurons in V1 and HVAs. Using an unbiased clus-
tering approach, we identify that there are six dis-
tinct tuning classes found in V1 and HVAs. We
find that NCs are higher between neurons from the
same tuning class, both within and across cortical
areas. Thus, in the V1-HVA network, mixing of chan-
nels is avoided. Instead, discrete channels of visual
information are broadcast within and across corti-
cal areas, at both the micron and millimeter length
scales. This principle for the functional organiza-
tion and correlation structure at the individual neu-
ron level across multiple cortical areas can inform
and constrain computational theories of neocortical
networks.

Correspondence: sIs@ucsb.edu

Introduction

Neurons have characteristic preferences, or tuning, and
their activity is transmitted via axonal projections to
other brain areas. In the early stages of visual process-
ing, visual information can be preserved. For example,
the retina-to-lateral geniculate nucleus (LGN) network
tends to preserve unmixed channels, by ensuring that
axons from retinal ganglion cells with similar tuning tend
to converge on individual LGN neurons (Liang et al.,
2018). By contrast, the LGN-to-primary visual cortex
(V1) network famously mixes channels to give neurons
receptive fields with both dark-sensing and light-sensing
subregions, and thus robust orientation tuning (Hubel
and Wiesel, 1962). That said, discrete visual informa-

tion can be transmitted from the retina to cortex. For
example, when direction-selective neurons in the retina
are genetically ablated, there is a decrease in direction-
selective neurons (Rasmussen et al., 2020).

In the visual cortical system in mice, the primary vi-
sual cortex (V1) and its projections to multiple higher vi-
sual areas (HVAs) span millimeters (Wang and Burkhal-
ter, 2007). Local networks within V1 can have pre-
cise local (< 50 microns) cellular-resolution functional
connectivity (Ko et al., 2011). Studies of longer-range,
millimeter-scale networks typically lack cellular reso-
lution, but there are general biases observed. Neu-
rons in V1 and HVAs respond to diverse visual stim-
uli (Yu et al., 2022; Vries et al., 2020) and are sen-
sitive to a broad range of features including orienta-
tion and spatiotemporal frequencies (Andermann et al.,
2011; Marshel et al., 2011). Although individual V1
neurons broadcast axonal projections to multiple HVAs
(Han et al., 2018), the spatiotemporal frequency prefer-
ences of these feedforward projections generally match
those of the target HVAs (Glickfeld et al., 2013; Han
and Bonin, 2023). Feedback connections from HVAs
carry frequency-tuned visual signals as well (Huh et al.,
2018). Thus, there are HVA-specific spatiotemporal bi-
ases, but cellular resolution, millimeter-scale principles
for cortical wiring remain to be elucidated.

In the current study, we investigated the degree of dis-
creteness of the V1-HVA functional networks in direc-
tion and frequency information processing, by measur-
ing the noise correlations (NC, also called spike count
correlation Vinci et al. (2016)) between functional tuning
groups of neurons. Functional tuning groups were de-
fined using an unbiased clustering approach (Han et al.,
2022; Yu et al., 2022; Baden et al., 2016). Large field-of-
view (FOV) calcium imaging enables us to densely sam-
ple across millimeter cortical space, which allows us
to simultaneously observe large and dense samples of
neurons in these tuning groups to analyze NCs within-
and-across cortical areas (Yu et al., 2021; Stirman et al.,
2016). NCs are due to connectivity (direct or indirect
connectivity between the neurons, and/or shared input),
and thus provide a trace of connectivity (Cohen and
Kohn, 2011; Vinci et al., 2016; Snyder et al., 2015). In
particular, the connectivity that influences NCs is effec-
tive in vivo, during normal sensory processing, some-
thing that is not verified with purely anatomical mea-
sures. Activity-based estimates of neuronal networks
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can provide higher fidelity measures than anatomical-
based studies (Randi et al., 2023). We find that NCs
are a reliable measure at the population level. We
also find that neurons can be categorized into six func-
tional groups, and NCs are higher within these groups,
both within and across cortical areas, indicating dis-
crete channels in the network to preserve information.
Moreover, we find that naturalistic videos draw upon the
same functional networks, and modeling suggests that
recurrent connectivity is critical for stabilizing these net-
works.

Results

Visual cortical neurons form six tuning groups

To measure neuronal activity, we used multi-region pop-
ulation calcium imaging of L2/3 neurons in V1 and four
HVAs (lateromedial, LM; laterointermediate, LI; antero-
lateral, AL; and posteromedial, PM) using a multiplex-
ing, large field-of-view two-photon microscope with sub-
cellular resolution developed in-house (Stirman et al.,
2016) (Figure 1A). Mice expressed the genetically en-
coded calcium indicator GCaMP6s (Madisen et al.,
2015; Chen et al., 2013) in cortical neurons. We lo-
cated the V1 and HVAs of each mouse using retino-
topic maps obtained by intrinsic signal optical imaging
(Marshel et al., 2011; Smith et al., 2017) (Figure S1A).
We imaged neurons in two to four cortical areas simul-
taneously (Figure 1A), while mice viewed stimuli on a
display system. We typically imaged neurons in V1 and
one or more HVAs. Up to 500 neurons (V1: 129 + 92;
HVAs: 94 + 72; mean = SD.) were recorded per imag-
ing region (500 x 500 pm?). The imaging regions were
matched for retinotopy so that the neurons in the si-
multaneously imaged areas had overlapping receptive
fields (RFs). Calcium signals were used to infer proba-
ble spike trains for each neuron, as our previous study
(Yu et al., 2022). We mapped RFs for individual neurons
and populations using small patches of drifting gratings
(Figure S1B, C). Neurons in HVAs (LM, AL, PM and
LI) had significantly larger RFs than V1 neurons (Fig-
ure S1D). Population RFs for a 500 x 500 um? imaging
region of HVAs covered significantly larger portions of
visual space than that of V1 (Figure S1D), as expected
given their differing magnification factors (Schulz et al.,
2015). The overlap of population RFs confirmed that
simultaneously imaged cortical areas (V1 and HVAs),
each containing ~102 neurons, responded to stimuli in
the same region of the stimulus display system (Figure
S1C). These experiments were repeated in 24 mice for
a total of 17,990 neurons and noise correlations were
measured for a total of 1,037,701 neuron pairs (Figure
T1).

Mouse V1 and HVA neurons exhibit diverse tuning
preferences (i.e., biases) to drifting grating stimuli, in
terms of spatiotemporal preferences and sharpness of
orientation and direction tuning (Marshel et al., 2011;
Andermann et al.,, 2011; Vries et al., 2020). Previ-
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Figure 1. Functional groups of mouse visual neurons.

(A) Diagram of multi-region two-photon imaging of mouse V1 and HVAs, using
a custom wide field-of-view microscope. Example imaging session of the simul-
taneous recording session of V1, LM, AL, and PM. Blue and orange square indi-
cate a 500 um?. (B) Example responses from two neurons (mean calcium trace)
to drifting gratings with eight directions at night SF-TF frequencies. (C) The
mean correlation coefficients of the center of each class (center in PC space)
between GMMs of 10 permutations of a random subset of data. (D) The con-
fusion matrix shows the joint probability of a neuron is classified as class A in
GMMs of 90% random subset of data (horizontal) and is classified as class B
in GMMs with the full data set (vertical). The diagonal indicates the probability
of neurons that are classified in the same class. The confusion matrix was gen-
erated by averaging a joint probability of 10 permutations. (E) Tuning groups.
Column 1, the fraction of neurons in different SF-TF groups. Column 2, the
characteristic SF-TF responses of each tuning group. Column 3, speed tuning
of tuning groups. Column 4, distribution of cells’ orientation selectivity index
(OSI) and direction selectivity index (DSI). The number of neurons belonged to
the six tuning groups combined: V1, 5373; LM, 1316; AL, 656; PM, 491; LI, 334.
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ous studies suggested that the projection from V1 to
HVAs matches the spatiotemporal preferences of the
target HVAs (Glickfeld et al., 2013). We sought to deter-
mine whether this was a general principle, that extended
across V1 and HVAs. We recorded neuronal responses
from V1 and multiple HVAs (LM, LI, AL, and PM) to sine-
wave drifting grating stimuli with various spatiotemporal
properties (8 directions x 3 spatial frequencies x 3 tem-
poral frequencies for a total of 72 conditions; Figure 1B).
HVAs exhibited similar responsiveness and reliability to
the 72 different parameterized drifting gratings. V1 and
LM were only marginally more reliable than other ar-
eas (Figure S1E). Neurons were partitioned into 65 tun-
ing classes using an unbiased Gaussian Mixture Model
(GMM) (Figure S1F, S2). This GMM classification was
reliable, in that the center of the Gaussian profile of each
class was consistent among GMMs of random subsets
of neurons (Figure 1C). Neurons were consistently clas-
sified into the same class (Methods; Figure 1D).

To examine the spatiotemporal frequency selectivity
of HVAs, we manually partitioned the 65 GMM classes
into six spatial frequency (SF) - temporal frequency (TF)
selective groups (Figure 1E). Groups 1, 2, and 3 all
prefer low TF (1-2 Hz), and prefer low SF (0.02 cpd),
medium SF (0.05 cpd), and high SF (0.19 cpd) respec-
tively. Groups 4, 5, and 6 all prefer high TF (8 Hz) and
prefer low SF, medium SF, and high SF respectively.
Group 4 (low SF, high TF) was the only group that ex-
hibited clearly increasing responses to the drift speed
of the grating stimulus (drift speed = TF/SF, and is mea-
sured in deg/s). These groupings were robust and reli-
able (Figure S1G,H). While all visual areas had a similar
fraction of neurons tuned to low TF and low SF (Group
1), fractions in other groups varied by area. AL had a
larger fraction of neurons tuned to high TF, and low SF
(Groups 4) (Figure 1E). PM and LI had a larger frac-
tion of neurons tuned to high SF and low TF (Groups
3) (Figure 1E). Overall, there is a trend of increasing of
preferred TF from the posterior-medial to the anterior-
lateral visual cortex, and a trend of increasing of pre-
ferred SF from the anterior to the posterior visual cortex
(Figure S3A, B).

Neurons in all six groups exhibited orientation and
direction selectivity. The preferred directions of neu-
rons were evenly distributed in V1 and HVAs, except
high SF groups (Group 3 and 6) of AL, PM, and LI bi-
ased to cardinal directions (Figure S3C). The unbiased
GMM approach revealed that the orientation selectiv-
ity index (OSI) and direction selectivity index (DSI) of
visual neurons were jointly modulated by SF and TF.
Neurons tuned to high SF and low TF (Group 3) exhib-
ited lower OSI in all tested areas than all of the other
groups (Group 3: mean OSI = 0.6; other groups ranged
from 0.71 —0.80; p < 0.0001, one-way ANOVA with Bon-
ferroni correction; Figure 1E). Neurons tuned to high
TF and medium-high SF (Groups 5 and 6) exhibited
lower direction selectivity than other groups (Group 5,
6, mean DSI 0.38; other groups, mean DSI 0.45 - 0.54;
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p < 0.0001, one-way ANOVA with Bonferroni correction;
Figure 1E).

NCs are robust measurements of functional net-
works

A unique aspect of this data set is the scale of the NC
measurements, which allows us to measure NCs with
individual neuron precision within dense local networks
and over millimeter length scales, in awake mice. Pio-
neering work in this area focused on local populations,
typically less than 1 mm across (Ko et al., 2011; Harris
and Mrsic-Flogel, 2013; Lee et al., 2016; Weriz et al.,
2015) or electrode studies over long distances with few
neurons in each location (Clay Reid and Alonso, 1995;
Siegle et al., 2021). To investigate the V1-HVA func-
tional network, we computed the NCs of pairs of neu-
rons within individual cortical areas (within-area NC),
and NCs for pairs of neurons where the two neurons are
in different cortical areas (inter-area NC) (Figure 2A).
NCs are computed from the residual activity of individ-
ual neurons after subtracting the expected neuron firing
on nominally identical trials. In this section, we evalu-
ated the fidelity of our NC measurements. We consid-
ered potential measurement noise due to the impreci-
sion of spike inference and the finite number of trials.

We first evaluated the accuracy of NC calculations
using inferred spikes from calcium imaging. We char-
acterized the accuracy of spike inference using previ-
ously published data of simultaneous two-photon imag-
ing and electrophysiological recording of GCaMP6s-
positive neurons from mouse V1 (Chen et al., 2013).
Consistent with a previous benchmark study on spike
train inference accuracy (Theis et al., 2016), we found
that the spike train inference methods used in the cur-
rent study recovered 40-70% of the ground truth spikes
(Figure S4A). We found that a similar fraction of spikes
were missing regardless of the inter-spike interval. Nev-
ertheless, the inferred spike train was highly correlated
with the true spike train (Figure S4A; linear correlation,
r = 0.80 + 0.03 (n = 6)). Computing correlations be-
tween pairs of neurons using their inferred spike trains
accurately reproduced the true correlation values (Fig-
ure S4B; linear correlation, r = 0.7). We further exam-
ined the fidelity of correlation calculations using mod-
ified spike trains that are missing spikes. We exam-
ined randomly deleting spikes, deleting isolated spikes,
or deleting spikes within bursts (Figure S4D; Methods).
We found that at the 1 s time scale, correlation cal-
culations were tolerant to these spike train perturba-
tions. The fidelity of correlation computations were >0.6
with up to 60% missing spikes (Figure S4E; Methods).
Thus, with conventional spike inference accuracy, about
80% variance of the true correlation is recovered (Fig-
ure S4E). Thus, NCs are a robust measurement even
with imperfectly inferred spike trains.

Next, we evaluated the robustness of NC measure-
ments, given the finite number of trials that are feasible
to obtain. We computed NCs for both within-area neu-
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ron pairs and inter-area neuron pairs (Figure 2A). NCs
were computed using spike counts within 1 s bins, sim-
ilar to previous work with electrophysiology (Cohen and
Kohn, 2011; Smith and Sommer, 2013). Although both
within-area and inter-area NCs had wide distributions
(range: -0.2 — 0.6). The mean NCs across a population
were positive and at least five times larger than con-
trol data, which are NCs computed after shuffling the
trials (5 — 20-fold, 25 — 75% quantile; Figure 2B). The
estimation of the population mean NC converges fast
with increasing numbers of neurons, as suggested by
both simulation and experimental data (e.g., the mar-
gin of error at 95% CI for mean NC is 0.008 for 100
neuron pairs, Figure 2C). While the population-level NC
calculations are reliable, the NC estimation of individ-
ual neuron pairs is noisier due to the limited number of
trials, albeit positively correlated (Figure 2D). A linear
model explains about 53 + 24 % of the variance be-
tween NCs for individual neuron pairs computed using
different random subsets of trials. In summary, this ev-
idence indicates that NCs can be accurately measured
at the population level with our large FOV calcium imag-
ing methods, despite imperfect spike train inference and
a finite number of trials.

Tuning similarity is a major factor in the V1-HVA
functional network

Having established that NC measurements were reli-
able and robust, we examined potential NC-regulating
factors, including firing rate, the physical distance be-
tween the neurons (laterally, across the cortex), signal
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correlation (SC, the similarity between two neurons’ av-
erage responses to stimuli), and RF overlap. We as-
sessed the contributions of individual factors using a lin-
ear models. We found that both within- and inter-area
NCs are similarly modulated by the aforementioned fac-
tors (Figure 3A; r? of linear regression model). SC is
the most pronounced factor that explains about 10% of
the variance of within-area NCs, and about 5% of the
variance of inter-area NCs (Figure S5A). Fraction RF
overlap contributes about 6% and 3% variance of within-
and inter-area NCs, respectively (Figure S5B). The fir-
ing rate explained about 2% of the variance of within-
and inter-area NCs (Figure S5C). Thus SC, RF overlap,
and firing rate positively regulate both within and inter-
area NC, with SC providing the strongest predictor.

We then evaluated whether NCs are modulated by
tuning similarity independent of RF overlap. In the sub-
set of orientation-selective neurons, both within- and
inter-area NCs were significantly modulated by orienta-
tion tuning selectivity. That is, neuron pairs that shared
the same preferred orientation exhibited higher NCs
(Figure S5D). NCs of a subset of neurons with non-
overlapping RFs were significantly higher when the neu-
rons shared the same preferred orientation (Figure 3B;
t-test, p < 0.05 for V1, LM and AL neuron pairs, insuffi-
cient data for PM and LI). This result confirms that the
connectivity between neurons is modulated by tuning
similarity (SC) independent of RF overlap, over millime-
ter distance scales.

Overall, about 20% of the variance of within-area
NCs, and 10% of the variance of inter-area NCs are ex-
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plained by the aforementioned factors jointly (Figure 3C;
r? of multi-linear regression model). Although inter-area
NCs have a smaller mean and variance, it is less pre-
dictable by known factors (within-area NCs pooled over
all tested area 0.012 £ 0.052, inter-area NCs between
V1 and all tested HVAs 0.0063 * 0.04; both t-test and
F-test p < 10#). In an expansion of prior work on local
functional sub-networks (Lee et al., 2016; Wertz et al.,
2015; Ko et al., 2011; Harris and Mrsic-Flogel, 2013),
we find that signal correlation is the strongest factor
regulating both within-area and inter-area NC networks,
suggesting that neurons exhibiting similar tuning prop-
erties are more likely to form functional sub-networks
across a broad spatial scale, spanning millimeters in the
mouse V1-HVA network.

Neurons are connected through functionally dis-
crete channels

Seeing as HVAs exhibited biased SF-TF selectivity (Fig-
ure 1E), and after finding that tuning selectivity (SC) is
a major factor for functional connectivity even across
the millimeter length scale (Figure 3A), we assessed
the precision of this network. We performed additional
analysis to determine whether the ST-TF biases in HVAs
could be due to simple, weak biases in the NC network.
Alternatively, there could be precise discrete channels
of connectivity in the V1-HVA network to preserve infor-
mation among similarly tuned neurons. We found evi-
dence for this latter situation: discrete channels. More-
over, we found that the discrete channels consist of a
greater number of neuron pairs with high NCs, rather
than a small number of neuron pairs with very high NCs.

For this analysis, we focused on neuron pairs with
high NCs, which we defined as NCs > 2.5 times the
standard deviation of trial shuffled NCs for the popula-
tion (Figure 4A). We focused on these high NC pairs,
because they can represent high fidelity communication
channels between neurons. Within each SF-TF group,
for both V1 and HVAs, about 10-20% of neuron pairs ex-
hibited high NCs, in contrast to 5% for inter SF-TF group
connections (Figure 4A, B). The fraction of pairs that ex-
hibit high NCs is relatively uniform across tuning groups
and HVAs with a few exceptions (Figure 4B). For exam-
ple, in HVA PM group 3 contains a higher fraction of high
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fidelity connections than the other HVAs. Overall, these
results show that mixing between groups is limited, and
instead group-specific high-NC sub-networks exist be-
tween neurons across millimeters cortical space.

To determine whether it is the number of high NC
pairs or the magnitude of the NCs, we performed fur-
ther analysis. Prior findings from studies of axonal pro-
jections from V1 to HVAs indicated that the number of
SF-TF-specific boutons —rather than the strength of
boutons— contribute to the SF-TF biases among HVAs
(Glickfeld et al., 2013). Though the functional connectiv-
ity is not completely defined by the feedforward axonal
projections from V1 (Huh et al., 2018), this number vs.
strength question is one that we can address with our
data set. We found that the biased representation of
SF-TF among HVAs is linearly related to the number of
neuron pairs with high NCs (Figure 4C). That is, there
are more high NC pairs that are in-group. By contrast,
the fraction of pairs with high NCs does not account the
SF-TF biases of HVAs (Figure 4D). That is, the in-group
pairs do not tend to have higher NCs. Thus, the biases
in SF-TF are likely related to the abundance of SF-TF-
specific connections, but not the strength of the connec-
tions.

To this point, we have focused on the six SF-TF
groups. The evidence supports group-specific channels
among these neurons. However, these six groups origi-
nated with 65 classes from data-driven GMM clustering,
which were then manually collected into the six SF-TF
groups (Figure 1). The trends we see for groups may
reflect general SF-TF biases. In that case, we would
expect that the in-class NCs would exhibit similar dis-
tributions of NCs as the in-group NCs. However, there
might be further precision in the specific channels not
captured by the SF-TF groups. A hint towards that can
be seen in the fact that orientation tuning can modulate
NCs (Figure 3), because some of the 65 GMM classes
differ by preferred orientation (Figure S2). Indeed, we
found that when we plotted the NC distribution for in-
class neuron pairs and compared it to the distribution
for in-group neuron pairs, we found a pronounced posi-
tive tail for the in-class distribution (Figure 4E). Thus the
GMM classes provide relevant, granular labels for neu-
rons, which form functional sub-networks with discrete
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inter-group pairs. Neurons within a group have a larger fraction of neuron pairs exhibiting high-fidelity connections (all comparisons, t-test, p < 0.0001). Distribution
generated by 100 permutations. (C) The normalized number of tuning group-specific high-fidelity connections is linearly related to the fraction of SFTF groups in each
HVA (r? = 0.9; p < 0.0001). The number is normalized to the total neuron pairs for each area. Right, a diagram indicates area-specific SFTF biases match the number
of high-fidelity functional connections. (D) The average NC value for each tuning group is not linearly related to the fraction of SFTF groups in each HVA (2 = 0.1; p
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channels, which are more precise than predicted from
simpler SF-TF biases or groups.

The GMM classes are widely distributed in all tested
areas (Figure S7B). We constructed an inter V1-HVA
connectivity matrix for the 65 classes (Figure 4F). The
connection weight is defined by the fraction of pairs
with high NCs. To investigate the modular struc-
ture of this network, we performed community detec-
tion analysis using the Louvain algorithm (Rubinov and
Sporns, 2010). This analysis assigned densely con-
nected nodes to the same module (Figure 4F). Over-
all, the connectivity matrix was split into four commu-
nity modules (Figure 4F; S7C). Interestingly, the cor-
responding node in V1 and HVAs for each module ex-
hibited similar direction and SF-TF preferences (Figure
4F). For example, the module 2 nodes exhibited nar-
row vertical direction tuning and preferred high SF and
low TF. Module 1 exhibited high SF preference without
direction bias. Area differences in the characteristic tun-
ing selectivity of each module are small, suggesting that
the GMM class channels are common across the V1-
HVA network. This is consistent with the overall broad-

Yu etal. | Broadcast channels

casting projection structure of V1 neurons (Han et al.,
2018).

In summary, V1 and HVA neurons can be classified
by their selectivity to oriented gratings, and they form
precise, discrete channels or sub-networks. These sub-
networks of neuron pairs with high NCs preserve selec-
tivity by limiting inter-channel mixing. The organization
of V1-HVA sub-networks exhibited properties that are
consistent with that of V1-HVA feedforward projections
in that the number of high-fidelity connections, rather
than the strength of the connections, accounted for SF-
TF biases among HVAs. Moreover, the precision of
these networks extends beyond prior observations of
general SF-TF biases, to include orientation and direc-
tion tuning.

Functional connectivity is stable across stimuli

Functional connectivity is dynamic and transient, which
complicates its relationship with structural (i.e., anatom-
ical) connectivity, yet can provide more accurate predic-
tions for network dynamics than the latter (Randi et al.,
2023). We performed additional analysis to determine
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whether the NC-based functional connectivity analysis
we performed above provides fundamental insights into
neuron circuits beyond a stimulus-specific transient. We
compared NC measurements in response to drifting
gratings (INCyrq¢) to NC measurements in response
to naturalistic videos (INC),q¢). This analysis was re-
stricted to the subset of neurons that responded to both
types of stimuli in a separate set of experiments.

So far, we have shown that SC (i.e., neuron tuning
similarity) is the best predictor for NCs. However, a
neuron pair that shares a high SC to drifting gratings
does not guarantee a high SC to naturalistic videos
(corr(SCgyrat, SCrat) = 0.084 £0.065). Thus, it is rea-
sonable to expect that NCs in response to gratings do
not predict the NCs in response to naturalistic videos.
However, we were surprised to find that the correlation
between NC to the two stimuli is significantly higher than
that of SC (corr(NCyrat, NChrat) = 0.2240.13; Figure
5A). Thus, NC across stimuli is more predictable than
SC across stimulus types. To our knowledge, this is the
first time this has been reported.

We used SC to natural videos (SC),4:), and gratings
NCyraqt to predict NCi,q¢ Using linear regressions. Both
predictors are positively related to the NC,,4; (Figure
5B). We found that NC to gratings outperformed SC to
naturalistic videos in predicting NC to naturalistic videos
(t-test, p < 0.0001; Figure 5C). Meanwhile, combining
both predictors almost linearly adds up the prediction
power of the two factors in linearly predicting NC to
natural videos (Figure 5C), suggesting that the cross-
stimulus NC predictor adds an independent dimension
to the SC predictor. These results are evidence that NC-
assessed functional connectivity reflects a fundamental
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aspect of the architecture of neuronal circuitry that is
independent of visual input.

Recurrent connection contributes to the stability of
NC network

Surprised by the cross-stimulus stability of the NC-
based functional connectivity of the visual cortical net-
work among V1 and HVAs, we went on to investigate
what could be an underlying mechanism. NCs can be
due to both shared input and direct/indirection wiring.
Indeed, using a simple model with two leaky integrate-
and-fire (LIF) neurons, we found that the NC is positively
regulated by a larger fraction of shared input as well as
by the increasing recurrent connection strength (Figure
6A, B).

We then asked how the two sources contribute to
the cross-stimulus stability of the NC functional network
using LIF neuronal network simulations (Figure 6C).
The simulated neuronal network contained 80 excitatory
neurons and 20 inhibitory neurons that are randomly
connected. The input layer contains 1000 independent
Poisson spiking neurons. The network parameters are
determined based on previous work (Song et al., 2000)
and all the simulations generated comparable LIF firing
rates (4-6 Hz), as well as NCs (population mean: 0.05-
0.25) and SC values (population mean: 0.01-0.15).

In the first set of simulations, the feedforward (FFD)
connection from the input layer to the LIF network is ran-
dom. Increasing recurrent connection strengths (rang-
ing from 0.05 to 0.3) generated NC-based networks with
higher cross-stimulus stability (Figure 6D). A recurrent
connection strength of 0.2 best reproduced the mouse
data. In the second batch of simulations, we fixed the
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the same condition.

recurrent connection strength to 0.2 but manipulated the
input FFD connection structure ranging from random to
increasingly wider bell shapes (Figure 6E). This means
that the local neurons receive increasingly similar FFD
input. We found that increasingly similar local FFD input
does not lead to higher NC stability, but does increase
SC similarity across stimuli (Figure 6E). Also, the ran-
dom FFD input connection structure (0.18 FFD, red) re-
produced the experimentally observed NC network the
best (Figure 6E).

Thus, the LIF simulations showed that although both
shared input and recurrent connections contributed to
the NC, the recurrent connections are critical for gen-
erating the observed cross-stimulus stability of the NC
functional network. Moreover, the simulations sug-
gested that the network can receive relatively random
FFD input.

Discussion

We used large scale two-photon calcium imaging
across cortical areas to show that NC-based as-
sessments of functional connectivity exhibited tuning-
specific organization with single neuron precision,
across millimeter length scales. This connectivity is
consistent with the axonal projection patterns obe-
served in the mouse visual cortex (Glickfeld et al., 2013;
Han et al., 2018), but goes further, to include the pre-
cise GMM classes we found— 65 different classes in re-
sponse to grating stimuli. Moreover, we found that NC-
based networks are consistent across stimulus classes.
Thus, V1 broadcasts high-fidelity channels of informa-

Yu etal. | Broadcast channels

tion to HVAs. The projections preserve fidelity by min-
imizing mixing among channels, i.e., tuning groups or
classes.

Multi-scale functional connectivity and structural
connectivity

To better understand this aspect of network organiza-
tion, we examined the connectivity of the nervous sys-
tem at multiple scales (Sporns, 2016), and considered
the coefficient of variance (CV, = standard deviation /
mean) at each level and process (Figure 7). At the small
scale, neurons interact through the release of neuro-
transmitters, which can affect ion channel activity. At
the mesoscale, e.g. the current study, neurons are or-
ganized into networks or circuits with specific structures
and hierarchies to serve a function in information pro-
cessing, processing stimuli and/or guiding behavior. At
the macroscale, brain regions can have diverse func-
tions and interact to generate adaptive behavior. As-
sessing neuronal dynamics at these different scales
requires a variety of technologies (Dorkenwald et al.,
2022; Harris et al., 2019; Silver et al., 2003; Stringer
etal., 2019).

We compiled data on multiple scales and modalities
of mechanistic connectivity of the mouse nervous sys-
tem. To compare across modalities and scales we fo-
cused on the CV, called dispersion hereafter, of various
parameters (Figure 7). Dispersion (CV) is unitless and
allows us to bring disparate data into the same axis.
We compared the dispersion of multi-scale connectiv-
ity to gain insights into the computations bridging multi-
scale interactions. Notice that both functional and struc-
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2022) and the post-synaptic potential (Silver et al., 2003; Seeman et al., 2018). The strength of post-synaptic potential is further broken down into multiple synaptic
properties including the number of release sites, release probability, and the quantal size (Holler et al., 2021). NC network connectivity is defined as the fraction of
high NC per condition. It is computed from the current dataset. SFTF-specific dispersion is a measure of the network in figure 4C. GMM-class-specific dispersion is a
measure of the network in figure 4F. Mix-channel-dispersion is measured from the fraction of high-fidelity connections per area regardless of tuning specificity. Also,
the NC network dispersion is quantitatively similar when measured from the connectivity matrix generated by the population mean NCs. System scale connectivity is
estimated from the mouse anterograde projection dataset (Harris et al., 2019). All data are from mice unless otherwise specified in the figure.

tural connectivity are available at the microscopic scale,
but only one of the two is available for mesoscale and
macroscale networks (Figure 7). Functional connectiv-
ity has been measured at the macroscale in mice using
one-photon techniques (Ren and Komiyama, 2021) and
fMRI (Kim et al., 2023), but these approaches lack cel-
lular resolution, and the analyses to date do not provide
a quantitative measurement of dispersion that can map
onto the same axis, thus they are omitted from this dis-
cussion. Still, we can provide a large range of disper-
sion measurements (Figure 7).

The dispersion of components of multi-scale con-
nectivity of the nervous system ranges from 0.1 to
1.5 (Figure 7). Synaptic interactions are characterized
by the number and size of synapses, and the post-
synaptic potential. The size of synapses and the post-
synaptic potential exhibited larger dispersion compared
to the number of synapses, suggesting that neuronal
interactions are regulated by the size and strength of
synapses rather than the number of synapses (Fig-
ure 7). The combination of high-resolution electron
microscopy (EM) and slice electrophysiology has un-
covered a linear relationship between synaptic size
and strength in the mouse L2/3 somatosensory cortex
(Holler et al., 2021).

Overall, dispersion reduces at larger spatial scales
(Figure 7). The measurement at these larger scales
could mask some key sources of variance in connectiv-
ity. This becomes clear when comparing the dispersion
of the tuning channel-specific connectivity with that of
the mixing-channel connectivity measured by the cur-
rent study. The dispersion of the latter reduces for both
inter- and within-area connectivity, suggesting that tun-
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ing channel-specific communication is a key contributor
to defining the functional connectivity between brain re-
gions (Figure 7).

Similarly, axonal projections measured without tun-
ing channel-specific information provide the connectivity
between all cortical regions and shed light on laminar
differences, but do not discriminate brain areas thor-
oughly (Figure 7). In particular, the dispersion of V1-
HVA L2/3 projections is small and similar to that of the
L2/3 channel-mixing NC functional network, emphasiz-
ing the importance of tuning specificity in organizing the
network in these cortical layers. L1 being the major
destination for cortical feedback projections (Harris and
Shepherd, 2015), exhibited the largest dispersion in the
anterograde projection connectivity.

Additional efforts are needed to bridge analysis of
multi-scale connectivity. For example, models have
been developed to understand how small-scale pro-
cesses, such as synaptic interactions, collectively give
rise to population neuron-level behaviors (Gerstner
and Kistler, 2002). Synaptic interactions are de-
scribed at various levels of detail and biological real-
ism in these models to serve specific research pur-
poses. Population-level neuronal network models can
be scaled up to represent brain regions or systems,
which involves adding more neurons, specifying cell
types, and connecting multiple networks (Markram
et al., 2015; Sporns, 2014). Integrating functional con-
nectivity with anatomical connectivity would help de-
velop a system model with functional causality (Honey
et al., 2010; Sporns, 2016). These models can simu-
late complex tasks or behaviors by connecting various
brain regions and networks, accounting for sensory in-
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puts, decision-making, and motor outputs.

In summary, mesoscale two-photon imaging tech-
niques open up the window of cellular-resolution func-
tional connectivity at the system level. How to make
use of the knowledge of functional connectivity remains
unclear, given that functional connectivity provides im-
portant constraints on population neuron behavior. One
approach to address the gap is to link functional con-
nectivity with structural connectivity to learn how the two
constrain each other and integrate the functional con-
nectivity into network models.
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Methods

Animals and surgery

All animal procedures and experiments were approved
by the Institutional Animal Care and Use Committee
of the University of North Carolina at Chapel Hill or
the University of California Santa Barbara and carried
out in accordance with the regulations of the US De-
partment of Health and Human Services. GCaMP6s
expressing transgenic adult mice of both sexes were
used in this study. Mice were 110 - 300 days old for
data collection. GCaMP6s expressing were induced by
the triple crossing of TITL-GCaMP6s line (Allen Insti-
tute Ai94), Emx1-Cre line (Jackson Labs #005628), and
ROSA:LNL:tTA line (Jackson Labs #011008)(Madisen
et al,, 2015). Mice were housed under a 12-h/12-h
light-dark cycle, and experiments were performed dur-
ing the dark cycle of mice. Mice were anesthetized
with isoflurane (1.5 - 1.8%) and acepromazine (1.5- 1.8
mg/kg body weight) when performing visual cortex cran-
iotomy. Carpofen (5 mg/kg body weight) was admin-
istered prior to surgery. Mice’s body temperature was
maintained using physically activated heat packs dur-
ing surgery. Mouse eyes were kept moist with ointment
during surgery. The scalp overlaying the right visual
cortex was removed, and a custom head-fixing imaging
chamber with a 5-mm diameter opening was mounted
to the skull with cyanoacrylate-based glue (Oasis Medi-
cal) and dental acrylic (Lang Dental). A 4-mm diameter
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craniotomy was performed over the visual cortex and
covered with #1 thickness coverslip.

Locating visual areas with intrinsic signal optical
imaging (ISOI)

ISOI experiments were carried out similarly as previ-
ously (Stirman et al., 2016; Smith et al., 2017; Smith
and Trachtenberg, 2007). Briefly, the pial vasculature
images and intrinsic signal images were collected us-
ing CCD camera (Teledyne DALSA 1M30) at the cran-
iotomy window. A 4.7 x 4.7 mm? cortical area was im-
aged at 9.2 um/pixel spatial resolution and at 30 Hz
frame rate. The pial vasculature was illuminated and
captured through green filters (550 £ 50 nm and 560 +
5 nm, Edmund Optics). The ISO image was collected
by focusing 600 um down from the pial surface. The
intrinsic signals were illuminated and captured through
red filters (700 £ 38 nm, Chroma and 700 £ 5 nm, Ed-
mund Optics). Custom ISOI instruments were adapted
from Kalatsky and Stryker (2003). Custom acquisition
software for ISOI imaging collection was adapted from
David Ferster (Stirman et al., 2016). During ISOI, mice
were 20 cm from a flat monitor (60 x 34 cm?), which cov-
ers the visual field (110°x 75°) of the left eye. Mice were
lightly anesthetized with isoflurane (0.5%) and acepro-
mazine (1.5-3 mg/kg). The body temperature was
maintained at 37 °C using a custom electric heat pad
(Stirman et al., 2016). Intrinsic signal response to the
vertical and horizontal drifting bar was used to generate
azimuth and elevation retinotopic maps (Figure S1A).
The retinotopic maps were then used to locate V1 and
HVAs. Borders between these areas were drawn at the
meridian of elevation and azimuth retinotopy manually
(Marshel et al., 2011; Smith et al., 2017). The vascu-
lature map then provided landmarks to identify visual
areas in two-photon imaging.

In vivo two-photon calcium imaging

Two-photon imaging was carried out using a custom
Trepan2p microscope controlled by custom LabView
software (Stirman et al.,, 2016). Simultaneous dual-
region imaging was achieved by splitting the excitation
beam and temporally multiplexing laser pulses (Stirman
et al,, 2016). Two-photon excitation light from an 80
MHz Ti:Sapph laser (Newport Spectra-Physics Mai Tai
DeepSee) was split into two beams through polariza-
tion optics, and one path was delayed 6.25 ns relative
to the other. The two beams were independently di-
rected with custom voice-coil actuated steering mirrors
and tunable lenses, such that the X, Y, Z planes of the
two paths are independently positioned within the full
field (4.4 mm diameter). Both beams were scanned by
the resonant scanner (4 kHz, Cambridge Technologies),
and a single photon signal was collected by a photo-
multiplier tube (PMT) (H7422P-40, Hamamatsu), and
demultiplexed using outboard electronics prior to digi-
tization. In the current study, two-photon imaging re-
gions of 500 x 500 pum? were collected at 13.3 Hz for
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two-region imaging or 6.67 Hz for quad-region imag-
ing. Imaging was performed with <80 mW of excita-
tion (910 nm) laser power, as measured out of the front
of the objective. Mice recovered in their home cage
for at least 2 days after surgery, before acquiring two-
photon imaging. Mice were head-fixed ~ 11 cm from a
flat monitor, with their left eye facing the monitor, dur-
ing imaging. Approximately 70° x 45° of the left vi-
sual field was covered. If not otherwise stated, two-
photon images were recorded from quiet awake mice.
For anesthetized experiments, mice were lightly anes-
thetized under 1% isoflurane. During two-photon imag-
ing, we monitored mouse pupil position and diameter
using a custom-controlled CCD camera (GigE, National
Instruments) at 20 - 25 fps. No additional light stimula-
tion was used for pupil imaging.

Visual stimuli

Visual stimulation was displayed on a 60 Hz LCD mon-
itor (9.2 x 15 cm?). All stimuli were displayed in full
contrast. For course population RF and single neuron
RF mapping (Figure S1B-D), a rectangular (7.5°x 8.8°)
bright moving patch containing vertical drifting grating
(2 Hz, 0.05 cpd) on a dark background was displayed.
The moving patch appeared and disappeared on a ran-
dom position of the full monitor in pseudo-random order
without interruption by a gray screen, and presented on
each position for 5 sec.

To characterize the value and structure of the correla-
tion of V1 and HVAs, we showed mice full-screen sine-
wave drifting grating stimuli in 8 directions (0 — 315¢,
in 45° step), with an of 0.02, 0.05 or 0.19 cpd, and a
TF of 1, 2 or 8 Hz (72 conditions in total). Each of the
sine-wave drifting grating stimuli was presented for 2 s
in pseudo-random order. Stimuli with the same SF and
TF were presented successively without interruption. A
gray screen was presented for 3 seconds when chang-
ing the SF and TF of stimuli.

In a subset of experiments, we also characterized
the cross-stimulus stability of functional networks using
combo stimuli with naturalistic videos and full contrast
drifting gratings (at 2 Hz, 0.05 cpd). Two naturalistic
videos, each lasting for 32 s were generated by navigat-
ing a mouse home cage using a GoPro camera.

Calcium imaging processing

Calcium imaging processing was carried out using cus-
tom MATLAB codes (Yu et al., 2022). Two-photon cal-
cium imaging was motion corrected using Suit2p sub-
pixel registration module (Pachitariu et al., 2016). Neu-
ron ROIs and cellular calcium traces were extracted
from imaging stacks using custom code adapted from
Suit2p modules (Pachitariu et al., 2016). Neuropil con-
tamination was corrected by subtracting the common
time series (1st principal component) of a spherical sur-
rounding mask of each neuron from the cellular cal-
cium traces (Harris et al., 2016). Neuropil contamination
corrected calcium traces were then deconvolved using
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a Markov chain Monte Carlo (MCMC) method (Pnev-
matikakis et al., 2013). For each calcium trace, we re-
peated the MCMC simulation for 400 times and mea-
sured the signal-to-noise of MCMC spike train inference
for each cell. For all subsequent analyses, only cells
that reliable spike train inference results were included.
Neurons with low responsiveness were excluded for
subsequent analysis (trial averaged spike count to pre-
ferred spatiotemporal frequency summed over all orien-
tations < 1; or trial averaged spike count to a 32 s natu-
ralistic video < 1).

Receptive field

We mapped RFs by reverse correlation of neuronal re-
sponses with the locations of the moving patch of drift-
ing grating stimulus. For population RF mapping, pop-
ulation neuronal responses of simultaneously recorded
neurons from a 500 x 500 pm? imaging window were
reverse correlated with the stimulus locations.

Gaussian mixture model

To characterize the tuning properties unbiasedly, neu-
rons were clustered using a Gaussian mixture model
(GMM) based on the trial-averaged responses to the
drifting gratings. Only reliable responsive neurons were
included for GMM analysis (trial-to-trial Pearson correla-
tion of the inferred spike trains > 0.08, spike trains were
binned at 500 ms). Neuronal responses of the whole
population pooled over all texted areas, were first de-
noised and reduced dimension by minimizing the pre-
diction error of the trial-averaged response using the
principle components (PC). 45 PCs were kept for popu-
lation responses to the drifting gratings. We also tested
a wide range number of PCs (20 — 70), and we found the
tuning group clustering was not affected by the num-
ber of PCs. Neurons collected from different visual
areas and different animals were pooled together in
training GMM. GMMs were trained using MATLAB build
function fitgmdist with a wide range number of clus-
ters. A model of 65 classes was selected based on the
Bayesian information criterion. We also examined mod-
els with smaller (20, 30, and 45) or even larger numbers
of classes (75), the overall results held regardless of the
number of GMM classes. Figure S2 show the response
pattern of GMM classes of drifting gratings. The size of
each GMM class is shown in figure S1F.

To summarize the spatial-temporal tuning properties
of neurons (Figure 1E), we manually organized the 65
GMM classes into 6 groups based on their preferred SF,
TF (Figure S2). Group 1 prefers low SF and low TF
(LSLT, 0.02 cpd, 1-2 Hz), group 2 prefers medium SF
and low TF (MSLT, 0.05 cpd, 1-2 Hz), group 3 prefers
high SF low TF (HSLT, 0.19 cpd, 1-2 Hz), group 4
prefers low SF high TF (LSHT, 0.02 cpd, 8 Hz), group
5 prefers medium SF and high TF (MSHT, 0.05 cpd, 8
Hz), group 6 prefers high SF and high TF (HSHT, 0.19
cpd, 8 Hz) and group 7 not specific. Group 7 included
4 classes that did not exhibit specific response features,
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among them two classes are extremely small (each con-
tains <5 neurons), and the other two contain neurons
with small response strength (mean spike count < 0.5
spikes/s to preferred stimulus). As we have been in-
clusive in data selection for the GMM training and in-
cluded low-firing neurons, the latter two classes contain
about 1500 neurons in total. It is justifiable to exclude
low-response neurons from further analysis. Thus, the
whole group 7 was excluded for further analysis.

GMM classification accuracy. We examined the accuracy
of GMM classification for neuron responses to drifting
gratings. We performed GMM clustering on 10 random
subsets of neurons (90% of all neurons). We found the
center of the Gaussian profile of each class was con-
sistent (Figure 1C). The same class of different GMMs
was identified by matching the center of the class. Then
we asked whether a neuron was classified in the same
class in each GMM model. We found neurons were con-
sistently classified into the same class in GMMs of a
random subset of data (Figure 1D). We also performed
GMM on population data after randomly shuffling neu-
ron identity (10 permutations). Classes were identified
by matching the center of the class and then grouped
following the previous definition. We found that neurons
are allocated into the same SF-TF group in GMMs of
randomly ordered data (Figure S1G, H). These analy-
ses suggested that GMM provided a reliable classifica-
tion of neurons.

Orientation and direction selectivity

The direction and orientation selectivity of each neu-
ron were computed using neuron response to its opti-
mal spatial-temporal frequency of drifting grating stimuli.
The direction selectivity index and orientation selectivity
index were computed using the following equations.

DSl or OSI =
(Rprefer - Rnull)/(Rprefer + Rnull)

The polar plots of tuning groups were generated by av-
eraging responses to the preferred direction of each
neuron within a tuning group, and normalized to one
(Figure S3C). For neurons with high direction selectiv-
ity, neuron responses to preferred direction was consid-
ered, while for neurons with low direction selectivity (DSI
< 0.5), neuron responses to both preferred and null di-
rections were included.

ISOI warping

We spatially registered ISOI map of V1 to align with that
of LM or AL. We first segmented the ISOI map by color
segmentation using K-means clustering and then deter-
mined the center of each color segment. Then we per-
formed the affine transformation of color band centers
of V1 to match that of LM or AL. The transformation ma-
trix M was determined by minimizing the distance be-
tween transformed V1 centers and LM or AL centers
using Matlab function fminsearch.
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Correlation calculation

Noise correlation was defined as the trial-to-trial corre-
lation of residual spike count (1 s time window, if not
otherwise stated) after subtracting the mean response
to each stimulus of the 72-condition sine-wave drifting
gratings. Residual spike count to all stimuli (eg. gratings
with different directions and SFs and TFs), and all trials
were concatenated into one column vector per neuron
(us, i = 1,2...N, neuron identity). The noise correlation
rsc Was computed as the Pearson correlation of u; and
Uj.

Tse = (cov(ui,uj))/\/var(ui) s var(u;)

i, j indicate neuron identity. Signal correlation was
defined as the neuron-to-neuron Pearson correlation of
mean responses. Mean response was a 72-element
column vector, computed by trial averaging responses
to sine-wave gratings with 72 conditions. To examine
the relation between noise correlation and joint firing
rate between a pair of neurons. We computed the mean
joint spike count (geometric mean spike count average
over all stimuli.

We computed inter-area NCs with simultaneously
recorded regions that shared greater than 40% of popu-
lation RF. We kept this criterion even though we did not
detect a relationship between the inter-area NC and the
fraction of population RF overlap within the tested range
(p = 0.37).

Fidelity of noise correlation measurement

Tolerance of correlation calculation to inaccuracy in spike
train inference. We quantify the spike train inference
accuracy using a previously published data set with
simultaneous cell-attached recording and two-photon
imaging of GCamp6s from mouse V1 (Chen et al.
(2013); http://crens.org/data-sets/methods/cai-1). We
performed spike train inference on the recordings with
stable baseline and good correspondence between cal-
cium trace and electrophysiology recording (linear cor-
relation, r > 0.1; bin 0.1 s; Figure S4A, B). The signal-to-
noise (SNR) of the calcium trace of the calibration data
is 12.3 + 5. Itis comparable with the SNR of the calcium
signal of the current study (8.7 + 1.8).

We further evaluated how the correlation calcula-
tion was affected by inaccurate spikes train recov-
ery. We took publicly available electrophysiology
recordings of mouse V1 neurons (Theis et al. (2016);
http://spikefinder.codeneuro.org/), and computed resid-
ual spike count correlation at 1 s time bin after pertur-
bations on the ground truth spikes train. We did four
types of perturbations, (1) randomly missing spikes; (2)
missing isolated spikes as the signal-to-noise of the cal-
cium signal of isolated spikes may be low; (3) missing
all spikes within a burst; (4) missing 60% spikes within
a burst (Figure S4C). We identified isolated spikes or
burst spikes by thresholding the inter-spike-interval of
each spike. A spike that was >t s distance away from
spikes franking itself was a t isolated spike. A spike that
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was <t s distance away from another spike was a t burst
spike. The residual spike count correlation computed
with perturbed spikes trains was linearly correlated with
ground truth (Figure S4D) and exhibited good tolerance
to up to 60% missing spikes by all types of perturbation
(fidelity > 0.6; Figure S4E).

Significance of noise correlation. Since the value of
noise correlations was small, we tested whether these
values were significantly above zero. We compared
the noise correlation with trial-shuffled noise correla-
tion, the latter was computed using trial-shuffled data
(the order of trials were randomized for each neuron in-
dependently). The population-mean noise correlation
computed with trial-aligned data was significantly higher
than that of the trial-shuffled data with the size of the ex-
perimental population (Figure 2B).

Accuracy of noise correlation . We investigated the accu-
racy of noise correlation estimation with both data and
model. The individual noise correlations of the same
set of neurons varied when computing using a differ-
ent random subset of trials (Figure 2D). We computed
the population mean value of the noise correlation of a
random subset of neuron pairs and calculated the confi-
dence interval for estimating the population mean noise
correlation. The accuracy of population-mean estima-
tion increases with the number of neurons, even with a
limited number of trials (Figure 2C). We further charac-
terized the estimation accuracy by simulating correlated
neuron population (Macke et al., 2009), which allows an
arbitrary number of trials. The expected firing rate and
expected population mean correlation match our exper-
imental data. To achieve an accurate estimation (1/10
standard error/mean value) of the population mean cor-
relation converges with >100 neurons even using exper-
imental level trial numbers (Figure 2C).

Community module analysis

We constructed a V1-HVA connectivity matrix using
the fraction of high NC (NC > mean + 2.5*SD of trial-
shuffled NC) pairs between each GMM class. We per-
formed community detection analysis using the Louvain
algorithm (Rubinov and Sporns, 2010), which assigned
densely connected nodes to the same module. The
spatial smooth parameter + that generated the largest
deviation from a random connectivity matrix is picked.
The analysis was performed using the Brain Connectiv-
ity Toolbox (brain-connectivity-toolbox.net).

Leaky integrate-and-fire neuron network simulation

LIF simulations were carried out using the Brian2 simu-
lation engine in Python (Stimberg et al., 2019). The LIF
neuron network model was defined similarly as Song
et al. (2000). In brief, the membrane potential of LIF
neurons was given by the equation below:

dv/dt = (gex (Fe—v)+gi*(Ei—v)+ El—v)/Tm
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Where 7,,, corresponds to the membrane time constant
(20 ms). ge, gi and Ee, Ei are the excitatory and in-
hibitory synaptic conductance and their respective re-
versal potential (Ee = 0 mV, E¢ = -80 mV). the mem-
brane potential was simulated with a time resolution of
dt =0.1 ms. FEl (-70 mV) corresponds to the resting
potential. Connections between LIF neurons occurred
with probability p = 0.02, and the strength of the con-
nections is defined as W5, (i, j indicate source and tar-
get neuron ID, ¢ = j). W;; = Jimaee or 0 if not con-
nection. J,,q, defined specifically in each simulation
setting (Figure 6D, E). The dynamics of synaptic con-
ductance were given by exponential decay functions
ge/dt = —ge/1. and gi/dt = —gi/7;. 7. (5 ms) and 7;
(10 ms) are the decay time constants for excitatory and
inhibitory synapses.

The LIF network received feedforward input from
Poisson neurons (N = 1000 in the network simulation,
and N = 80 in the toy model), whose firing follows time-
varying Poisson processes (0-30 Hz). The Poisson in-
put neurons are connected to LIF neurons with proba-
bility p = 0.2, and the strength of the connections is de-
fined as S;;. S;; = 0.2 or 0 if not connection. In the toy
model, the connectivity .S;; is defined by the fraction of
shared input. In the network simulation, the connectivity
S;; is defined by the equation below:

S i =a*0.2%exp(—((i/10.0 — j) /b)) +c*0.2

a, b, and c are parameters that manipulate the structure
of the FFD connection, ranging from fully random to fully
bell-shaped (Figure 6E).

In the toy model, the Poisson neuron firing constant
at 5 Hz. In the network simulations, the instant firing
rate of Poisson neurons is defined by a combination of
five Gaussian profiles (Figure 6C).
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Figure S1. Functional groups by multi-region two-photon calcium imaging.

(A) Example intrinsic signal imaging of mouse visual areas. (B) Moving square stimuli for quick RF mapping. (C) Example
population RFs of simultaneously imaged populations. Blue and orange contours indicate the Gaussian profile of population RF
of neurons from different visual areas, and blue shade indicates the overlap region of population RF of two simultaneous imaging
regions. Values indicate the fraction of overlap. Upper right: example population RF of a quartic-region imaging. Lower right:
summarize the fraction of population RF overlap of individual experiments (gray circle). Error bars indicate the mean and standard
division. (D) Upper: short and long axes of the Gaussian profile of single neuron RF of all tested HVAs neurons are longer than
that of V1 (short, p < 0.0001; long, p < 0.0001; One-way ANOVA with Bonferroni correction). Bottom: population RFs of HVA are
significantly larger than that of V1 (FWHM, p = 0.0003; Size: p < 0.0001. one-way ANOVA with Bonferroni correction). (E) The
responsiveness of V1 and HVAs to the 72-condition sine-wave drifting grating stimuli. Left: the fraction of responsive neurons in
HVAs is not significantly different (trial-to-trial Pearson correlation > 0.08; one-way ANOVA, p = 0.36). Right: distribution of neuron
firing reliability (trial-to-trial Pearson correlation of inferred spike train at 500 ms bin). Only responsive neuron was considered.
V1 and LM were slightly more reliable than AL, PM, and LI (one-way ANOVA with Bonferroni multiple comparisons, p = 1.7 x
10-7). (F) Number of neurons of each GMM class. (G) The confusion matrix shows the joint probability of a neuron is identified
as group A in GMM of randomly ordered data (shuffle the order of neurons, horizontal) and the neuron is classified as group B
in GMM of the original data set (vertical). The diagonal indicates the probability of neurons that are classified in the same group.
The confusion matrix was generated by averaging a joint probability of 10 permutations. (H) The bar chart shows the probability
of correctly allocating neurons into the same group in 10 permutations of GMMs of randomly ordered data.
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Figure S2. GMM classes and tuning groups.

Show featured responses of 65 GMM classes, and organized into 7 groups by TF, SF preference. The class identification (eg.
class 61) are the original class identification of the model. The response feature of each class is described by three panels: a
polar plot (left) shows the average tuning curve for cells in the class; the middle panel shows the normalized response to different
joint combinations of TF (x-axis, Hz) and SF (colored line, blue 0.02 cpd, red 0.05 cpd, yellow 0.19 cpd); right panel shows the
normalized response to different speed of gratings (x-axis, deg/s).
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Figure S3. Spatial modulation on SF-TF and orientation tuning.

(A) Center of two-photon recordings (upper), and center of individual neurons (lower) overlay on an average visual cortex map.
The average visual cortex map was generated by affine registration of visual area maps from all experiments. Neurons are
colored by visual areas. (B) Upper, average preferred TF (left) exhibits spatial dependency over the visual cortex (TF: A—P, cor
=-0.25, p =0.015, M—L, cor = 0.36, p = 0.0004). Lower, average preferred SF (right) exhibits spatial dependency over the visual
cortex (SF: A—P, cor = 0.35, p = 0.0005, M—L, cor = -0.06, p = 0.54). Colored dots indicate the average TF and SF (computed
with >30 neurons) within 1802 pm2 local areas, overlaying on a visual map. (C) Polar plots of averaged preferred directions of six
tuning groups of V1 and HVAs. Polar plots were generated with >30 neurons. Black and gray lines indicate the mean and SEM

of normalized preferred directions.
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Figure S4. Tolerance of noise correlation to missing spikes.

(A) Left, compare the inferred spike train and ground truth spike train (cell-attached recording) of one example neuron. Spike
inference recovered 50% of the spikes of this neuron, the linear correlation between inferred spike train and true spike train is
0.79 (bin 1 s). Right, the correlation between inferred spike train and true spike train at various time bin. (B) Inter-neuron cross-
correlation computed by true spike train and inferred spike are linearly correlated (r = 0.7). (C) The ground truth spike trains
(top) and spike train after different types of perturbations of example neurons from spikefinder dataset (Methods). (D) Compute
correlation of residual spike count at 1 s time bin after spike perturbations from left to right: random missing spikes; missing
isolated spikes with inter-spike-interval (ISI) > 0.03 s; missing all spikes within a burst ISI < 0.01 s; missing 60% spikes within a
burst with ISI <0.02 s. (E) Fidelity (left) and variance explained (right) of correlation calculation with spike train perturbation. The
fidelity was defined as the linear correlation between spike count correlation before and after perturbation. Variance explained
was measured as r® of a linear regression between true correlation and perturbed correlations. The colored text in the figure
indicates the ISI thresholds.
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Figure S5. Factors contribute to the variance of NCs.

(A) Within- and inter-area noise correlations are positively related to signal correlation. (B) Within-area (left) and inter-area (right)
NC is significantly higher in neuron pairs with shared RF (within-area, Py/q < 0.0001, Py s = 0.98, P4, = 0.006, Ppjys = 0.03,
P, < 0.0001; inter-area:Py1_r,p = 0.3, Par, = 0.0007, Py1_pa = 0.15, Py1_r; = 0.82; t-test). Overlapping groups and
non-overlapping groups are defined as neuron pairs share > 60% RF, and <20% RF, respectively. (C) Noise correlations of V1
and HVAs are positively related to joint spike count (For all within- and inter-area correlation, r = 0.09-0.18, p < 0.0001). Mean
joint spike count is the geometric mean of the spike count to all stimuli. (D) Plot within- and inter-area noise correlation as a
function of difference in preferred orientation. Only orientation-selective neurons (OSI > 0.5) were included.
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Figure S6. Distance-dependence of inter-area NC explained by retinotopic map.

(A) Distance-dependence of within-area NC (blue) and SC (purple) (NC: V1, r=-0.044, p < 0.0001; LM, r =-0.026, p = 0.0009; AL,
r=-0.05, p <0.0001; PM, r =-0.048, p = 0.002; LI, r =-0.025, p = 0.17. SC: V1, r =-0.03, p < 0.0001; LM, r = -0.036, p < 0.0001;
AL, r =-0.028, p = 0.006; PM, r = -0.048, p = 0.005; LI, r = -0.037, p = 0.047; Pearson correlation). (B) Distance-dependence of
inter-area NC (blue) and SC (purple) (NC: V1-LM, r = 0.058, p < 0.0001; V1-AL, r = 0.013, p = 0.02; V1-PM, r = -0.05, p < 0.0001;
V1-Ll, r=0.028, p = 0.0007; LM-LI, r = -0.08, p < 0.0001; SC: V1-LM, r = 0.073, p < 0.0001; V1-AL, r = 0.073, p < 0.0001; V1-PM,
r=-0.01, p = 0.047; V1-LI, r = 0.056, p < 0.0001; LM-LI, r = -0.084, p < 0.0001; Pearson correlation). (A-B) Solid lines indicate
mean values and shaded areas indicate standard error of mean. Each distance bin contains >50 data points. (C) Example affine
transformation of ISOI maps. The left shows the original V1 map, the middle is the V1 map after affine transformation and the
right is the original LM map. (D) Left, a cartoon of two recurrent layer with aligned retinotopic map. Right: neuron location on the
visual cortex before and after warping. (E) Distance-dependent increasing of V1-LM NC to sine-wave drifting gratings before (left)
and after retinotopic warping (right). Individual experiments with significant distance dependence are in shown in colored curves.
The black curve shows the population mean and standard error (Pearson correlation, before warping, r = 0.066, p < 0.0001; after
warping, r = -0.026, p < 0.0001). (F) Distance-dependence of within-area NCs of paired recorded V1 and LM, and inter-area NC
of V1-LM after retinotopic warping. (G) Example affine transformation of ISOI maps. The left shows the original V1 map, the
middle is the V1 map after affine transformation and the right is the original AL map. (H) Distance-dependent decreasing of inter
V1-AL NC after retinotopic alignment (linear correlation, r = -0.05, p < 0.0001).
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Figure S7. Connectivity between GMM classes

(A) The density function of within-area (left) and inter-area (right) NC for neuron pairs from the same tuning group, or the same
GMM class, shared high SC, or from the local neighborhood. The SC or the distance threshold is defined such that the same
number of neuron pairs is included as the in-class neuron pairs. (B) The spread of neurons from GMM class 1 on a registered
map for visual areas. (C) The modularity of the V1-HVA connectivity between GMM classes is regulated by a spatial smooth
parameter . We reported the modular structure of the connectivity matrix when v = 0.85, as it generated the largest deviation
from a random connectivity matrix. Left side shows the modular structure of V1-HVA GMM classes (upper), and that of a random
matrix preserving the degree distribution (lower).
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Supplementary Table

Figure T1. Entire data list.
The Animal ID is a simple identifier number. Note that some animals were used for multiple imaging configurations. On the left is
the information for mice that were imaged during viewing of the drifting grating visual stimuli only. On the right is the information
for the mice that were imaged both during viewing of gratings and during viewing of the naturalistic video stimuli. On the bottom
right are summary figures for the total numbers of animals, neurons, and unique neuron pairs (imaged simultaneously to permit
the computation of noise correlations).
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Supplementary Information

Gratings stimuli Grating and natural video combo stimuli

Animal ID Recording areas Total neurons per area NC pairs Animal ID| Recording areas Total neurons per area NC pairs (refSpo."SQ
to both stimuli)

421 LM AL 147 58 20910 143 V1 LM 121 57 4005
421 LM LM 93 19| 6216 143 V1 LM 116 36 2415
493 V1 V1 48 21 2346 143 V1 LM 66 47 666
382 V1 LM 208 37 29890 144 VAl LM 119 3 1652
490 V1 LM 68 110] 15576 144 V1 PM 53 65 666
490 V1 AL 63 69 8515 154 V1 AM/PM 247 118 3486
493 V1 AL 216 62 38226 154 V1 AM 145 107 3160
493 V1 LM 159 104 34191 154 V1 AM/PM 121 164/ 903
426 V1 AL 85 69 11781 154 V1 V1 135 134/ 8256
426 V1 LM 47 39 3655 156 V1 LM 129 87 7021
426 V1 PM 7 4 2628 156 V1 AL 171 38 6903
382 V1 LM 82 111 18336 166 V1 AL 304 162 10440
382 LM LI 61 84 10296 167 V1 AL 161 117, 5565
382 V1 AL 35 44| 3003 170 V1 AL 352 163 10585
470 V1 AL 7 34 5778 171 V1 AL 119 19, 1830
470 V1 V1 36 24 1711 171 VAl V1 161 123 5671
471 V1 PM 81 17| 4753 211 V1 V1 100 169 3486
471 V1 LM 20 29 1128 633 V1 LM 85 150 2415
471 V1 V1 105 40| 10440 633 Al V1 144 100 6441
391 V1 PM 51 22 2628 635 V1 LM 94 141 2211
391 V1 V1 33 26 1711 657 V1 LM 37 47! 378
417 V1 AL 84 40 7626 657 V1 LM 37 79 276
417 V1 LM 59 9 2278 635 V1 AL 400 275 32385
400 V1 PM 11 7 153 635 \al V1 287 343 36315
400 V1 AL 18 7 300
532 V1 PM 302 52 62128
540 V1 AL 17 13| 435 Combo Total Total | Total within-area NC pair
557 V1 LI 199 90 41616 neurons | animals |(response to both stimuli)
559 V1 LM 18 18] 630 Vi1: 4573 12 45203
577 V1 PM 21 41 1891 LM: 647 6 22850
459 V1 AL LM 24 116 25 13530 AL: 774 6 6963
513 V1 LM Ll 40 920 43| 14878 'AM/PM' 1454 2 871
557 V1 PM AL 283 69 18] 68265
560 V1 V1 PM 100 127, 28| 32385
576 V1 V1 PM 38 86 88 22366 Gratings Total Total Total within-area NC pair
577 V1 AL LM 117 123 11 31375 neurons | animals
459 V1 PM V1 AL 286 13 57 68 89676 Vi1: 6735 23 675569
525 V1 PM AL LM 214 204 187 113| 256686 LM: 2076 17 143581
533 V1 AL LM Ll 157 91 74 47 67528 AL: 1352 14 79173
540 V1 V1 LM LI 38 39 9 3 3916 LI: 593 8 25148
578 V1 V1 PM AM 130 56 24 51 33670 "AM/PM' 786 12 38343
560 V1 VAl PM PM 217 305 74 92| 234955
560 V1 V1 LM AL 359 273 92 190| 416328
540 V1 AL LM LI 113 163 61 62 79401
559 V1 LM LM Ll 315 262 203 33| 326836
632 V1 VAl LM Ll 290 306 139] 99| 343206
633 V1 V1 LM Ll 197 243 220, 132| 311655
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