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Between brain areas, axonal projections carry

channels of information that can be mixed to vary-

ing degrees. Here, we assess the rules for the net-

work consisting of the primary visual cortex and

higher visual areas (V1-HVA). We use large field-

of-view two-photon calcium imaging to measure

correlated variability (i.e., noise correlations, NCs)

among thousands of neurons, forming over a mil-

lion unique pairs, distributed across multiple corti-

cal areas simultaneously. The amplitude of NCs is

proportional to functional network connectivity, and

we find that they are robust, reproducible statistical

measures, and are remarkably similar across stim-

uli. We used these NCs to measure the statistics

of functional connectivity among tuning classes of

neurons in V1 and HVAs. Using an unbiased clus-

tering approach, we identify that there are six dis-

tinct tuning classes found in V1 and HVAs. We

find that NCs are higher between neurons from the

same tuning class, both within and across cortical

areas. Thus, in the V1-HVA network, mixing of chan-

nels is avoided. Instead, discrete channels of visual

information are broadcast within and across corti-

cal areas, at both the micron and millimeter length

scales. This principle for the functional organiza-

tion and correlation structure at the individual neu-

ron level across multiple cortical areas can inform

and constrain computational theories of neocortical

networks.

Correspondence: sls@ucsb.edu

Introduction

Neurons have characteristic preferences, or tuning, and

their activity is transmitted via axonal projections to

other brain areas. In the early stages of visual process-

ing, visual information can be preserved. For example,

the retina-to-lateral geniculate nucleus (LGN) network

tends to preserve unmixed channels, by ensuring that

axons from retinal ganglion cells with similar tuning tend

to converge on individual LGN neurons (Liang et al.,

2018). By contrast, the LGN-to-primary visual cortex

(V1) network famously mixes channels to give neurons

receptive fields with both dark-sensing and light-sensing

subregions, and thus robust orientation tuning (Hubel

and Wiesel, 1962). That said, discrete visual informa-

tion can be transmitted from the retina to cortex. For

example, when direction-selective neurons in the retina

are genetically ablated, there is a decrease in direction-

selective neurons (Rasmussen et al., 2020).

In the visual cortical system in mice, the primary vi-

sual cortex (V1) and its projections to multiple higher vi-

sual areas (HVAs) span millimeters (Wang and Burkhal-

ter, 2007). Local networks within V1 can have pre-

cise local (< 50 microns) cellular-resolution functional

connectivity (Ko et al., 2011). Studies of longer-range,

millimeter-scale networks typically lack cellular reso-

lution, but there are general biases observed. Neu-

rons in V1 and HVAs respond to diverse visual stim-

uli (Yu et al., 2022; Vries et al., 2020) and are sen-

sitive to a broad range of features including orienta-

tion and spatiotemporal frequencies (Andermann et al.,

2011; Marshel et al., 2011). Although individual V1

neurons broadcast axonal projections to multiple HVAs

(Han et al., 2018), the spatiotemporal frequency prefer-

ences of these feedforward projections generally match

those of the target HVAs (Glickfeld et al., 2013; Han

and Bonin, 2023). Feedback connections from HVAs

carry frequency-tuned visual signals as well (Huh et al.,

2018). Thus, there are HVA-specific spatiotemporal bi-

ases, but cellular resolution, millimeter-scale principles

for cortical wiring remain to be elucidated.

In the current study, we investigated the degree of dis-

creteness of the V1-HVA functional networks in direc-

tion and frequency information processing, by measur-

ing the noise correlations (NC, also called spike count

correlation Vinci et al. (2016)) between functional tuning

groups of neurons. Functional tuning groups were de-

fined using an unbiased clustering approach (Han et al.,

2022; Yu et al., 2022; Baden et al., 2016). Large field-of-

view (FOV) calcium imaging enables us to densely sam-

ple across millimeter cortical space, which allows us

to simultaneously observe large and dense samples of

neurons in these tuning groups to analyze NCs within-

and-across cortical areas (Yu et al., 2021; Stirman et al.,

2016). NCs are due to connectivity (direct or indirect

connectivity between the neurons, and/or shared input),

and thus provide a trace of connectivity (Cohen and

Kohn, 2011; Vinci et al., 2016; Snyder et al., 2015). In

particular, the connectivity that influences NCs is effec-

tive in vivo, during normal sensory processing, some-

thing that is not verified with purely anatomical mea-

sures. Activity-based estimates of neuronal networks
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can provide higher fidelity measures than anatomical-

based studies (Randi et al., 2023). We find that NCs

are a reliable measure at the population level. We

also find that neurons can be categorized into six func-

tional groups, and NCs are higher within these groups,

both within and across cortical areas, indicating dis-

crete channels in the network to preserve information.

Moreover, we find that naturalistic videos draw upon the

same functional networks, and modeling suggests that

recurrent connectivity is critical for stabilizing these net-

works.

Results

Visual cortical neurons form six tuning groups

To measure neuronal activity, we used multi-region pop-

ulation calcium imaging of L2/3 neurons in V1 and four

HVAs (lateromedial, LM; laterointermediate, LI; antero-

lateral, AL; and posteromedial, PM) using a multiplex-

ing, large field-of-view two-photon microscope with sub-

cellular resolution developed in-house (Stirman et al.,

2016) (Figure 1A). Mice expressed the genetically en-

coded calcium indicator GCaMP6s (Madisen et al.,

2015; Chen et al., 2013) in cortical neurons. We lo-

cated the V1 and HVAs of each mouse using retino-

topic maps obtained by intrinsic signal optical imaging

(Marshel et al., 2011; Smith et al., 2017) (Figure S1A).

We imaged neurons in two to four cortical areas simul-

taneously (Figure 1A), while mice viewed stimuli on a

display system. We typically imaged neurons in V1 and

one or more HVAs. Up to 500 neurons (V1: 129 ± 92;

HVAs: 94 ± 72; mean ± SD.) were recorded per imag-

ing region (500 x 500 µm2). The imaging regions were

matched for retinotopy so that the neurons in the si-

multaneously imaged areas had overlapping receptive

fields (RFs). Calcium signals were used to infer proba-

ble spike trains for each neuron, as our previous study

(Yu et al., 2022). We mapped RFs for individual neurons

and populations using small patches of drifting gratings

(Figure S1B, C). Neurons in HVAs (LM, AL, PM and

LI) had significantly larger RFs than V1 neurons (Fig-

ure S1D). Population RFs for a 500 x 500 µm2 imaging

region of HVAs covered significantly larger portions of

visual space than that of V1 (Figure S1D), as expected

given their differing magnification factors (Schulz et al.,

2015). The overlap of population RFs confirmed that

simultaneously imaged cortical areas (V1 and HVAs),

each containing ∼102 neurons, responded to stimuli in

the same region of the stimulus display system (Figure

S1C). These experiments were repeated in 24 mice for

a total of 17,990 neurons and noise correlations were

measured for a total of 1,037,701 neuron pairs (Figure

T1).

Mouse V1 and HVA neurons exhibit diverse tuning

preferences (i.e., biases) to drifting grating stimuli, in

terms of spatiotemporal preferences and sharpness of

orientation and direction tuning (Marshel et al., 2011;

Andermann et al., 2011; Vries et al., 2020). Previ-
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Figure 1. Functional groups of mouse visual neurons.

(A) Diagram of multi-region two-photon imaging of mouse V1 and HVAs, using

a custom wide field-of-view microscope. Example imaging session of the simul-

taneous recording session of V1, LM, AL, and PM. Blue and orange square indi-

cate a 500 µm2. (B) Example responses from two neurons (mean calcium trace)

to drifting gratings with eight directions at night SF-TF frequencies. (C) The

mean correlation coefficients of the center of each class (center in PC space)

between GMMs of 10 permutations of a random subset of data. (D) The con-

fusion matrix shows the joint probability of a neuron is classified as class A in

GMMs of 90% random subset of data (horizontal) and is classified as class B

in GMMs with the full data set (vertical). The diagonal indicates the probability

of neurons that are classified in the same class. The confusion matrix was gen-

erated by averaging a joint probability of 10 permutations. (E) Tuning groups.

Column 1, the fraction of neurons in different SF-TF groups. Column 2, the

characteristic SF-TF responses of each tuning group. Column 3, speed tuning

of tuning groups. Column 4, distribution of cells’ orientation selectivity index

(OSI) and direction selectivity index (DSI). The number of neurons belonged to

the six tuning groups combined: V1, 5373; LM, 1316; AL, 656; PM, 491; LI, 334.
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ous studies suggested that the projection from V1 to

HVAs matches the spatiotemporal preferences of the

target HVAs (Glickfeld et al., 2013). We sought to deter-

mine whether this was a general principle, that extended

across V1 and HVAs. We recorded neuronal responses

from V1 and multiple HVAs (LM, LI, AL, and PM) to sine-

wave drifting grating stimuli with various spatiotemporal

properties (8 directions x 3 spatial frequencies x 3 tem-

poral frequencies for a total of 72 conditions; Figure 1B).

HVAs exhibited similar responsiveness and reliability to

the 72 different parameterized drifting gratings. V1 and

LM were only marginally more reliable than other ar-

eas (Figure S1E). Neurons were partitioned into 65 tun-

ing classes using an unbiased Gaussian Mixture Model

(GMM) (Figure S1F, S2). This GMM classification was

reliable, in that the center of the Gaussian profile of each

class was consistent among GMMs of random subsets

of neurons (Figure 1C). Neurons were consistently clas-

sified into the same class (Methods; Figure 1D).

To examine the spatiotemporal frequency selectivity

of HVAs, we manually partitioned the 65 GMM classes

into six spatial frequency (SF) - temporal frequency (TF)

selective groups (Figure 1E). Groups 1, 2, and 3 all

prefer low TF (1-2 Hz), and prefer low SF (0.02 cpd),

medium SF (0.05 cpd), and high SF (0.19 cpd) respec-

tively. Groups 4, 5, and 6 all prefer high TF (8 Hz) and

prefer low SF, medium SF, and high SF respectively.

Group 4 (low SF, high TF) was the only group that ex-

hibited clearly increasing responses to the drift speed

of the grating stimulus (drift speed = TF/SF, and is mea-

sured in deg/s). These groupings were robust and reli-

able (Figure S1G,H). While all visual areas had a similar

fraction of neurons tuned to low TF and low SF (Group

1), fractions in other groups varied by area. AL had a

larger fraction of neurons tuned to high TF, and low SF

(Groups 4) (Figure 1E). PM and LI had a larger frac-

tion of neurons tuned to high SF and low TF (Groups

3) (Figure 1E). Overall, there is a trend of increasing of

preferred TF from the posterior-medial to the anterior-

lateral visual cortex, and a trend of increasing of pre-

ferred SF from the anterior to the posterior visual cortex

(Figure S3A, B).

Neurons in all six groups exhibited orientation and

direction selectivity. The preferred directions of neu-

rons were evenly distributed in V1 and HVAs, except

high SF groups (Group 3 and 6) of AL, PM, and LI bi-

ased to cardinal directions (Figure S3C). The unbiased

GMM approach revealed that the orientation selectiv-

ity index (OSI) and direction selectivity index (DSI) of

visual neurons were jointly modulated by SF and TF.

Neurons tuned to high SF and low TF (Group 3) exhib-

ited lower OSI in all tested areas than all of the other

groups (Group 3: mean OSI = 0.6; other groups ranged

from 0.71 – 0.80; p < 0.0001, one-way ANOVA with Bon-

ferroni correction; Figure 1E). Neurons tuned to high

TF and medium-high SF (Groups 5 and 6) exhibited

lower direction selectivity than other groups (Group 5,

6, mean DSI 0.38; other groups, mean DSI 0.45 - 0.54;

p < 0.0001, one-way ANOVA with Bonferroni correction;

Figure 1E).

NCs are robust measurements of functional net-

works

A unique aspect of this data set is the scale of the NC

measurements, which allows us to measure NCs with

individual neuron precision within dense local networks

and over millimeter length scales, in awake mice. Pio-

neering work in this area focused on local populations,

typically less than 1 mm across (Ko et al., 2011; Harris

and Mrsic-Flogel, 2013; Lee et al., 2016; Wertz et al.,

2015) or electrode studies over long distances with few

neurons in each location (Clay Reid and Alonso, 1995;

Siegle et al., 2021). To investigate the V1-HVA func-

tional network, we computed the NCs of pairs of neu-

rons within individual cortical areas (within-area NC),

and NCs for pairs of neurons where the two neurons are

in different cortical areas (inter-area NC) (Figure 2A).

NCs are computed from the residual activity of individ-

ual neurons after subtracting the expected neuron firing

on nominally identical trials. In this section, we evalu-

ated the fidelity of our NC measurements. We consid-

ered potential measurement noise due to the impreci-

sion of spike inference and the finite number of trials.

We first evaluated the accuracy of NC calculations

using inferred spikes from calcium imaging. We char-

acterized the accuracy of spike inference using previ-

ously published data of simultaneous two-photon imag-

ing and electrophysiological recording of GCaMP6s-

positive neurons from mouse V1 (Chen et al., 2013).

Consistent with a previous benchmark study on spike

train inference accuracy (Theis et al., 2016), we found

that the spike train inference methods used in the cur-

rent study recovered 40-70% of the ground truth spikes

(Figure S4A). We found that a similar fraction of spikes

were missing regardless of the inter-spike interval. Nev-

ertheless, the inferred spike train was highly correlated

with the true spike train (Figure S4A; linear correlation,

r = 0.80 ± 0.03 (n = 6)). Computing correlations be-

tween pairs of neurons using their inferred spike trains

accurately reproduced the true correlation values (Fig-

ure S4B; linear correlation, r = 0.7). We further exam-

ined the fidelity of correlation calculations using mod-

ified spike trains that are missing spikes. We exam-

ined randomly deleting spikes, deleting isolated spikes,

or deleting spikes within bursts (Figure S4D; Methods).

We found that at the 1 s time scale, correlation cal-

culations were tolerant to these spike train perturba-

tions. The fidelity of correlation computations were >0.6

with up to 60% missing spikes (Figure S4E; Methods).

Thus, with conventional spike inference accuracy, about

80% variance of the true correlation is recovered (Fig-

ure S4E). Thus, NCs are a robust measurement even

with imperfectly inferred spike trains.

Next, we evaluated the robustness of NC measure-

ments, given the finite number of trials that are feasible

to obtain. We computed NCs for both within-area neu-
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Figure 2. Noise correlation measurements are reliable

(A) Left: example covariance matrix of a quadratic recording of V1 and PM. Right: NC of an imaging session computed by trial aligned (blue) and trial shuffled data

(red, 0.00 ± 0.039 (mean ± SD), no areal difference). (B) Population mean NC is significantly larger than the residual correlation after trial shuffling. Circles indicate

the value of individual experiments. (C) Characterize the accuracy NC. The margin of error at 95% confidence interval (CI) of the population mean NC reducing rapidly

with an increasing number of neuron pairs with experimental trial numbers (72 time bin x 10 trials). With the experimental size of the population (>100 neuron pairs),

the estimation confidence is high. (D) Left, the NC of individual neuron pairs is computed by different random subsets of trials. Right, the variance of NC computed

using A subest of trials is explained by that’s computed using B subest of trials (53 ± 24 % variance explained; total 204 populations). Each subset contains half of

all the trials. The variance of explained is defined as the r2 of the linear model.

ron pairs and inter-area neuron pairs (Figure 2A). NCs

were computed using spike counts within 1 s bins, sim-

ilar to previous work with electrophysiology (Cohen and

Kohn, 2011; Smith and Sommer, 2013). Although both

within-area and inter-area NCs had wide distributions

(range: -0.2 – 0.6). The mean NCs across a population

were positive and at least five times larger than con-

trol data, which are NCs computed after shuffling the

trials (5 – 20-fold, 25 – 75% quantile; Figure 2B). The

estimation of the population mean NC converges fast

with increasing numbers of neurons, as suggested by

both simulation and experimental data (e.g., the mar-

gin of error at 95% CI for mean NC is 0.008 for 100

neuron pairs, Figure 2C). While the population-level NC

calculations are reliable, the NC estimation of individ-

ual neuron pairs is noisier due to the limited number of

trials, albeit positively correlated (Figure 2D). A linear

model explains about 53 ± 24 % of the variance be-

tween NCs for individual neuron pairs computed using

different random subsets of trials. In summary, this ev-

idence indicates that NCs can be accurately measured

at the population level with our large FOV calcium imag-

ing methods, despite imperfect spike train inference and

a finite number of trials.

Tuning similarity is a major factor in the V1-HVA

functional network

Having established that NC measurements were reli-

able and robust, we examined potential NC-regulating

factors, including firing rate, the physical distance be-

tween the neurons (laterally, across the cortex), signal

correlation (SC, the similarity between two neurons’ av-

erage responses to stimuli), and RF overlap. We as-

sessed the contributions of individual factors using a lin-

ear models. We found that both within- and inter-area

NCs are similarly modulated by the aforementioned fac-

tors (Figure 3A; r2 of linear regression model). SC is

the most pronounced factor that explains about 10% of

the variance of within-area NCs, and about 5% of the

variance of inter-area NCs (Figure S5A). Fraction RF

overlap contributes about 6% and 3% variance of within-

and inter-area NCs, respectively (Figure S5B). The fir-

ing rate explained about 2% of the variance of within-

and inter-area NCs (Figure S5C). Thus SC, RF overlap,

and firing rate positively regulate both within and inter-

area NC, with SC providing the strongest predictor.

We then evaluated whether NCs are modulated by

tuning similarity independent of RF overlap. In the sub-

set of orientation-selective neurons, both within- and

inter-area NCs were significantly modulated by orienta-

tion tuning selectivity. That is, neuron pairs that shared

the same preferred orientation exhibited higher NCs

(Figure S5D). NCs of a subset of neurons with non-

overlapping RFs were significantly higher when the neu-

rons shared the same preferred orientation (Figure 3B;

t-test, p < 0.05 for V1, LM and AL neuron pairs, insuffi-

cient data for PM and LI). This result confirms that the

connectivity between neurons is modulated by tuning

similarity (SC) independent of RF overlap, over millime-

ter distance scales.

Overall, about 20% of the variance of within-area

NCs, and 10% of the variance of inter-area NCs are ex-
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Figure 3. Factors contribute to mesoscale NC to sine-wave drifting gratings.

(A) The variance of within- and inter-area NC is explained by individual factors. (B) Noise correlation of neurons with non-overlapping RF is modulated by orientation

tuning similarity (within-area, PV 1 < 10-4 (N = 3401), PLM = 0.03 (N = 181), PAL = 0.019 (N = 284); inter-area: PV 1−LM = 0.019 (N = 650), PV 1−AL = 0.0004

(N = 998); t-test). (C) The variance of within-area NC and inter-area NC is explained by SC, firing rate, neuron distance, and RF overlap combined. The variance

explained is the r-square of a multi-linear regression model. (A, C) The error bar indicates the standard error of the mean of permutations. A subset of 100 neuron

pairs was randomly selected for each permutation.

plained by the aforementioned factors jointly (Figure 3C;

r2 of multi-linear regression model). Although inter-area

NCs have a smaller mean and variance, it is less pre-

dictable by known factors (within-area NCs pooled over

all tested area 0.012 ± 0.052, inter-area NCs between

V1 and all tested HVAs 0.0063 ± 0.04; both t-test and

F-test p < 10-4). In an expansion of prior work on local

functional sub-networks (Lee et al., 2016; Wertz et al.,

2015; Ko et al., 2011; Harris and Mrsic-Flogel, 2013),

we find that signal correlation is the strongest factor

regulating both within-area and inter-area NC networks,

suggesting that neurons exhibiting similar tuning prop-

erties are more likely to form functional sub-networks

across a broad spatial scale, spanning millimeters in the

mouse V1-HVA network.

Neurons are connected through functionally dis-

crete channels

Seeing as HVAs exhibited biased SF-TF selectivity (Fig-

ure 1E), and after finding that tuning selectivity (SC) is

a major factor for functional connectivity even across

the millimeter length scale (Figure 3A), we assessed

the precision of this network. We performed additional

analysis to determine whether the ST-TF biases in HVAs

could be due to simple, weak biases in the NC network.

Alternatively, there could be precise discrete channels

of connectivity in the V1-HVA network to preserve infor-

mation among similarly tuned neurons. We found evi-

dence for this latter situation: discrete channels. More-

over, we found that the discrete channels consist of a

greater number of neuron pairs with high NCs, rather

than a small number of neuron pairs with very high NCs.

For this analysis, we focused on neuron pairs with

high NCs, which we defined as NCs > 2.5 times the

standard deviation of trial shuffled NCs for the popula-

tion (Figure 4A). We focused on these high NC pairs,

because they can represent high fidelity communication

channels between neurons. Within each SF-TF group,

for both V1 and HVAs, about 10-20% of neuron pairs ex-

hibited high NCs, in contrast to 5% for inter SF-TF group

connections (Figure 4A, B). The fraction of pairs that ex-

hibit high NCs is relatively uniform across tuning groups

and HVAs with a few exceptions (Figure 4B). For exam-

ple, in HVA PM group 3 contains a higher fraction of high

fidelity connections than the other HVAs. Overall, these

results show that mixing between groups is limited, and

instead group-specific high-NC sub-networks exist be-

tween neurons across millimeters cortical space.

To determine whether it is the number of high NC

pairs or the magnitude of the NCs, we performed fur-

ther analysis. Prior findings from studies of axonal pro-

jections from V1 to HVAs indicated that the number of

SF-TF-specific boutons —rather than the strength of

boutons— contribute to the SF-TF biases among HVAs

(Glickfeld et al., 2013). Though the functional connectiv-

ity is not completely defined by the feedforward axonal

projections from V1 (Huh et al., 2018), this number vs.

strength question is one that we can address with our

data set. We found that the biased representation of

SF-TF among HVAs is linearly related to the number of

neuron pairs with high NCs (Figure 4C). That is, there

are more high NC pairs that are in-group. By contrast,

the fraction of pairs with high NCs does not account the

SF-TF biases of HVAs (Figure 4D). That is, the in-group

pairs do not tend to have higher NCs. Thus, the biases

in SF-TF are likely related to the abundance of SF-TF-

specific connections, but not the strength of the connec-

tions.

To this point, we have focused on the six SF-TF

groups. The evidence supports group-specific channels

among these neurons. However, these six groups origi-

nated with 65 classes from data-driven GMM clustering,

which were then manually collected into the six SF-TF

groups (Figure 1). The trends we see for groups may

reflect general SF-TF biases. In that case, we would

expect that the in-class NCs would exhibit similar dis-

tributions of NCs as the in-group NCs. However, there

might be further precision in the specific channels not

captured by the SF-TF groups. A hint towards that can

be seen in the fact that orientation tuning can modulate

NCs (Figure 3), because some of the 65 GMM classes

differ by preferred orientation (Figure S2). Indeed, we

found that when we plotted the NC distribution for in-

class neuron pairs and compared it to the distribution

for in-group neuron pairs, we found a pronounced posi-

tive tail for the in-class distribution (Figure 4E). Thus the

GMM classes provide relevant, granular labels for neu-

rons, which form functional sub-networks with discrete
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Figure 4. Tuning-specific high-fidelity V1-HVA communication channels (A) Distribution of NC of a subset of LI neurons from tuning group 1 (blue) and NC of a

subset of LI neurons between group 1 and other tuning groups (red). (B) Fraction of neuron pairs with high correlation (NC > 2.5*SD of trial-shuffled NC) for within- and

inter-group pairs. Neurons within a group have a larger fraction of neuron pairs exhibiting high-fidelity connections (all comparisons, t-test, p < 0.0001). Distribution

generated by 100 permutations. (C) The normalized number of tuning group-specific high-fidelity connections is linearly related to the fraction of SFTF groups in each

HVA (r2 = 0.9; p < 0.0001). The number is normalized to the total neuron pairs for each area. Right, a diagram indicates area-specific SFTF biases match the number

of high-fidelity functional connections. (D) The average NC value for each tuning group is not linearly related to the fraction of SFTF groups in each HVA (r2 = 0.1; p

= 0.1). Right, a diagram indicates area-specific SFTF biases match the strength of functional connections. (E) Density function of NC for with-area (left) or inter-area

(right) neuron pairs that shared the same direction and or SFTF preference (full scale is inset, bin size is 0.00875). (F) Functional V1-HVA connectivity between GMM

classes. Matrix is organized by the modular structure, the tuning selectivity of each module is shown on the right.

channels, which are more precise than predicted from

simpler SF-TF biases or groups.

The GMM classes are widely distributed in all tested

areas (Figure S7B). We constructed an inter V1-HVA

connectivity matrix for the 65 classes (Figure 4F). The

connection weight is defined by the fraction of pairs

with high NCs. To investigate the modular struc-

ture of this network, we performed community detec-

tion analysis using the Louvain algorithm (Rubinov and

Sporns, 2010). This analysis assigned densely con-

nected nodes to the same module (Figure 4F). Over-

all, the connectivity matrix was split into four commu-

nity modules (Figure 4F; S7C). Interestingly, the cor-

responding node in V1 and HVAs for each module ex-

hibited similar direction and SF-TF preferences (Figure

4F). For example, the module 2 nodes exhibited nar-

row vertical direction tuning and preferred high SF and

low TF. Module 1 exhibited high SF preference without

direction bias. Area differences in the characteristic tun-

ing selectivity of each module are small, suggesting that

the GMM class channels are common across the V1-

HVA network. This is consistent with the overall broad-

casting projection structure of V1 neurons (Han et al.,

2018).

In summary, V1 and HVA neurons can be classified

by their selectivity to oriented gratings, and they form

precise, discrete channels or sub-networks. These sub-

networks of neuron pairs with high NCs preserve selec-

tivity by limiting inter-channel mixing. The organization

of V1-HVA sub-networks exhibited properties that are

consistent with that of V1-HVA feedforward projections

in that the number of high-fidelity connections, rather

than the strength of the connections, accounted for SF-

TF biases among HVAs. Moreover, the precision of

these networks extends beyond prior observations of

general SF-TF biases, to include orientation and direc-

tion tuning.

Functional connectivity is stable across stimuli

Functional connectivity is dynamic and transient, which

complicates its relationship with structural (i.e., anatom-

ical) connectivity, yet can provide more accurate predic-

tions for network dynamics than the latter (Randi et al.,

2023). We performed additional analysis to determine
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Figure 5. Functional connectivity to drifting gratings predicts functional connectivity to natural video. (A) Left, NC connectivity to the naturalistic video is sig-

nificantly correlated with that to drifting gratings. The correlation between NC across different stimuli is significantly higher than the correlation between corresponding

SC (corr(NCgrat,NCnat) = 0.22±0.13;corr(SCgrat,SCnat) = 0.084±0.065; t-test, p < 0.0001). Colored circles represent individual experiments. Gray

dots represent trial-shuffled control (corr(NCshulfgrat,NCshulfnat) = 0.02 ± 0.06). The black/gray dot and error bars indicate the mean and SD for NC and

SC. Right, the correlation between connectivity to grating and naturalistic video stimuli of an example dataset (arrow pointed on the left), defined by NC (upper) or SC

(lower). (B) NC to naturalistic video is positively related to its SC, as well as to the NC to drifting gratings. The shaded area indicates SEM. (C) The percentage of

NCnat variance is explained by a linear model of SCnat, NCgray , or both factors. NCgray is a better linear predictor compared to SCnat (NCgray , 5.3 ±

3%; SCnat, 4 ± 2%; t-test, p < 0.0001). Combining both factors predicts the NCnat even better (8 ± 3%; t-test, p < 0.0001). Variance explained is measured by

r2 of the linear regression.

whether the NC-based functional connectivity analysis

we performed above provides fundamental insights into

neuron circuits beyond a stimulus-specific transient. We

compared NC measurements in response to drifting

gratings (NCgrat) to NC measurements in response

to naturalistic videos (NCnat). This analysis was re-

stricted to the subset of neurons that responded to both

types of stimuli in a separate set of experiments.

So far, we have shown that SC (i.e., neuron tuning

similarity) is the best predictor for NCs. However, a

neuron pair that shares a high SC to drifting gratings

does not guarantee a high SC to naturalistic videos

(corr(SCgrat,SCnat) = 0.084 ± 0.065). Thus, it is rea-

sonable to expect that NCs in response to gratings do

not predict the NCs in response to naturalistic videos.

However, we were surprised to find that the correlation

between NC to the two stimuli is significantly higher than

that of SC (corr(NCgrat,NCnat) = 0.22±0.13; Figure

5A). Thus, NC across stimuli is more predictable than

SC across stimulus types. To our knowledge, this is the

first time this has been reported.

We used SC to natural videos (SCnat), and gratings

NCgrat to predict NCnat using linear regressions. Both

predictors are positively related to the NCnat (Figure

5B). We found that NC to gratings outperformed SC to

naturalistic videos in predicting NC to naturalistic videos

(t-test, p < 0.0001; Figure 5C). Meanwhile, combining

both predictors almost linearly adds up the prediction

power of the two factors in linearly predicting NC to

natural videos (Figure 5C), suggesting that the cross-

stimulus NC predictor adds an independent dimension

to the SC predictor. These results are evidence that NC-

assessed functional connectivity reflects a fundamental

aspect of the architecture of neuronal circuitry that is

independent of visual input.

Recurrent connection contributes to the stability of

NC network

Surprised by the cross-stimulus stability of the NC-

based functional connectivity of the visual cortical net-

work among V1 and HVAs, we went on to investigate

what could be an underlying mechanism. NCs can be

due to both shared input and direct/indirection wiring.

Indeed, using a simple model with two leaky integrate-

and-fire (LIF) neurons, we found that the NC is positively

regulated by a larger fraction of shared input as well as

by the increasing recurrent connection strength (Figure

6A, B).

We then asked how the two sources contribute to

the cross-stimulus stability of the NC functional network

using LIF neuronal network simulations (Figure 6C).

The simulated neuronal network contained 80 excitatory

neurons and 20 inhibitory neurons that are randomly

connected. The input layer contains 1000 independent

Poisson spiking neurons. The network parameters are

determined based on previous work (Song et al., 2000)

and all the simulations generated comparable LIF firing

rates (4-6 Hz), as well as NCs (population mean: 0.05-

0.25) and SC values (population mean: 0.01-0.15).

In the first set of simulations, the feedforward (FFD)

connection from the input layer to the LIF network is ran-

dom. Increasing recurrent connection strengths (rang-

ing from 0.05 to 0.3) generated NC-based networks with

higher cross-stimulus stability (Figure 6D). A recurrent

connection strength of 0.2 best reproduced the mouse

data. In the second batch of simulations, we fixed the
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Figure 6. Simulation suggests recurrent connection contributes to the stability of NC network. (A) Toy model with two LIF neurons that are connected through

excitatory synapses. The LIF neurons receive a fraction of shared input (red) and independent input (green) from a Poisson input layer. (B) The firing rate (left)

and NC (right) of the two LIF neurons in a toy model (A) is regulated by the fraction of shared input and the strength of the recurrent connection. (C) Schematic

of an LIF neuron network model with randomly connected LIF neurons and an input Poisson layer. The structure of the input connection and the strength of the

recurrent connection are modulated in the simulation (D, E). (D) In networks with random input connection structures, increasing recurrent connection strength leads

to higher cross-stimulus stability of the NC network. Among the values tested, recurrent connection = 0.2 (red) generated a network that was closest to the mouse

L2/3 visual neurons (black). (E) In simulations with 0.2 recurrent connectivity strength, regulating the input structure does not change the cross-stimulus stability of

the NC network but leads to higher cross-stimulus stability of the SC network. (D, E) The error bar indicates the SD of multiple randomly initiated simulations under

the same condition.

recurrent connection strength to 0.2 but manipulated the

input FFD connection structure ranging from random to

increasingly wider bell shapes (Figure 6E). This means

that the local neurons receive increasingly similar FFD

input. We found that increasingly similar local FFD input

does not lead to higher NC stability, but does increase

SC similarity across stimuli (Figure 6E). Also, the ran-

dom FFD input connection structure (0.18 FFD, red) re-

produced the experimentally observed NC network the

best (Figure 6E).

Thus, the LIF simulations showed that although both

shared input and recurrent connections contributed to

the NC, the recurrent connections are critical for gen-

erating the observed cross-stimulus stability of the NC

functional network. Moreover, the simulations sug-

gested that the network can receive relatively random

FFD input.

Discussion

We used large scale two-photon calcium imaging

across cortical areas to show that NC-based as-

sessments of functional connectivity exhibited tuning-

specific organization with single neuron precision,

across millimeter length scales. This connectivity is

consistent with the axonal projection patterns obe-

served in the mouse visual cortex (Glickfeld et al., 2013;

Han et al., 2018), but goes further, to include the pre-

cise GMM classes we found– 65 different classes in re-

sponse to grating stimuli. Moreover, we found that NC-

based networks are consistent across stimulus classes.

Thus, V1 broadcasts high-fidelity channels of informa-

tion to HVAs. The projections preserve fidelity by min-

imizing mixing among channels, i.e., tuning groups or

classes.

Multi-scale functional connectivity and structural

connectivity

To better understand this aspect of network organiza-

tion, we examined the connectivity of the nervous sys-

tem at multiple scales (Sporns, 2016), and considered

the coefficient of variance (CV, = standard deviation /

mean) at each level and process (Figure 7). At the small

scale, neurons interact through the release of neuro-

transmitters, which can affect ion channel activity. At

the mesoscale, e.g. the current study, neurons are or-

ganized into networks or circuits with specific structures

and hierarchies to serve a function in information pro-

cessing, processing stimuli and/or guiding behavior. At

the macroscale, brain regions can have diverse func-

tions and interact to generate adaptive behavior. As-

sessing neuronal dynamics at these different scales

requires a variety of technologies (Dorkenwald et al.,

2022; Harris et al., 2019; Silver et al., 2003; Stringer

et al., 2019).

We compiled data on multiple scales and modalities

of mechanistic connectivity of the mouse nervous sys-

tem. To compare across modalities and scales we fo-

cused on the CV, called dispersion hereafter, of various

parameters (Figure 7). Dispersion (CV) is unitless and

allows us to bring disparate data into the same axis.

We compared the dispersion of multi-scale connectiv-

ity to gain insights into the computations bridging multi-

scale interactions. Notice that both functional and struc-
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Figure 7. Dispersion of connectivity of the nervous system Circular size indicates the dispersion value of a particular network, which is defined by either functional

or anatomical connectivities. Synaptic or cellular scale connectivity is characterized by the number (Dorkenwald et al., 2022) and size of synapses (Dorkenwald et al.,

2022) and the post-synaptic potential (Silver et al., 2003; Seeman et al., 2018). The strength of post-synaptic potential is further broken down into multiple synaptic

properties including the number of release sites, release probability, and the quantal size (Holler et al., 2021). NC network connectivity is defined as the fraction of

high NC per condition. It is computed from the current dataset. SFTF-specific dispersion is a measure of the network in figure 4C. GMM-class-specific dispersion is a

measure of the network in figure 4F. Mix-channel-dispersion is measured from the fraction of high-fidelity connections per area regardless of tuning specificity. Also,

the NC network dispersion is quantitatively similar when measured from the connectivity matrix generated by the population mean NCs. System scale connectivity is

estimated from the mouse anterograde projection dataset (Harris et al., 2019). All data are from mice unless otherwise specified in the figure.

tural connectivity are available at the microscopic scale,

but only one of the two is available for mesoscale and

macroscale networks (Figure 7). Functional connectiv-

ity has been measured at the macroscale in mice using

one-photon techniques (Ren and Komiyama, 2021) and

fMRI (Kim et al., 2023), but these approaches lack cel-

lular resolution, and the analyses to date do not provide

a quantitative measurement of dispersion that can map

onto the same axis, thus they are omitted from this dis-

cussion. Still, we can provide a large range of disper-

sion measurements (Figure 7).

The dispersion of components of multi-scale con-

nectivity of the nervous system ranges from 0.1 to

1.5 (Figure 7). Synaptic interactions are characterized

by the number and size of synapses, and the post-

synaptic potential. The size of synapses and the post-

synaptic potential exhibited larger dispersion compared

to the number of synapses, suggesting that neuronal

interactions are regulated by the size and strength of

synapses rather than the number of synapses (Fig-

ure 7). The combination of high-resolution electron

microscopy (EM) and slice electrophysiology has un-

covered a linear relationship between synaptic size

and strength in the mouse L2/3 somatosensory cortex

(Holler et al., 2021).

Overall, dispersion reduces at larger spatial scales

(Figure 7). The measurement at these larger scales

could mask some key sources of variance in connectiv-

ity. This becomes clear when comparing the dispersion

of the tuning channel-specific connectivity with that of

the mixing-channel connectivity measured by the cur-

rent study. The dispersion of the latter reduces for both

inter- and within-area connectivity, suggesting that tun-

ing channel-specific communication is a key contributor

to defining the functional connectivity between brain re-

gions (Figure 7).

Similarly, axonal projections measured without tun-

ing channel-specific information provide the connectivity

between all cortical regions and shed light on laminar

differences, but do not discriminate brain areas thor-

oughly (Figure 7). In particular, the dispersion of V1-

HVA L2/3 projections is small and similar to that of the

L2/3 channel-mixing NC functional network, emphasiz-

ing the importance of tuning specificity in organizing the

network in these cortical layers. L1 being the major

destination for cortical feedback projections (Harris and

Shepherd, 2015), exhibited the largest dispersion in the

anterograde projection connectivity.

Additional efforts are needed to bridge analysis of

multi-scale connectivity. For example, models have

been developed to understand how small-scale pro-

cesses, such as synaptic interactions, collectively give

rise to population neuron-level behaviors (Gerstner

and Kistler, 2002). Synaptic interactions are de-

scribed at various levels of detail and biological real-

ism in these models to serve specific research pur-

poses. Population-level neuronal network models can

be scaled up to represent brain regions or systems,

which involves adding more neurons, specifying cell

types, and connecting multiple networks (Markram

et al., 2015; Sporns, 2014). Integrating functional con-

nectivity with anatomical connectivity would help de-

velop a system model with functional causality (Honey

et al., 2010; Sporns, 2016). These models can simu-

late complex tasks or behaviors by connecting various

brain regions and networks, accounting for sensory in-
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puts, decision-making, and motor outputs.

In summary, mesoscale two-photon imaging tech-

niques open up the window of cellular-resolution func-

tional connectivity at the system level. How to make

use of the knowledge of functional connectivity remains

unclear, given that functional connectivity provides im-

portant constraints on population neuron behavior. One

approach to address the gap is to link functional con-

nectivity with structural connectivity to learn how the two

constrain each other and integrate the functional con-

nectivity into network models.
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Methods

Animals and surgery

All animal procedures and experiments were approved

by the Institutional Animal Care and Use Committee

of the University of North Carolina at Chapel Hill or

the University of California Santa Barbara and carried

out in accordance with the regulations of the US De-

partment of Health and Human Services. GCaMP6s

expressing transgenic adult mice of both sexes were

used in this study. Mice were 110 - 300 days old for

data collection. GCaMP6s expressing were induced by

the triple crossing of TITL-GCaMP6s line (Allen Insti-

tute Ai94), Emx1-Cre line (Jackson Labs #005628), and

ROSA:LNL:tTA line (Jackson Labs #011008)(Madisen

et al., 2015). Mice were housed under a 12-h/12-h

light-dark cycle, and experiments were performed dur-

ing the dark cycle of mice. Mice were anesthetized

with isoflurane (1.5 - 1.8%) and acepromazine (1.5 - 1.8

mg/kg body weight) when performing visual cortex cran-

iotomy. Carpofen (5 mg/kg body weight) was admin-

istered prior to surgery. Mice’s body temperature was

maintained using physically activated heat packs dur-

ing surgery. Mouse eyes were kept moist with ointment

during surgery. The scalp overlaying the right visual

cortex was removed, and a custom head-fixing imaging

chamber with a 5-mm diameter opening was mounted

to the skull with cyanoacrylate-based glue (Oasis Medi-

cal) and dental acrylic (Lang Dental). A 4-mm diameter

craniotomy was performed over the visual cortex and

covered with #1 thickness coverslip.

Locating visual areas with intrinsic signal optical

imaging (ISOI)

ISOI experiments were carried out similarly as previ-

ously (Stirman et al., 2016; Smith et al., 2017; Smith

and Trachtenberg, 2007). Briefly, the pial vasculature

images and intrinsic signal images were collected us-

ing CCD camera (Teledyne DALSA 1M30) at the cran-

iotomy window. A 4.7 × 4.7 mm2 cortical area was im-

aged at 9.2 µm/pixel spatial resolution and at 30 Hz

frame rate. The pial vasculature was illuminated and

captured through green filters (550 ± 50 nm and 560 ±

5 nm, Edmund Optics). The ISO image was collected

by focusing 600 µm down from the pial surface. The

intrinsic signals were illuminated and captured through

red filters (700 ± 38 nm, Chroma and 700 ± 5 nm, Ed-

mund Optics). Custom ISOI instruments were adapted

from Kalatsky and Stryker (2003). Custom acquisition

software for ISOI imaging collection was adapted from

David Ferster (Stirman et al., 2016). During ISOI, mice

were 20 cm from a flat monitor (60 × 34 cm2), which cov-

ers the visual field (110°x 75°) of the left eye. Mice were

lightly anesthetized with isoflurane (0.5%) and acepro-

mazine (1.5–3 mg/kg). The body temperature was

maintained at 37 °C using a custom electric heat pad

(Stirman et al., 2016). Intrinsic signal response to the

vertical and horizontal drifting bar was used to generate

azimuth and elevation retinotopic maps (Figure S1A).

The retinotopic maps were then used to locate V1 and

HVAs. Borders between these areas were drawn at the

meridian of elevation and azimuth retinotopy manually

(Marshel et al., 2011; Smith et al., 2017). The vascu-

lature map then provided landmarks to identify visual

areas in two-photon imaging.

In vivo two-photon calcium imaging

Two-photon imaging was carried out using a custom

Trepan2p microscope controlled by custom LabView

software (Stirman et al., 2016). Simultaneous dual-

region imaging was achieved by splitting the excitation

beam and temporally multiplexing laser pulses (Stirman

et al., 2016). Two-photon excitation light from an 80

MHz Ti:Sapph laser (Newport Spectra-Physics Mai Tai

DeepSee) was split into two beams through polariza-

tion optics, and one path was delayed 6.25 ns relative

to the other. The two beams were independently di-

rected with custom voice-coil actuated steering mirrors

and tunable lenses, such that the X, Y, Z planes of the

two paths are independently positioned within the full

field (4.4 mm diameter). Both beams were scanned by

the resonant scanner (4 kHz, Cambridge Technologies),

and a single photon signal was collected by a photo-

multiplier tube (PMT) (H7422P-40, Hamamatsu), and

demultiplexed using outboard electronics prior to digi-

tization. In the current study, two-photon imaging re-

gions of 500 x 500 µm2 were collected at 13.3 Hz for
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two-region imaging or 6.67 Hz for quad-region imag-

ing. Imaging was performed with <80 mW of excita-

tion (910 nm) laser power, as measured out of the front

of the objective. Mice recovered in their home cage

for at least 2 days after surgery, before acquiring two-

photon imaging. Mice were head-fixed ∼ 11 cm from a

flat monitor, with their left eye facing the monitor, dur-

ing imaging. Approximately 70° x 45° of the left vi-

sual field was covered. If not otherwise stated, two-

photon images were recorded from quiet awake mice.

For anesthetized experiments, mice were lightly anes-

thetized under 1% isoflurane. During two-photon imag-

ing, we monitored mouse pupil position and diameter

using a custom-controlled CCD camera (GigE, National

Instruments) at 20 - 25 fps. No additional light stimula-

tion was used for pupil imaging.

Visual stimuli

Visual stimulation was displayed on a 60 Hz LCD mon-

itor (9.2 x 15 cm2). All stimuli were displayed in full

contrast. For course population RF and single neuron

RF mapping (Figure S1B-D), a rectangular (7.5°x 8.8°)

bright moving patch containing vertical drifting grating

(2 Hz, 0.05 cpd) on a dark background was displayed.

The moving patch appeared and disappeared on a ran-

dom position of the full monitor in pseudo-random order

without interruption by a gray screen, and presented on

each position for 5 sec.

To characterize the value and structure of the correla-

tion of V1 and HVAs, we showed mice full-screen sine-

wave drifting grating stimuli in 8 directions (0 – 315°,

in 45° step), with an of 0.02, 0.05 or 0.19 cpd, and a

TF of 1, 2 or 8 Hz (72 conditions in total). Each of the

sine-wave drifting grating stimuli was presented for 2 s

in pseudo-random order. Stimuli with the same SF and

TF were presented successively without interruption. A

gray screen was presented for 3 seconds when chang-

ing the SF and TF of stimuli.

In a subset of experiments, we also characterized

the cross-stimulus stability of functional networks using

combo stimuli with naturalistic videos and full contrast

drifting gratings (at 2 Hz, 0.05 cpd). Two naturalistic

videos, each lasting for 32 s were generated by navigat-

ing a mouse home cage using a GoPro camera.

Calcium imaging processing

Calcium imaging processing was carried out using cus-

tom MATLAB codes (Yu et al., 2022). Two-photon cal-

cium imaging was motion corrected using Suit2p sub-

pixel registration module (Pachitariu et al., 2016). Neu-

ron ROIs and cellular calcium traces were extracted

from imaging stacks using custom code adapted from

Suit2p modules (Pachitariu et al., 2016). Neuropil con-

tamination was corrected by subtracting the common

time series (1st principal component) of a spherical sur-

rounding mask of each neuron from the cellular cal-

cium traces (Harris et al., 2016). Neuropil contamination

corrected calcium traces were then deconvolved using

a Markov chain Monte Carlo (MCMC) method (Pnev-

matikakis et al., 2013). For each calcium trace, we re-

peated the MCMC simulation for 400 times and mea-

sured the signal-to-noise of MCMC spike train inference

for each cell. For all subsequent analyses, only cells

that reliable spike train inference results were included.

Neurons with low responsiveness were excluded for

subsequent analysis (trial averaged spike count to pre-

ferred spatiotemporal frequency summed over all orien-

tations < 1; or trial averaged spike count to a 32 s natu-

ralistic video < 1).

Receptive field

We mapped RFs by reverse correlation of neuronal re-

sponses with the locations of the moving patch of drift-

ing grating stimulus. For population RF mapping, pop-

ulation neuronal responses of simultaneously recorded

neurons from a 500 x 500 µm2 imaging window were

reverse correlated with the stimulus locations.

Gaussian mixture model

To characterize the tuning properties unbiasedly, neu-

rons were clustered using a Gaussian mixture model

(GMM) based on the trial-averaged responses to the

drifting gratings. Only reliable responsive neurons were

included for GMM analysis (trial-to-trial Pearson correla-

tion of the inferred spike trains > 0.08, spike trains were

binned at 500 ms). Neuronal responses of the whole

population pooled over all texted areas, were first de-

noised and reduced dimension by minimizing the pre-

diction error of the trial-averaged response using the

principle components (PC). 45 PCs were kept for popu-

lation responses to the drifting gratings. We also tested

a wide range number of PCs (20−70), and we found the

tuning group clustering was not affected by the num-

ber of PCs. Neurons collected from different visual

areas and different animals were pooled together in

training GMM. GMMs were trained using MATLAB build

function fitgmdist with a wide range number of clus-

ters. A model of 65 classes was selected based on the

Bayesian information criterion. We also examined mod-

els with smaller (20, 30, and 45) or even larger numbers

of classes (75), the overall results held regardless of the

number of GMM classes. Figure S2 show the response

pattern of GMM classes of drifting gratings. The size of

each GMM class is shown in figure S1F.

To summarize the spatial-temporal tuning properties

of neurons (Figure 1E), we manually organized the 65

GMM classes into 6 groups based on their preferred SF,

TF (Figure S2). Group 1 prefers low SF and low TF

(LSLT, 0.02 cpd, 1-2 Hz), group 2 prefers medium SF

and low TF (MSLT, 0.05 cpd, 1-2 Hz), group 3 prefers

high SF low TF (HSLT, 0.19 cpd, 1-2 Hz), group 4

prefers low SF high TF (LSHT, 0.02 cpd, 8 Hz), group

5 prefers medium SF and high TF (MSHT, 0.05 cpd, 8

Hz), group 6 prefers high SF and high TF (HSHT, 0.19

cpd, 8 Hz) and group 7 not specific. Group 7 included

4 classes that did not exhibit specific response features,
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among them two classes are extremely small (each con-

tains <5 neurons), and the other two contain neurons

with small response strength (mean spike count < 0.5

spikes/s to preferred stimulus). As we have been in-

clusive in data selection for the GMM training and in-

cluded low-firing neurons, the latter two classes contain

about 1500 neurons in total. It is justifiable to exclude

low-response neurons from further analysis. Thus, the

whole group 7 was excluded for further analysis.

GMM classification accuracy. We examined the accuracy

of GMM classification for neuron responses to drifting

gratings. We performed GMM clustering on 10 random

subsets of neurons (90% of all neurons). We found the

center of the Gaussian profile of each class was con-

sistent (Figure 1C). The same class of different GMMs

was identified by matching the center of the class. Then

we asked whether a neuron was classified in the same

class in each GMM model. We found neurons were con-

sistently classified into the same class in GMMs of a

random subset of data (Figure 1D). We also performed

GMM on population data after randomly shuffling neu-

ron identity (10 permutations). Classes were identified

by matching the center of the class and then grouped

following the previous definition. We found that neurons

are allocated into the same SF-TF group in GMMs of

randomly ordered data (Figure S1G, H). These analy-

ses suggested that GMM provided a reliable classifica-

tion of neurons.

Orientation and direction selectivity

The direction and orientation selectivity of each neu-

ron were computed using neuron response to its opti-

mal spatial-temporal frequency of drifting grating stimuli.

The direction selectivity index and orientation selectivity

index were computed using the following equations.

DSI or OSI =

(Rprefer −Rnull)/(Rprefer +Rnull)

The polar plots of tuning groups were generated by av-

eraging responses to the preferred direction of each

neuron within a tuning group, and normalized to one

(Figure S3C). For neurons with high direction selectiv-

ity, neuron responses to preferred direction was consid-

ered, while for neurons with low direction selectivity (DSI

< 0.5), neuron responses to both preferred and null di-

rections were included.

ISOI warping

We spatially registered ISOI map of V1 to align with that

of LM or AL. We first segmented the ISOI map by color

segmentation using K-means clustering and then deter-

mined the center of each color segment. Then we per-

formed the affine transformation of color band centers

of V1 to match that of LM or AL. The transformation ma-

trix M was determined by minimizing the distance be-

tween transformed V1 centers and LM or AL centers

using Matlab function fminsearch.

Correlation calculation

Noise correlation was defined as the trial-to-trial corre-

lation of residual spike count (1 s time window, if not

otherwise stated) after subtracting the mean response

to each stimulus of the 72-condition sine-wave drifting

gratings. Residual spike count to all stimuli (eg. gratings

with different directions and SFs and TFs), and all trials

were concatenated into one column vector per neuron

(ui, i = 1,2. . . N, neuron identity). The noise correlation

rsc was computed as the Pearson correlation of ui and

uj .

rsc = (cov(ui,uj))/
√

var(ui)∗var(ui)

i, j indicate neuron identity. Signal correlation was

defined as the neuron-to-neuron Pearson correlation of

mean responses. Mean response was a 72-element

column vector, computed by trial averaging responses

to sine-wave gratings with 72 conditions. To examine

the relation between noise correlation and joint firing

rate between a pair of neurons. We computed the mean

joint spike count (geometric mean spike count average

over all stimuli.

We computed inter-area NCs with simultaneously

recorded regions that shared greater than 40% of popu-

lation RF. We kept this criterion even though we did not

detect a relationship between the inter-area NC and the

fraction of population RF overlap within the tested range

(p = 0.37).

Fidelity of noise correlation measurement

Tolerance of correlation calculation to inaccuracy in spike

train inference. We quantify the spike train inference

accuracy using a previously published data set with

simultaneous cell-attached recording and two-photon

imaging of GCamp6s from mouse V1 (Chen et al.

(2013); http://crcns.org/data-sets/methods/cai-1). We

performed spike train inference on the recordings with

stable baseline and good correspondence between cal-

cium trace and electrophysiology recording (linear cor-

relation, r > 0.1; bin 0.1 s; Figure S4A, B). The signal-to-

noise (SNR) of the calcium trace of the calibration data

is 12.3 ± 5. It is comparable with the SNR of the calcium

signal of the current study (8.7 ± 1.8).

We further evaluated how the correlation calcula-

tion was affected by inaccurate spikes train recov-

ery. We took publicly available electrophysiology

recordings of mouse V1 neurons (Theis et al. (2016);

http://spikefinder.codeneuro.org/), and computed resid-

ual spike count correlation at 1 s time bin after pertur-

bations on the ground truth spikes train. We did four

types of perturbations, (1) randomly missing spikes; (2)

missing isolated spikes as the signal-to-noise of the cal-

cium signal of isolated spikes may be low; (3) missing

all spikes within a burst; (4) missing 60% spikes within

a burst (Figure S4C). We identified isolated spikes or

burst spikes by thresholding the inter-spike-interval of

each spike. A spike that was >t s distance away from

spikes franking itself was a t isolated spike. A spike that
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was <t s distance away from another spike was a t burst

spike. The residual spike count correlation computed

with perturbed spikes trains was linearly correlated with

ground truth (Figure S4D) and exhibited good tolerance

to up to 60% missing spikes by all types of perturbation

(fidelity > 0.6; Figure S4E).

Significance of noise correlation. Since the value of

noise correlations was small, we tested whether these

values were significantly above zero. We compared

the noise correlation with trial-shuffled noise correla-

tion, the latter was computed using trial-shuffled data

(the order of trials were randomized for each neuron in-

dependently). The population-mean noise correlation

computed with trial-aligned data was significantly higher

than that of the trial-shuffled data with the size of the ex-

perimental population (Figure 2B).

Accuracy of noise correlation . We investigated the accu-

racy of noise correlation estimation with both data and

model. The individual noise correlations of the same

set of neurons varied when computing using a differ-

ent random subset of trials (Figure 2D). We computed

the population mean value of the noise correlation of a

random subset of neuron pairs and calculated the confi-

dence interval for estimating the population mean noise

correlation. The accuracy of population-mean estima-

tion increases with the number of neurons, even with a

limited number of trials (Figure 2C). We further charac-

terized the estimation accuracy by simulating correlated

neuron population (Macke et al., 2009), which allows an

arbitrary number of trials. The expected firing rate and

expected population mean correlation match our exper-

imental data. To achieve an accurate estimation (1/10

standard error/mean value) of the population mean cor-

relation converges with >100 neurons even using exper-

imental level trial numbers (Figure 2C).

Community module analysis

We constructed a V1-HVA connectivity matrix using

the fraction of high NC (NC > mean + 2.5*SD of trial-

shuffled NC) pairs between each GMM class. We per-

formed community detection analysis using the Louvain

algorithm (Rubinov and Sporns, 2010), which assigned

densely connected nodes to the same module. The

spatial smooth parameter γ that generated the largest

deviation from a random connectivity matrix is picked.

The analysis was performed using the Brain Connectiv-

ity Toolbox (brain-connectivity-toolbox.net).

Leaky integrate-and-fire neuron network simulation

LIF simulations were carried out using the Brian2 simu-

lation engine in Python (Stimberg et al., 2019). The LIF

neuron network model was defined similarly as Song

et al. (2000). In brief, the membrane potential of LIF

neurons was given by the equation below:

dv/dt = (ge∗ (Ee−v)+gi∗ (Ei−v)+El −v)/τm

Where τm corresponds to the membrane time constant

(20 ms). ge, gi and Ee, Ei are the excitatory and in-

hibitory synaptic conductance and their respective re-

versal potential (Ee = 0 mV, Ei = -80 mV). the mem-

brane potential was simulated with a time resolution of

dt = 0.1 ms. El (-70 mV) corresponds to the resting

potential. Connections between LIF neurons occurred

with probability p = 0.02, and the strength of the con-

nections is defined as Wij , (i, j indicate source and tar-

get neuron ID, i = j). Wij = Jmax or 0 if not con-

nection. Jmax defined specifically in each simulation

setting (Figure 6D, E). The dynamics of synaptic con-

ductance were given by exponential decay functions

ge/dt = −ge/τe and gi/dt = −gi/τi. τe (5 ms) and τi

(10 ms) are the decay time constants for excitatory and

inhibitory synapses.

The LIF network received feedforward input from

Poisson neurons (N = 1000 in the network simulation,

and N = 80 in the toy model), whose firing follows time-

varying Poisson processes (0-30 Hz). The Poisson in-

put neurons are connected to LIF neurons with proba-

bility p = 0.2, and the strength of the connections is de-

fined as Sij . Sij = 0.2 or 0 if not connection. In the toy

model, the connectivity Sij is defined by the fraction of

shared input. In the network simulation, the connectivity

Sij is defined by the equation below:

Si,j = a∗0.2∗exp(−((i/10.0− j)/b)2)+ c∗0.2

a, b, and c are parameters that manipulate the structure

of the FFD connection, ranging from fully random to fully

bell-shaped (Figure 6E).

In the toy model, the Poisson neuron firing constant

at 5 Hz. In the network simulations, the instant firing

rate of Poisson neurons is defined by a combination of

five Gaussian profiles (Figure 6C).
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Supplementary Information

Figure S1. Functional groups by multi-region two-photon calcium imaging.

(A) Example intrinsic signal imaging of mouse visual areas. (B) Moving square stimuli for quick RF mapping. (C) Example

population RFs of simultaneously imaged populations. Blue and orange contours indicate the Gaussian profile of population RF

of neurons from different visual areas, and blue shade indicates the overlap region of population RF of two simultaneous imaging

regions. Values indicate the fraction of overlap. Upper right: example population RF of a quartic-region imaging. Lower right:

summarize the fraction of population RF overlap of individual experiments (gray circle). Error bars indicate the mean and standard

division. (D) Upper: short and long axes of the Gaussian profile of single neuron RF of all tested HVAs neurons are longer than

that of V1 (short, p < 0.0001; long, p < 0.0001; One-way ANOVA with Bonferroni correction). Bottom: population RFs of HVA are

significantly larger than that of V1 (FWHM, p = 0.0003; Size: p < 0.0001. one-way ANOVA with Bonferroni correction). (E) The

responsiveness of V1 and HVAs to the 72-condition sine-wave drifting grating stimuli. Left: the fraction of responsive neurons in

HVAs is not significantly different (trial-to-trial Pearson correlation > 0.08; one-way ANOVA, p = 0.36). Right: distribution of neuron

firing reliability (trial-to-trial Pearson correlation of inferred spike train at 500 ms bin). Only responsive neuron was considered.

V1 and LM were slightly more reliable than AL, PM, and LI (one-way ANOVA with Bonferroni multiple comparisons, p = 1.7 x

10-7). (F) Number of neurons of each GMM class. (G) The confusion matrix shows the joint probability of a neuron is identified

as group A in GMM of randomly ordered data (shuffle the order of neurons, horizontal) and the neuron is classified as group B

in GMM of the original data set (vertical). The diagonal indicates the probability of neurons that are classified in the same group.

The confusion matrix was generated by averaging a joint probability of 10 permutations. (H) The bar chart shows the probability

of correctly allocating neurons into the same group in 10 permutations of GMMs of randomly ordered data.
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Figure S2. GMM classes and tuning groups.

Show featured responses of 65 GMM classes, and organized into 7 groups by TF, SF preference. The class identification (eg.

class 61) are the original class identification of the model. The response feature of each class is described by three panels: a

polar plot (left) shows the average tuning curve for cells in the class; the middle panel shows the normalized response to different

joint combinations of TF (x-axis, Hz) and SF (colored line, blue 0.02 cpd, red 0.05 cpd, yellow 0.19 cpd); right panel shows the

normalized response to different speed of gratings (x-axis, deg/s).
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Figure S3. Spatial modulation on SF-TF and orientation tuning.

(A) Center of two-photon recordings (upper), and center of individual neurons (lower) overlay on an average visual cortex map.

The average visual cortex map was generated by affine registration of visual area maps from all experiments. Neurons are

colored by visual areas. (B) Upper, average preferred TF (left) exhibits spatial dependency over the visual cortex (TF: A→P, cor

= -0.25, p =0.015, M→L, cor = 0.36, p = 0.0004). Lower, average preferred SF (right) exhibits spatial dependency over the visual

cortex (SF: A→P, cor = 0.35, p = 0.0005, M→L, cor = -0.06, p = 0.54). Colored dots indicate the average TF and SF (computed

with >30 neurons) within 1802 µm2 local areas, overlaying on a visual map. (C) Polar plots of averaged preferred directions of six

tuning groups of V1 and HVAs. Polar plots were generated with >30 neurons. Black and gray lines indicate the mean and SEM

of normalized preferred directions.
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Figure S4. Tolerance of noise correlation to missing spikes.

(A) Left, compare the inferred spike train and ground truth spike train (cell-attached recording) of one example neuron. Spike

inference recovered 50% of the spikes of this neuron, the linear correlation between inferred spike train and true spike train is

0.79 (bin 1 s). Right, the correlation between inferred spike train and true spike train at various time bin. (B) Inter-neuron cross-

correlation computed by true spike train and inferred spike are linearly correlated (r = 0.7). (C) The ground truth spike trains

(top) and spike train after different types of perturbations of example neurons from spikefinder dataset (Methods). (D) Compute

correlation of residual spike count at 1 s time bin after spike perturbations from left to right: random missing spikes; missing

isolated spikes with inter-spike-interval (ISI) > 0.03 s; missing all spikes within a burst ISI < 0.01 s; missing 60% spikes within a

burst with ISI <0.02 s. (E) Fidelity (left) and variance explained (right) of correlation calculation with spike train perturbation. The

fidelity was defined as the linear correlation between spike count correlation before and after perturbation. Variance explained

was measured as r2 of a linear regression between true correlation and perturbed correlations. The colored text in the figure

indicates the ISI thresholds.
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Figure S5. Factors contribute to the variance of NCs.

(A) Within- and inter-area noise correlations are positively related to signal correlation. (B) Within-area (left) and inter-area (right)

NC is significantly higher in neuron pairs with shared RF (within-area, PV 1 < 0.0001, PLM = 0.98, PAL = 0.006, PP M = 0.03,

PLI < 0.0001; inter-area:PV 1−LM = 0.3, PAL = 0.0007, PV 1−P M = 0.15, PV 1−LI = 0.82; t-test). Overlapping groups and

non-overlapping groups are defined as neuron pairs share > 60% RF, and <20% RF, respectively. (C) Noise correlations of V1

and HVAs are positively related to joint spike count (For all within- and inter-area correlation, r = 0.09-0.18, p < 0.0001). Mean

joint spike count is the geometric mean of the spike count to all stimuli. (D) Plot within- and inter-area noise correlation as a

function of difference in preferred orientation. Only orientation-selective neurons (OSI > 0.5) were included.
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Figure S6. Distance-dependence of inter-area NC explained by retinotopic map.

(A) Distance-dependence of within-area NC (blue) and SC (purple) (NC: V1, r = -0.044, p < 0.0001; LM, r = -0.026, p = 0.0009; AL,

r = -0.05, p < 0.0001; PM, r = -0.048, p = 0.002; LI, r = -0.025, p = 0.17. SC: V1, r = -0.03, p < 0.0001; LM, r = -0.036, p < 0.0001;

AL, r = -0.028, p = 0.006; PM, r = -0.048, p = 0.005; LI, r = -0.037, p = 0.047; Pearson correlation). (B) Distance-dependence of

inter-area NC (blue) and SC (purple) (NC: V1-LM, r = 0.058, p < 0.0001; V1-AL, r = 0.013, p = 0.02; V1-PM, r = -0.05, p < 0.0001;

V1-LI, r = 0.028, p = 0.0007; LM-LI, r = -0.08, p < 0.0001; SC: V1-LM, r = 0.073, p < 0.0001; V1-AL, r = 0.073, p < 0.0001; V1-PM,

r = -0.01, p = 0.047; V1-LI, r = 0.056, p < 0.0001; LM-LI, r = -0.084, p < 0.0001; Pearson correlation). (A-B) Solid lines indicate

mean values and shaded areas indicate standard error of mean. Each distance bin contains >50 data points. (C) Example affine

transformation of ISOI maps. The left shows the original V1 map, the middle is the V1 map after affine transformation and the

right is the original LM map. (D) Left, a cartoon of two recurrent layer with aligned retinotopic map. Right: neuron location on the

visual cortex before and after warping. (E) Distance-dependent increasing of V1-LM NC to sine-wave drifting gratings before (left)

and after retinotopic warping (right). Individual experiments with significant distance dependence are in shown in colored curves.

The black curve shows the population mean and standard error (Pearson correlation, before warping, r = 0.066, p < 0.0001; after

warping, r = -0.026, p < 0.0001). (F) Distance-dependence of within-area NCs of paired recorded V1 and LM, and inter-area NC

of V1-LM after retinotopic warping. (G) Example affine transformation of ISOI maps. The left shows the original V1 map, the

middle is the V1 map after affine transformation and the right is the original AL map. (H) Distance-dependent decreasing of inter

V1-AL NC after retinotopic alignment (linear correlation, r = -0.05, p < 0.0001).
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Figure S7. Connectivity between GMM classes

(A) The density function of within-area (left) and inter-area (right) NC for neuron pairs from the same tuning group, or the same

GMM class, shared high SC, or from the local neighborhood. The SC or the distance threshold is defined such that the same

number of neuron pairs is included as the in-class neuron pairs. (B) The spread of neurons from GMM class 1 on a registered

map for visual areas. (C) The modularity of the V1-HVA connectivity between GMM classes is regulated by a spatial smooth

parameter γ. We reported the modular structure of the connectivity matrix when γ = 0.85, as it generated the largest deviation

from a random connectivity matrix. Left side shows the modular structure of V1-HVA GMM classes (upper), and that of a random

matrix preserving the degree distribution (lower).
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Supplementary Table

Animal ID  NC pairs Animal ID  NC pairs (response 
to both stimuli)

421 LM AL 147 58 20910 143 V1 LM 121 57 4005
421 LM LM 93 19 6216 143 V1 LM 116 36 2415
493 V1 V1 48 21 2346 143 V1 LM 66 47 666
382 V1 LM 208 37 29890 144 V1 LM 119 3 1652
490 V1 LM 68 110 15576 144 V1 PM 53 65 666
490 V1 AL 63 69 8515 154 V1 AM/PM 247 118 3486
493 V1 AL 216 62 38226 154 V1 AM 145 107 3160
493 V1 LM 159 104 34191 154 V1 AM/PM 121 164 903
426 V1 AL 85 69 11781 154 V1 V1 135 134 8256
426 V1 LM 47 39 3655 156 V1 LM 129 87 7021
426 V1 PM 71 4 2628 156 V1 AL 171 38 6903
382 V1 LM 82 111 18336 166 V1 AL 304 162 10440
382 LM LI 61 84 10296 167 V1 AL 161 117 5565
382 V1 AL 35 44 3003 170 V1 AL 352 163 10585
470 V1 AL 77 34 5778 171 V1 AL 119 19 1830
470 V1 V1 36 24 1711 171 V1 V1 161 123 5671
471 V1 PM 81 17 4753 211 V1 V1 100 169 3486
471 V1 LM 20 29 1128 633 V1 LM 85 150 2415
471 V1 V1 105 40 10440 633 V1 V1 144 100 6441
391 V1 PM 51 22 2628 635 V1 LM 94 141 2211
391 V1 V1 33 26 1711 657 V1 LM 37 47 378
417 V1 AL 84 40 7626 657 V1 LM 37 79 276
417 V1 LM 59 9 2278 635 V1 AL 400 275 32385
400 V1 PM 11 7 153 635 V1 V1 287 343 36315
400 V1 AL 18 7 300
532 V1 PM 302 52 62128
540 V1 AL 17 13 435
557 V1 LI 199 90 41616
559 V1 LM 18 18 630 V1: 4573 12
577 V1 PM 21 41 1891 LM: 647 6
459 V1 AL LM 24 116 25 13530 AL: 774 6
513 V1 LM LI 40 90 43 14878 'AM/PM' 454 2
557 V1 PM AL 283 69 18 68265
560 V1 V1 PM 100 127 28 32385
576 V1 V1 PM 38 86 88 22366
577 V1 AL LM 117 123 11 31375
459 V1 PM V1 AL 286 13 57 68 89676 V1: 6735 23
525 V1 PM AL LM 214 204 187 113 256686 LM: 2076 17
533 V1 AL LM LI 157 91 74 47 67528 AL: 1352 14
540 V1 V1 LM LI 38 39 9 3 3916 LI: 593 8
578 V1 V1 PM AM 130 56 24 51 33670 'AM/PM' 786 12
560 V1 V1 PM PM 217 305 74 92 234955
560 V1 V1 LM AL 359 273 92 190 416328
540 V1 AL LM LI 113 163 61 62 79401
559 V1 LM LM LI 315 262 203 33 326836
632 V1 V1 LM LI 290 306 139 99 343206
633 V1 V1 LM LI 197 243 220 132 311655

25148
38343

Total within-area NC pair

675569
143581
79173

Grating and natural video combo stimuliGratings stimuli

Gratings Total 
neurons

Total neurons per area

Combo Total 
neurons

Total 
animals

Total 
animals

Total within-area NC pair 
(response to both stimuli)

45203
22850
6963
871

Recording areasRecording areas Total neurons per area

Figure T1. Entire data list.

The Animal ID is a simple identifier number. Note that some animals were used for multiple imaging configurations. On the left is

the information for mice that were imaged during viewing of the drifting grating visual stimuli only. On the right is the information

for the mice that were imaged both during viewing of gratings and during viewing of the naturalistic video stimuli. On the bottom

right are summary figures for the total numbers of animals, neurons, and unique neuron pairs (imaged simultaneously to permit

the computation of noise correlations).
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