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Abstract

Muscles consume metabolic energy for force production and movement. A mathematical model of
metabolic energy cost will be useful in predicting instantaneous costs during human exercise and in com-
puting effort-minimizing movements via simulations. Previous in vivo data-derived models usually assumed
either zero or linearly increasing cost with force, but a nonlinear relation could have significant metabolic
or behavioural implications. Here, we show that metabolic cost scales nonlinearly with joint torque with
an exponent of about 1.64, using calorimetric measurements of isometric squats. We then demonstrate
that this metabolic nonlinearity is reflected in human behaviour: minimizing this nonlinear cost predicts
how humans share forces between limbs in additional experiments involving arms and legs. This shows the
utility of the nonlinear energy cost in predictive models and its generalizability across limbs. Finally, we
show mathematical evidence that the same nonlinear metabolic objective may underlie force sharing at the
muscle level.

Muscles consume metabolic energy to perform voluntary (walking, running, reaching, etc.) and involuntary
movement (heart contraction, gastric motility, etc.). There is substantial evidence that humans move and act
in a manner minimising the metabolic energy consumption for the task [1, 2, 3, 4], sometimes termed the
energy cost. Hence, researchers interested in understanding human movement behaviour would benefit from
methods for estimating the metabolic cost of human movement. But the most popular experimental technique
to measure in vivo muscle energy cost, namely, indirect calorimetry, cannot measure instantaneous costs and
requires the task to be repeated for 5-6 mins [5] or requires extrapolation from non-steady state data [6]. A
mathematical model of the metabolic energy cost can be broadly useful in estimating energy costs of dynamic
tasks, potentially in real-time, which cannot be repeated for extended periods and in reducing the time of cost
estimation. Such models could enable novel studies of transient tasks [3] and faster development of human
assistive devices like exoskeletons and prostheses, which are often evaluated based on their energy savings [7, 8].
Energy cost could also be useful either to predict human behaviour in a novel task or estimate the energy cost
during simulations of normal, pathological and externally assisted human tasks. Here, our goal is to perform
metabolic human subject experiments to obtain an energy cost model for isometric force production, and then
test via further human experiments what human behaviour is predicted by minimizing this energy cost model.

We focus on developing an energy cost model for a constant force isometric task, that is, a task in which
there is no movement but only force production with the muscle lengths being constant. We focus on isometric
metabolic consumption because many slow and sub-maximal tasks may be dominated by the cost of isometric
force, and the metabolic literature’s focus has been more on non-isometric tasks. For instance, previous models
derived from in vivo experiments either predict zero cost for constant force isometric task (as their focus was non-
isometric tasks with muscle length changes and mechanical work [9, 10, 11]) or usually assumed linear relations
with isometric muscle force [12], or did not explicitly seek a nonlinear relation of energy cost with joint torque
or force level [12, 13, 14] with one exception [15]. Some previous in vivo studies showed dependence of isometric
metabolic cost with force rate and force exertion frequency [13, 16] but did not consider dependence with
isometric force level. Previous metabolic models based on in vitro muscle experiments have not been compared
with in vivo isometric force tasks [17, 18, 19, 20, 21]. Here, we perform new human subject experiments involving
near-isometric squat experiments and fit a nonlinear relation with torque to the resulting data, showing that
the nonlinear relation captures the data better than linear models (figure 1A). We specifically sought power law
relations between metabolic cost and force, as there is precedence for using power law effort costs to solve the
muscle force indeterminacy (sharing) problem [22], as well as power laws’ ability to potentially be applicable
across scale and capture self-similarity [23].
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To test whether optimization of our new energy cost objective predicts human behavior in isometric tasks,
we performed new human behavioral experiments in which humans had a choice regarding how they shared
forces between different limbs: that is, in bilateral limb force sharing tasks (figure 1B). Previous experimental
studies have shown patterns in limb force sharing for a given external task constraint [24, 25, 26, 27, 28]
and here, we explain such patterns via metabolic optimization. A mathematical model of force sharing in
healthy humans generalizable to both upper and lower limbs will be useful in understanding human behaviour
in a novel situation, designing rehabilitation therapies for populations with neurological diseases and design of
anthropomorphic robots [29, 30].

Finally, while our metabolic cost model is at the level of human joints, we hypothesize that the joint-level
power law relation may have its origins in a corresponding muscle-level power law relation between muscle force
and metabolic cost. To support this hypothesis, we provide a mathematical proof showing that if muscle-level
force cost scales in a power-law way, the same exponent will be reflected in how the metabolic cost of multi-joint
force-exertion tasks scales with the applied force.
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Figure 1: Two experimental protocols and two models: metabolic cost measurements and force sharing.
A) Experiment: Human subjects alternate between quiet standing and squatting for 6 minutes using visual feedback.
Squatting height (85, 90 or 95% leg length) and stand-squat durations ([5s,15s],[10s,10s] or [15s,5s]) are fixed for a
trial and varied across trials. We estimated metabolic cost based on respiratory gases, 3D motion from optical motion
capture, and ground reaction force from force plates. Model: Three rigid segment sagittal plane model of the human
with rigid shank, thigh, and upper body’s geometric and inertia properties obtained from subject mass and height based
on standard scaling [31]. Joint torques estimated from ground reaction force and 3D motion data. Metabolic cost is
expressed as a function of joint torque and the coefficients are estimated by fitting the model to the experimental energy
cost B) Experiment: Human participants apply forces with their limbs to track a fixed goal force with the help of
visual feedback. Setup: For upper limbs, the participants stand straight and press vertically down on the platforms.
Platform’s height is matched with the hip height of the participant. For lower limbs, the participants sit comfortably
with their hands folded and press roughly perpendicular to the force plate. Visual feedback: The goal force is depicted
by violet rectangle (± 10% of goal force) and the participant’s total force output by a black line. The goal force (Fgoal)
and the left-right force contribution (λ) are fixed in a trial and varied across trials. Model: Constrained optmisation
of the metabolic cost function to predict force sharing. metabolic cost function expressed as a power law function of
joint torque with the exponent estimated from metabolic measurements. The joint torques were expressed in terms of
measured external force using a single rigid segment sagittal plane model of the limb. The segment geometric and inertia
properties are shown for illustration purposes as they are determined from constrained optimisation of cost function.
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Metabolic cost of isometric torques scales nonlinearly with torque

We estimated the metabolic cost of isometric forces via indirect calorimetry experiments in which human subjects
alternated between quiet standing for some time and standing with knees bent for some time, continuing the
task for 6-7 minutes for a reliable metabolic measurement (figure 1A, Experiment; see Materials and Methods).
The prolonged squat period (standing with knees bent) necessitates use of near isometric muscle forces and
requires substantial effort. Metabolic cost of alternating between standing and squatting increases with the
increase in the relative duration of the squatting (figure 2A). We sought to model this increased metabolic cost
as a function of the joint torques τ , specifically employing a power law relation of the form τγ , with the goal
of determining whether the best fit exponent γ was systematically different from unity, thus evaluating if a
nonlinear model was better than a linear model.

Measured hip motion during the trials revealed that the subjects were reasonable but not perfect in alter-
nating between the static postures throughout the 6 min trial (figure 2B). Nevertheless, this provided sufficient
data for building the metabolic model. We performed inverse dynamics to estimate joint torques for the entire
time duration. Principal component analysis of each subject’s ankle, knee and hip joint torque data of all trials
showed that the first principal component was sufficient to explain over 90% of the data (figure 2C). So, the
torques are mostly linearly related, and essentially proportional — because the torques are zero simultaneously,
so the constant term in the linear relation among them must also be zero.

We fit the metabolic cost to the power-law energy cost model (Ėmodel = c0 + c1(τ
γ

ankle + τγknee + τγhip)), with
a common coefficient (c1) for the three joint torques, because the torques being proportional across the data
meant that, for the purposes of inferring the exponent (γ), the coefficients in the metabolic expression do not
matter. The mean squared residual between model and experimental energy cost (averaged across all subjects
and trials) revealed the optimum exponent γ to be 1.64 (figure 2D). Additionally, we obtained the best-fit γ for
different relative coefficients (0.5 < b0, b1, b2 < 1.5) between the three joint torques in the following energy cost
model: Ėmodel = c0 + c1(b0τ

γ

ankle + b1τ
γ

knee + b2τ
γ

hip). We found the optimum gamma values ranging between
1.5 and 1.8 which is consistent with the flatness of the MSE plot (figure 2D). This check gives us additional
confidence in choosing equal coefficients for the different joint torques. Thus, the metabolic cost of isometric
torques scales nonlinearly with torque, as γ = 1.64 is strictly better than linear dependence given by γ = 1.
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Figure 2: Metabolic cost of isometric tasks. A) Box plot of experimental metabolic cost (alternating between
standing and squatting) for a given stand-squat duration with the data of 8 different subjects performing 3 different
squat heights. More time spent in squat position results in more metabolic cost. B) Hip marker height data from the
ground for a subject during 3 different trials. The movement resembles a square wave with different duty cycle with
maxima denoting standing and minima denoting squatting. C) Principal component analysis of ankle, knee, and hip
joint torques across all trials for each 8 subjects, percentage of variance explained by each principal component, showing
the first component explains most of the data. D) The difference between model prediction and experimentally measured
energy rate across all subjects and trials for different values of the model exponent (γ). The exponent with the least
mean squared error is γ = 1.64.
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Bilateral limb force sharing is explained by metabolic minimization

To test whether the nonlinear metabolic cost model has behavioral implications, we performed bilateral limb
force sharing experiments in which human subjects produced forces with their two hands or two legs, so as to
achieve a fixed goal force (Fgoal) via a linear combination of the left and the right force Foutput = λFleft + (1− λ)Fright

(figure 1B). We considered two goal force levels, parameterized by α, the goal force normalized by the maxi-
mum comfortable force. See Materials and Methods. We hypothesized that humans selected the individual limb
forces Fleft and Fright in a manner that minimised energy cost. We expressed the force sharing cost as a power
law function of joint torque (τγleft + τγright) with the exponent (γ) derived from the previous metabolic energy
cost measurements and performed constrained optimisation to predict the force sharing and compared with the
experiments (figure 1B).

Subjects were good at tracking the goal force in both upper limb and lower limb experiments (figure 3A).
In the lower limb force sharing experiments, for both goal force levels, subjects applied more force on the force
plate which contributes more, quantified by λ — the extent of this asymmetry varied with λ and goal force
level (figure 3D). Subjects in the upper limb force sharing experiment showed the same trends for the higher
force level but this trend was less clear at the lower goal force, as the forces in the two limbs were close to being
equal (figure 3C).

Model predictions for substantially different exponents γ are qualitatively different (figure 3B), so this
experiment allows us to test if the metabolically derived γ predicts the observed data. When force contribution
on one side increases, the extent of asymmetry in force sharing increases and the magnitude is controlled by the
parameter β (figure 3B), a measure of limb forces when the joint torques are zero, but the shape of the force
sharing curve is mainly controlled by exponent γ. For instance, when β = 0, a nonlinear exponent of γ = 2
implies that force sharing changes are linear in λ, whereas when γ = 1 (linear metabolic rate), the predicted
metabolic cost is indifferent to how the force is shared, so all force sharing strategies are optimal. When γ is
just slightly greater than 1 (almost linear metabolic cost), the predicted force sharing is all or nothing (figure
3B), with one limb contributing the entire force depending on whether λ is greater or less than 0.5, but all other
force sharing strategies are still close to energy optimal.

Using the exponent γ = 1.64 from the metabolic energy rate model and using optimal β values, we made
predictions for upper and lower limb force sharing, which is in good agreement with the experimental data
(figure 3C-D). Independently, by fitting the force sharing model to the data, we found the optimum β and γ.
The optimum γ was 1.63 for upper limbs (almost the same as energy cost exponent 1.64) but 1.41 for the lower
limbs, but as noted, γ = 1.64 did almost as well as 1.41 in explaining the data, suggesting a flat minimum
(figure 3C-D). The model predictions are symmetric about λ = 0.5: that is, the predicted force sharing is the
same for contribution of λ and 1-λ, except reversing left and right, and this symmetry is observed qualitatively
in the behavioral data.

Theorem: Metabolic power law scaling predicts a linear muscle force scaling strategy in a static

task

We have framed the power law metabolic cost model thus far as being a function of joint torques. In this
section, we generalize the metabolic cost to being a power law function of muscle force and show one behavioural
implication of this generalization. Specifically, we consider the task of producing an external force of different
magnitudes but fixed direction using a limb with multiple muscles and multiple joints, when the limb is at rest.
We show that minimizing the power law metabolic cost results in a ‘linear scaling strategy’ for muscle forces
(as seen in some finger force experiments [32]): that is, once the optimal solution is determined for one external
force magnitude, the optimal solution for any other external force magnitude is simply scaling all the muscle
force magnitudes by the same scalar factor. To be specific, consider a task in which a multi-joint (open-chain)
limb with m muscles (figure 4A) is at rest and needs to apply a 3D external force Fext, which is a scaled version
µF0 of some nominal 3D external force F0. We show that if the optimal muscle force magnitudes for the nominal
external force F0 are given by Fmus0 ∈ R

m, then the optimal muscle force magnitudes for any other external
force µF0 are given by µFmus0, assuming the external force is much larger than limb weight due to gravity.

The condition that the whole limb is in static equilibrium can be written as a linear equation in the list of
m muscle force magnitudes Fmus ∈ R

m as follows:

AFmus = B Fext, (1)

where A is a p×mmatrix and B is a p×3 matrix, where the number of rows p equals the minimal number of scalar
static equilibrium equations, generally equal to the number of degrees of freedom. In a static configuration, the
muscle force directions are specified, so we only solve for the muscle force magnitudes Fmus. The matrices A
and B contain geometrical parameters such as instantaneous muscle moment arms and external force moment
arms at the current limb configuration. Equation 1 ignores gravity, or equivalently, assumes that the external
force to be produced is much larger than limb weight. For instance, for the two-segment limb of figure 4A, p = 2
with the equations obtainable by moment balance of the whole limb OAB about O and the segment AB about
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A. We minimize the metabolic cost with a power law relation on muscle force magnitudes:

Ėtask = c1F
γ
mus,1 + c2F

γ
mus,2 + . . .+ cmF γ

mus,m = CTFγ
mus, (2)

where the matrix C = [c1; c2; . . . cm] and Fγ
mus is defined as [F γ

1 ; F
γ
2 ; . . .]. To solve the constrained optimization

problem, we define the Lagrangian L as:

L = CTFγ
mus + ξT (AFmus −B Fext)

where ξ contains the Lagrange multipliers [ξ1; ξ2; . . . ξp]. Differentiating this Lagrangian, that is, computing
the gradient ∇L with respect to the unknown muscle force magnitudes Fmus, and setting this derivative equal
to zero gives:

∇L = γCTFγ−1
mus +AT ξ = 0. (3)

Equations 1 and 3 together provide p+m linear equations in the p+m unknowns in the ξ and Fmus.
We now show that these equations 1 and 3 have solutions with an elegant structure that implies a simple

scaling strategy for producing different external force levels. Assume that one needs to produce scaled versions

5

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 25, 2023. ; https://doi.org/10.1101/2023.12.24.573267doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.24.573267
http://creativecommons.org/licenses/by-nd/4.0/


of a fixed external force. That is, Fext = µF0, where F0 ∈ R
3 is a fixed force and µ ∈ R scales this force linearly

to produce the external force Fext. We can rewrite the static equilibrium (equation 1) as:

AFmus = µBF0. (4)

We now show that the solution is of the form:

Fmus = µFmus0 and ξ = µγ−1ξ0, (5)

where Fmus is a fixed set of muscle force magnitudes. To do so, we substitute this solution form into equations
1 and 3, which gives the following two equations that are independent of µ:

µAFmus0 = µBF0 and γCTF
γ−1
mus0 +AT ξ0 = 0 (6)

These equations allow us to solve for Fmus0 and ξ0 without any dependence on µ, so how the muscle force
magnitudes depend on µ is captured by equation 5. Thus, we predict that linearly scaling the external force is
energy-optimally accomplished by linearly scaling the muscle force magnitudes. This linear scaling strategy is
reminiscent of similar scaling observed in producing finger forces [32].

Corollary 1: Muscle-level metabolic power law scaling predicts whole body level power law scaling

with external force. Substituting the muscle force solution (equation 5) into the metabolic cost expression
(equation 2) shows that the total metabolic cost will scale like µγ :

Metabolic cost = CTFγ
mus = CT (µFmus0)

γ = µγ(CTF
γ
mus0) (7)

Given that the external force magnitude is |Fext| = µ|F0| is proportional to µ, the metabolic cost scales like
external force raised to the power γ, when the external force is simply scaled.

Corollary 2: Muscle-level metabolic power law scaling predicts whole body level power law scaling

with external force. At a given configuration, the joint torques are linear functions of muscle forces, given
by:

τ = DFmus = µDFmus0, (8)

where D is a matrix of muscle moment arms. Thus, each of the joint torques is proportional to µ and scales
linearly with the external force magnitude. So, when scaling the external force in a fixed configuration, the
metabolic cost also scales like joint torque magnitude to the power γ. Recall that the theorem and the corollaries
rely on fixing the configuration and having the external force be much higher than gravity, so gravity terms may
be ignored. When gravity terms are substantial, the simple solution structure described above does not hold.

Discussion

We found the metabolic cost of isometric force to scale non-linearly with joint torque (τγ), where the exponent
γ was around 1.64. Our results of such nonlinearity agree qualitatively with previous in-vivo studies [33, 34, 35],
which showed that oxygen consumption and the force are non-linearly related. Previous studies which suggested
linear dependence of muscle metabolic cost with muscle force have either been for lower force range in in-vivo
experiments [36, 37] or with isolated human heart or rat skeletal muscles in-vitro with external activation
[38, 39, 40]. So, one possible source of the nonlinearity may be either the cost of activation and calcium
pumping [41], and another could be the differential activation of motor units [42], with some muscle fibers
producing more force than others and with fibers differing in properties (e.g., fast-twitch vs slow-twitch)[43, 44].

Minimizing the energy cost of force sharing with the cost scaling with torque τ as τγ with exponent γ ≈ 1.64
predicted force sharing well in both upper limb and lower limb tasks. Our model is also in qualitative agreement
with a previous bilateral upper limb force sharing experiment [27]. Terekhov et al [45] showed that the force
sharing cost for five fingers force sharing can be explained by a quadratic function of force with a linear term,
which is analogous to a power law with 1 < γ < 2 as suggested by our model. The same torque scaling for
metabolic cost and force sharing cost suggests that metabolic energy optimality might be the reason for healthy
human behaviour in bilateral limb force sharing. While we performed the metabolic experiments only in lower
limbs, because the energy cost model satisfactorily predicted upper limb force sharing as well, we hypothesize
that the metabolic cost model for upper limb joints may be similar.

The human body has more muscles than actuated degrees of freedom. This means that it is not possible to
obtain muscle forces from inverse dynamics, only joint torques — sometimes called the redundancy problem.
The classic force distribution problem in biomechanics involves computing how a given set of joint torques may
be produced by appropriate muscle forces [22]. It is conventional to minimize an objective equal to the summed
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muscle stress raised to the power two, as done in OpenSim’s static optimization or computed muscle control [46].
We also showed analytically that the same exponent carries over to the muscle force sharing objective suggesting
that the energy optimality might be the guiding factor for our brain to solve the muscle force indeterminacy
problem for isometric contraction. This result may be more important than just for the force distribution
problem – as it may be applicable more broadly to metabolic optimisation-based predictions.

We primarily focused on the muscle energetics scaling nonlinearity, estimating the exponent (γ), but we did
not characterize the relative coefficients (αi) for each muscle in the force sharing objective. Future studies can
focus on single joint experiments to estimate the coefficients while simultaneously measuring the energy cost to
obtain direct comparisons. We do not have a microscopic explanation of the metabolic cost trends, and future
work may consider explaining these via multiscale models that go from molecules, through sarcomeres, muscle
fibers, recruitment, connective tissue, and whole body mechanics.

Limitations of our metabolic cost model include simplifications in both experiment and in the modeling. The
model was derived from experiments where muscles are not perfectly isometric as there is a slight change in the
length due to compliant nature of the tendon but this is the best we can achieve from in-vivo experiments. The
metabolic rate analysis ignored the effect of muscle length or joint angle. Due to the approximate proportionality
between joint torques, the analysis cannot determine the relative weight of the individual torques, which requires
separate joint-specific experiments.

In conclusion, we have shown that energy cost scales non-linearly with joint torque and predicts bilateral
limb force sharing and the same exponent is applicable to muscle force sharing. Such metabolic cost models,
when generalized to each joint or muscle, may be used in whole body biomechanical simulations for predictions
of movement behavior as well as potentially for real-time metabolic monitoring [47, 48].

Materials and Methods

Metabolic cost of an isometric task: Human metabolic experiments

We estimated the metabolic cost of isometric forces via experiments in which human subjects alternated between
quiet standing for some time (Tstand) and standing with knees bent for some time (Tbent) with each trial lasting
6-7 minutes (figure 1A). The main idea is that when the subjects have their knees bent, while being still, the
muscles are close to isometric. Metabolic cost Ėtrial was estimated using Oxycon Mobile from measured volumet-
ric rates of oxygen and carbon dioxide (Ė = 16.58V̇CO2

+ 4.51V̇O2
watt/kg [49]). Body movement was measured

with a Vicon T20 motion capture system, and the ground reaction forces under each foot were measured with
a Bertec instrumented treadmill. Eight subjects (all male; height= 1.81 ± 0.05 m; mass= 77 ± 11 kg; age= 24
± 6 years) participated with informed consent. Subjects were provided visual feedback to bend their knees to
lower their hip to approximately 85-95% of their standing height. Three different Tstand,Tbent combinations,
namely {15 s, 5 s}, {10 s, 10 s}, {5 s, 15 s}, along with three prescribed knee-bend heights — approximately 85%,
90%, and 95% of normal leg length — gave nine squat trials per subject. In addition, we measured the cost of
quiet standing (Ėstand) before the trials. The energy rate of squatting is estimated by subtracting the standing
rate from the energy rate measured during the trial (Ėsquat = Ėtrial − Ėstand). We exclude the cost of transition
between standing to squatting in this above calculation for simplicity, as the transitions are a small fraction of
the total task period.

Metabolic cost of an isometric task: Mathematical model

We used a three-segment sagittal plane model of the human (figure 1A) with rigid shank, thigh, and upper
body’s geometric and inertia properties obtained from subject mass and height based on standard scaling [31].
The foot remains largely motionless in the task, and thus does not contribute to the joint torques. We performed
inverse dynamics to estimate the joint torques versus time for each trial, considering three joints: ankle, knee
and hip. Subjects did not keep the knee bends exactly still, with some slow upward or downward motions that
changed the knee angle, and the inverse-dynamics-based torques account for this movement. To each subject’s 9
trials, we sought to fit subject-specific metabolic rate model Ėmodel = c0 + c1(τ

γ

ankle + τγknee + τγhip) and estimate
the coefficients c0, c1 for a range of fixed γ values by minimising the mean squared residual between the model
and measured cost (Ėsquat), averaged over the second half of the trial (3-6 mins). We fit this model with common
coefficient (c1) for the three joint torques as the three joint torques were highly correlated within a trial (figure
2C). Once we obtain the best subject-specific model for each γ, we obtain the optimal exponent value γopt by
minimising the squared residual between this model and measured cost, averaged across all subjects.

Bilateral limb force sharing: Human behavioral experiments

We performed bilateral limb force sharing experiments in which human subjects produced forces with their two
hands or two legs, so as to achieve a fixed goal force (Fgoal) via a linear combination of the left and the right
force Foutput = λFleft + (1− λ)Fright (figure 1B). This is a way of imposing force sharing in experiments which
is a variant of previous studies [28, 50, 27]. We had upper and lower limb-specific setups with the individual
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limb forces (Fright,Fleft) measured using force plates (Bertec, Vernier). Twelve subjects for upper limb (5M,
7F; height = 1.69 ± 0.11m; mass = 68.83± 2.5 kg; age = 20.66±2.5 years; all right dominant) and twenty
one subjects for lower limb (14M, 7F; height = 1.72 ± 0.08m; mass = 68.1±10.22 kg; age = 23.6±4.82 years;
mean±s.d; all right dominant) participated with informed consent and each performed 14 trials lasting 3 minutes
each. We had seven different left-right force contributions (λ = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}) and two different
goal force levels which were a fraction (40 and 70%) of maximum limb force (Fmax). The maximum limb force
was estimated from a 30 s trial where the subjects were instructed to apply a maximum force which could be
held comfortably. We averaged force data from second half of the trial (15-30 s) to estimate the maximum left
and right limb force, which was averaged to define Fmax. Subjects were told which side contributes more to the
output for each trial but not the exact value of λ.

Bilateral limb force sharing: Mathematical model

We hypothesized that humans selected the forces in a manner that minimised energy cost. We expressed the
force sharing cost as a power law function of joint torque with the exponent (γ) derived from the previous
energy cost measurements of isometric squat. We represented each limb using a single joint and a rigid segment
in the sagittal plane (figure 1B). Hence, our force sharing metabolic cost is the sum of a power law function of
the left and right limb joint torque: Ėtask = τγright + τγleft. We expressed each joint torque in terms of measured

limb force, segment weight, and limb proportions, as τ = L sinθ
(

F− mg Lcom

L

)

, resulting in the following form

of the energy cost (see also appendix 1):

metabolic cost of force sharing Ėtask = (Fleft − βleft)
γ + (Fright − βright)

γ (9)

In this energy cost, βleft, βright was a subject specific parameter obtained by fitting to data and represents the
forces exerted by the hands on the load cells due to gravity when the muscles are turned off entirely. The
exponent γ was derived from the metabolic experiments. For each value of the parameter set, we performed
optimisation with experimental constraint (αFmax = λFleft + (1− λ)Fright) to predict the left and right limb
force for all experimental trials. We did this separately for upper and lower limb experimental data to obtain a
limb specific model. In addition to the predictions from the metabolically derived γ, we also performed additional
optimizations to obtain the γ that best fit the experiments, while also allowing β to vary in a subject-specific
way.
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