

1 **Title**

2 Decoding contextual influences on auditory perception from primary auditory cortex

3

4 **Authors**

5 B. Englitz^{1,2}, S. Akram⁵, M. Elhilali⁴, S. Shamma^{1,3}

6 ¹Institute for Systems Research, University of Maryland, College Park, MD, USA

7 ²Computational Neuroscience Lab, Donders Institute for Brain Cognition and Behavior, Radboud University,
8 Nijmegen, The Netherlands

9 ³Equipe Audition, Ecole Normale Supérieure, Paris, France

10 ⁴Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA

11 ⁵Research Data Science, Meta Platforms

12

13 **Abstract**

14 Perception can be highly dependent on stimulus context, but whether and how sensory areas
15 encode the context remains uncertain. We used an ambiguous auditory stimulus - a tritone
16 pair - to investigate the neural activity associated with a preceding contextual stimulus that
17 strongly influenced the tritone pair's perception: either as an ascending or a descending step
18 in pitch.

19 We recorded single-unit responses from a population of auditory cortical cells in
20 awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that
21 the responses adapt locally to the contextual stimulus, consistent with human MEG recordings
22 from the auditory cortex under the same conditions. Decoding the population responses
23 demonstrates that pitch-change selective cells are able to predict well the context-sensitive
24 percept of the tritone pairs. Conversely, decoding the *distances* between the pitch
25 representations predicts the *opposite* of the percept. The various percepts can be readily
26 captured and explained by a neural model of cortical activity based on populations of adapting,
27 pitch and pitch-direction selective cells, aligned with the neurophysiological responses.

28 Together, these decoding and model results suggest that contextual influences on
29 perception may well be already encoded at the level of the primary sensory cortices, reflecting
30 basic neural response properties commonly found in these areas.

31

32 **Figures:** 6

33 **Supplementary Figures:** 3

34 **Keywords:** Shepard tones, bistable stimulus, ferret, human, electrophysiology,
35 magnetoencephalography

1 **Introduction**

2 In real world scenarios, the elements of the sensory environment do not occur independently
3 [1,2]. Temporal, spatial and informational predictability exists within and across modalities,
4 already as a consequence of the basic physical properties, such as spatial and temporal
5 continuity [3]. Neural systems make efficient use of this inherent predictability of the
6 environment in the form of expectations [4]. Expectations are valuable, because they provide
7 an internal mechanism to recognize stimuli faster [5] and more reliably under noisy conditions
8 [6] with speech being of specific relevance for humans [7]. As a consequence, the same
9 stimulus can be perceived differently, depending on the context it occurs in, e.g. which stimuli
10 it is preceded by or which stimuli co-occur with it [8]. We can thus study the expectation
11 underlying a percept by studying the nature of the contextual influence.

12 Within audition, several forms of contextual influences have been found to shape
13 perception. They range from spatial (e.g. localization in different contexts), to grouping (e.g.
14 ABA sequences, [9]) and phonetic [10] contextual influences. A striking example in human
15 communication concerns the perception of certain two-syllable words, such as /alga/ or /arda/.
16 In both, the second syllable is physically identical, but is heard as /da/ or /ga/ depending on
17 the preceding syllable [11]. Subsequent psychoacoustic investigations have revealed that this
18 effect still occurs if the preceding syllable was replaced by appropriately chosen tone
19 sequences, that it persists with substantial silent gaps between the two syllables, and that only
20 very few tones are in fact necessary to bias the percepts one way or another [10]. Hence,
21 these contextual effects are likely not linguistic in nature, but reflect more basic adaptive neural
22 mechanisms. Different interpretations have been provided to interpret these findings, such as
23 the enhancement of contrasts [10,12].

24 Here, we investigate the neural correlates of these contextual effects using a simplified
25 paradigm, in which the context reliably biases the percept of an *ambiguous* acoustic stimulus:
26 A sequence of two *Shepard* tones, separated in frequency by half an octave, can be perceived
27 as ascending or descending in frequency. Shepard tones are complex tones with octave
28 spaced constituent tones. This percept can be reliably manipulated by presenting a suitably
29 chosen sequence of Shepard tones before, setting up different contexts. This contextual
30 influence is highly effective, rapidly established and can last for multiple seconds [13,14].
31 Importantly, the ability to determine the changes in pitch has relevance for a wide spectrum of
32 real-world tasks, ranging from distinguishing an approaching from a departing vehicle to
33 distinguishing different emotions in human communication [15,16].

34 We presented various Shepard tone sequences to awake ferrets and humans while
35 simultaneously performing single-unit population recordings using chronically implanted
36 electrode arrays in the left primary auditory cortex, and MEG (magnetoencephalographic)
37 recordings, respectively. Exposure to the contextual sequence resulted in localized adaptation

1 that faded over the time-course of ~1 s, consistent with Stimulus Specific Adaptation [12] and
2 with findings from a related human MEG study [17]. A straight-forward decoding approach
3 demonstrates that the perceived pitch-change direction can be directly related to the
4 contextually adapted activity of direction selective cells. Conversely, decoding the represented
5 Shepard tone pitches and their respective differences, predicts a repulsive effect, opposite to
6 the perceived direction of pitch change. These results align in direction and dynamics with the
7 human MEG recordings collected for the same sounds.

8 We can account for these effects in a simplified model of the cortical representation
9 based on known properties of pitch-change selective cells, which matches both the results
10 from the directional- and the distance-decoding analysis. Further, the model is consistent with
11 multiple observed properties of the neural representation, including tuning changes and
12 directional tuning of individual neurons as well as the build-up of the contextual effect in
13 humans.

1 **Results**

2 We collected neural recordings from 7 awake ferrets (662 single units) and from 16 behaving
3 humans (MEG recordings) in response to sequences of Shepard tones (the 'Bias') followed
4 by an ambiguous, semi-octave separated test pair (Fig. 1B). It has been previously shown
5 [14,17] that the presence of the Bias reliably influences human perception, towards hearing a
6 pitch step 'bridging' the location of the Bias, i.e. if the Bias is located above the first tone an
7 ascending step is heard (Fig. 1B middle), and a descending one, if it is below (Fig. 1B bottom).
8 The present study investigates the neural representation underlying these modified percepts.

9 In the following, we first show that the bias sequence induces a local adaptation in the
10 neural population activity in both passive (ferret) and active (human) condition (Fig. 2, see
11 Discussion for more details). Next, we demonstrate the effect of this adaptation on the stimulus
12 representation by decoding the neural population response. We find a repulsive influence of
13 the Bias sequence on the pitches in the pair. This increases their distance in pitch along the
14 perceived direction (Fig. 3) and is thus not compatible with a simple, pitch-distance based
15 decoder (Fig. 4). We then provide a simplified model of neuronal activity in auditory cortex that
16 captures both the population representation and the adaptive changes in tuning of individual
17 cells (Fig. 5). Finally, based on this model, we provide an alternative explanation for the
18 perceived directionality percept of the ambiguous pair by showing that the adaptation pattern
19 of directional cells predicts the percept (Fig. 6).

20 For simplicity, the term *pitch* is used interchangeably with *pitch class* as only Shepard
21 tones are considered in this study.

22 ***The contextual bias adapts the neural population locally***

23 Adaptation to a stimulus is a ubiquitous phenomenon in neural systems [18–20]. Multiple kinds
24 and roles of adaptation have been proposed, ranging from fatigue to adaptation in statistics
25 [21–24] to higher-order adaptation [25,26]. Since adaptation has previously been implicated
26 in affecting perception, e.g. in the tilt-after effect in vision [27,28], we start out by characterizing
27 the adaptation in neural response during and following the Bias under awake (ferrets, single
28 units) and behaving (humans, MEG) conditions.

29 In the single unit data the average response strength decreases as a function of the
30 position in the Bias sequence. Cells adapted their onset, sustained and offset response within
31 a few tones in the biasing sequence (Fig. 2 A1). This behavior was observable for the vast
32 majority of cells (91%), and is thus conserved in the grand average (Fig. 2 A2). The adaptation
33 plateaued after about 3-4 stimuli (corresponding to a time-constant of 0.59s) on a level about
34 13% below the initial level.

35 The single-unit response strength is reduced locally by the Bias sequence. The
36 responses to the tones in the ambiguous pair (Fig. 2 A3, blue) - which are at the edges of the

1 Bias sequence - are significantly less reduced (33%, $p=0.0011$, 2 group t-test) compared to
2 within the bias (Fig. 2 A3, blue vs. red), relative to the first responses of the bias. The average
3 response was here compared against the unadapted response of the neurons measured via
4 their Shepard tone tuning curve, collected prior to the Bias experiment. This difference is
5 enhanced, if longer sequences are used and the entire non-biased region is measured (see
6 Fig. 5 D2).

7 The response strength remains adapted on the order of one second for single cells.
8 The average spontaneous activity recovered with a time constant of 1.2 s (Fig. 2 A4, see also
9 Fig. 3 & S2 for another measure of recovery time). The initial buildup before the reduction is
10 probably due to offset responses of some cells.

11 For the human recordings, we obtained quite similar time-courses and qualitative
12 response progressions. The neural response adapted both for individuals (Fig. 2 B1) and on
13 average (Fig. 2 B2), with slightly faster time-constants (0.69s), which could stem from the
14 lower repetition rate (4 Hz compared to 7 Hz) used in the human experiments, potentially
15 leading to less adaptation. To the contrary though, the amount of adaptation under behaving
16 conditions in humans appears to be more substantial (40%) than for the average single units
17 under awake conditions. While this difference could be partly explained by desynchronization,
18 adaptation appears to be dominantly present under behaving conditions as well. However,
19 comparisons between the level of adaptation in MEG and single neuron firing rates may be
20 misleading, due to the differences in the signal measured and subsequent processing.

21 Similarly to the neuronal data, in the MEG data the responses to probe tones in the
22 same semi-octave (Fig. 2B3, red) are significantly reduced (21%, signed ranks test, $p<0.0001$)
23 compared to the corresponding response in the opposite semi-octave (blue). This local
24 reduction is not surprising, given that single neurons in auditory cortex can be well tuned to
25 Shepard tones, with tuning widths of as little as 2-3 semitones (Fig. S2). The detailed effect
26 adaptation has on individual cells is studied in detail further below (Fig. 5). Note, that the term
27 local here could mean that a neuron is adapted in multiple octaves, but this is collapsed into
28 the Shepard tone space.

29 In summary, both under awake (ferret) and behaving (humans) conditions, we find that
30 neural responses adapt with similar time courses. The adaptation is local in nature, despite
31 the global nature of the Shepard tones. Together, this suggests that adaptation may play an
32 important role in explaining the effect the Bias sequence has on perceiving the ambiguous
33 Shepard pair, and that effects from passive data may translate to stronger effects in active
34 data.

35 ***The contextual bias repels the ambiguous pair in pitch***

36 Adaptation can have a variety of effects on the represented stimulus attributes (see [27]):

1 stimulus properties can be attracted, repelled or left unchanged depending on the kind of
2 adaptation. In the present paradigm, one hypothesis to explain the percept would be that *the*
3 *bias attracts subsequent tones, thus reducing the distance along this side of the pitch-circle*,
4 e.g. an *UP*-Bias would reduce an ambiguous 6 semitone step to a non-ambiguous 5 semitone
5 step (Fig. 4B). To test this hypothesis, we decoded the represented stimulus using various
6 decoding techniques from the neural population.

7 In population decoding the goal is to estimate a mapping from neural activity to
8 stimulus properties, which assigns a stimulus to the population response. In the present
9 context, this amounts to predicting the pitch class for a given neural response. Several
10 decoding techniques exist which apply different algorithms and start from different
11 assumptions. We here present a dimensionality reduction technique, based on principal
12 component analysis, however, other techniques gave very similar results (e.g. Stochastic
13 Neighborhood Embedding (tSNE, [29]), or for a population vector decoding see Fig. S2).

14 Decoding techniques based on dimensionality reduction attempt to discover a new
15 coordinate system, which accounts for a substantial portion of the variance within much fewer
16 dimensions (Fig. 3A). In other words, they estimate a new representation adapted to the
17 intrinsic geometry of the set of neural responses. In the case of Shepard tones, we predict this
18 geometry to be circular (assuming the neural representation is not degenerate), given the
19 circular nature of the Shepard tones (Fig. 1A). As a circular variable can be represented
20 (embedded) in a 2D Euclidean space, we only consider two dimensions of the decoding,
21 typically the first two, if sorted by explained variance.

22 The projection of the neural data onto the first two principal components, forms indeed
23 a circular arrangement (Fig. 3B). Each point corresponds to a Shepard tone, with its actual
24 pitch given by its color. The dimensionality reduction was based on the neural responses of
25 662 neurons to 240 distinct Shepard tones, compiled from the 32 biasing sequences (16 for
26 both sequence lengths, 5 & 10), which covered the octave evenly. The orderly progression of
27 colors indicates that a proximity in stimulus space leads to a proximity in neural response
28 space.

29 To reassign a pitch-class to each point, we estimated a continuous pitch-circle (Fig.
30 3B, colorful polygon), by computing the local average of each set of 10 adjacent points (w.r.t.
31 actual pitch) and interpolating in between these points. This decoder produces an excellent
32 mapping between actual and estimated pitch-classes on the training set ($r=0.995$, Pearson
33 correlation, Fig. 3C). Based on the responses to the Bias sequences, we have thus
34 constructed a decoder of high accuracy.

35 Next, we apply the decoder to the responses of the Shepard tones in the ambiguous
36 pair to estimate their represented pitch-class, and check whether they are represented at their
37 expected pitch-class. We find that their pitch-classes are shifted away from the bias, i.e. tones

1 in the pair that occur above the bias are shifted further above (Fig. 3B/D/E, Δ , bright, upward
2 triangles), and vice versa (Fig. 3B/D/E, ∇ , dark, downward triangles). This result is highly
3 significant ($p=10^{-41}$, exact ranks test, MATLAB *signrank*) and holds for all tested pitch-classes
4 in the pair ([0,3,6,9], Fig. 3D). The size of the shift increases with the length of the Bias
5 sequence (Fig. 3E, red: $L=5$, black: $L=10$) and decreases with the separation between Bias
6 and ambiguous pair (Fig. 3E, $\tau=1.1$ s). This time constant agrees well with the time course of
7 recovery from adaptation (Fig. 2A3). The effect size - ranging up to a total of 0.8 semitones -
8 much greater than the human threshold of ~ 0.2 semitones for distinguishing two Shepard
9 tones (internal pilot experiment, data not shown). Practically the same result is obtained using
10 population vector decoding instead (Fig. S2).

11 Consequently, the presence of the Bias has a *repulsive* effect on the tones in the pair.
12 Consequently, their distance increases (when measured on the Shepard pitch circle) on the
13 side of the pitch circle where the bias was presented, e.g. for a 6 semitone step an *UP*-Bias
14 leads to a represented 7 semitone (or correspondingly -5 semitone) step (Fig. 4B). Hence, the
15 population decoding suggests that a decoder based on circular distance in pitch *cannot*
16 account for the effect of the Bias on the percept, since this would have predicted the distance
17 to shrink on the side of the bias.

18 ***An SSA-like model accounts for repulsion & local adaptation***

19 Before we can propose an alternative decoder for the directionality percept, we devise a basic
20 neural model which is consistent with both the local nature of the adaptation (Fig. 2) and the
21 repulsion in pitch (Fig. 3/4). This will serve to highlight a few boundary conditions coming from
22 the neural activity and tuning properties that a complete model of the perceptual effect will
23 have to obey.

24 As detailed below, the Bias not only leads to 'local' adaptation in the sense of 'cells
25 close to the location of the Bias', but the adaptation even acts locally within the tuning curve
26 of a given cell (Fig. 5 D1). Hence, while global, postsynaptic adaptation (fatigue) has been
27 shown to be sufficient in producing a repulsion from the adaptor in decoded stimuli (see Fig.
28 S3, [27,30]), the local reduction of individual tuning curves actually observed in our data
29 requires us to consider non-global adaptation in the model. Adaptation of this type is not
30 unheard of in the auditory cortex, given that another cortical property of stimulus
31 representation - stimulus specific adaptation (SSA, [12,31] - is likely to rest on similar
32 mechanisms.

33 The simplest possibility along these lines is very local adaptation, i.e. specific and
34 limited to each stimulus. While this adaptation could account for the local changes in tuning-
35 curves, it would not predict a repulsion to occur in decoding (Fig. S3 A, see Method for details
36 on the model implementation). Since this adaptation is assumed to be specific for each

1 stimulus, the population activity for this decoded stimulus would simply be scaled, which would
2 leave the mean and all other moments the same (Fig. S3 A3).

3 A more biological variant is adaptation that is matched to the *internal, neural*
4 *representation of the stimulus* (Fig. 5A). As the auditory system has non-zero filter-
5 bandwidths, every stimulus elicits a distributed, rather than a perfectly localized activity. At
6 least up to the primary auditory cortex, acoustic stimuli are represented in a distributed
7 manner. If this distribution of activity adapts the corresponding channels locally, the tuning
8 curves of cells in field AI of the primary auditory cortex will be locally reduced, however, less
9 local than in the point-like representation due to the width of the distribution in its inputs
10 (Fig. S3 C1). On the other hand, decoding of pitches will be repulsive after an adaptor,
11 because cells closer in BF to the adapting stimulus will integrate more adaptation (Fig. 5A top
12 right), and thus contribute less to the decoding weight. This imbalance shifts the average in
13 the decoded pitch further away (Fig. S3 C3). For simplicity, the adaptation here is attributed
14 to the incoming synaptic connections to AI, yet, it could equally be localized at another or
15 multiple levels.

16 The models discussed above (Fig. S3) were implemented non-dynamically to illustrate
17 the interaction between context and different types of adaptation. Based on the
18 aforementioned considerations, we implemented a dynamical rate model including local
19 adaptation and distributed representation (as in Fig. S3 C3), which receives the identical
20 stimulus sequences as were presented to the real neurons. The dynamical model provides a
21 quantitative match to the adaptation of single cells and the repulsive representation of Shepard
22 tones after the Bias and further allows us to estimate parameters of the underlying processing
23 (Fig. 5B-E). Certain parameters could be directly matched to the actual data, e.g. the time-
24 constant of recovery (1.2 s, Fig. 2 A4).

25 First, when subjected to population decoding analysis as for the real data before, the
26 model exhibits a very similar circular representation of the space of Shepard tones (Fig. 5B1)
27 and repulsive shifts in represented pitchclass (Fig. 5B2). The basis for this representation is
28 analyzed in the following.

29 Local adaptation in the tuning of individual cells is retained in the model (Fig. 5C).
30 Individual cells showed adaptation patterns matched in location to the region where the bias
31 was presented (different colors represent different Bias regions), in comparison to the
32 unbiased tuning curve (gray). Similarly, in the model, the locally implemented adaptation
33 together with the distributed activity in the middle level leads to similarly adapted individual
34 tuning curves.

35 To study the adaptation in a more standardized way, we computed the pointwise
36 difference between adapted and unadapted tuning curve. These differences were then
37 cocentered with the Bias before averaging (Fig. 5D). Both for the onset (brown) and the

1 sustained response (red), the reduction is highly local, with steep flanks at the boundaries of
2 the bias for both the model and the actual data. The offset data appears to show some local
3 reduction but not as sharply defined as the other two.

4 In order to find the relative reduction, the response rates inside (reddish lines) and
5 outside (green lines) the biased regions are plotted against their unbiased counterparts
6 (Fig. 5E). While small firing rates appear to be less influenced, a reduction of ~40% stabilized
7 for higher firing rates, largely independent of the response bin. This analysis can illustrate
8 dependencies on firing rate and prevents degenerate divisions by small firing rates.

9 The adaptation encapsulated in the model makes only few assumptions, yet provides
10 an qualitatively matched description of the neural behavior in response to the stimulus
11 sequences (w.r.t. the present level of analysis). The model can now be extended to directional
12 cells, to provide a novel explanation for the directionality percept of the biased Shepard pairs.

13 ***The contextual bias differentially adapts directional cells predicting the percept***

14 The decoding techniques used in the previous sections relied only on the cells' tunings to the
15 *currently* presented Shepard tone. However, cells in the auditory cortex also possess
16 preferences for the *succession of two* (or more) stimuli, e.g. differing in pitch [32–34]. We
17 hypothesized that perception of pitch steps could rely on the relative activities of cells
18 preferring ascending and descending steps in pitch-class (Fig. 6A), instead of the difference
19 in pitch (as in the *minimal distance hypothesis*, disproven above).

20 We tested this *directional hypothesis* by decoding the perceived direction more directly
21 by taking the directional preferences of each cell into account (Fig. 6A). The directional percept
22 is predicted by the population response weighted by each cell's directionality index (DI) and
23 the distance to the currently presented stimulus (see Methods for details). The DI is computed
24 from the cells' STRFs, which are estimated from the sequences of Shepard tones. This
25 approach avoids estimating receptive fields from stimuli with different statistics. Directional
26 cells have asymmetric spectro-temporal receptive fields (STRF, see Fig. 6B for some
27 examples): down-selective cells have STRFs with active zones (red) angled down (from past
28 to future, current time being on the left), up-selective cells the opposite. In both cases the
29 STRF is dominated by the activity in response to the current stimulus, i.e. the recent past.

30 The directional decoding successfully predicts the percept for both stimuli in the
31 ambiguous pair. Predictions are performed for each stimulus in the test pair separately. The
32 step direction of the first stimulus is defined based its relative position to the center of the Bias.
33 For the analysis of the second Shepard tone in the pair, the step is assumed to be perceived
34 on the side of the Bias, i.e. as previously shown in human perception [14]. Predictions (Fig.
35 6C) for the first tone (red) were generally more reliable than for the second tone (blue), and
36 predictions also improved for both tones with the length of the Bias sequence (5 tones = 0, 10

1 tones = •). This dependence of prediction reliability is consistent with the certainty of judgment
2 in human psychophysics [14]. On average, the prediction was correct in 88% and 95% for the
3 first tone, for a Bias length of 5 and 10 tones, respectively, and 67% and 88% for the second
4 tone, respectively (Fig. 6D). In summary, the Bias seems to influence the relative activities of
5 up- and down-preferring cells differentially above and below the Bias, such that responses
6 from down-preferring cells prevail below the Bias, and up-preferring cells prevail above the
7 Bias, predicting the human percept correctly.

8 We next investigate in what way the activities of directional cells are modified by the
9 Bias to generate these perception-matched decodings. In the previous sections, we have seen
10 that rather local adaptation occurs during the Bias and modifies the response properties of a
11 cell. How does this adaptation affect a cell that has a directional-preference? To address this
12 question we distinguish the differential response between the *Up* and *Down* Bias as a function
13 of a cell's directionality and frequency separation from the test tone, i.e. Shepard tones in the
14 ambiguous pair. Hence, the analysis (Fig. 6E/F) plots the difference in response between a
15 preceding *Up*- and *Down*-Bias (specifically: Bias-is-locally-above-tone minus Bias-is-locally-
16 below-tone, color scale), as a function of the cells directional selectivity (abscissa) and the
17 cell's best frequency location with respect to each tone (ordinate). For the present analysis
18 the responses to the first and second tone in the pair were analyzed together. For the second
19 tone, a cell thus contributes also to a second relative-to-tone bin (ordinate) at the same
20 directionality, however, with a different set of responses. Also, each cell contributed for each
21 tone in multiple locations, since multiple target tones (4) were tested in the paradigm.

22 For the neural data, the differential responses exhibit an angled stripe pattern, formed
23 by a positive and a negative stripe (Fig. 6E top). The stripes are connected at the top and
24 bottom ends, due to the circularity of the Shepard space. The pattern of differential responses
25 conforms to the *directional hypothesis*, if *down*-cells (left half) are more active than *up*-cells
26 (right half) close to the pair tones (Fig. 6E, ordinate around 0). This central region was
27 considered here, since these are the cells that will respond most strongly to the tone. For the
28 neural data, this differential activity is significantly dependent on the directionality of the cells
29 (Fig. 6E bottom, ANOVA, $p < 0.005$).

30

31 ***Extending the neuronal model to directionally sensitive cells***

32 In order to better understand the mechanisms shaping this biasing pattern, the same analysis
33 was applied to neural models including different properties (Fig. 6F). The same model as in
34 the previous section was used, with the only difference that the tuning of the cells extended in
35 time to include two stimuli instead of only one, comparable to the STRFs of the actual cells
36 (Fig. 6B). To illustrate the effect of adaptation, three models are compared: without adaptation
37 (Fig. 6F left), without directionally tuned cells (Fig. 6F middle), and with adaptation and

1 directionality tuned cells (Fig. 6F right).

2 Without adaptation, the cells do not show a differential response (Fig. 6F left), since
3 the Bias does not affect the responses in the test pair (Note, that there is a 200 ms pause
4 between the end of the Bias and the test pair, such that the directionality itself cannot explain
5 the pattern of responses). Here, the difference in activity around the current tone is not
6 significant (ANOVA, $p=0.5$; Fig. 6F left bottom).

7 Without directional cells, the pattern reflects only the difference in activity generated
8 by the interaction of the Bias with the adaptation. The lack of directional cells limits the pattern
9 to a small range of directionalities, generated by estimation inaccuracy. Hence, the local
10 pattern of differential response around the test tone is not significantly modulated, due to the
11 lack of directional cells to span the range (ANOVA, $p=0.7$; Fig. 6F middle bottom).

12 In the model with adapting and directional cells, the pattern resembles the angled
13 double stripe pattern from the neural data. The stripes in the pattern are generated by the
14 adaptation, whereas the directionality of the cells leads to the angle of those stripes. Locally
15 around the test tone, this difference shows a statistically significant dependence on the
16 directionality of the cells (ANOVA, $p<0.0001$; Fig. 6F right bottom).

17 The resulting distribution of activities in their relation to the Bias is, hence, symmetric
18 around the Bias (Fig. 6G). Without prior stimulation, the population of cells is unadapted and
19 thus exhibits balanced activity in response to a stimulus. After a sequence of stimuli, the
20 population is partially adapted (Fig. 6G right), such that a following stimulus now elicits an
21 imbalanced activity. Translated concretely to the present paradigm, the Bias will locally adapt
22 cells. The degree of adaptation will be stronger, if their tuning curve overlaps more with the
23 biased region. Adaptation in this region should therefore most strongly influence a cell's
24 response. For example, if one considers two directional cells, an *up*- and a *down*-selective
25 cell, cocentered in the same frequency location below the Bias, then the Bias will more strongly
26 adapt the *up*-cell, which has its dominant, recent part of the STRF more inside the region of
27 the Bias (Fig. 6G right). Consistent with the percept, this imbalance predicts the tone to be
28 perceived as a descending step relative to the Bias. Conversely, for the second stimulus in
29 the pair, located above the Bias, the *down*-selective cells will be more adapted, thus predicting
30 an ascending step relative to the previous tone.

31 *In summary*, taking into account the directional selectivities of the population of cells
32 and local neural adaptation, the changes in the directional percept induced by the Bias
33 sequences can be predicted from the neural data. Specifically, the local adaptation of
34 specifically the directionally selective cells caused by the Bias underlies the imbalance in their
35 responses, and thus is likely to be the underlying mechanism of the biased Shepard tones
36 percept.

37

1 **Discussion**

2 We have investigated the physiological basis underlying the influence of stimulus history on
3 the perception of pitch-direction, using a bistable acoustic stimulus, pairs of Shepard tones.
4 Stimulus history is found to persist as spectrally-localized adaptation in animal and human
5 recordings, which specifically shapes the activity of direction-selective cells in agreement with
6 the percept. The adaptation's spectral and temporal properties suggest a common origin with
7 previously described mechanisms, such as stimulus specific adaptation (SSA). Conversely,
8 the classically assumed, but rarely explicitly discussed, circle-distance hypothesis in Shepard
9 tone judgements is in conflict with the repulsive effect on cortically represented pitch revealed
10 presently using different types of population decoding.

11

12 *Relation to previous studies*

13 While context-dependent auditory perception of Shepard tones has been studied previously
14 in humans, we here provide a first account of the underlying neurophysiological
15 representation. Previous studies have considered how the stimulus context influences various
16 judgements, e.g. whether subsequent tones influence each other in frequency [35,36],
17 whether a sound is continuous [37] or which of two related phonemes is perceived [10]. In the
18 present study, we chose directional judgements, due to the fundamental role frequency-
19 modulations play in the perception of natural stimuli and language. We find the preceding
20 stimulus to locally bias directional cells, such that on a population level the first Shepard tone
21 is perceived as a step downward, and the second tone as a step upward for an UP Bias, and
22 conversely for a DOWN Bias. While the present study cannot directly rule out that the local
23 adaptation occurs before the thalamo-cortical junction, both physiology [38] and
24 psychophysical (binaural fusion, [39]) results suggest a location beyond the olfactory nuclei.

25 Are these results compatible with the cellular mechanisms that give rise to direction
26 selectivity? The cellular mechanisms underlying the emergence of directional selectivity in the
27 auditory system have been elucidated in recent years using *in-vivo* intracellular recordings
28 [40–42]. Two mechanisms have been identified in the auditory cortex, (i) excitatory inputs with
29 different timing and spectral location and (ii) excitatory & inhibitory inputs with different spectral
30 location. In both mechanisms local adaptation by prior stimulation would tend to equalize
31 direction selectivity, by diminishing (i) one excitatory channel or (ii) either the inhibitory or the
32 excitatory channel. The observed changes in response properties under local stimulation are
33 thus compatible with the network mechanisms underlying direction selectivity. This makes the
34 prediction that [40,43] the presentation of FM-sweeps of one direction should bias subsequent
35 perception to the opposite direction. Psychophysical evidence in this respect has been
36 observed previously in terms of threshold shifts of directional perception, which are in
37 agreement with a local bias influencing the directional percept of subsequent stimuli [44,45].

1 More specific adaptation paradigms are required to resolve some of the more detailed effects
2 e.g. local differences across the octave [45].

3 Conversely, we could disprove the hypothesis that directional judgements are based
4 on the distance between the tones on the circular Shepard space. Earlier studies on directional
5 judgements of Shepard pairs have - implicitly or explicitly - used the circular nature of the
6 Shepard space to predict the percept [13,45,46], starting from the fundamental work of [47]
7 The original idea was to construct a stimulus with tonal character but ambiguous pitch, and as
8 such it has interesting applications in the study of pitch perception. However, as presently
9 shown, the percept of directionality does not rest on the circular construction. This conclusion
10 is obtained by decoding the represented pitch of the Shepard tones in the context of different
11 biasing sequences. This analysis demonstrated that the biasing sequence exerts a repulsive
12 rather than an attractive effect on the pitch of following stimuli. Repulsive effects of this kind
13 have been widely investigated in the visual literature, in particular the *tilt after-effect* ([27,28,30,48,49], where exposure to a single oriented grating perceptually repels
15 subsequently presented gratings of similar orientation. Repulsive effects have also been
16 described in the auditory perception [10,35,37], but not in auditory physiology. In conclusion,
17 we find the percept to be inconsistent with the increase in the circular distance in the Shepard
18 tone space.

19 An interesting approach would be to provide a Bayesian interpretation for the effect of
20 the Bias on the cortical representation. Typically an increase in activity is considered as a
21 representation of the prior occurrence probability of stimuli [50]. Given the local reduction in
22 activity described above, this interpretation would, however, not predict the percept.
23 Alternatively, one could propose to interpret the *negative* deviation, i.e. local adaptation, as
24 the local magnitude of the prior, which could be consistently interpreted with the percept in
25 this paradigm, as has been proposed before [17]. Recordings from different areas in the
26 auditory cortex might, however, show different characteristics, including a sign inversion.
27

28 *Relation to other principles of adaptation in audition*

29 Adaptation has been attributed with several functions in sensory processing, ranging from
30 fatigue (adaptation in excitability of spiking), representation of stimulus statistics [18],
31 compensation for stimulus statistics [24], sensitization for novel stimuli [12,51] and sensory
32 memory [19,52]. Adaptation is also present on multiple time-scales, ranging from milliseconds
33 to minutes ([18,19,25,53]. Based on the time-scales of the stimulus and the task-design, the
34 present experiments mainly revealed adaptation in the range of fractions of a second.
35 Adaptation can be global - in the sense that a neuron responds less to all stimuli - or local - in
36 the sense that adaptation is specific to certain, usually the previously presented stimuli, as in
37 SSA [12,54]. Here, adaptation was well confined to the set of stimuli presented before. Hence,

1 the adaptation identified presently is temporally and spectrally well matched to SSA described
2 before. In recent years, the research on SSA has focussed on the aspect of stimulus novelty
3 [55–57], as a potential single-cell correlate of mismatch-negativity (MMN) recorded in human
4 EEG and MEG tasks. While the connection between SSA and MMN appears convincing when
5 it comes to some properties, e.g. stimulus frequency, it appears to not transfer in a similar way
6 to other, still primary properties, such as stimulus level or duration, which elicit robust MMN
7 [58]. The present results reemphasize another putative role of SSA, namely sensory memory.
8 Naturally, adaptation - if it is local - constitutes a ‘negative afterimage’ of the preceding
9 stimulus history. Recent studies in humans suggest a functional role for this adapted state in
10 representing properties of the task. This was recently demonstrated in an auditory delayed
11 match-to-sample task, where a frequency-specific reduction in activity was maintained
12 between the sample and the match ([59], see also [60]). Localized adaptation as described
13 presently provides a likely substrate for such a sensory memory trace.

14

15 *Future directions*

16 While in human perception task engagement is not necessary to be influenced by the biasing
17 sequence, a natural continuation of the present work would be to record from behaving
18 animals. This would allow us to investigate potential differences in neural activity depending
19 on the activity state, and how individual neurons contribute to the decision on a trial-by-trial
20 basis [61,62]. Furthermore, the current study was limited to primary auditory cortex of the
21 ferret, but secondary areas as well as parietal and frontal areas could also be involved and
22 should be explored in subsequent research. Switching to mice as an experimental species
23 would allow us to differentiate the roles of different cell types better [63]. On the paradigm
24 level, an extension of the time between the end of the bias sequence and the test pair would
25 be of particular interest in the active condition, where human research suggests that the bias
26 can persist for more extended times than suggested by the decay properties of the adaptation
27 in the present data set.

1 **Methods**

2 *Experimental Procedures*

3 All animal experiments were performed in accordance with the regulations of the National
4 Institutes of Health and the University of Maryland Institutional Animal Care and Use
5 Committee. All human experiments were performed in accordance with the ethical guidelines
6 of the University of Maryland. We collected single unit recordings from 7 female ferrets
7 (*Mustela putorius furo*) in the awake condition, MEG recordings from 16 human subjects and
8 psychophysical recordings from 10 human subjects.

9

10 *Surgical Procedures*

11 A dental cement cap and a headpost were surgically implanted on the animal's head using
12 sterile procedures, as described previously [64]. Microelectrode arrays (Microprobes Inc., 32-
13 96 channels, 2.5 MOhm, shaft $\phi=125\text{ }\mu\text{m}$, various planar layouts with 0.5mm interelectrode
14 spacing) were surgically implanted in the primary auditory cortex AI at a depth of $\sim 500\text{ }\mu\text{m}$, for
15 2 animals sequentially on both hemispheres. A custom-designed, chronic drive system was
16 used in some recordings to change the depth of the electrode array.

17

18 *Physiology : Stimulation & Recording*

19 Acoustic stimuli were generated at 80 kHz using custom written software in MATLAB (The
20 Mathworks, Natick, USA) and presented via a flat calibrated (within +/- 5dB in the range 0.1-
21 32 kHz using the inverse impulse response) sound system (amplifier : Crown D75A; speaker:
22 Manger, flat within 0.08-35 kHz). Animals were head-restrained in a standard position in a
23 tube inside a soundproof chamber (mac3, Industrial Acoustics Corporation). The speaker was
24 positioned centrally above the animal's head and calibration was performed for the animal
25 head's position during recordings.

26 Signals were pre-amplified directly on the head (1-2x, Blackrock/TBSI) and further
27 amplified (1000x, Plexon Inc.) and bandpass-filtered (0.1-8000 Hz, Plexon Inc.) before
28 digitization ([-5,5]V, 16 bits, 25 kHz, M-series cards, National Instruments) and storage/display
29 using an open-source DAQ system [65]. Single units were identified using custom written
30 software for spike sorting (for details see [66]). All subsequent analyses were performed in
31 Matlab.

32

33 *Magnetoencephalography & Psychophysics : Stimulation, Recording and Data Analysis*

34 Acoustic stimuli were generated at 44.1 kHz using custom written software in MATLAB and
35 presented via a flat calibrated (within +/- 5 dB in the range 40–3000 Hz) sound system. During
36 MEG experiments, the sound was delivered to the ear via sound tubing (ER-3A, Etymotic),
37 inserted with foam plugs (ER-3-14) into the ear canal, while during psychophysical

1 experiments an over-the-ear headphone (Sony MDR-V700) was used. While the limited
2 calibration range (due to the sound tubing) is not optimal, it still encompasses >6
3 octaves/constituent tones for every Shepard tone. Sound stimuli were presented at 70 dB SPL.
4 Magnetoencephalographic (MEG) signals were recorded in a magnetically shielded room
5 (Yokogawa Corp.) using a 160 channel, whole-head system (Kanazawa Institute of
6 Technology, Kanazawa, Japan), with the detection coils ($\phi = 15.5$ mm) arranged uniformly
7 (~25 mm center-to-center spacing) around the top part of the head. Sensors are configured
8 as first-order axial gradiometers with a baseline of 50 mm, with field sensitivities of >5 fT/Hz
9 in the white noise region. Three of the 160 channels were used as reference channels in noise-
10 filtering methods [67]. The magnetic signals were band-passed between 1 Hz and 200 Hz,
11 notch filtered at 60 Hz, and sampled at 1 kHz. Finally, the power spectrum was computed and
12 the amplitude at the target rate of 4 Hz was extracted (as in [68], all magnetic field amplitudes
13 in Fig. 2B represent this measure).

14 Subjects had to press one of two buttons (controller held in the right hand, away from the
15 sensors) to indicate an ascending or a descending percept. Subjects listened to 120 stimuli in
16 a block, and completed 3 blocks in a session, lasting ~1 hour.

17

18 *Acoustic Stimuli*

19 All stimuli were composed of sequences of Shepard tones. A Shepard tone is a complex tone
20 built as the sum of octave-spaced pure-tones. To stimulate a wide range of neurons, we used
21 a flat envelope, i.e. all constituent tones had the same amplitude. Phases of the constituents
22 tones were randomized for each trial. Each Shepard tone was gated with 5 ms sinusoidal
23 ramps at the beginning and end.

24 A Shepard tone can be characterized by its position in an octave, termed pitchclass (in
25 units of semitones), w.r.t. a base-tone. In the present study, the Shepard tone based on
26 440 Hz was assigned pitchclass 0. The Shepard tone with pitchclass 1 is one semitone higher
27 than pitchclass 0 and pitchclass 12 is identical to pitchclass 0, since all constituent tones are
28 shifted by an octave and range from inaudibly low to inaudibly high frequencies. Hence, the
29 space of Shepard tones is circular (see Fig. 1B). Across the entire set of experiments the
30 duration of the Shepard tones was 0.1 s (neural recordings) / 0.125 s (MEG recordings) and
31 the amplitude 70 dB SPL (at the ear).

32 We used two different stimulus sequences to probe the neural representation of the
33 ambiguous Shepard pairs and their spectral and temporal tuning properties, (i) the Biased
34 Shepard Pair and (ii) the Biased Shepard Tuning:

35 *i) Biased Shepard Pair* In this paradigm, an ambiguous Shepard pair (6 st separation)
36 preceded by a longer sequence of Shepard tones, the bias (see Fig. 1C). The bias consists of
37 a sequence of Shepard tones (lengths: 5 and 10 stimuli) which are within 6 semitones above

1 or below the first Shepard tone in the pair. These biases are called 'up' and 'down' bias
2 respectively, as they bias the perception of the ambiguous pair to be 'ascending' or
3 'descending', respectively, in pitch [14,17]. A pause of different length ([0.05,0.2,0.5] s) was
4 inserted between the bias and the pair, to study the temporal aspects of the neural
5 representation. Altogether we presented 32 different bias sequences (4 base pitch classes
6 ([0,3,6,9] st), 2 randomization, 2 bias lengths ([5,10] stimuli), 'up' and 'down bias), which in
7 total contained 240 distinct Shepard tones. Their individual pitch classes in the bias were
8 drawn randomly and continuously from their respective range. Each stimulus was repeated
9 10 times. For the neural data, these 240 different Shepard tones were also used to obtain a
10 'Shepard tone tuning' for individual cells (see Fig. S1). The stimulus described above was
11 presented to both animals and humans. The human psychophysical data were only used to
12 reproduce the previous findings by Chambers et al. (2014) with the current parameters. For
13 the MEG recordings, a variation of the biased Shepard pair stimulus was used, which enabled
14 the separate measurement of the activation state in the biased and the unbiased frequency
15 regions. For this purpose a second sequence of Shepard tones (tone duration: 30 ms; SOA:
16 250 ms; frequency: 3 st above or below the tone of the pair) was inserted between the bias
17 sequence and the Shepard pair, with the time between the two adapted to include the duration
18 of the sequence (2s) and a pause after the bias sequence ([0.5,1,2] s).

19 *ii) Biased Shepard Tuning* For estimating the changes in the tuning curve of individual
20 neurons, much longer sequences (154 Shepard tones) was presented to a subset of the
21 neurons. The Shepard tones in these sequences were chosen to maintain the influence of the
22 bias over the entire sequence, while intermittently probing the entire octave of semitones to
23 estimate the overall influence of the bias on the tuning of neurons. For this purpose, 5/6
24 (~83%) of the tones in the sequence were randomly drawn from one of the four bias regions
25 ([0-5],[3-8],[6-11],[9-2]st), while the 6th tone was randomly drawn from the entire octave,
26 discretized to 24 steps (reminiscent of the studies of [21]). The 6th tone could thus be used
27 to measure each neurons 'Shepard tuning' at a resolution of 0.5 semitones, adapted to
28 different bias locations. To avoid onset effects, a lead-in sequence of 15 bias tones preceded
29 the first tuning estimation tone. Individual stimulus parameters (intensity, durations of tone and
30 interstimulus interval) were chosen as above. Five pseudorandom sequences were presented
31 for each of the four bias regions, repeated 6 or more times, providing at least 30 repetitions
32 for each location in the tuning curve (Results of these conditions are shown in Fig. 4). A
33 randomly varied pause of ~5 s separated the trials.

34

35 *Population Decoding*

36 The represented stimuli in the ambiguous pair were estimated from the neural responses by

1 training a decoder on the biasing sequences and then applying the decoder to the neural
2 response of the pair. We used two different decoders to compare their results, one based on
3 dimensionality reduction (PCA, Principal Component Analysis) and one based on a weighted
4 population-vector, which both gave very similar results (see Fig. 3 and S2). For both decoders,
5 we first built a matrix of responses which had the (240) different Shepard tones occurring in all
6 bias sequences running along one dimension and the neurons along the other dimension.

7 The PCA decoder performed a linear dimensionality reduction, utilizing the stimuli as
8 examples and the neurons as dimensions of the representation. The data were projected to
9 the first three dimensions, which represented the pitchclass as well as the position in the
10 sequence of stimuli (see Fig. 3A for a schematic). A wide range of linear and non-linear
11 dimensionality reduction techniques - e.g. tSNE [29] - was tested leading to very similar
12 results.

13 The weighted population decoder was computed by assigning each neuron its best
14 pitchclass (i.e. pitchclass that evoked the highest response) and then evaluating the firing-rate
15 weighted sum of all neurons' best pitchclasses (see Fig. S2A for a schematic). Since the
16 stimulus space is circular, this weighted average was performed in the complex domain, where
17 each neuron was represented by a unit vector in the complex plane, with an angle
18 corresponding to the best pitchclass. More precisely, this decoder is simply (omitting indices
19 in the following)

$$20 \quad \underline{PC}(S) = \sum_{i=1}^{Neurons} f_i(S)/max_{Stim}(f_i) * PC_{i,best}/P(PC_{i,best}), \text{ where } PC_{i,best} \in C$$

21 where $PC_{i,best}$ is the preferred pitchclass of a cell, $f_i(S)$ the firing rate of the neuron i for stimulus
22 S . In the decoding, firing rate is normalized to the maximal firing rate for each cell, and the
23 preferred pitchclass for the empirical frequency of occurrence $P(PC_{i,best})$, to compensate for
24 uneven sampling of preferred pitchclasses.

25 To assign a pitchclass to the decoded stimuli of the test pair, we projected them onto the
26 'pitch-circle' formed by the decoded stimuli from the bias sequences. More precisely, we
27 estimated a smoothed trajectory through the set of bias-tones which was assigned a pitchclass
28 at every point, by averaging the pitchclasses of the closest 4 bias stimuli, weighted by their
29 distance to the point. Then, the pitchclass of the test tone was set to the pitchclass of the
30 closest point on the trajectory.

31

32 *Neural modeling*

33 We used rate-based models of neural responses in the auditory cortex to investigate the link
34 between the bias-induced changes in response characteristic and the population decoding
35 results. These are not trivially related, as different kinds of adaptation can lead to different -

1 repulsive or attractive - effects [27,30]. Two types of models were investigated for this purpose:
2 (i) a *non-dynamic tuning model*, which serves to investigate generally the effect of different
3 types of adaptation on the represented stimuli. This model is detailed in the Supplementary
4 Methods and results are shown in Fig. S3.
5 (ii) a *dynamic model*, which serves to use the insights of the non-dynamic model to account in
6 more detail for the neural data. We used the identical stimulus sequences and analyses as for
7 the real data. The structure of the dynamic model corresponded to non-dynamic model (c)
8 (see Supplementary Methods), i.e. a distributed stimulus representation before cortex and
9 local adaptation in the thalamo-cortical synapses and (see Fig. 5A for a schematic
10 representation of the model). A sampling rate of 20 Hz was used for the simulations to speed
11 up computations. Stimuli were represented as spectrograms - i.e. time-frequency
12 representations - with frequency being encoded as Shepard tones, i.e. they ranged over one
13 octave and wrapped at the frequency boundaries.

14 In the mid-level (e.g. MGB) neural representation of the stimulus, each cell's response
15 was modeled by a peak-normalized *von Mises* distribution for each time t of the filter, i.e.
16 $M_i(\phi | \phi_i, \sigma_i) = R_{max} \exp(\cos(2\pi/12(\phi - \phi_i))/(2\pi/12\sigma_i)^2)/M_{total}$, where ϕ denotes the
17 stimulus, μ denotes the best pitchclass and σ the standard deviation, all in semitones. The
18 maximal rate R_{max} was arbitrarily set to 1. Hence, the responses on the mid-level $T_j(S(t))$ of
19 each neuron j were modeled as a convolution of the spectrogram with the neuron's tuning
20 curve

$$21 T_j(S(t)) = S(t) * M_j(S(t)) = \frac{1}{12} \int_0^{12} M_j(\phi) S(t, \phi) d\phi$$

22 On the top-level, corresponding to auditory cortex, the activity of each neuron was
23 modeled as a spectrotemporal filter on the activity of the mid-level representation with local
24 synaptic depression at the synapses

$$25 R_i(S(t)) = \frac{1}{J} \sum_{j=1}^J \sum_{\tau=0}^{T-1} SSTRF_i(\tau, j)(1 - A_{i,j}(t)) T_j(S(t - \tau))$$

26 where the $SSTRF_i(\tau, j)$ is the time-frequency filter for cortical neuron i , weighting the activity of
27 the MGB neurons j at times $\tau=0\dots T$ before the current time. The state of synaptic depression
28 between cortical neuron i and thalamic neuron j is given by $A_{i,j}(t)$. The adaptation was
29 determined by the activity locally present at each synapse and thus led to relatively local
30 changes in the postsynaptic tuning curves. The dynamics of $A_{i,j}(t)$ are given by

$$31 A_{i,j}(t + 1) = A_{i,j}(t) \left(1 - F_A \sum_{\tau=0}^T SSTRF(\tau, j)/\max(SSTRF) T_j(S(t - \tau))\right) (1 - F_R)$$

32 where F_A is a constant weighting factor, which scales the amount of adaptation. In both cases
33 the response computed via the SSTRF is weighted with the adaptation coefficients $A_{PC/G}$, and
34 each coefficient recovers by a fraction F_R in each step (leading to exponential recovery).

1 For the final simulations (Fig. 6), the model was extended to contain a subset of
2 directional cells, by extending the dependence of the SSTRF by another 150 ms (3 timesteps
3 at the SR). A directional preference was implemented by adding a von Mises distribution (see
4 above for definition) at the time range 150-250 ms with a peak size of 0.25, roughly matching
5 the observed peak-sizes in the SSTRFs of real directional cells. For downward preferring cells
6 the center of the von Mises was placed relatively higher than the best semitone of the cell,
7 and vice versa for upward preferring cells, in each case wrapping at the edges to account for
8 the circularity of the Shepard tone response. The simulated population of 500 cells was split
9 into one third non-directional cells, one third upward selective cells and one third downward
10 selective cells.

11

12 *Tuning Curve Adaptation Analysis*

13 We estimated the *biased* Shepard tunings from the long stimulus sequences (see *Acoustic*
14 *Stimuli: Biased Shepard Tuning*) by averaging the test stimuli for each location in the octave
15 (see Fig. 4C, different colors indicate different locations of the bias sequence). To get an
16 estimate of the unadapted tuning curve, we collected the initial 5 stimuli from each condition
17 and thus constructed a corresponding tuning curve at a resolution of 1st. To evaluate the
18 influence of the bias, the local difference (Fig. 5D) and fraction (Fig. 5E) between the adapted
19 and the unadapted tuning curve were analyzed. The same analysis was applied to model data
20 generated from the identical stimuli using the same model as above (local adaptation,
21 distributed input on the intermediate level, see Supplementary Methods and Fig. S3C).

22

23 *Directionality Analysis*

24 We investigated the effect of the bias sequence on directionally selective cells. For this
25 purpose, each cell's directional selectivity was estimated from the steps contained in the
26 biasing sequences. Shepard Spectro-temporal receptive fields (SSTRF) were approximated
27 by reverse correlating each neuron's response with the bias sequences of Shepard tones
28 (using normalized linear regression, three examples are shown in Fig. 6B).

29 First, directional preference was assessed by computing the asymmetry in response
30 strength in the second time bin, centered on the maximal response in the first time bin, i.e.

$$31 D = \sum_{\Delta < 0} SSTRF(t_2, PC_{best} + \Delta) - \sum_{\Delta > 0} SSTRF(t_2, PC_{best} + \Delta)$$

32 Positive values of D indicate up-ward selective cells and vice versa. The SSTRF was first
33 normalized to the maximal value to obtain comparable values between cells.

34 Second, a cell's spectral location relative to the test stimulus was determined by computing
35 the distance between a cell's SSTRF center-of-mass and the pitch class of the test tone.
36 These first two steps, located a cell on the x- and y-axis of the following analysis (see Fig.

1 6C/D, top).

2 Third, the difference in response for identical test stimuli with different preceding bias
3 locations (relative to each tone in the pair) was computed ('above' - 'below').

4 Finally these differences were averaged for all cells with a given directionality and
5 relative location.

6 This analysis was also applied for the second test-stimulus, which means that each
7 cell contributes to two locations, separated by the semi-octave distance between the two test-
8 tones, however, the contribution was constituted by different (later) responses of the cell. This
9 analysis was conducted both for the actual neural data, as well as for model data. These
10 modeling results were obtained with the same model as above (local adaptation, distributed
11 input on the intermediate level), although adaptation was set to 0 in one condition to
12 demonstrate its role in generating the asymmetry of responses.

13

14 *Statistical Analysis*

15 Non-parametric tests were used throughout the study to avoid assumptions regarding
16 distributional shape. Single group medians were assessed with the Wilcoxon signed rank test,
17 two group median comparisons with the Mann-Whitney U-test, multiple groups with the
18 Kruskal-Wallis (one-way) and Friedman test (two-way), with post-hoc testing performed using
19 Bonferroni-correction of p-values. All tests are implemented in the Matlab Statistics Toolbox
20 (The Mathworks, Natick).

21

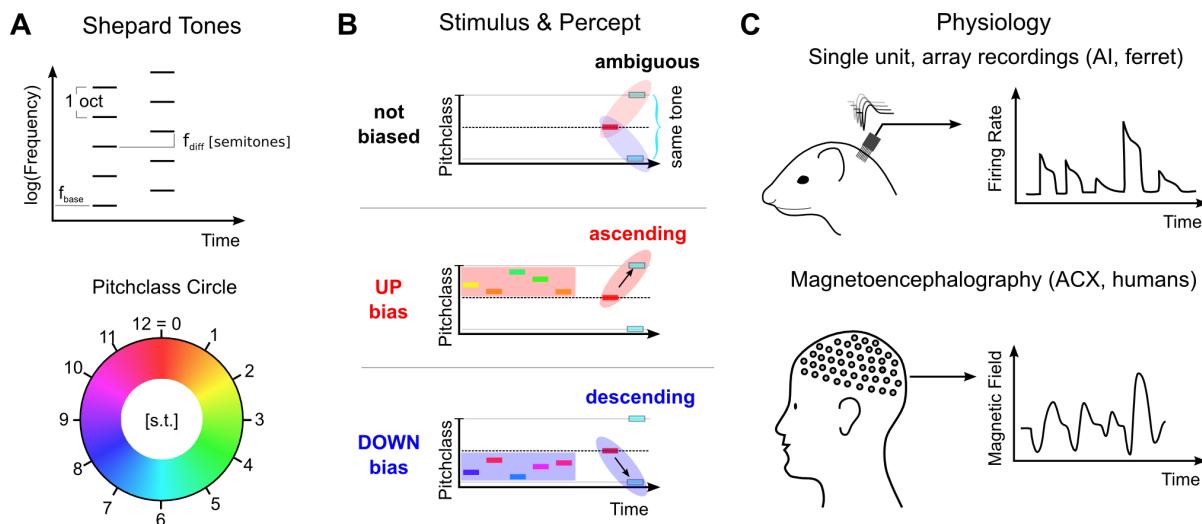
22 **Acknowledgements**

23 The authors would like to thank Barak Shechter, John Rinzel and Romain Brette for interesting
24 discussions and comments on the manuscript. Funding information: European Research
25 Council (Neume to SS); National Institutes of Health (to MH and SS: U01 AG058532). BE
26 acknowledges funding from an NWO VIDI grant (016.VIDI.189.052) and a NWO ALW Open
27 (ALWOP.146).

28

1 Figures

2



3

4 Figure 1: Stimulus design and recording techniques

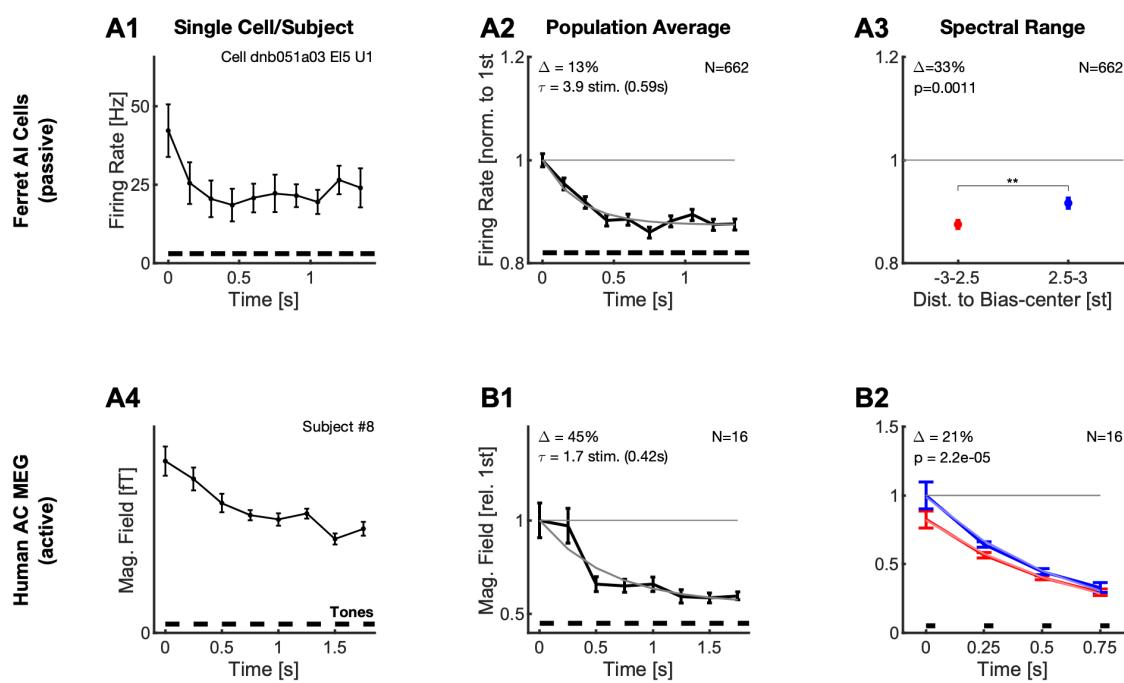
5 **A** Shepard tones are acoustic complexes, composed of octave-spaced pure-tones (top). Each Shepard
6 tone is uniquely characterized in frequency by its base frequency f_{base} , and the difference between two
7 Shepard tones by the difference of their base frequencies f_{diff} , usually given in semitones. A Shepard
8 tone shifted by a full octave ‘projects’ onto itself, and is therefore the physically same stimulus. The
9 space of Shepard tones therefore forms a circle (bottom). We use this color mapping (hue) throughout
10 the paper.

11 **B** We used the tritone paradox - a sequence of two Shepard tones - to investigate how ambiguous
12 percepts are resolved, for example by preceding stimuli. In the tritone paradox, two Shepard tones are
13 presented, which are separated by half an octave (6 semitones). Listeners, asked to judge the relative
14 pitch between the two Shepard tones, are ambiguous as to their percept of an ascending or a
15 descending step. If the ambiguous Shepard pair is preceded with a sequence of Shepard tones with
16 pitches above the first but below the second tone (red area), listeners report an ascending percept.
17 Conversely, if the ambiguous Shepard pair is preceded by a sequence of Shepard tones with pitches
18 below the first, but above the second tone (blue area), listeners perceive a descending step. The neural
19 representation of this contextual influence is not known, and we conducted a series of physiological and
20 psychophysical experiments to elucidate the neural basis.

21 **C** Neural responses from individual neurons were collected in awake ferrets from the auditory cortex
22 (left). Individual neurons modulated their firing rate during the presentation of the stimulus sequence
23 and exhibited tuned responses (see Fig. S1). Using MEG recordings, we also collected neural response
24 from populations of neurons in auditory cortex from human subjects, performing the up/down
25 discrimination task. The amplitude of the magnetic field was modulated as a function of time during the
26 stimulus presentation.

27

28



1
2 **Figure 2:** Neural responses adapt locally during the bias sequence for awake ferrets (top) and behaving
3 humans (bottom).
4 **A1** During the presentation of the bias sequence (10 tones, black bars), the neural response adapts
5 over time (individual cell). This adaptation occurs for all parts of the response, shown here is the onset
6 part (0-50 ms, black). See Fig. S1 for more details on the different response types. Errorbars denote 2
7 SEM across trials.
8 **A2** On the population level, the response reaches an adapted plateau 13% below the initial response
9 after about 5 stimuli ($\tau=3.9$ stimuli). This rate of reduction is similar to the rate of build-up of perceptual
10 influence in human behavior (Chambers et al. 2010, 2017). Errorbars denote 2 SEM across neurons.
11 **A3** After the bias the activity of the cells is significantly more reduced ($\Delta=33\%$, $p=0.001$) around the
12 center or the bias (<2.5 semitones from the center) compared to the edges (2.5-3 semitones from the
13 center). Errorbars denote 2 SEM across neurons.
14 **B1** In human auditory cortex the bias sequences also evoked an adapting sequence of responses, here
15 shown is the activity for a single subject (#8). Errorbars denote 2 SEM across trials.
16 **B2** On average, the adaptation of the neural response proceeded with a similar time course as the
17 single-unit response (A2), and plateaus after about 3-4 stimuli. Errorbars denote 2 SEM across subjects.
18 **B3** Following the Bias, the activity state of the cortex is probed with a sequence of brief stimuli (35 ms
19 Shepard tones, after 0.5 s silence). Responses to probe tones in the same (red) semi-octave are
20 significantly reduced (21% for the first time window, signed ranks test, $p<0.0001$) compared to the
21 corresponding responses in the opposite semioctave (blue), indicating a local effect of adaptation.
22 Errorbars denote one SEM across subjects.

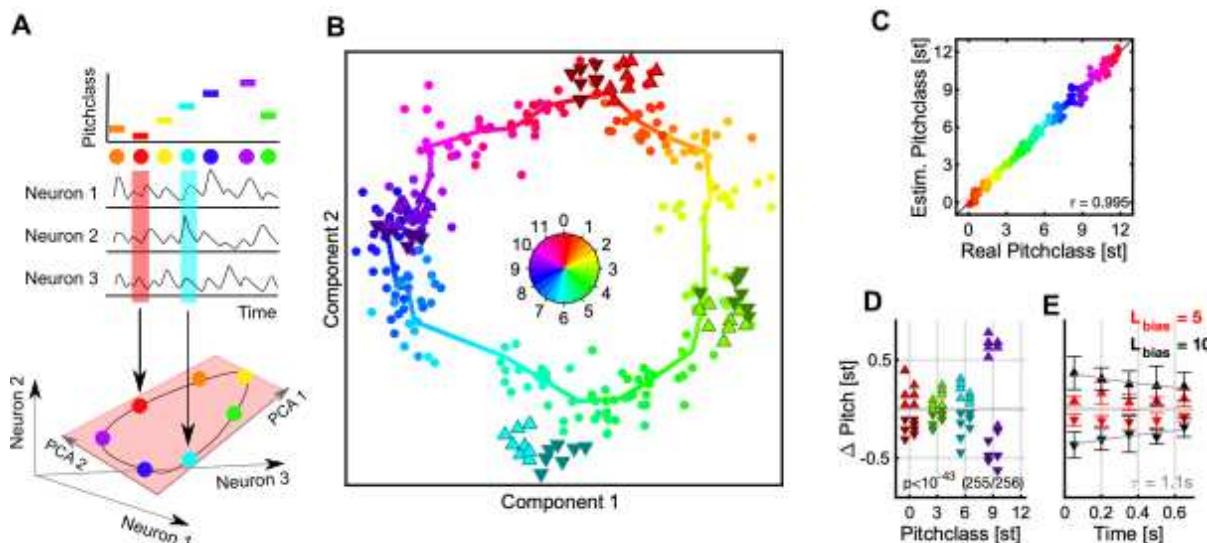


Figure 3: Population decoding predicts a bias-induced, repulsive shift in pitchclass.

A We decoded the represented stimulus using dimensionality reduction techniques (see Fig. S2 for population-vector decoding). The stimulus identity (top) is reflected in the joint activity of all neurons (middle). If the neurons are considered as dimensions of a high-dimensional response space, the circular stimulus space of Shepard tones induces a circular manifold of responses, which lies in a lower dimensional space (light red plane). Colors represent a Shepard tone's pitchclass, also in the following graphs.

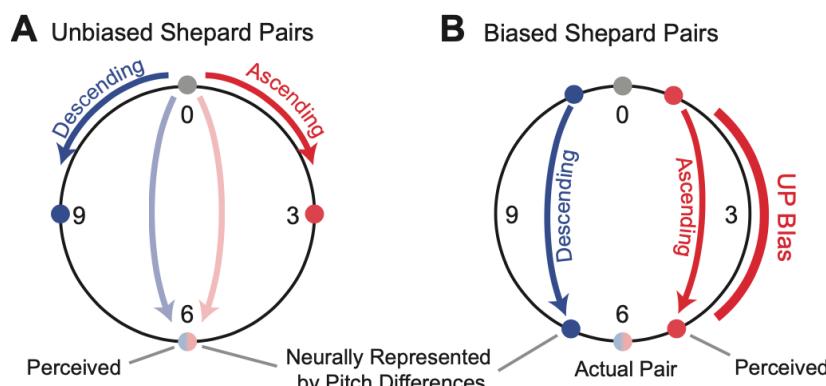
B The entire set of responses to the 240 distinct Shepard tones (from the various bias sequences) is projected by the decoding into a low dimensional space (dots, hue = true pitchclass), in which neighboring stimuli fall close to each other and the stimuli overall form a circle. The thick, colored line is computed from local averages along the range of pitchclasses and emphasizes the circular structure. The Shepard tones in the ambiguous pairs are projected using the same decoder (denoted by the different triangles, hue = true pitchclass), and roughly fall into their expected locations. However, if a stimulus was relatively above the bias sequence (Δ , bright, upward triangles), their representation is shifted to higher pitchclasses, compared to the same stimulus when located relatively below the bias sequence (∇ , dark, downward triangles). Hence, the preceding bias repulsed the stimuli in the ambiguous pair in their represented pitchclass. Both stimuli of the pair are treated equally here.

C To demonstrate that decoding in this way is reliable, we compare real and estimated pitchclasses (by taking the circular position in B) for each stimulus, which exhibits a reliable relation ($r=0.995$).

D The influence of the bias can be compared quantitatively by centering the represented test stimuli around their actual pitchclass and inspecting the difference between the two different bias conditions. The bias shifts them away with high significance ($p<10^{-43}$, Wilcoxon-test).

E The size of the shift is influenced by the length of the bias sequence (5 tones = red, 10 tones = black) and the time between the bias and the test tones ($\tau=1.1s$).

1

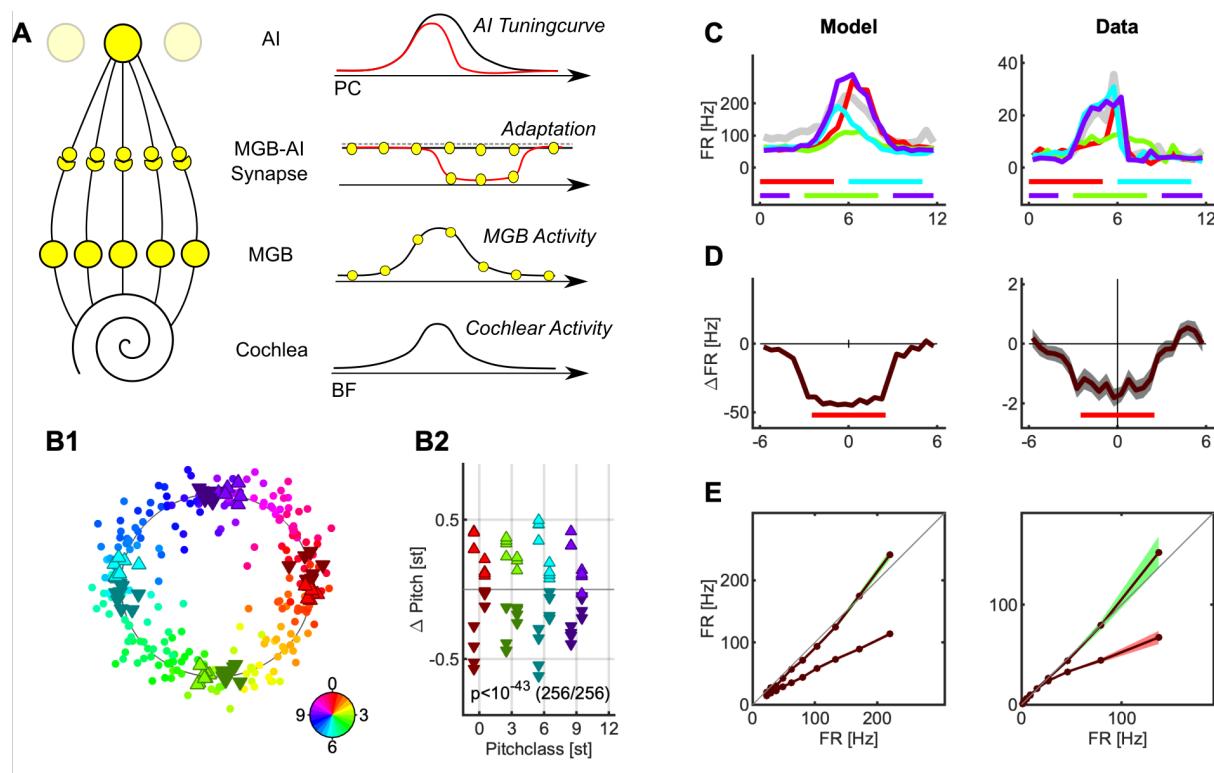


2

3 **Figure 4:** Repulsive shifts are not consistent with minimal distance hypothesis

4 **A** In the case of an unbiased Shepard pair, steps of less than 6 pitch-classes lead to unambiguous
5 percepts, e.g. a 0st to 3st steps leads to an ascending percept (red) and a 0st to 9st (i.e. 0st =>-3st)
6 step to a descending percept (blue). Semioctave (0st to 6st, blue/red) steps lead to an ambiguous
7 percept, whose percept at a time can depend on individual properties (Deutsch 1986) and the stimulus
8 history (Chambers et al. 2012). This suggests the *minimal distance hypothesis* which predicts the
9 percept to follow the smaller of the two distances along the circle between the two pitch-classes
10 **B** In the case of an ambiguous Shepard pair (0st to 6st), preceded by a bias sequence (red bar, right),
11 here an *UP-Bias*, the ascending percept together with the *minimal distance hypothesis* would predict
12 the distance between the Shepard tones to be reduced on the side of the *UP-Bias* (red dots). However,
13 the population decoding shows that the distance between the tones is indeed increased on the side of
14 the *UP-Bias*, challenging the *minimal distance hypothesis*.

15



1
2 **Figure 5: Distributed activity & local adaptation predict tuning changes and repulsive shifts**

3 **A** We model the encoding by a simplified model, which starts from the cochlea, includes only one
4 intermediate station (e.g. the MGB), and then projects to cortical neurons. The model is general in the
5 sense that a cascaded version would lead to the same response, as long as similar mechanisms act
6 on each level. A stimulus elicits an activity distribution along the cochlea (bottom) which is retained in
7 shape on the intermediate level (2nd from below). In the native state, the stimulus is transferred to the
8 cortical level without adaptation (2nd from top, black) and integrated by the cortical neuron (top, black).
9 After a stimulus presentation, an adapted trough is left behind in the connections leading up to the
10 cortical level (2nd from top, red), which reduces the cortical tuning curve locally. Since tuning curves
11 closer to the center adapt more strongly, the stimulus representation in the neural population shifts
12 away from the region of adaptation.

13 **B** Applying the same analysis as above (Fig. 3) for the real data leads again to a circular decoding (B1),
14 with the estimated pitches of the tones the Shepard pair shifted repulsively by the preceding bias (B2,
15 for more details see the description of Fig. 3).

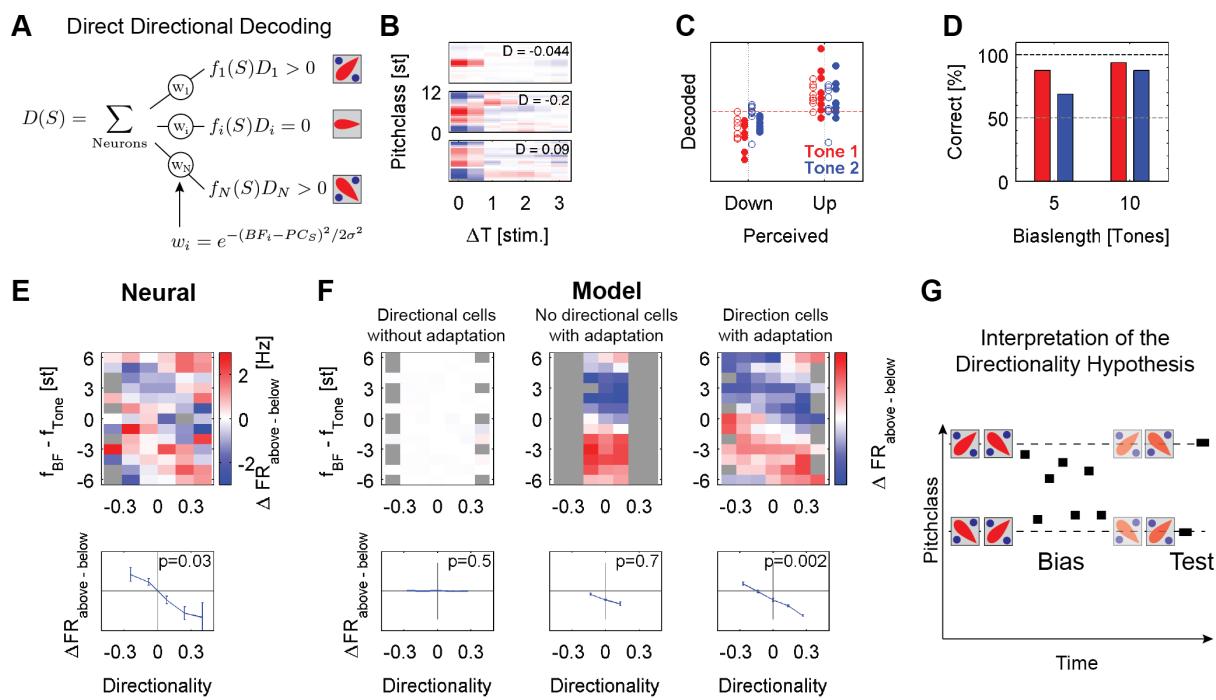
16 **C** Single cells show adaptation of their responses colocalized (different colors) with the biased region
17 (colored bars, bottom). The bias was presented in 4 different regions in separate trials, and the tuning
18 of the cell probed in between the biasing stimuli. The left side shows a model example and the right
19 side a representative neural example.

20 **D** Centered on the bias, neurons in the auditory cortex adapt their onset and sustained responses
21 colocal with the bias, and more broadly for the offset response. The curves represent the difference in
22 response rate between the unadapted tuning and the adapted tuning, again for model cells on the left
23 and actual data on the right.

24 **E** The presence of the bias reduces the firing rate relative to the initial discharge rate, by ~40% (red),

- 1 while the rate stays the same or is slightly elevated outside of the bias regions (green) (see Fig. S3 for
- 2 the decoding results and two related, incompatible models, which demonstrate noteworthy subtleties of
- 3 the decoding process).

4



1 **Figure 6 :** Decoding based on the directionality of the individual cells predicts the directional percept.

2 **A** The directional percept (left) is predicted by the average over the cells activity (right), weighted by

3 their directionality (right) and their distance to the stimulus (middle).

4 **B** Examples three directional cells based on the Shepard tones based spectrotemporal receptive fields

5 (STRFs). Directionality was determined by the asymmetry of the 2nd column of the STRF (response to

6 previous stimulus), centered at the maximum (BF) of the first column (response to current stimulus, see

7 Methods for details). As usual, time on the abscissa runs into the past. The middle cell for example is a

8 down-cell, since it responds more strongly to a stimulus sequence 10st => 7st, than 4st => 7st based

9 on the STRF.

10 **C** The prediction of the decoding (ordinate) compared to the usually perceived direction for the two

11 sequences (abscissa). Predictions depended on the length of the sequence (o = 5 tones, • = 10 tones)

12 and the predicted tone (red = 1st tone, blue = 2nd tone). The dashed red line corresponds to a flat

13 prediction.

14 **D** Predictive performance increased as a function of bias length and distance to the bias, reflected as

15 1st (red) or 2nd (blue) tone after the bias. Both dependencies are consistent with human performance

16 and the build-up and recovery of adaptive processes.

17 **E** The basis for the directional decoding can be analyzed by considering the entire set of bias-induced

18 differences in response, arranged by the directional preference of each cell (abscissa), and the location

19 in BF relative to each stimulus in the Shepard pair (abscissa). Applying the analysis to the neural data,

20 the obtained pattern of activity (top) is composed of two angled stripes of positive and negative

21 differential activity. For cells with BFs close to the pitchclass of the test tones, the relative activities are

22 significantly different ($p=0.03$, 1-way ANOVA) between ascending and descending preferring cells, thus

23 predicting the percept of these tones. Grey boxes indicate combinations of directionality and relative

24 location which did not exist in the cell population.

25 **F** Applied to a population of model neurons (as in Fig. 4, see Methods for details) subjected to the same

1 stimulus as the real neurons, in the absence of adaptation (left) no significant pattern emerges. If no
2 directional cells are present (middle), adaptation leads to a distinct pattern for different relative spectral
3 locations, but the lack of directional cells prevents a directional judgement. Finally, with adaptation and
4 directional cells a pattern of differential activation is obtained, similar to the pattern in the neural data.
5 T Cells located close to the target tone (near 0 on the ordinate) show a differential activity, predictive of
6 the percept, which was used in the direct decoding above (shown separately in the lower plots). While
7 these activities exhibit no significant dependence in the absence of adaptation or directional cells, the
8 dependence becomes significantly characteristic with adaptation ($p < 0.001$, 1-way ANOVA, bottom
9 right).

10 **G** The above results can be summarized as a symmetric imbalance in the activities of directional cells
11 after the Bias around it (right), which when decoded predict steps consistent with the percept, i.e. both
12 are judged in their relative position to the bias. Hence the percept of the frequency change direction is
13 determined by the local activity, rather than by a global distance.

14

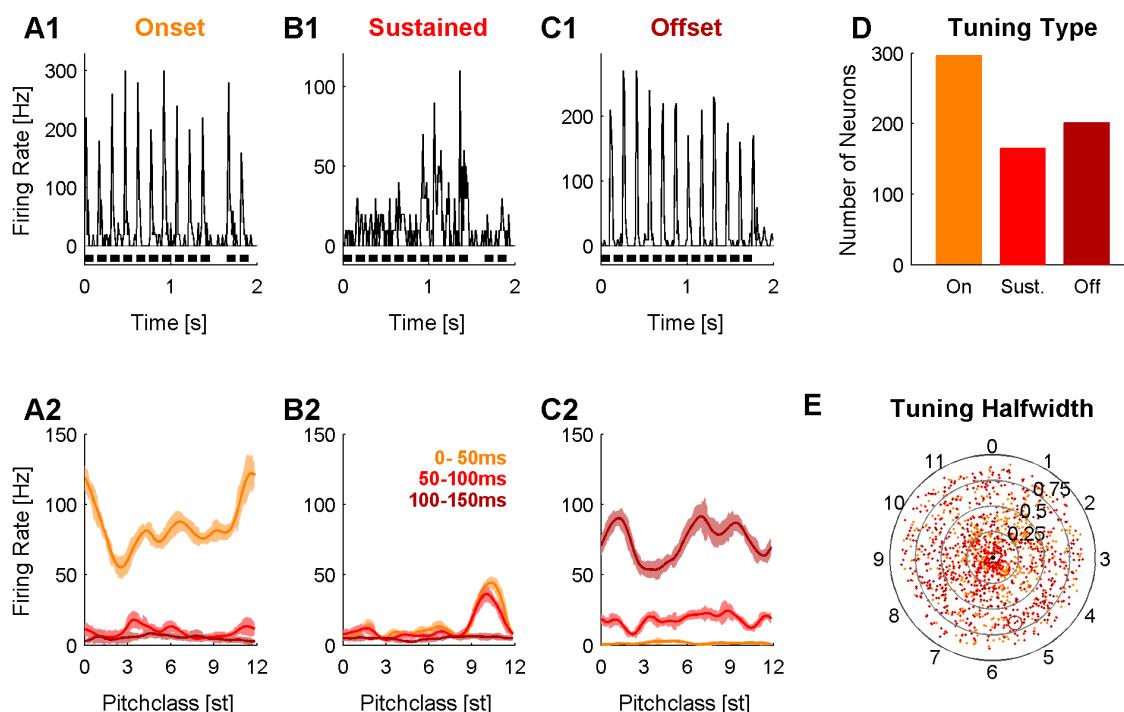
1 **Supplementary Materials**

2 *Tuning Halfwidth*

3 A neuron's tuning halfwidth with respect to Shepard tones was estimated using the range of
4 Shepard tones that the firing rate was above $f_{50\%} = (f_{\text{Max}} - f_{\text{Min}})/2$. We used a conservative
5 estimation method by determining f_{Min} and then computing the range between the closest
6 crossing of $f_{50\%}$ above and below f_{Min} . In this way, neurons with a small difference between f_{Max}
7 and f_{Min} were assigned comparatively large tuning halfwidths, corresponding to their less
8 salient tuning.

9

10



11

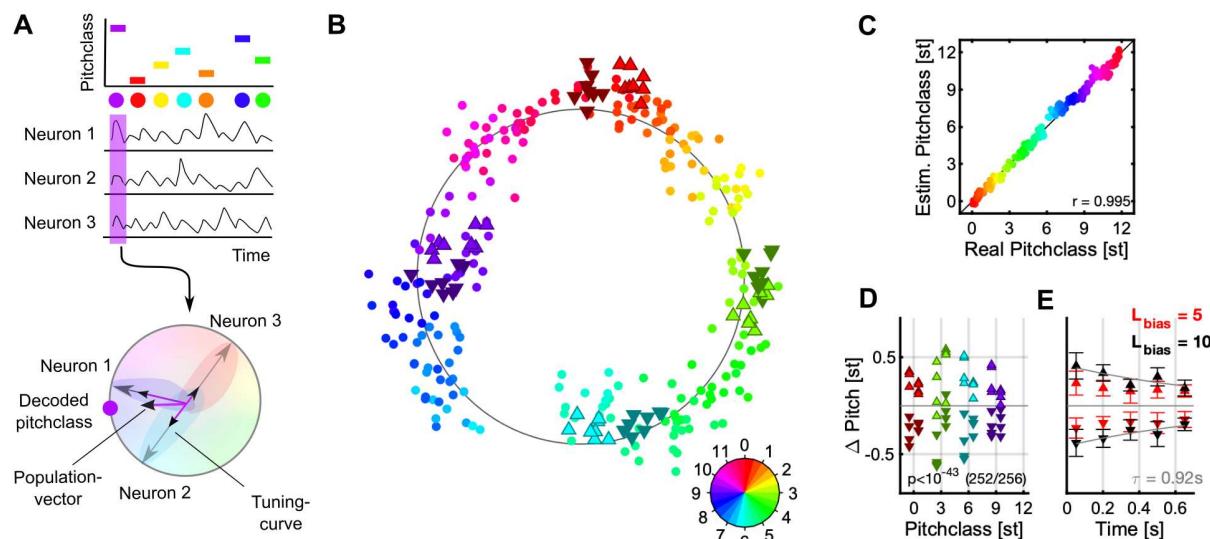
12 **Supplementary Figure 1** : Auditory cortex neurons respond tuned to Shepard tones. Three
13 representative neurons are shown, which span the range of observed response types. Neurons differed
14 in their pitchclass tuning and their temporal response profiles. The top row depicts the response pattern
15 for 10 repetitions of a fixed bias sequence, in the bottom row the responses to all presented Shepard
16 tones during the bias sequences have been sorted by pitchclass, much like in a classical pure tone
17 based tuning.

18 **A** Most cells exhibited an onset type tuning, i.e. a brief response within the first 50ms (orange) each
19 after stimulus onset, but no sustained (red, 50-100ms) or offset response (black, 0-50 ms in the silence
20 after the stimulus). These cells typically showed broad/complex tuning w.r.t. to the pitchclass of the
21 stimulus.

22 **B** A considerable fraction of cells had a surprisingly sharp pitchclass tuning, with tuning half-widths of
23 only 2-3 semitones, leading to comparably sparse response patterns. These cells often showed cotuned
24 onset and sustained responses.

25 **C** The remaining cells exhibited predominant offset pitchclass tunings, which showed similarly

1 broad/complex tunings as the onset tuned cells.
 2 **D** Distribution of response types over the entire set of cells.
 3 **E** Tuning halfwidth ($f_{50\%}$) for individual cells as a function of pitchclass (angle) and response type (colors
 4 aas in **D**). The radius indicates the halfwidth of the tuning in octaves (see Methods). More precisely
 5 tuned cells lie in the center of the circle.
 6
 7
 8



9
 10 **Supplementary Figure 2** : Populationvector-based decoding also predicts a repulsive shift in
 11 pitchclass.
 12

13 **A** Individual stimuli (top) can also be decoded, by assigning each neuron its preferred pitchclass (a
 14 complex number, gray vectors, bottom) and weighting these by the neural response (small purple dots,
 15 bottom) for the given stimulus. The angle of the average of these vectors (black vectors, bottom) then
 16 corresponds to the decoded stimulus (big purple dot, bottom).

17 **B** As in Fig.3, the entire set of 240 distinct Shepard tones (from the various bias sequences) is
 18 represented in a lower dimensional space (dots, hue = true pitchclass), in which neighboring stimuli fall
 19 close to each other and the stimuli overall form a circle. The Shepard tones in the ambiguous pairs are
 20 projected using the same decoder (denoted by the different triangles, hue = true pitchclass), and roughly
 21 fall into their expected locations. As before, if a stimulus was relatively above the bias sequence (Δ ,
 22 bright, upward triangles), their representation is shifted to higher pitchclasses, compared to the same
 23 stimulus when located relatively below the bias sequence (∇ , dark, downward triangles). Hence, the
 24 preceding bias repulsed the stimuli in the ambiguous pair in their represented pitchclass. Both stimuli
 25 of the pair are treated equally here.

26 **C** As before for the dimensionality reduction decoding we compare real and estimated pitchclasses (by
 27 taking the circular position in B) for each stimulus, which explains >99% of the variance.

28 **D** The influence of the bias can be compared quantitatively, by centering the represented test stimuli
 29 around their actual pitchclass and inspecting the difference between the two different bias conditions.

- 1 The bias shifts them away with high significance ($p < 10^{-43}$, Wilcoxon-test).
- 2 **E** As before, the size of the shift is influenced by the length of the bias sequence (5 tones = red, 10 tones = black) and the time between the bias and the test tones ($\tau = 0.92s$).

1

2 *Non-dynamic neural models*

3 In the non-dynamic model each neuron is represented as a *von Mises* distribution

4
$$M_i(S | \phi_i, \sigma_i) = \exp(\cos(2\pi/12(S - \phi_i))/(2\pi/12 \sigma_i)^2)/M_{total}$$

5 with two parameters, best pitchclass ϕ_i and standard deviation σ_i , both measured in
6 semitones, and M_{total} normalizing the response to an area of 1. We simulate the response of
7 a population of $N=100$ cortical neurons with ϕ_i equally spaced within $[0,12]$ st. The models
8 were run at the same sampling rate (20Hz) as the data analysis for consistency.

9 The influence of the bias is modeled assuming an idealized, continuous range of biases, rather
10 than individual tones. We consider three different models of adaptation: (a) local adaptation
11 (Fig. S3 A) (b) global adaptation (Fig. S3 B), and (c) local adaptation with spreaded
12 representation (Fig. S3 C):

13 a) **Local adaptation** refers to a multiplicative reduction of responses to individual stimuli,
14 based on the local, recent stimulus history. The amount of local adaptation is taken as the
15 prominence of this stimulus in the recent history, i.e.

16
$$A_i(\phi | S_{Bias}) = A_0 S_{Bias}(\phi)$$

17 where $S_{Bias}(\phi)$ is defined as a function over $[0,12]$ st taking values in $[0,1]$. A_0 is the maximal
18 fraction of adaptation, set to 0.8 in Fig.S3. The cells adapted/biased response to a single
19 Shepard tone is then given by

20
$$R_i(S) = (1 - A_i(S | S_{Bias})) M_i(S)$$

21 In the more general case of a complex stimulus S , one would replace $M_i(S)$ with $M_i(S) * S$, i.e.
22 the convolution of response and stimulus distribution.

23 This form of local adaptation resembles a highly stimulus specific version of adaptation.
24 Hence, the responses are adapted only to previously presented stimuli, but no transfer to other
25 stimuli occurs (see Fig. S3A). This type of local adaptation leads to no adaptation, since
26 neurons uniformly reduce their response to the test stimulus, which keeps the mean of the
27 population response the same.

28

29 b) **Global adaptation** refers to a multiplicative reduction of the *entire* tuning curve, based on
30 the recent response history, irrespective of which stimulus caused it. The amount of global
31 adaptation is computed as the correlation between a cell's tuning curve and the stimulus
32 history $S_{Bias}(PC)$, i.e.

33
$$A_i(S_{Bias}) = A_0 S_{Bias} * R_i = \frac{1}{12} \int_0^{12} S_{Bias}(\phi) M_i(\phi) d\phi,$$

34 where $*$ denotes convolution. By the normalization of both S_{Bias} and R_i , A_i will also be normalized
35 within $[0, A_0]$. The cells biased tuning curve to a single Shepard tone is then given by

36
$$R_i(S) = (1 - A_i(S_{Bias})) M_i(S)$$

1 Global adaptation in this sense captures summarized adaptation effects that occur 'globally'
2 for the postsynaptic cell (e.g. a change in excitability which changes the slope of the IF-curve)
3 (see Fig. S3 B). Global adaptation shifts subsequent stimuli away from the adapting stimulus,
4 since neurons close to the adaptor adapt more strongly (Series et al. 2009).

5

6 c) **Local adaptation with input spread** combines local adaptation with a distributed neural
7 representation of pointlike stimuli (like a single tone or single Shepard tone), i.e. the stimulus
8 is first represented on an intermediate level (e.g. the MGB) and then integrated on the cortical
9 level, with adaptation occurring locally at the synapses connecting MGB-AI (see Fig. 5A for
10 an illustration of the architecture). Concretely, the cortical response is given as

$$11 R_{i,biased}(S) = \frac{1}{J} \sum_{j=1}^J M_i(j)(1 - A_i(j)) T_j(S)$$

12 Where the intermediate representation $T_j(S)$ is given as

$$13 T_j(S) = S * M_j(S) = \frac{1}{12} \int_0^{12} M_j(\phi) S(\phi) d\phi$$

14 i.e. the convolution of the stimulus with the intermediate response properties $M_j(\phi)$ assumed
15 to also be given by *von Mises* distributions as well. The adaptation $A_i(\phi)$ is equated with the
16 midlevel activity induced by the bias

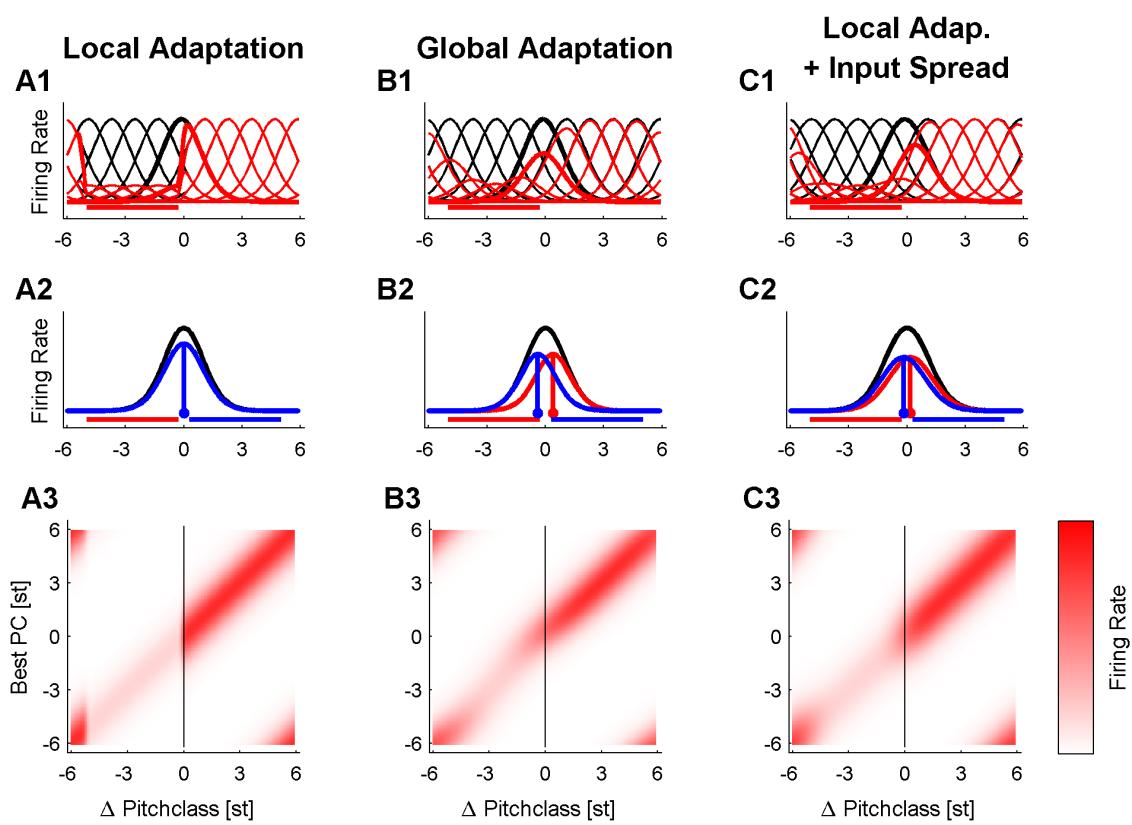
$$17 A_i(j | S_{Bias}) = A_0 T_j(S_{Bias}),$$

18 This form of local adaptation is 'less local' than the purely local adaptation described above.
19 Hence, a presentation of a given stimulus will adapt the neural response not only to this
20 stimulus, but - via the distributed representation - also for neighboring stimuli (see Fig. S3 C),
21 which in the decoding leads to repulsive shifts, while reducing tuning curves locally. The
22 resulting shape of the adaptation has been described as a shift in tuning curve combined with
23 a global adaptation (Jin et al. 2005). We propose that the adaptation proposed here provides
24 a simpler explanation for this observed shape of tuning curve change.

25 Note that the differences in decoding emerge only at the boundaries of the bias region,
26 depicted by the encoding-decoding matrices in Fig. S3 A3/B3/C3. If the distribution at the
27 vertical line (at 0) has more weight above 0 on the abscissa, this corresponds to a repulsive
28 shift.

29

30 In summary, purely local adaptation can account for the local changes in Shepard tunings of
31 the real data, but fails to explain the repulsive decoding (Fig. S3A). Global adaptation is
32 consistent with the repulsive decoding results, but fails to explain the local tuning curve
33 changes (Fig. S3B). The combination of local adaptation and distributed input on the
34 intermediate level (Fig. S3C, Fig. 4) is consistent with both the encoding and decoding findings.



1 **Supplementary Figure 3** : Local and global (postsynaptic) adaptation cannot explain both influences
 2 of the bias on the tuning (**A1-C1**) and the represented stimuli (**A2-C2**).
 3
 4 **A** The observed tuning curves could also be obtained if the adaptation was assumed to be strictly local,
 5 and no distributed activity in response to a stimulus was considered. In this case, however, no change
 6 in stimulus representation is expected (**A2**, below (red) and above (blue) curves are identical), since
 7 the local adaptation would reduce the response of each neuron (either multiplicatively or subtractively)
 8 and, hence, not changing the center of the represented stimulus.
 9 **B** The repulsive shifts in the represented stimulus could also be obtained, if adaptation was assumed
 10 to be global across all inputs, i.e. only on the postsynaptic side, determined by the total postsynaptic
 11 activity. In this case, however, tuning curves are predicted to scale, rather than change in shape or
 12 position (**B1**). This is inconsistent with the observed changes in tuning curve shape (Fig. 4C-E).
 13 **C** If local adaptation (either on the synaptic level or in the cells projecting on the present cell) is
 14 combined with a distributed activity in the ascending auditory system, sharply adapted tuning curves
 15 are obtained as well as a repulsive influence of a preceding sequence of bias stimuli. In response to a
 16 stimulus, both local changes in tuning curves (**C1**) and bias-repulsed stimulus representation are
 17 obtained (**C2**). It should be noted that other models exist which would produce similar results, yet, the
 18 present model makes only a limited set of well accepted assumptions and is consistent with the data.
 19 **A3-C3** The decoding curves are obtained from the encoding-decoding matrix, which relates the stimulus
 20 (abscissa) to the response for each neuron (ordinate). Decoding consists of reading off the population
 21 response at the test stimulus (blue vertical line). Here, the bias below condition is illustrated (red curves
 22 in the other plots).
 23

1 Bibliography

2 1. Lewicki MS. Efficient coding of natural sounds. *Nat Neurosci.* 2002;5: 356–363.
3 doi:10.1038/nn831

4 2. Smith EC, Lewicki MS. Efficient auditory coding. *Nature.* 2006;439: 978–982.
5 doi:10.1038/nature04485

6 3. Rao RP, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some
7 extra-classical receptive-field effects. *Nat Neurosci.* 1999;2: 79–87. doi:10.1038/4580

8 4. Sohn H, Narain D, Meirhaeghe N, Jazayeri M. Bayesian Computation through Cortical Latent
9 Dynamics. *Neuron.* 2019;103: 934–947.e5. doi:10.1016/j.neuron.2019.06.012

10 5. Simon JR, Craft JL. The effect of prediction accuracy on choice reaction time. *Mem Cognit.*
11 1989;17: 503–508. doi:10.3758/bf03202624

12 6. Lawrence ELA, Harper NS, Cooke JE, Schnupp JWH. Temporal predictability enhances
13 auditory detection. *J Acoust Soc Am.* 2014;135: EL357-63. doi:10.1121/1.4879667

14 7. Norris D, McQueen JM, Cutler A. Prediction, Bayesian inference and feedback in speech
15 recognition. *Lang Cogn Neurosci.* 2016;31: 4–18. doi:10.1080/23273798.2015.1081703

16 8. Phillips EAK, Schreiner CE, Hasenstaub AR. Diverse effects of stimulus history in waking
17 mouse auditory cortex. *J Neurophysiol.* 2017;118: 1376–1393. doi:10.1152/jn.00094.2017

18 9. Bregman AS. *Auditory Scene Analysis: The Perceptual Organization of Sound.* MIT Press;
19 1994.

20 10. Holt LL. Temporally nonadjacent nonlinguistic sounds affect speech categorization. *Psychol Sci.*
21 2005;16: 305–312. doi:10.1111/j.0956-7976.2005.01532.x

22 11. Lotto AJ, Holt LL. Putting phonetic context effects into context: a commentary on Fowler (2006).
23 *Percept Psychophys.* 2006;68: 178–183. doi:10.3758/bf03193667

24 12. Ulanovsky N, Las L, Nelken I. Processing of low-probability sounds by cortical neurons. *Nat
25 Neurosci.* 2003;6: 391–398. doi:10.1038/nn1032

26 13. Repp BH. Spectral envelope and context effects in the tritone paradox. *Perception.* 1997;26:
27 645–665. doi:10.1080/p260645

28 14. Chambers C, Pressnitzer D. Perceptual hysteresis in the judgment of auditory pitch shift. *Atten
29 Percept Psychophys.* 2014;76: 1271–1279. doi:10.3758/s13414-014-0676-5

30 15. Chebbi S, Ben Jebara S. On the use of pitch-based features for fear emotion detection from
31 speech. 2018 4th International Conference on Advanced Technologies for Signal and Image
32 Processing (AT SIP). IEEE; 2018. pp. 1–6. doi:10.1109/AT SIP.2018.8364512

33 16. Ehofer T, Pourtois G, Wildgruber D. Investigating audiovisual integration of emotional signals in
34 the human brain. *Understanding Emotions.* Elsevier; 2006. pp. 345–361. doi:10.1016/S0079-
35 6123(06)56019-4

36 17. Chambers C, Akram S, Adam V, Pelofi C, Sahani M, Shamma S, et al. Prior context in audition
37 informs binding and shapes simple features. *Nat Commun.* 2017;8: 15027.
38 doi:10.1038/ncomms15027

39 18. Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR. Efficiency and ambiguity in an
40 adaptive neural code. *Nature.* 2001;412: 787–792. doi:10.1038/35090500

41 19. Ulanovsky N, Las L, Farkas D, Nelken I. Multiple time scales of adaptation in auditory cortex
42 neurons. *J Neurosci.* 2004;24: 10440–10453. doi:10.1523/JNEUROSCI.1905-04.2004

43 20. Clifford CWG, Webster MA, Stanley GB, Stocker AA, Kohn A, Sharpee TO, et al. Visual
44 adaptation: neural, psychological and computational aspects. *Vision Res.* 2007;47: 3125–3131.

1 doi:10.1016/j.visres.2007.08.023

2 21. Dean I, Harper NS, McAlpine D. Neural population coding of sound level adapts to stimulus
3 statistics. *Nat Neurosci.* 2005;8: 1684–1689. doi:10.1038/nn1541

4 22. Dean I, Robinson BL, Harper NS, McAlpine D. Rapid neural adaptation to sound level statistics.
5 *J Neurosci.* 2008;28: 6430–6438. doi:10.1523/JNEUROSCI.0470-08.2008

6 23. Wen B, Wang GI, Dean I, Delgutte B. Time course of dynamic range adaptation in the auditory
7 nerve. *J Neurophysiol.* 2012;108: 69–82. doi:10.1152/jn.00055.2012

8 24. Benucci A, Saleem AB, Carandini M. Adaptation maintains population homeostasis in primary
9 visual cortex. *Nat Neurosci.* 2013;16: 724–729. doi:10.1038/nn.3382

10 25. Shechter B, Depireux DA. Response adaptation to broadband sounds in primary auditory cortex
11 of the awake ferret. *Hear Res.* 2006;221: 91–103. doi:10.1016/j.heares.2006.08.002

12 26. Rabinowitz NC, Willmore BDB, Schnupp JWH, King AJ. Contrast gain control in auditory cortex.
13 *Neuron.* 2011;70: 1178–1191. doi:10.1016/j.neuron.2011.04.030

14 27. Seriès P, Stocker AA, Simoncelli EP. Is the homunculus “aware” of sensory adaptation? *Neural*
15 *Comput.* 2009;21: 3271–3304. doi:10.1162/neco.2009.09-08-869

16 28. Kohn A, Movshon JA. Adaptation changes the direction tuning of macaque MT neurons. *Nat*
17 *Neurosci.* 2004;7: 764–772. doi:10.1038/nn1267

18 29. Maaten LJPVD, Hinton GE. Visualizing High-Dimensional Data using t-SNE. 2008. pp. 2579–
19 2605.

20 30. Jin DZ, Dragoi V, Sur M, Seung HS. Tilt aftereffect and adaptation-induced changes in
21 orientation tuning in visual cortex. *J Neurophysiol.* 2005;94: 4038–4050.
22 doi:10.1152/jn.00571.2004

23 31. Parras GG, Nieto-Diego J, Carbajal GV, Valdés-Baizabal C, Escera C, Malmierca MS. Neurons
24 along the auditory pathway exhibit a hierarchical organization of prediction error. *Nat Commun.*
25 2017;8: 2148. doi:10.1038/s41467-017-02038-6

26 32. Brosch M, Schreiner CE. Time course of forward masking tuning curves in cat primary auditory
27 cortex. *J Neurophysiol.* 1997;77: 923–943. doi:10.1152/jn.1997.77.2.923

28 33. Brosch M, Schulz A, Scheich H. Processing of sound sequences in macaque auditory cortex:
29 response enhancement. *J Neurophysiol.* 1999;82: 1542–1559. doi:10.1152/jn.1999.82.3.1542

30 34. Brosch M, Schreiner CE. Sequence sensitivity of neurons in cat primary auditory cortex. *Cereb*
31 *Cortex.* 2000;10: 1155–1167. doi:10.1093/cercor/10.12.1155

32 35. Ronken DA. Changes in frequency discrimination caused by leading and trailing tones. *J Acoust*
33 *Soc Am.* 1972;51: 1947–1950. doi:10.1121/1.1913054

34 36. Raviv O, Ahissar M, Loewenstein Y. How recent history affects perception: the normative
35 approach and its heuristic approximation. *PLoS Comput Biol.* 2012;8: e1002731.
36 doi:10.1371/journal.pcbi.1002731

37 37. Riecke L, Micheyl C, Vanbussel M, Schreiner CS, Mendelsohn D, Formisano E. Recalibration of
38 the auditory continuity illusion: sensory and decisional effects. *Hear Res.* 2011;277: 152–162.
39 doi:10.1016/j.heares.2011.01.013

40 38. Wehr M, Zador AM. Synaptic mechanisms of forward suppression in rat auditory cortex.
41 *Neuron.* 2005;47: 437–445. doi:10.1016/j.neuron.2005.06.009

42 39. Deutsch D. Paradoxes of musical pitch. *Sci Am.* 1992;267: 88–95.

43 40. Ye C, Poo M, Dan Y, Zhang X. Synaptic mechanisms of direction selectivity in primary auditory
44 cortex. *J Neurosci.* 2010;30: 1861–1868. doi:10.1523/JNEUROSCI.3088-09.2010

- 1 41. Zhang LI, Tan AYY, Schreiner CE, Merzenich MM. Topography and synaptic shaping of
- 2 direction selectivity in primary auditory cortex. *Nature*. 2003;424: 201–205.
- 3 doi:10.1038/nature01796
- 4 42. Kuo RI, Wu GK. The generation of direction selectivity in the auditory system. *Neuron*. 2012;73:
- 5 1016–1027. doi:10.1016/j.neuron.2011.11.035
- 6 43. Shamma SA, Fleshman JW, Wiser PR, Versnel H. Organization of response areas in ferret
- 7 primary auditory cortex. *J Neurophysiol*. 1993;69: 367–383. doi:10.1152/jn.1993.69.2.367
- 8 44. Gardner RB, Wilson JP. Evidence for direction-specific channels in the processing of frequency
- 9 modulation. *J Acoust Soc Am*. 1979;66: 704–709. doi:10.1121/1.383220
- 10 45. Dawe LA, Platt JR, Welsh E. Spectral-motion aftereffects and the tritone paradox among
- 11 Canadian subjects. *Percept Psychophys*. 1998;60: 209–220.
- 12 46. Deutsch D. A Musical Paradox. *Music Percept*. 1986;3: 275–280. doi:10.2307/40285337
- 13 47. Shepard RN. Circularity in Judgments of Relative Pitch. *J Acoust Soc Am*. 1964;36: 2346.
- 14 doi:10.1121/1.1919362
- 15 48. Gibson JJ, Radner M. Adaptation, after-effect and contrast in the perception of tilted lines. I.
- 16 Quantitative studies. *J Exp Psychol*. 1937;20: 453–467. doi:10.1037/h0059826
- 17 49. Kohn A. Visual adaptation: physiology, mechanisms, and functional benefits. *J Neurophysiol*.
- 18 2007;97: 3155–3164. doi:10.1152/jn.00086.2007
- 19 50. Huys QJM, Zemel RS, Natarajan R, Dayan P. Fast population coding. *Neural Comput*. 2007;19:
- 20 404–441. doi:10.1162/neco.2007.19.2.404
- 21 51. Pérez-González D, Malmierca MS, Covey E. Novelty detector neurons in the mammalian
- 22 auditory midbrain. *Eur J Neurosci*. 2005;22: 2879–2885. doi:10.1111/j.1460-9568.2005.04472.x
- 23 52. Jääskeläinen IP, Ahveninen J, Belliveau JW, Raij T, Sams M. Short-term plasticity in auditory
- 24 cognition. *Trends Neurosci*. 2007;30: 653–661. doi:10.1016/j.tins.2007.09.003
- 25 53. Gourévitch B, Noreña A, Shaw G, Eggermont JJ. Spectrotemporal receptive fields in
- 26 anesthetized cat primary auditory cortex are context dependent. *Cereb Cortex*. 2009;19: 1448–
- 27 1461. doi:10.1093/cercor/bhn184
- 28 54. Condon CD, Weinberger NM. Habituation produces frequency-specific plasticity of receptive
- 29 fields in the auditory cortex. *Behav Neurosci*. 1991;105: 416–430.
- 30 55. Nelken I, Ulanovsky N. Mismatch Negativity and Stimulus-Specific Adaptation in Animal Models.
- 31 *J Psychophysiol*. 2007;21: 214–223. doi:10.1027/0269-8803.21.34.214
- 32 56. von der Behrens W, Bäuerle P, Kössl M, Gaese BH. Correlating stimulus-specific adaptation of
- 33 cortical neurons and local field potentials in the awake rat. *J Neurosci*. 2009;29: 13837–13849.
- 34 doi:10.1523/JNEUROSCI.3475-09.2009
- 35 57. Bäuerle P, von der Behrens W, Kössl M, Gaese BH. Stimulus-specific adaptation in the gerbil
- 36 primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated
- 37 by the corticofugal system. *J Neurosci*. 2011;31: 9708–9722. doi:10.1523/JNEUROSCI.5814-
- 38 10.2011
- 39 58. Farley BJ, Quirk MC, Doherty JJ, Christian EP. Stimulus-specific adaptation in auditory cortex is
- 40 an NMDA-independent process distinct from the sensory novelty encoded by the mismatch
- 41 negativity. *J Neurosci*. 2010;30: 16475–16484. doi:10.1523/JNEUROSCI.2793-10.2010
- 42 59. Linke AC, Vicente-Grabovetsky A, Cusack R. Stimulus-specific suppression preserves
- 43 information in auditory short-term memory. *Proc Natl Acad Sci USA*. 2011;108: 12961–12966.
- 44 doi:10.1073/pnas.1102118108
- 45 60. Rinne T, Pekkola J, Degerman A, Autti T, Jääskeläinen IP, Sams M, et al. Modulation of

1 auditory cortex activation by sound presentation rate and attention. *Hum Brain Mapp.* 2005;26:
2 94–99. doi:10.1002/hbm.20123

3 61. Haefner RM, Berkes P, Fiser J. Perceptual Decision-Making as Probabilistic Inference by
4 Neural Sampling. *Neuron.* 2016;90: 649–660. doi:10.1016/j.neuron.2016.03.020

5 62. Haefner RM, Gerwinn S, Macke JH, Bethge M. Inferring decoding strategies from choice
6 probabilities in the presence of correlated variability. *Nat Neurosci.* 2013;16: 235–242.
7 doi:10.1038/nn.3309

8 63. Natan RG, Rao W, Geffen MN. Cortical Interneurons Differentially Shape Frequency Tuning
9 following Adaptation. *Cell Rep.* 2017;21: 878–890. doi:10.1016/j.celrep.2017.10.012

10 64. Fritz J, Shamma S, Elhilali M, Klein D. Rapid task-related plasticity of spectrotemporal receptive
11 fields in primary auditory cortex. *Nat Neurosci.* 2003;6: 1216–1223. doi:10.1038/nn1141

12 65. Englitz B, David SV, Sorenson MD, Shamma SA. MANTA--an open-source, high density
13 electrophysiology recording suite for MATLAB. *Front Neural Circuits.* 2013;7: 69.
14 doi:10.3389/fncir.2013.00069

15 66. Englitz B, Tolnai S, Typlt M, Jost J, Rübsamen R. Reliability of synaptic transmission at the
16 synapses of Held in vivo under acoustic stimulation. *PLoS ONE.* 2009;4: e7014.
17 doi:10.1371/journal.pone.0007014

18 67. de Cheveigné A, Simon JZ. Denoising based on time-shift PCA. *J Neurosci Methods.* 2007;165:
19 297–305. doi:10.1016/j.jneumeth.2007.06.003

20 68. Elhilali M, Xiang J, Shamma SA, Simon JZ. Interaction between attention and bottom-up
21 saliency mediates the representation of foreground and background in an auditory scene. *PLoS
22 Biol.* 2009;7: e1000129. doi:10.1371/journal.pbio.1000129