

1 One million years of solitude: the rapid evolution of de novo protein 2 structure and complex

3

4 Jianhai Chen^{1,*}, Qingrong Li^{2,3}, Shengqian Xia¹, Deanna Arsala¹, Dylan Sosa¹, Dong Wang^{2,3,*}, Manyuan Long^{1,*}

5 ¹Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637

6 ²Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, 92093,
7 California, USA

8 ³Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, 92093, California, USA

9 *Corresponding author: jianhaichen@uchicago.edu, dongwang@ucsd.edu; mlong@uchicago.edu;

10 **Abstract**

11 Recent studies have established that de novo genes, evolving from non-coding sequences, enhance
12 protein diversity through a stepwise process. However, the pattern and rate of their structural evolution
13 over time remain unclear. Here, we addressed these issues within a short evolutionary timeframe (~1
14 million years for 97% of rice de novo genes). We found that de novo genes evolve faster than gene
15 duplicates in the intrinsic disordered regions (IDRs, such as random coils), secondary structural
16 elements (such as α -helix and β -strand), hydrophobicity, and molecular recognition features (MoRFs).
17 Specifically, we observed an 8-14% decay in random coils and IDR lengths per million years per
18 protein, and a 2.3-6.5% increase in structured elements, hydrophobicity, and MoRFs. These patterns
19 of structural evolution align with changes in amino acid composition over time. We also revealed
20 significantly higher positive charges but smaller molecular weights for de novo proteins than duplicates.
21 Tertiary structure predictions demonstrated that de novo proteins, though not typically well-folded on
22 their own, readily form low-energy, compact complexes with extensive residue contacts and
23 conformational flexibility, suggesting “a faster-binding” scenario in de novo proteins to promote
24 interaction. Our findings illuminate the rapid evolution of protein structure in the early life of de novo
25 proteins, originating from noncoding sequences, highlighting their quick transformation into active,
26 complex-forming components within a remarkably short evolutionary timeframe.

27 **Keywords:** de novo genes, gene duplicates, structural evolution, protein-complex, new genes

28 Introduction

29 The complexity and adaptability of biological systems often find their roots in the ever-budding genetic
30 landscape. Central to this is the emergence of de novo genes -- genes that arise from regions of DNA
31 once categorized as 'junk' and considered functionally insignificant (Fagundes, et al. 2022; Ohno
32 1972). The birth of de novo genes was deemed impossible or functionally irrelevant (Jacob 1977; Mayr
33 1982). However, recent studies have challenged this dogma and provided concrete evidence that de
34 novo genes can indeed emerge from non-coding sequences through a stepwise mutational process,
35 contributing to increased protein diversity (Heames, et al. 2020; Zhang, et al. 2019). Despite these
36 progresses, our understanding of these novel proteins, particularly their structural characteristics at
37 the secondary, tertiary, and complex levels, and the rate of their structural evolution, remains largely
38 unexplored.

39 Gene duplicates have long been recognized as a predominant source of new genes. These duplicates
40 retain sequences from their parent genes and contribute to phenotypic evolution through various
41 mechanisms, including neofunctionalization, hypofunctionalization, subfunctionalization and gene
42 dosage (Birchler and Yang 2022; Kaessmann 2010; Ohno 1970). In contrast, de novo genes evolve
43 through non-duplication mechanisms and have been shown to play diverse roles in biological functions.
44 Their contributions have been highlighted in multiple systems, including DNA repair in yeast (Cai, et al.
45 2008), providing a novel antifreeze function in Arctic fish (Zhuang and Cheng 2021), diversification of

16 rice morphology (Chen, et al. 2023b), cortical expansion in humans (An, et al. 2023; Qi, et al. 2023),
17 and even oncogenesis in human cancers (Suenaga, et al. 2014). The emergence and functional
18 diversity of de novo genes introduce a novel dimension to our understanding of genome evolution and
19 functional innovation, expanding our knowledge beyond traditional gene duplication models (Broeils,
20 et al. 2023; Carvunis, et al. 2012; Knowles and McLysaght 2009; Vakirlis, et al. 2022; Zhang, et al.
21 2019; Zhao, et al. 2014).

22 Due to their relatively recent origin, de novo proteins may not have evolved into well-folded structure.
23 This leads to a characteristic feature: a lack of stable tertiary structure when isolated, thus manifesting
24 as intrinsically structural disorder (ISD) and extensive formation of intrinsic disordered regions (IDRs)
25 or random coils. It is found that exquisitely adapted species contains more ISD domains (Weibel, et al.
26 2023). ISD are also commonly found in proteins related to human genetic diseases (Midic, et al. 2009;
27 Vavouri, et al. 2009). Despite advancements in function studies of ISD proteins, the extent of ISD in de
28 novo genes remains a subject of debate. Several studies suggest a strong tendency towards ISD in de
29 novo genes or newly evolved domains (Basile, et al. 2017; Bitard-Feildel, et al. 2015; Heames, et al.
30 2023; Heames, et al. 2020; Lange, et al. 2021; Wilson, et al. 2017). Conversely, other studies present
31 conflicting results, contradicting the association between gene sequence novelty and ISD or
32 suggesting no apparent correlation (Ekman and Elofsson 2010; Schmitz, et al. 2018; Vakirlis, et al.
33 2018). Furthermore, the question of whether ISD is influenced by gene age or if it can evolve over time
34 remains unresolved.

5 Additionally, the evolvability of well-folded structural elements in de novo genes, such as, 3_{10} helices,
6 α -helices, and β -strands etc., remains an open question. If de novo proteins can gradually evolve from
7 a disordered to a well-folded structure, an intriguing question arises: how are their sequence
8 compositions optimized for structural stability over evolutionary time? With advances like AlphaFold
9 heralding a new era in protein structure prediction (Jumper, et al. 2021), we can now conduct an
10 in-depth exploration of the evolution of de novo protein structure and elements over evolutionary time.
11 Other questions also include how could these de novo proteins, which are often very short, interact
12 with other usually larger proteins, and their ability to form complexes with other biomolecules. Indeed,
13 roughly 40% of all protein-protein interactions are between proteins and shorter peptides, many of
14 which play critical roles in cellular life-cycle functions (Lee, et al. 2019). Recent advances like
15 AlphaFold-Multimer excels in predicting peptide-protein interactions (Johansson-Åkhe and Wallner
16 2022), which could facilitate our understanding on the evolution of de novo protein and potential
17 conformational changes upon binding.
18 The structural evolution of proteins is conventionally perceived as a slow process, maintaining
19 remarkable conservation over hundreds of millions to billions of years, in contrasts with the rapid
20 changes observed in their primary structure (Ingles-Prieto, et al. 2013; Liljas, et al. 2016). In this
21 conventional view, within the relatively short evolutionary timescale of one to a few million years, it was
22 assumed that little to no significant structural changes would occur in proteins, let alone the
23 emergence of new protein-protein interactions. Thus, the evolution of protein structure could be

34 perceived as a process of “million years of solitude.”

35 In this study, we explore the evolutionary patterns of de novo genes with a focus on their protein

36 structures and complexes. We analyzed multiple properties of protein structure including the

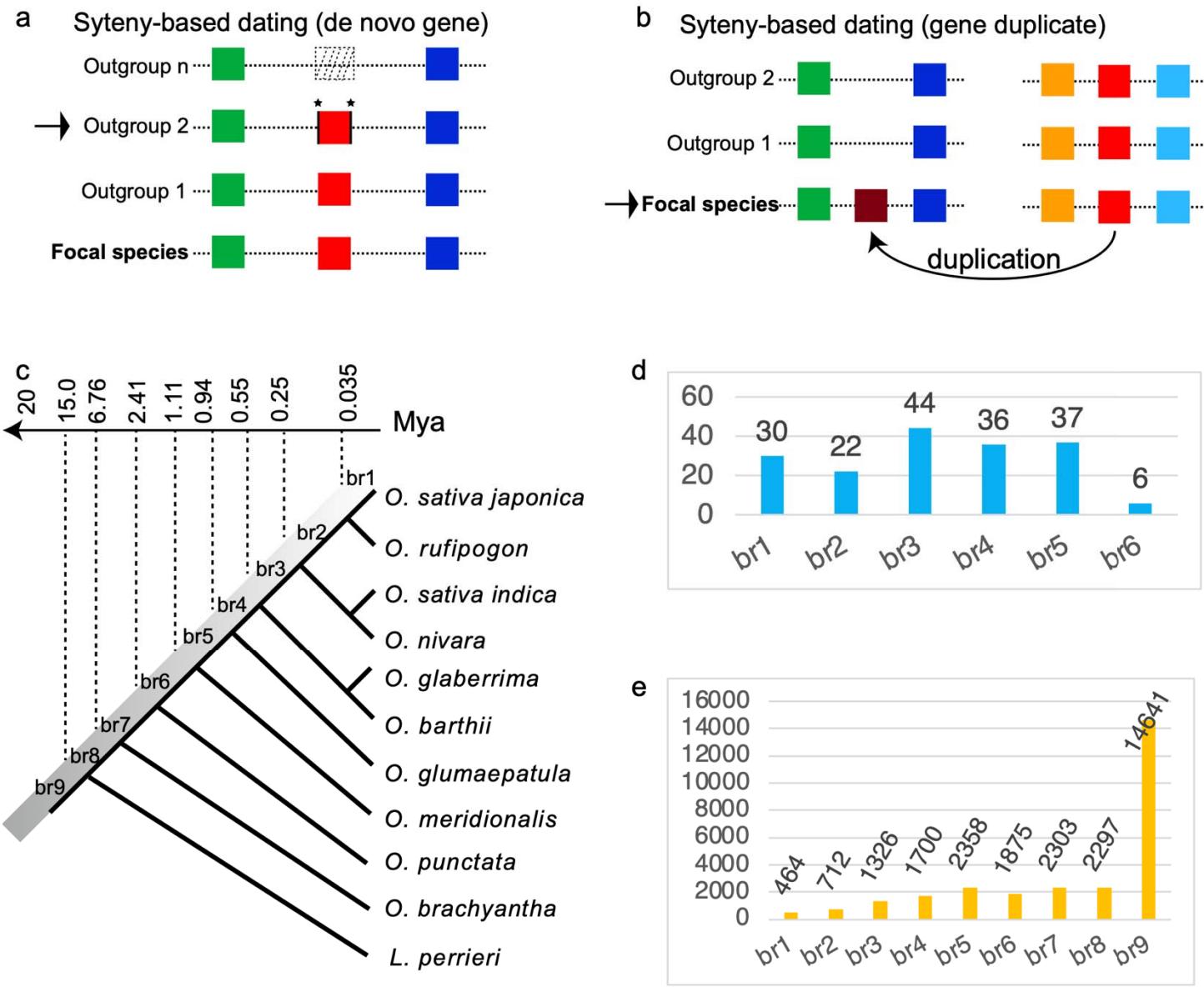
37 proportions of intrinsic disordered regions (IDRs), secondary structure elements (including the

38 unstructured random coils and structured α -helices and β -strands), amino acid composition and

39 properties (such as charges, weights, and hydrophobicity), molecular recognition features (MoRFs),

40 and the protein complexes. We revealed the rapid evolution of de novo proteins in forming structures

41 and complexes due to their different features from duplicated proteins, which could reshape our


42 understanding on new gene evolution. These insights challenge the conventional view of protein

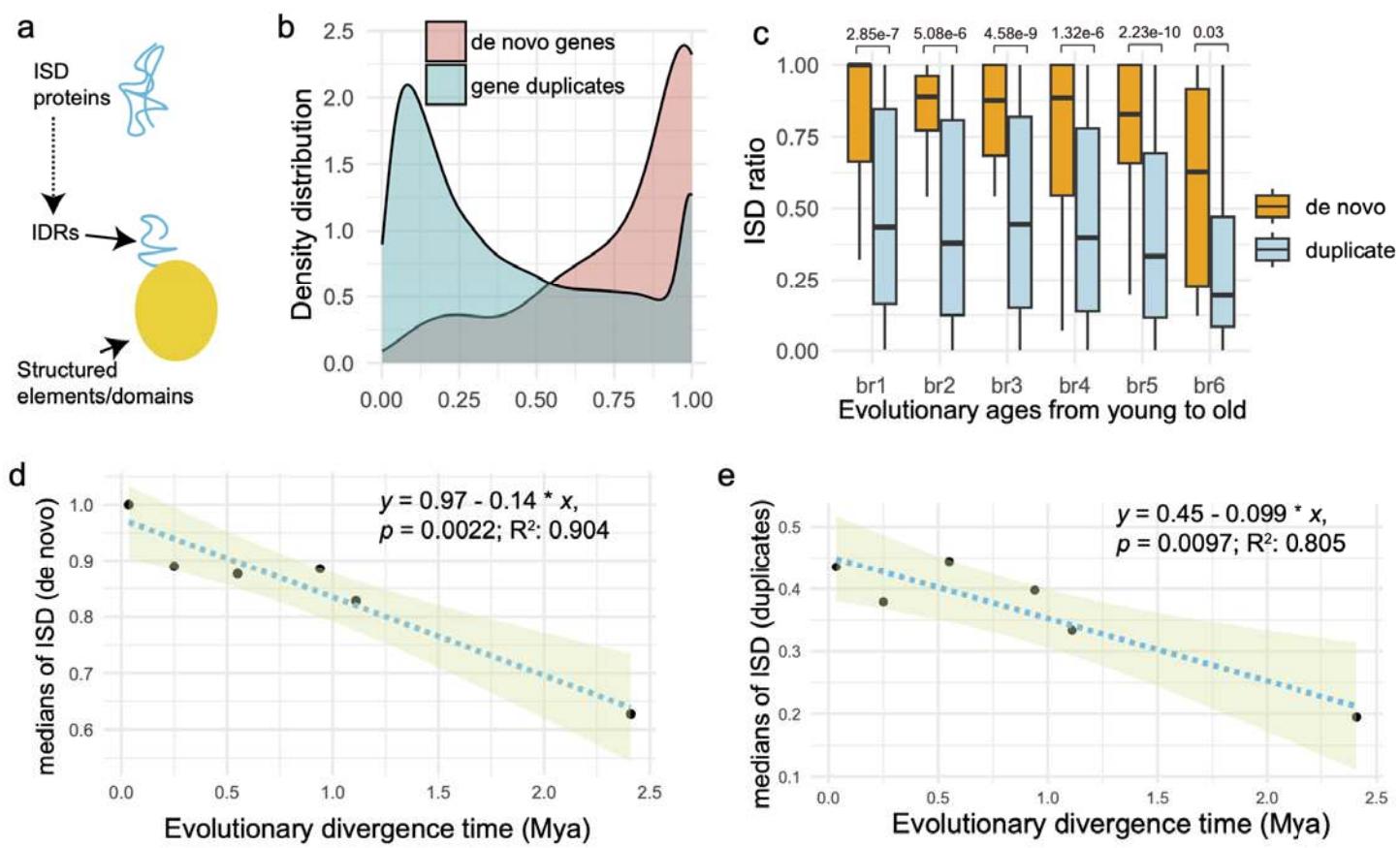
43 evolution and have revealed a dynamic world of protein evolution over short evolutionary timescales.

)4 **Results**

)5 ***The levels of ISD in de novo proteins reduce gradually over evolutionary time.***

)6 We retrieved gene list of de novo genes from our previous study, which demonstrated detailed
7 stepwise process of de novo gene emerge from non-coding regions (Zhang, et al. 2019) (Figure 1a).
8 The gene ages are defined as the branches with the complete Open Reading Frame (ORF) formation.
9 We locally inferred gene ages based on the synteny of reciprocal best neighbor genes for 27,673
10 duplicated genes (Long, et al. 2013), which account for 71.41% of genomic protein-coding genes
11 (IRGSP-1.0.75 version of rice genome) (Figure 1b). Both gene duplicates and *de novo* genes were
12 assigned into evolutionary age groups from young to old evolutionary epochs based on their known
13 phylogenetic framework (Zhang, et al. 2019) (Figure 1c, Supplementary table 1). The nine evolutionary
14 age groups cover ~15 million years of Oryzeae evolution, which includes species of *O. sativa japonica*
15 (br1), *O. rufipogon* (br2), *O. sativa* subspecies *indica* and *O. nivara* (br3), *O. glaberrima* and *O. barthii*
16 (br4), *O. glumaepatula* (br5), *O. meridionalis* (br6), *O. punctata* (br7), *O. brachyantha* (br8), and *L.*
17 *perrieri* (br9) (Figure 1c). We found 97% of rice de novo genes are within the timeframe of around one
18 million years (br1-br5, 169/175).

9 **Figure 1.** The methodology of gene age dating and number of genes with gene age information for de
 10 novo genes and gene duplicates. (a) The method for dating de novo gene ages, based on our previous
 11 syntenic-based study (Zhang, et al. 2019). The neighboring genes are represented in green and blue,
 12 DNA-level similarity to de novo genes (red). The neighboring genes are represented in green and blue,
 13 DNA-level similarity to de novo genes (red). The neighboring genes are represented in green and blue,


14 with outgroup 2 containing a complete ORF. The emergence of the gene is attributed to 'trigger' or
15 'enabler' mutations, including substitutions and/or insertions/deletions (indicated by asterisks), as
16 detailed in (Zhang, et al. 2019). (b) For duplicated genes, the synteny-based age dating method
17 involves identifying homologous genes (depicted in purple and red) and their neighboring genes. The
18 direction of duplication is indicated by an arrow. The emergence of the purple gene is determined
19 based on the presence or absence of conserved synteny in the focal species. (c) The phylogenetic
20 framework (br1-br9) and the corresponding divergence time (million years ago, Mya), which are based
21 on the previous report (Stein, et al. 2018). (d-e) The numbers of de novo genes and gene duplicates
22 with different ages across the evolutionary branches.

23 Leveraging Metapredict, a state-of-the-art deep-learning tool (Emenecker, et al. 2022), our analysis
24 shed light on the intrinsic structural disorder (ISD) of de novo genes (Supplementary table 2). We
25 discovered that 37.57% (68 out of 181) of de novo proteins exhibit complete ISD, characterized by
26 being composed entirely of intrinsically disordered regions (IDRs) (Figure 2a). Notably, this proportion
27 far surpasses the 9.77 % of complete ISD proteins in gene duplicates from age groups br1 to br6 (823
28 out of 8427). The overall distributions of ISD ratio (the ratio of sequence as IDRs) further showed that
29 de novo genes are strikingly different from gene duplicates in terms of both median value (0.88 vs.
30 0.31) and distribution peak (0.97 vs. 0.08) (Figure 2b). Interestingly, we found that de novo genes
31 gradually reduce in fractions of IDRs (regions of ISD), suggesting the decay of disorder over
32 evolutionary time (Figure 2c). Specifically, the fractions of IDRs in de novo proteins have decreased by

33 about 40% from the most recent branch (br1) to the oldest one (br6). In addition, de novo genes
34 demonstrated a consistent pattern of higher proportions of IDRs than gene duplicates at all
35 evolutionary stages within ~1-2 million years (br1-br6), despite a reduced difference between them at
36 the oldest stage br6 (Figure 2c). This pattern suggests that ISD levels in proteins are not stagnant over
37 evolutionary time in rice. Statistically, a significant linear trend emerged: the proportions of IDRs in de
38 novo proteins decrease by about 14% per protein per million years (Figure 2c, $p = 0.0022$, adjusted R^2
39 = 0.904). Using the median ISD ratio of gene duplicates (0.31) as a benchmark, and guided by this
40 linear model, de novo proteins would require approximately 4.7 million years to attain the median
41 disorder level observed in gene duplicates.

42 For gene duplicates, we found that 19.57% (1818 out of 9289) of proteins encoded by younger
43 duplicates (branches br2-5, ~1mya) are categorized as ISD proteins (using 100% disorder as the
44 threshold). This rate is 8.4 times higher than that observed in older duplicates from stages br6-9
45 (2.32%, 570 out of 24620) (Supplementary figure 1). For the *O. sativa Japonica* specific duplicates
46 (br1), we divided the duplicates into two groups: young-parent duplicates and old-parent duplicates,
47 based on the evolutionary epochs from which their parent gene emerged (br2-5 as young parent vs.
48 br6-9 as old parent). Our analysis revealed a significantly higher fraction of ISD proteins in
49 young-parent duplicates compared to old-parent duplicates (58.60%, 53 out of 215 vs. 32.14%, 26 out
50 of 252; Odds ratio 2.38, 95% CI: 1.44 to 3.95, $p = 0.0007$). This finding suggests a “heritage effect,”
51 indicating that gene duplicates may inherit structural properties from their parental genes.

52 In our comparative analysis of the evolutionary rate of ISD fractions between de novo genes and gene
53 duplicates across branches br1 to br6 (Figures 2d-2e), we uncovered a notable trend. De novo genes
54 exhibit a 4% faster rate of disorder decay per protein per million years than gene duplicates, with
55 respective slopes of 0.14 versus 0.099. This accelerated rate in de novo genes may stem from their
56 absence of the intrinsic heritage effect, which in turn could contribute to their heightened evolvability
57 compared to gene duplicates.

58

59 **Figure 2.** Analysis of intrinsic structural disorder (ISD) in de novo genes and gene duplicates. (a)
60 Illustration of an ISD protein highlighting the intrinsic disordered regions (IDRs). (b) Distribution

1 comparison of IDR fractions in de novo genes versus gene duplicates. (c) Boxplot representation of
2 IDR fractions (also the ISD ratios) in proteins for de novo genes and gene duplicates, categorized by
3 evolutionary age from young to old (x-axis). Differences are assessed using the Wilcoxon test, with the
4 *p*-value indicated above each comparison. (d) A significant linear regression analysis showing the
5 relationship between the median ISD ratios and the evolutionary ages of de novo genes. The 95%
6 confidence interval is represented by the shaded area. (e) Similar linear regression analysis for gene
7 duplicates (br1-br6), with the median ISD fractions plotted against evolutionary ages. The shaded area
8 indicates the 95% confidence interval. The linear regression formula, *p*-value, and adjusted R-squared
9 values are displayed at the top right corner.

70 ***Rapid evolution of structural elements in de novo proteins.***

71 In protein structure, α -helices and β -strands are typically amphipathic and thus can enable the tertiary
72 folding of hydrophilic surfaces and hydrophobic cores (Fersht 1999). The α -helices (and other helices
73 like 3_{10} helices) and β -strands (which form β -sheets) are considered structured due to their specific,
74 stable hydrogen-bonding patterns, while random coil regions lack such regular structure and are more
75 flexible and disordered (Craveur, et al. 2015) (Figure 3a). We conducted a comparative analysis of
76 these structural elements for de novo genes and gene duplicates, focusing on relative proportions of
77 these structural elements within protein sequences over evolutionary time. We predicted protein
78 three-dimensional structures with AlphaFold2 (Supplementary figure 2-7), decoded the structural
79 elements with STRIDE (Heinig and Frishman 2004; Jumper, et al. 2021), and finally measured the
80 lengths and proportions of these structural elements (P_{coil} for coil, P_{helix} for α -helices, $P_{310helix}$ for 3_{10}

31 helices, and P_{strand} for β -strands). Our analysis revealed that median proportion values are highest in
32 unstructured coils (40%-47%) and followed by α -helices (23%-30%), β -strands (13%-15%), and 3₁₀
33 helices (2.7%-2.8%) for de novo genes and gene duplicates (Supplementary table 3).
34 Overall, the P_{coil} , P_{helix} , and P_{strand} are significantly different between de novo genes than gene
35 duplicates (Figure 3b). In de novo genes, our analysis revealed a strong negative linear correlation
36 between median of P_{coil} and gene age, alongside significant positive linear correlations between both
37 median of P_{helix} and P_{strand} and gene age (Figure 3c). These correlations suggest a faster evolutionary
38 rate in the structural elements of de novo genes over time, marked by an increase in novel structures
39 and a decrease in unstructured coil segments. Specifically, α -helix and β -strand grow with rates of 4.1%
40 and 6.5% per protein per million years, respectively, while coil decreases with rate of 8.4% per protein
41 per million years (Figure 3c). In contrast, such correlations are not significant in gene duplicates
42 (Figure 3c). These results indicate a rapid structural evolution in de novo proteins, characterized by a
43 decreasing proportion of disordered or unstructured regions and an increasing proportion of structured
44 regions over evolutionary timescales.

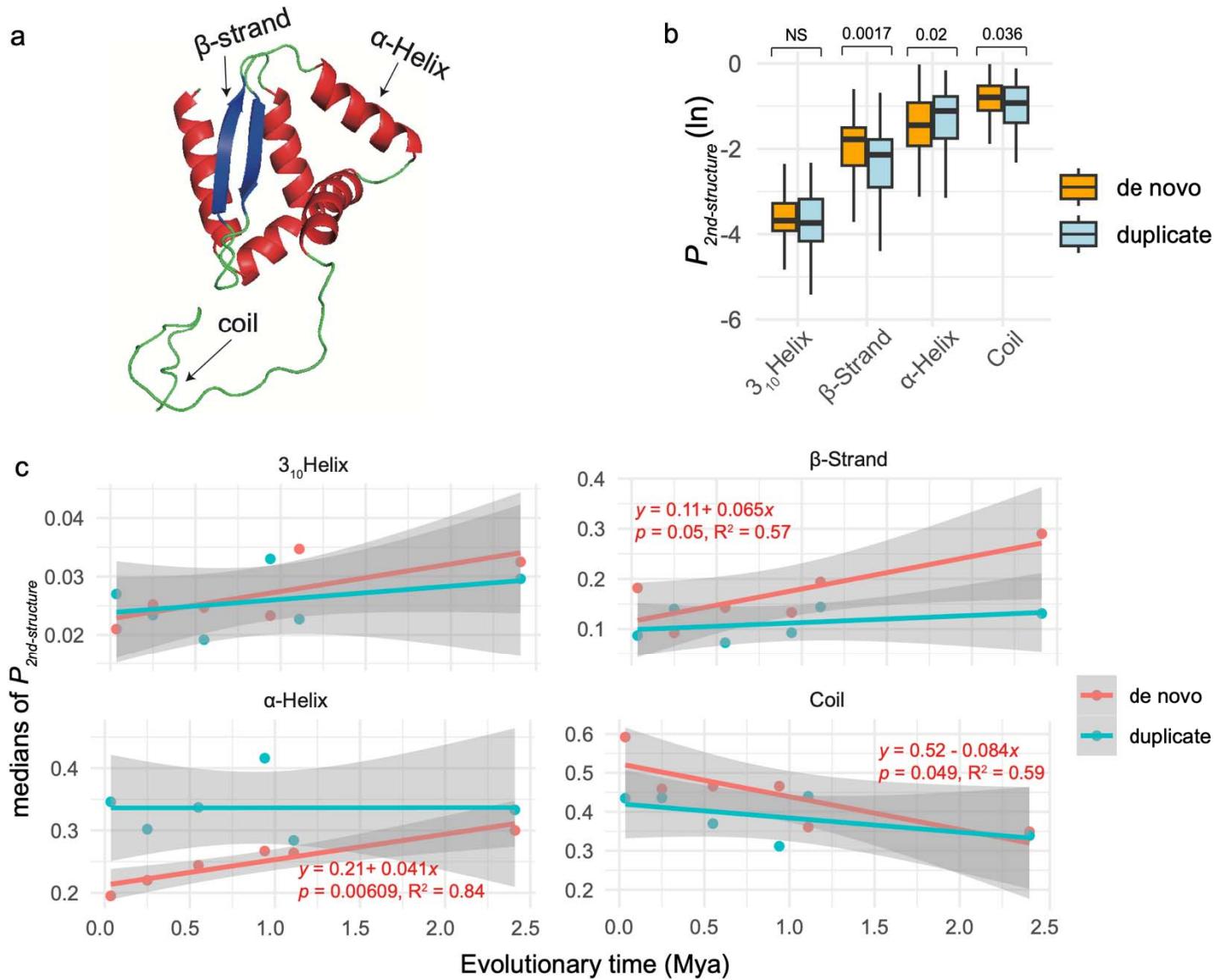
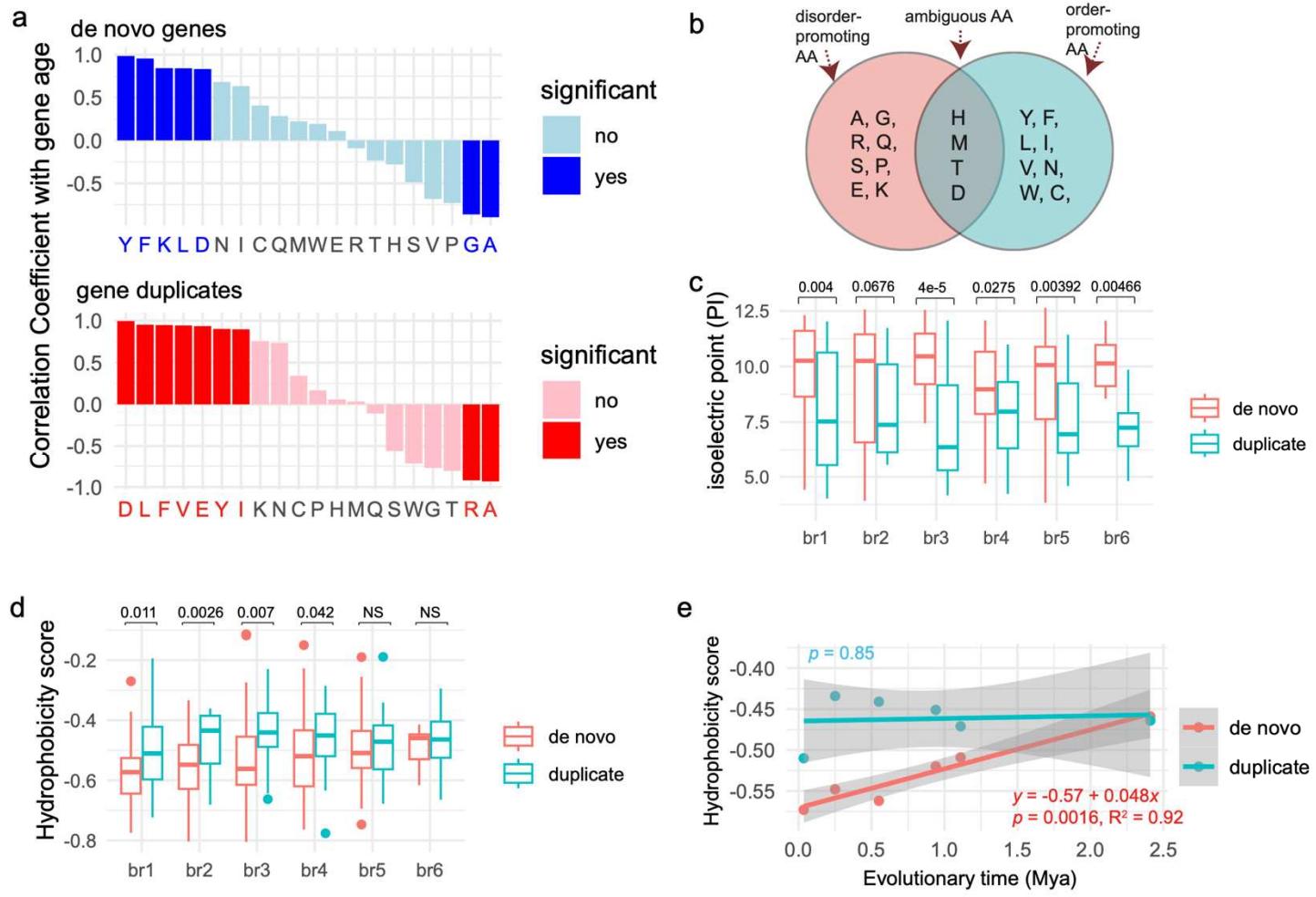


Figure 3. The length proportions of structural elements (noted as $P_{2nd\text{-structure}}$, transformed using the natural logarithm), including unstructured (coil) and structured segments (3_{10} helix, α -helix, and β -strand) and their correlations with gene ages. (a) An example of basic elements of protein structure. The visualization is based on the ranked_0 result of AlphaFold2 for de novo gene Osjap03g04570. (b) The distributions and comparisons for length proportions of coil and other structured regions segments

)1 (α-helices, 3₁₀ helices, and β-strands). The comparisons are based on Wilcox test and *p* values are
)2 shown above boxplots. (c) The linear regression of $P_{2nd-structure}$ for de novo genes against evolutionary
)3 time. The linear statistical summaries and formulas are indicated in red for de novo genes. The
)4 regression statistics of gene duplicates are not shown due to insignificant *p* values for all elements.


)5 ***The properties of amino acids in de novo genes are consistent with the structural changes.***

)6 The observed patterns for IDRs, random coils, and structured elements (α-helices and β-strands) in de
)7 novo proteins necessitate a more comprehensive analysis of amino acid composition to further
)8 understand de novo gene evolution. To understand whether the constitutional fractions of some amino
)9 acids could be related to gene ages, for each amino acid, we assessed the correlation between
)10 median values of fractions and evolutionary ages (Figure 4a). We also compared between de novo
)11 genes and gene duplicates (Table 1 and Supplementary figure 8).

)2 Among all amino acids, the average fractions Alanine (A) and Glycine (G) exhibited significant
)3 negative correlations with ages of de novo genes (Figure 4a, Supplementary table 4). This result
)4 suggests that the “disorder-promoting” tendency of Alanine and Glycine could promote the higher ISD
)5 and fractions of unstructured coils in young de novo genes (Figure 4b) (Dunker, et al. 2001; Uversky
)6 2013). In gene duplicates, Alanine (A) and Arginine (R) were the two amino acids whose fractions
)7 significantly negatively correlated with gene ages (Figure 4a). Interestingly, Arginine (R) has lower
)8 disorder propensity than Glycine (G) (Uversky 2013). The difference is consistent with our finding of a

19 higher degree of ISD in de novo genes compared to gene duplicates. Tyrosine (Y), Phenylalanine (F),
20 Lysine (K), and Leucine (L) exhibited significant positive correlations with the ages of de novo genes
21 (Figure 4a and Supplementary table 4), suggesting their roles in the rapid structural evolution of these
22 genes. Notably, 75% (3 out of 4: Y, F, and L) of these amino acids are hydrophobic and
23 order-promoting, with low disorder propensities (Dunker, et al. 2001; Tompa 2002; Uversky 2013). The
24 Lysine (K) is positively charged, which could favor salt bridge to interact with negative charged amino
25 acids or interactions with DNA or RNA (Couso and Patraquim 2017).

26

27

28 **Figure 4.** The correlation coefficient between compositions of amino acids and gene ages (Mya). (a)

29 The Pearson correlation coefficients (r) between amino acid fractions (medians) and their gene ages

30 (Mya, Supplementary table 4). “Yes” and “No” indicate significant and non-significant p values,

31 respectively. (b) The classifications of amino acids (AA): disorder-promoting AA, order-promoting AA,

32 ambiguous AA, based on a previous report (Dunker, et al. 2001). (c) The comparisons of isoelectric

33 point (PI) between duplicates and de novo genes across six branches. (d) The comparisons of

34 hydrophobicity scores between duplicates and de novo genes across six branches. The larger values

35 represent higher hydrophobicity. (e) The linear regression of median hydrophobicity scores against
36 evolutionary times. Statistical summaries are shown near regression lines with *p* values, adjusted R²
37 value, and formula. Comparisons are based on the single-tailed Wilcoxon rank-sum test.

38 Comparative analysis revealed that de novo proteins collectively have significantly higher fractions of
39 Glycine (G), Proline (P) and Arginine (R) than gene duplicates (Supplementary figure 8). These amino
40 acids are characterized by high codon degeneracy and encoded by GC rich codons (Table 1), which is
41 consistent with high GC content in rice de novo genes (Zhang, et al. 2019). In addition, significantly
42 higher fractions of R (Arginine) were found in most evolutionary stages of de novo genes (br1-br5,
43 Supplementary figure 8). Interestingly, de novo proteins have a significantly higher fraction of positively
44 charged amino acid residue R (Arginine) and lower fractions of negative charged Glutamate residue (E)
45 and hydrophobic amino acid residue (F) (Table 1).

46 Table 1. The comparisons between proteins of de novo genes and duplicated genes. The *p*-values are
47 statistical differences between de novo genes and gene duplicates based on the Wilcox test
48 (significance threshold 0.0025 are adjusted by the multiple test). The field of “Codon Degeneracy”
49 indicates the numbers of codons for the corresponding amino acids.

Amino Acid	Polarity	Codon Degeneracy	Codons	Charge	Volume	Abundance in de novo genes		<i>p</i> -value
						Other Important Properties		
G	Nonpolar	4	GGT, GGC, GGA, GGG	Neutral	Small	Hydrophobic core	Higher	3.25E-05
P	Polar	4	CCT, CCC, CCA, CCG	Neutral	Small	Proline kinks	Higher	2.56E-05
R	Polar	6	CGT, CGC, CGA, CGG, AGA, AGG	Positive	Large	-	Higher	1.59E-13
D	Polar	2	GAT, GAC	Negative	Small	-	Lower	2.71E-16

E	Polar	2	GAA, GAG	Negative	Medium	-	Lower	1.23E-03
F	Nonpolar	2	TTT, TTC	Neutral	Large	Aromatic ring	Lower	3.27E-08
I	Nonpolar	3	ATT, ATC, ATA	Neutral	Large	Hydrophobic core	Lower	1.17E-07
L	Nonpolar	6	TTA, TTG, CTT, CTC, CTA, CTG	Neutral	Large	Hydrophobic core	Lower	1.67E-09
N	Polar	2	AAT, AAC	Neutral	Small	Amide group	Lower	7.17E-04
V	Nonpolar	4	GTT, GTC, GTA, GTG	Neutral	Medium	Hydrophobic core	Lower	3.65E-10
Y	Polar	2	TAT, TAC	Neutral	Large	Hydroxyl group	Lower	3.53E-09

50 ***De novo proteins: lighter, positively charged, and increasingly hydrophobic over time.***

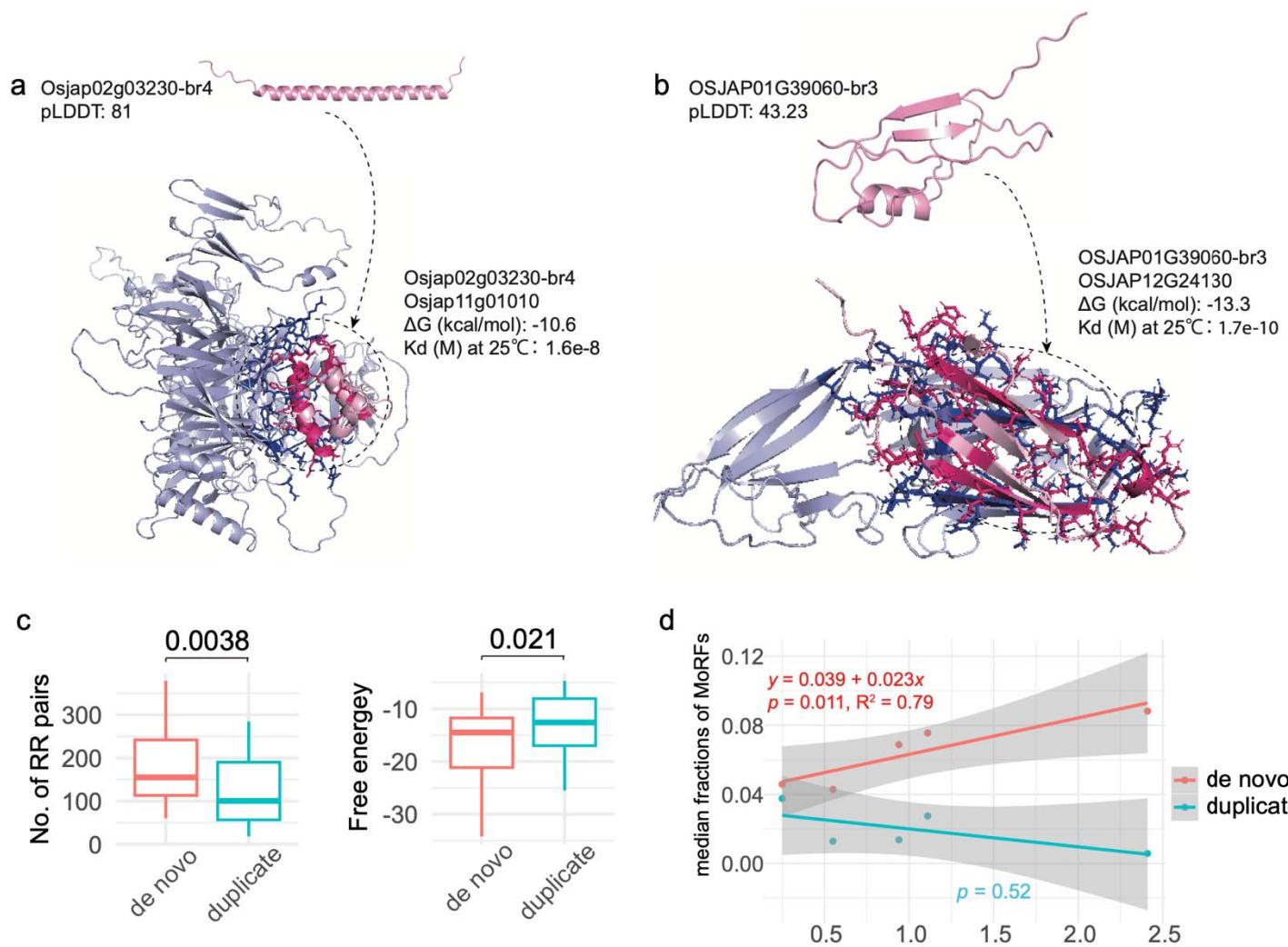
51 Previous studies conducted on yeast and mammals suggests that new proteins are usually positively
52 charged (Blevins, et al. 2021; Papadopoulos, et al. 2021). Despite these findings, the extent to which
53 this characteristic is pervasive among proteins of varying evolutionary ages remains uncertain. We
54 compared several physiochemical properties, including protein charge, molecular weight, and
55 hydrophobicity, between proteins from de novo genes and gene duplicates across evolutionary stages.

56 By evaluating isoelectric point (PI), we found that de novo proteins exhibit higher positive charges than
57 gene duplicates in all evolutionary age groups (Figure 4c). For molecular weights of proteins (Da), de
58 novo proteins displayed significantly lower values than proteins of gene duplicates in most
59 evolutionary age groups (br2-br6, Supplementary figure 8c).

60 Interestingly, de novo proteins also showed significantly higher hydrophobicity scores than duplicated
61 proteins at the first four evolutionary stages within 0.94 million years (br1-br4, Figure 4d), and no
62 significant difference was found at br5 (~1 Mya) and br6 (~2 Mya) (Figure 4d). Moreover, only in de
63 novo proteins, we detected a significant increasing trend of hydrophobicity score over time with the
64 growth rate of 4.8% per protein per million years (Figure 4e). Due to the dominant role of hydrophobic

5 interactions in driving protein folding, the growth pattern of hydrophobicity strongly supports the faster
6 evolution of folding in de novo proteins, which is also consistent with our findings of secondary
7 structural elements (Figure 3c).

8 ***Protein complex interaction could facilitate the structural evolution of de novo protein.***


9 We analyzed the tertiary folding or three-dimensional structure for all de novo genes and a random
10 selection of duplicated genes (30 genes per age group). Based on the per-residue confidence score
11 (pLDDT), a widely used measure of modeling quality in AlphaFold2 (Jumper, et al. 2021), we
12 compared the predicted tertiary folding qualities between de novo genes and gene duplicates (Figure
13 5a). The median pLDDT scores were consistently higher in gene duplicates than in de novo genes,
14 suggesting a greater confidence in the modeling predictions for the tertiary structures of duplicated
15 proteins (Supplementary figure 9a). This pattern is also consistent with our findings of higher levels of
16 ISD in de novo genes (Figure 2c). We further categorized proteins into three distinct groups based on
17 their folding characteristics, as indicated by pLDDT (Supplementary table 5). We found that 3.43% of
18 de novo genes (6 out of 175) have the high folding quality in at least one element over 10 continuous
19 amino acids (pLDDT > 0.9) and 17.14% of de novo genes (30 out of 175) have elements with confident
20 folding quality (pLDDT > 0.7, Supplementary table 5). Among these predicted well-folded genes, only
21 six genes have two structural elements while most of them have a single structural element (α -helix or
22 β -sheet), consistent with previous observations of limited folding in de novo gene-encoded proteins in
23 other species (Peng and Zhao 2023).

34 Most proteins function through interactions with other proteins, a process that can induce
35 conformational changes, particularly in disordered proteins (Tsaban, et al. 2022; Zhang, et al. 2013).
36 To explore the likelihood of disorder-to-order transitions during these interactions over time, we
37 assessed the length proportions of molecular recognition features (MoRFs), which are prone to
38 conformational changes during protein-protein contact. Intriguingly, we found that MoRF fractions are
39 consistently higher in proteins from de novo genes than duplicated genes, despite statistical variations
40 for the youngest two age groups (br1 and br2) and older evolutionary ages (br3-br6, Supplementary
41 figure 9b). In de novo genes, we observed a significant linear increase in the median MoRF fractions
42 over evolutionary time, growing at 2.3% per protein per million years (br2-br6, Figure 5b). These
43 findings suggest that the “heritage effect” of duplicated genes could impede the emergence of novel
44 MoRF sequences, while de novo genes could evolve de novo MoRFs for molecular recognition during
45 binding.
46 Using gene co-expression correlation analysis of RNAseq data (Supplementary table 6) and based on
47 several criteria including disorder levels (ISD proportions < 5%) and high correlation coefficients (>
48 80%) (See Methods), we identified 30 pairs of potential protein-protein interactions involving de novo
49 proteins (Supplementary table 7). We also used the same criteria and randomly chose 30 pairs of
50 co-expressed gene duplicates for comparison (Supplementary table 7). Using the
51 AlphaFold2-multimer, we tested the possibility of spontaneous de novo protein complexes and
52 potential conformational change upon protein-protein interaction (Bryant, et al. 2022; Evans, et al.

)3 2022; Tsaban, et al. 2022). In one instance, de novo gene Osjap02g03230, which exhibited a highly
4 confident folding structure with a single α -helix, had a predicted conformational change of two
5 α -helices upon binding to its potential protein partner Osjap11g01010, a geranylgeranyl transferase
6 type-2 subunit beta-like protein, with very low free energy ($\Delta G = -10.6$, Figure 5c). The protein complex
7 prediction based on AlphaFold2-multimer indicated a conformational change into a “helix-turn-helix”
8 motif upon binding (Figure 5a). ΔG values are generally in the range of -5 to -10 kcal/mol for
9 biologically relevant interactions (Yugandhar and Gromiha 2014). Thus, the estimate of Gibbs free
10 energy (ΔG) suggests a strong biological relevant binding affinity for this protein complex based on
11 reported cut-off (ΔG around -10) (Nikam, et al. 2023; Yugandhar and Gromiha 2014). Another de novo
12 gene, OSJAP01G39060, showed a stronger binding affinity, as indicated by low ΔG and K_d values
13 ($\Delta G = -13.3$, Figure 5b). Moreover, two more β -strands were observed in this protein complex,
14 supporting the potential structural and conformational change upon binding. These two groups of ΔG
15 and K_d values indicate that the binding processes could be spontaneous and stable for de novo
16 proteins.

)7 Interestingly, using the Gibbs free energy (ΔG) as the indicator of protein-protein binding affinity, we
8 found that de novo proteins have significantly stronger binding affinities with their partners than
9 proteins from gene duplicates (median -16.67 vs. -13.08, single-tailed Wilcoxon rank-sum test, $p =$
0 0.021, Figure 5c). This observation is also consistent with our finding of significantly more
1 residue-residue (RR) contacts in de novo protein complexes than in those from gene duplicates

12 (median 183 vs. 125, single-tailed Wilcoxon rank-sum test, $p = 0.0038$, Figure 5d). On average, RR
13 pairs were estimated to be 4.71% more in de novo protein complexes than in protein complexes of
14 duplicated proteins (12.22% vs. 7.51%, Supplementary table 7). These results strongly suggest that
15 the disordered and flexible nature of de novo proteins could facilitate strong binding between proteins.
16 Notably, among all 30 pairs of de novo protein interactions studied (Supplementary table 7 and
17 Supplementary figure 10), we revealed only 17% of potential protein complexes (5 out of 30) with ΔG
18 values larger than -10 kca/mol, suggesting that most of de novo genes (83%) can form highly compact
19 and high-affinity complexes with low free energy (Supplementary table 7b). Together, our results
20 suggest that de novo proteins could form stable complexes with biological relevant binding and may
21 even undergo significant conformational changes.

32

33 **Figure 5.** The visualization and statistics of structures for proteins and complexes (a) The 3D
34 structures of Osjap02g03230 and its protein complex. pLDDT indicates average value for all four
35 models, showing a well-folded example. The dotted circle shows the binding state of this de novo
36 protein. (b) The 3D structures of OSJAP01G39060 and its protein complex. pLDDT indicates average
37 value for all four models, representing a not-well-folded example. (c) The comparisons of numbers of
38 residue-residue pairs (RR) and Gibbs free energies (kcal/mol) from results of protein complexes (the
39 model ranked_0) with AlphaFold2-multimer between de novo proteins and duplicates. All comparisons

l0 are estimated with the single-tailed Wilcoxon test (p values shown above). (d) The regression of linear
l1 model between median MoRF fractions and evolutionary years (Mya). The statistical summaries of
l2 linear model are listed for the two types of genes (de novo genes and duplicates).

13 Discussion

14 **Emergence of de novo genes: pioneering the new frontiers of evolutionary biology.**

15 Over the past decades, the significance of evolutionary new genes has been increasingly recognized,
16 shaping a new paradigm in evolutionary biology (Betrán and Long 2022). Empirical evidence has
17 highlighted the essential and innovative roles of evolutionary new genes in biological systems (Chen,
18 et al. 2013; Heinen, et al. 2009; Long and Langley 1993; Long, et al. 2013; Tautz 2014; Xia, et al. 2021;
19 Xie, et al. 2019a; Xie, et al. 2019b; Zhuang, et al. 2019). One proposed mechanism for the rapid
50 functional diversification of new genes is their low pleiotropic constraints as a competitive advantage
51 compared to older and conserved genes (Chen, et al. 2023a; Hoekstra and Coyne 2007).

52 Both de novo genes and gene duplicates are important raw materials for evolutionary innovation (Long,
53 et al. 2013), with similar persistence rates in deep evolutionary lineages (Montañés, et al. 2023). As a
54 predominant part of protein-coding genes in genomes, gene duplicates have been modeled to have
55 multiple possible fates, including novel functions (Birchler and Yang 2022; Ohno 1970). However, the
56 possibility of origination and functionalization de novo genes was long dismissed (Jacob 1977; Mayr
57 1982). Nevertheless, recent studies have provided substantial evidence for de novo gene origination
58 and function (An, et al. 2023; Cai, et al. 2008; Chen, et al. 2023b; Heames, et al. 2020; Qi, et al. 2023;
59 Suenaga, et al. 2014; Zhang, et al. 2019; Zhuang and Cheng 2021).

60 The structure-function relationship in structural biology suggests that a protein's primary sequence

1 dictates its tertiary conformation, which in turn influences protein function (Anfinsen and Haber 1961).
2 This underscores the importance of investigating the structural evolution of proteins, particularly in the
3 case of those that arise “from scratch.” With cutting-edge computational tools now available,
4 researchers have begun on detailed case studies to elucidate the foldability and inherent structure of
5 de novo genes (Bornberg-Bauer, et al. 2021; Bungard, et al. 2017; Lange, et al. 2021). Some studies
6 have shown that a fraction of de novo genes can emerge as well-folded and stable entities (Peng and
7 Zhao 2023), while other studies suggest little change over millions of years (Lange, et al. 2021).
8 However, the fundamental question involving the evolutionary pace of structural modifications in de
9 novo genes remains a largely unexplored aspect of evolutionary biology.

70 **De novo proteins initially exhibit high disorder but rapidly evolve towards structured forms.**

71 By comparing our previously identified de novo genes with gene duplicates across well-ordered
72 evolutionary timescales (Zhang, et al. 2019), we observed striking features that the median proportion
73 of intrinsically disordered regions (IDRs) is 88%, indicating disorder as a predominant characteristic for
74 these proteins over a period of 1-2 million years. The structural versatility of IDRs could confer special
75 molecular advantages for de novo proteins, allowing them to adapt to almost every cellular
76 compartment and perform various functions, including transcription, nuclear transport, RNA binding,
77 signaling, and cell division (Holehouse and Kragelund 2023). For instance, numerous RNA binding
78 proteins and transcription factors, which are known to bind nucleic acids and mediate protein-RNA or

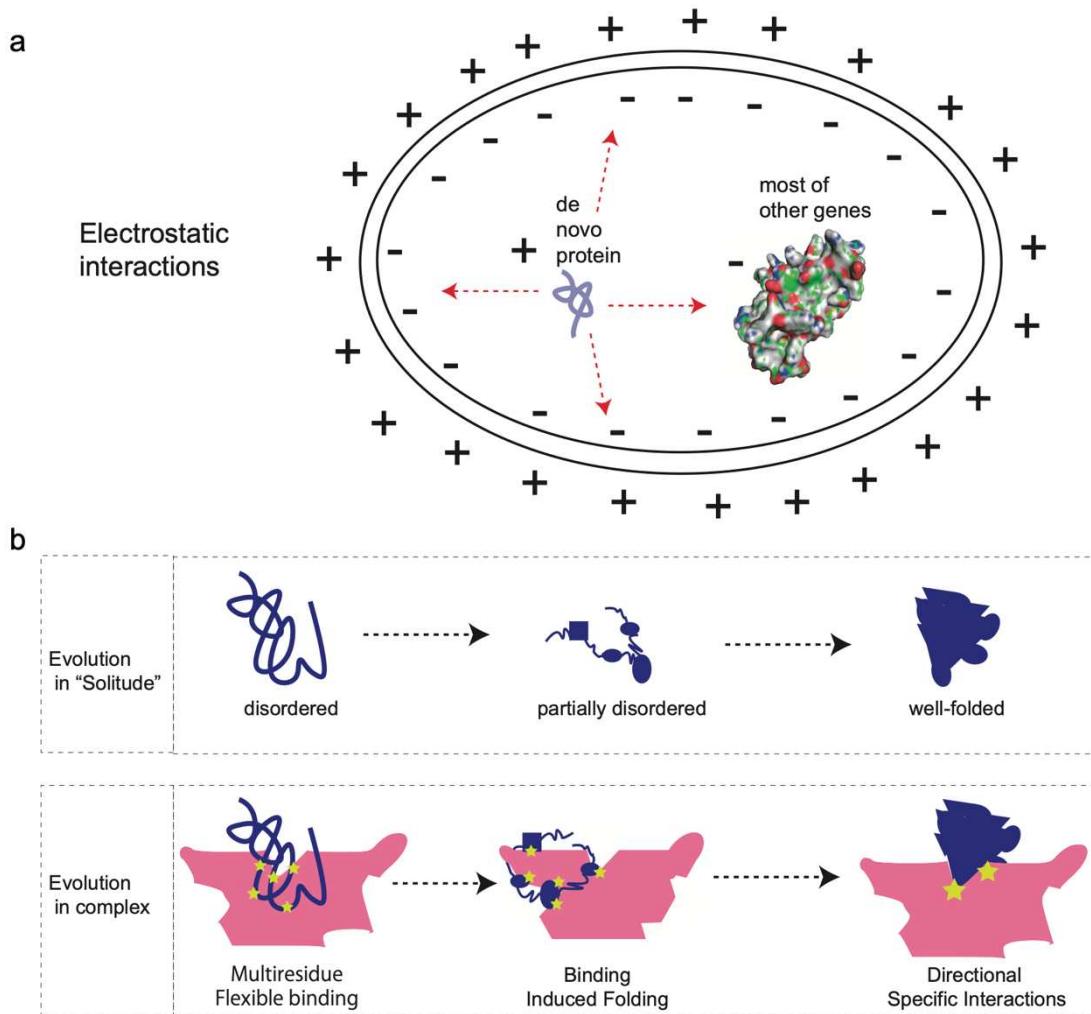
79 protein-DNA interactions, contain IDRs (Brodsky, et al. 2020). Another significant example is the IDRs
80 found in eukaryotic histone tails, which undergo post-translational modifications essential for gene
81 expression regulation throughout development (Jiao, et al. 2020). The extensive IDRs we identified in
82 proteins encoded by de novo genes, along with the documented versatility of IDRs in facilitating
83 various interactions and participating in cellular processes, may be pivotal in the evolutionary
84 emergence and functional integration of proteins encoded by de novo genes.

85 We also found a rapid evolution of their protein structures compared to proteins from gene duplicates
86 within the time frame of 1-2 million years. This rapid evolution is characterized by a decrease in the
87 proportion of unstructured regions (random coils) and an increase in structured regions, such as
88 α -helices and β -strands. We also detected signals of molecular recognition features (MoRFs) and their
89 growing pattern over time. It is known that α -helices and β -strands are both hydrophilic and
90 hydrophobic, which could determine the protein's tertiary folding by orienting hydrophilic surfaces
91 outward and tucking hydrophobic regions inward (Fersht 1999). We found that, despite strikingly
92 higher proportions of IDRs for de novo proteins, the disorder decay rate is at 14% per protein per
93 million years, which is faster than that in gene duplicates with 9.9% per protein per million years. At this
94 rate, de novo proteins could achieve a structural order comparable to the median levels observed in
95 gene duplicates over a period of around 4.7 million years.
96 We further observed distinct evolutionary patterns in the basic elements of protein folding. Specifically,

17 we estimated a decrease in random coils at a rate of 8.4% per protein per million years, which
18 suggests a reduction in less structured regions where weaker interactions like Van der Waals forces
19 are predominant. Conversely, there was an increase in α -helices and β -strands at rates of 4.1% and
20 6.5% per million years, respectively. This increase indicates a shift toward more structured and stable
21 configurations, typically stabilized by hydrogen bonding within the protein's backbone. The growth in
22 α -helices and β -strands suggests an evolutionary trend towards more hydrogen bond-rich and
23 intricately folded structures, possibly reflecting an increased need for functional specificity and
24 molecular stability. Additionally, we revealed a pattern of increasing hydrophobicity in de novo proteins
25 at 4.8% per protein per million years. This rise in hydrophobicity implies an enhanced role of
26 hydrophobic interactions, which are critical in stabilizing the protein's tertiary structure by driving the
27 folding process and promoting the interior packing of hydrophobic side chains. This evolving
28 hydrophobic character could be a response to the need for more compact and stable protein structures
29 in diverse cellular environments.

30 In contrast, we did not find significant evolutionary trends for these metrics in gene duplicates over
31 time, suggesting a more conservative structural evolution compared to de novo proteins. Considering
32 the major role of hydrophobicity in promoting the folding process, our results strongly reveal that de
33 novo proteins could evolve novel tertiary structures at a faster rate than duplicated proteins could. The
34 rapid structural evolution in de novo proteins may be attributed to the combined effects of enhanced
35 hydrophobic interactions, increased hydrogen bonding, and a shift towards more defined secondary

16 structures, reflecting an adaptive advantage in evolving new protein functions and interactions.


17 **Multiple features of de novo proteins could promote the formation of protein complex.**

18 Our analyses indicated several unique physiochemical features of de novo proteins compared to
19 proteins of gene duplicates, which could promote the interactions between de novo proteins and other
20 proteins. Although previous findings in other species have revealed significantly higher positive
21 charges in de novo proteins than other genes (Blevins, et al. 2021; Papadopoulos, et al. 2021), it was
22 unknown whether that is general for all evolutionary ages. Our analyses revealed the general patterns
23 of higher positive charges for de novo proteins than duplicated ones in all evolutionary age groups
24 within ~2 million years. We also revealed the generally smaller weights of de novo proteins than
25 proteins of gene duplicates. Proteins with greater opposite charges could promote stable binding to
26 form complexes (Hazra and Levy 2022). Thus, the “tiny and attractive” features in terms of weight and
27 charge may suggest a “faster-binding” scenario for de novo proteins, where the nascent de novo
28 proteins could have relatively higher diffusion speed to be attracted to the negative charged
29 compartments or larger molecules (Figure 6a). Generally, larger negative charged proteins tend to
30 offer greater collision cross-sections for interactions, while smaller positively charged proteins, with
31 their faster diffusion, are more prone to molecular collisions (Morris, et al. 2022; Xu, et al. 2013).
32 Therefore, our results suggest that de novo proteins, exhibiting generally positive charge and smaller
33 size, may have a higher diffusion potential, increasing their likelihood of interacting with larger,

34 negative charged proteins or cellular structures. The unique physiochemical properties of these
35 nascent proteins could facilitate the formation of novel and diverse protein complexes.

36 Our three-dimensional analyses on de novo proteins and complexes revealed contrasting patterns
37 between the isolated protein structure and protein complex. Consistent with the expectation based on
38 high levels of ISD in de novo proteins and findings in other species (Peng and Zhao 2023), we found
39 that the tertiary structures of de novo genes in isolation are simple with limited number of structural
40 elements and not well-folded in general. Only a tiny percent (3.43%) of de novo protein had confidently
41 modeled folding structures based on Alphafold2. This general feature could reflect the nature of
42 disorder propensities of de novo proteins. Surprisingly, however, AlphaFold2-Multimer analyses
43 suggested that most de novo protein complexes (83%) have high binding affinities (Gibbs free energy
44 < -10), despite the disordered nature of de novo proteins in isolation. The binding process also
45 demonstrated the potential conformational changes and enhanced residue-residue contacts for de
46 novo proteins upon interaction. Probably constrained by the rigid bodies of well-folded conserved
47 proteins, interfaces of protein-protein interaction are generally controlled by a small and
48 complementary set of contact residues that maintains most of the binding affinity (Clackson and Wells
49 1995). Different from the interactions between rigid bodies, the soft bodies of de novo proteins could
50 allow for more contact residues and wider surfaces, thereby leading to high binding affinities between
51 proteins.

52 Therefore, our results further suggest two complementary models for structural evolution of de novo
53 proteins: the evolution in solitude (EIS) and the evolution in complex (EIC) (Figure 6b). The EIS model
54 emphasizes the intuitive and isolated way of structural evolution step by step over evolutionary time
55 from disordered to partially disordered and then to well-folded. Some distinguished features of de novo
56 proteins, including high positive charges (Figure 4c), small molecular weights (Supplementary figure
57 8c), more residue-residue contacts in complexes (Figure 5c left), lower free energy in complexes
58 (Figure 5c right), and widespread strong binding for most of de novo proteins (>83%), allow for the
59 second model EIC that emphasizes the role of protein complex comprised of de novo protein and
60 well-folded protein in inducing the evolution of folding domains. The EIC model is also consistent with
61 the previous finding that folding is not necessary for binding (Chebaro, et al. 2015). In EIC model, the
62 formation of de novo protein complex could be instant and unspecific after protein emergence, much
63 earlier than the formation of well-folded protein structure in isolation. The EIC model suggests that the
64 tertiary structure evolution of de novo proteins could go through steps from the multi-residue binding
65 (Figure 5c), the binding-induced folding (Figure 5a-5b), and to potentially directional specific binding.
66 The binding-induced folding might be a key mechanism facilitating the rapid decrease in disorder
67 within de novo proteins, presenting an intriguing area for future research.

59

70 **Figure 6.** The schematic illustration for molecular diffusion and structural evolution of de novo proteins.

71 (a) The schematic molecular diffusion and movement showing differences in diffusion speed based on
72 protein charges and molecular weight differences between de novo genes and duplicates (also see
73 Supplementary figure 8c for molecular weight differences). The "+" indicates the general positive
74 charges in de novo proteins and outside of the cell membrane. The "-" indicates the more negatively
75 charged proteins from duplicates and the inner side of the cell membrane. The size difference

76 indicates the general pattern of significantly less molecular weight in de novo genes than in gene
77 duplicates. (b) Two models of protein folding evolution for de novo protein: the evolution in “solitude”
78 model (EIS) and the evolution in complex model (EIC).

79 Overall, our study challenges the traditional view of slow protein evolution by demonstrating that de
80 novo genes can evolve rapidly in structural elements within a relatively short evolutionary timeframe.

81 Although gene duplicates represent over 70% of protein-coding genes, de novo genes in general have
82 faster evolutionary rate in structural changes which highlight the importance of de novo gene
83 emergence as a distinguished source of genetic innovation in organisms. The faster-binding of de
84 novo genes prior to their well-folded structures could be one of mechanisms through which de novo
85 genes are fixed in population, evolve rapidly to acquire new functions, and integrate into existing
86 biological networks by protein-protein interactions. Despite these intriguing patterns, all analyses of
87 this study are based on the *in-silico* estimation which could pose some potential limitations. Future
88 research in this area could provide further insights into the mechanisms driving the rapid evolution of
89 de novo genes and their impacts on the evolution of complex biological systems.

10 Conclusion

1 Our research indicates distinct patterns of rapid structural transformation in de novo genes over a
2 relatively brief evolutionary timeframe of 1-2 million years. Additionally, we estimate that de novo
3 proteins require no longer than five million years to attain an intrinsic structural order comparable to
4 that observed in gene duplicates. Exceptional characteristics of de novo genes, such as their low
5 molecular weights, positive net charges, and strong binding affinities, and more residue-residue
6 contacts, likely drive their efficient diffusion and interactions with other molecules, which are essential
7 for their evolution of biological functions. Hence, our findings highlight the unique mechanisms by
8 which these continuously emerging de novo proteins could escape from a prolonged period of solitary
9 existence in evolutionary history.

)0 **Methods**

)1 The de novo gene list and origination branches (ages) were retrieved from a previous study (Zhang, et
al. 2019), which was based on the synteny alignment between focal species *O. sativa japonica* (br1)
and outgroup species. Based on the *Oryza* phylogenetic tree, the 11 species were assigned to six age
groups for de novo genes: *O. rufipogon* (br2), *O. sativa* subspecies *indica* and *O. nivara* (br3), *O.*
glaberrima and *O. barthii* (br4), *O. glumaepatula* (br5), and *O. meridionalis* (br6). The divergence time
was based on the previous report (Stein, et al. 2018). The gene duplicates were identified based on
BLASTP comparison of genome-wide protein sequences (-evalue 0.001 -seg yes). The gene ages for
these genes were determined with a two-step synteny-based method: 1) the reciprocal best
orthologous genes were exhaustively searched between focal species and outgroup species; 2) the
gene synteny blocks were then constructed based on a criterion of no more than 5 genes within the
range of reciprocal best pairs. Due to the higher number of duplicated genes, the groups were further
extended into another 3 branch groups, which are *O. punctata* (br7), *O. brachyantha* (br8), and *L.*
perrieri (br9).

)14 The genome reference and gene annotations (v66) were downloaded from the Gramene database
(<http://ftp.gramene.org/oge/release-current/>) (Gupta, et al. 2016). All RNAseq short-reads data
sequenced with the Illumina platform for *Oryza sativa* were downloaded from NCBI SRA database
(~400GB bases, 08-25-2023, Supplementary table 6). We filtered the samples with fastp (Chen, et al.

18 2018) and mapped cleaned reads to the genome reference using STAR v2.7.0a (Dobin, et al. 2013).

19 The expression level for all genes and isoforms were measured with RSEM (Li and Dewey 2011).

20 Since co-expression analysis often involves the relationships between genes across multiple samples,

21 transcripts per million (TPM) was chosen to measure expression because it's commonly used for

22 inter-sample comparisons. The gene co-expression was analyzed with the Pearson test. We defined

23 the co-expression gene partners (CGP) as the top 30 co-expressed genes with significant interaction

24 signals for each de novo genes ($p < 10^{-5}$). We also randomly picked up 200 duplicated genes for

25 comparison.

26 The intrinsic structural disorder (ISD) of protein-coding genes for rice genome

27 (<http://ftp.gramene.org/oge/release-current/>) (Gupta, et al. 2016) was analyzed with metapredict (v2.3),

28 a deep-learning based consensus predictor (Emenecker, et al. 2021). ISD proteins were defined as

29 proteins with over 100% of residues under disordered states (threshold 1). The ISD level or proportion

30 was evaluated with the fraction of ISD segment out of the full length of a protein. We performed a

31 linear regression analysis on the median ISD levels of proteins across different evolutionary stages,

32 using the 'lm' function in the R platform, to assess their relationship with evolutionary time.

33 The three-dimensional structures of de novo proteins were firstly estimated with AlphaFold2 with

34 default parameters and the structural elements were extracted with STRIDE (Heinig and Frishman

35 2004; Jumper, et al. 2021). For gene duplicates, we randomly picked 30 genes from each branch. To

36 elucidate the evolutionary dynamics of protein structure, we quantified the proportion of unstructured
37 (random coil) and structured (α -helices and β -strands) regions in both de novo genes and gene
38 duplicates ($P_{2nd-structure}$). These proportions are defined by the equations:

39
$$P_i = l_i/l_{total}$$

40 Where i represents coil, α -helix, 3_{10} helix, or β -strand, the l_i is the cumulative length of each element i ,
41 and l_{total} denotes the total protein length. The median values for P_i were used to conduct linear
42 regression against the evolutionary time with R platform.

43 Molecular recognition features, commonly known as MoRFs, are prevalent components found within
44 disordered regions of proteins, which could transform from a disordered to an ordered state when they
45 bind to their respective protein partners. We predicted the MoRFs using fMoRFpred and compared
46 their proportions between gene duplicates and de novo genes (Yan, et al. 2016). The online tool of
47 ipc2 was used to evaluate isoelectric point (PI) and molecular weights (Da) for all de novo genes and
48 200 duplicated genes randomly selected (Kozlowski 2021). The hydrophobicity scores were estimated
49 with the previous reported method (Wilson, et al. 2017).

50 We further classified protein 3D-structures based on Alphafold2 into three groups. The
51 high-confidence potential folding was defined as at least one element over 10 amino acids with
52 pLDDT > 0.9 . The medium-confidence folding was defined as at least one element over 10 amino
53 acids with pLDDT > 0.7 . Others are defined as low-confidence quality folding. To understand whether

54 the folding conformation could be changed upon protein binding, we chose both highly-confidence
55 folding and low-confidence folding genes and their potential protein partners to conduct protein-protein
56 docking analysis with AlphaFold2-Multimer (Evans, et al. 2022). The protein partners were chosen
57 based on the criteria: 1) low percentage of disordered regions (< 5%); 2) highly correlated expression
58 pattern (co-expression correlation coefficient > 0.8); 3) partner sequence over 200 amino acids and
59 under 500 amino acids. 4) partner as a relatively old gene (br6-br9). The binding free energy and the
60 dissociation constant were estimated with PRODIGY (Vangone and Bonvin 2015; Xue, et al. 2016).
61 The spontaneity and stability of the binding process for protein-protein interactions was evaluated with
62 the change in Gibbs free energy (ΔG) and the dissociation constant (K_d). The cutoff $\Delta G = -10$ kcal/mol
63 (K_d of 10^{-8} M) was used to indicate high affinity (Nikam, et al. 2023; Yugandhar and Gromiha 2014).
64 Generally, a lower K_d value (< 1) and a very negative ΔG indicate a more stable and tightly bound
65 complex (Supplementary figure 6b). Because the residue-residue (RR) pairs or contacts could occur
66 between a residue in one protein and multiple residues of its partner, we counted RR as both raw
67 numbers and nonredundant ratios. The raw numbers were based on number of total RR pairs
68 estimated with the tool PRODIGY, while the nonredundant ratios were estimated by focusing on
69 unique pairs and adjusted with total protein length of complex.

70 **Acknowledgments:**

71 The study was supported by Guggenheim Fellowship of Manyuan Long.

72 Competing Interests: The authors have declared that no competing interests exist.

73 **References**

74 An NA, et al. 2023. De novo genes with an lncRNA origin encode unique human brain developmental
75 functionality. *Nature ecology & evolution* 7: 264-278. doi: 10.1038/s41559-022-01925-6

76 Anfinsen CB, Haber E 1961. Studies on the reduction and re-formation of protein disulfide bonds.
77 *Journal of Biological Chemistry* 236: 1361-1363.

78 Basile W, Sachenkova O, Light S, Elofsson A 2017. High GC content causes orphan proteins to be
79 intrinsically disordered. *PLoS computational biology* 13: e1005375.

80 Betrán E, Long M 2022. Evolutionary New Genes in a Growing Paradigm. *Genes* 13: 1605.

81 Birchler JA, Yang H 2022. The multiple fates of gene duplications: Deletion, hypofunctionalization,
82 subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. *Plant
83 Cell* 34: 2466-2474. doi: 10.1093/plcell/koac076

84 Bitard-Feildel T, Heberlein M, Bornberg-Bauer E, Callebaut I 2015. Detection of orphan domains in
85 Drosophila using "hydrophobic cluster analysis". *Biochimie* 119: 244-253. doi:
86 10.1016/j.biochi.2015.02.019

87 Blevins WR, et al. 2021. Uncovering de novo gene birth in yeast using deep transcriptomics. *Nature
88 Communications* 12: 604.

89 Bornberg-Bauer E, Hlouchova K, Lange A 2021. Structure and function of naturally evolved de novo
90 proteins. *Current Opinion in Structural Biology* 68: 175-183.

91 Brodsky S, et al. 2020. Intrinsically Disordered Regions Direct Transcription Factor In Vivo Binding
92 Specificity. *Mol Cell* 79: 459-471.e454. doi: 10.1016/j.molcel.2020.05.032

93 Broeils LA, Ruiz-Orera J, Snel B, Hubner N, van Heesch S 2023. Evolution and implications of de novo
94 genes in humans. *Nature ecology & evolution*: 1-12.

95 Bryant P, Pozzati G, Elofsson A 2022. Improved prediction of protein-protein interactions using
96 AlphaFold2. *Nature Communications* 13: 1265. doi: 10.1038/s41467-022-28865-w

97 Bungard D, et al. 2017. Foldability of a Natural De Novo Evolved Protein. *Structure* 25:
98 1687-1696.e1684. doi: 10.1016/j.str.2017.09.006

99 Cai J, Zhao R, Jiang H, Wang W 2008. De novo origination of a new protein-coding gene in
100 *Saccharomyces cerevisiae*. *Genetics* 179: 487-496.

1 Carvunis A-R, et al. 2012. Proto-genes and de novo gene birth. *Nature* 487: 370-374. doi:
2 10.1038/nature11184

3 Chebaro Y, Ballard AJ, Chakraborty D, Wales DJ 2015. Intrinsically Disordered Energy Landscapes.
4 *Scientific Reports* 5: 10386. doi: 10.1038/srep10386

5 Chen J, et al. 2023a. Evolutionarily new genes in humans with disease phenotypes reveal functional
6 enrichment patterns shaped by adaptive innovation and sexual selection. *biorxiv*:
7 2023.2011.2014.567139. doi: 10.1101/2023.11.14.567139

8 Chen R, et al. 2023b. A de novo evolved gene contributes to rice grain shape difference between
9 indica and japonica. *Nature Communications* 14: 5906. doi: 10.1038/s41467-023-41669-w

10 Chen S, Krinsky BH, Long M 2013. New genes as drivers of phenotypic evolution. *Nat Rev Genet* 14:
11 645-660. doi: 10.1038/nrg3521

12 Chen S, Zhou Y, Chen Y, Gu J 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics*
13 34: i884-i890. doi: 10.1093/bioinformatics/bty560

14 Clackson T, Wells JA 1995. A hot spot of binding energy in a hormone-receptor interface. *Science* 267:
15 383-386. doi: 10.1126/science.7529940

16 Couso J-P, Patraquim P 2017. Classification and function of small open reading frames. *Nature*
17 reviews Molecular cell biology 18: 575-589.

18 Craveur P, et al. 2015. Protein flexibility in the light of structural alphabets. *Front Mol Biosci* 2: 20. doi:
19 10.3389/fmolsb.2015.00020

20 Dobin A, et al. 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29: 15-21. doi:
21 10.1093/bioinformatics/bts635

22 Dunker AK, et al. 2001. Intrinsically disordered protein. *J Mol Graph Model* 19: 26-59. doi:
23 10.1016/s1093-3263(00)00138-8

24 Ekman D, Elofsson A 2010. Identifying and quantifying orphan protein sequences in fungi. *Journal of*
25 *Molecular Biology* 396: 396-405.

26 Emenecker RJ, Griffith D, Holehouse AS 2022. Metapredict V2: An update to metapredict, a fast,
27 accurate, and easy-to-use predictor of consensus disorder and structure. *biorxiv*:
28 2022.2006.2006.494887. doi: 10.1101/2022.06.06.494887

29 Emenecker RJ, Griffith D, Holehouse AS 2021. Metapredict: a fast, accurate, and easy-to-use
30 predictor of consensus disorder and structure. *Biophysical Journal* 120: 4312-4319. doi:
31 10.1016/j.bpj.2021.08.039

32 Evans R, et al. 2022. Protein complex prediction with AlphaFold-Multimer. *biorxiv*:
33 2021.2010.2004.463034. doi: 10.1101/2021.10.04.463034

34 Fagundes NJR, Bisso-Machado R, Figueiredo P, Varal M, Zani ALS 2022. What We Talk About When
35 We Talk About "Junk DNA". *Genome Biol Evol* 14. doi: 10.1093/gbe/evac055

36 Fersht A. 1999. Structure and mechanism in protein science: a guide to enzyme catalysis and protein
37 folding: Macmillan.

38 Gupta P, et al. 2016. Gramene Database: Navigating Plant Comparative Genomics Resources. *Curr*
39 *Plant Biol* 7-8: 10-15. doi: 10.1016/j.cpb.2016.12.005

40 Hazra MK, Levy Y 2022. Affinity of disordered protein complexes is modulated by entropy–energy
41 reinforcement. *Proceedings of the National Academy of Sciences* 119: e2120456119. doi:
42 doi:10.1073/pnas.2120456119

43 Heames B, et al. 2023. Experimental characterization of de novo proteins and their unevolved
44 random-sequence counterparts. *Nature ecology & evolution* 7: 570-580. doi:
45 10.1038/s41559-023-02010-2

46 Heames B, Schmitz J, Bornberg-Bauer E 2020. A Continuum of Evolving De Novo Genes Drives
47 Protein-Coding Novelty in *Drosophila*. *Journal of Molecular Evolution* 88: 382-398. doi:
48 10.1007/s00239-020-09939-z

49 Heinen TJ, Staubach F, Häming D, Tautz D 2009. Emergence of a new gene from an intergenic region.
50 *Current biology* 19: 1527-1531.

51 Heinig M, Frishman D 2004. STRIDE: a web server for secondary structure assignment from known
52 atomic coordinates of proteins. *Nucleic Acids Res* 32: W500-502. doi: 10.1093/nar/gkh429

53 Hoekstra HE, Coyne JA 2007. The locus of evolution: evo devo and the genetics of adaptation.
54 *Evolution* 61: 995-1016. doi: 10.1111/j.1558-5646.2007.00105.x

55 Holehouse AS, Kragelund BB 2023. The molecular basis for cellular function of intrinsically disordered
56 protein regions. *Nature reviews Molecular cell biology*. doi: 10.1038/s41580-023-00673-0

57 Ingles-Prieto A, et al. 2013. Conservation of protein structure over four billion years. *Structure* 21:
58 1690-1697. doi: 10.1016/j.str.2013.06.020

59 Jacob F 1977. Evolution and tinkering. *Science* 196: 1161-1166.

60 Jiao L, et al. 2020. A partially disordered region connects gene repression and activation functions of
61 EZH2. *Proceedings of the National Academy of Sciences* 117: 16992-17002. doi:
62 doi:10.1073/pnas.1914866117

3 Johansson-Åkhe I, Wallner B 2022. Improving peptide-protein docking with AlphaFold-Multimer using
4 forced sampling. *Frontiers in Bioinformatics* 2: 85.

5 Jumper J, et al. 2021. Highly accurate protein structure prediction with AlphaFold. *Nature* 596:
6 583-589. doi: 10.1038/s41586-021-03819-2

7 Kaessmann H 2010. Origins, evolution, and phenotypic impact of new genes. *Genome Res* 20:
8 1313-1326. doi: 10.1101/gr.101386.109

9 Knowles DG, McLysaght A 2009. Recent de novo origin of human protein-coding genes. *Genome*
10 research 19: 1752-1759.

11 Kozlowski Lukasz P 2021. IPC 2.0: prediction of isoelectric point and pKa dissociation constants.
12 *Nucleic Acids Research* 49: W285-W292. doi: 10.1093/nar/gkab295

13 Lange A, et al. 2021. Structural and functional characterization of a putative de novo gene in
14 *Drosophila*. *Nature Communications* 12: 1667. doi: 10.1038/s41467-021-21667-6

15 Lee AC-L, Harris JL, Khanna KK, Hong J-H 2019. A comprehensive review on current advances in
16 peptide drug development and design. *International journal of molecular sciences* 20: 2383.

17 Li B, Dewey CN 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a
18 reference genome. *BMC Bioinformatics* 12: 323. doi: 10.1186/1471-2105-12-323

19 Liljas A, et al. 2016. *Textbook of structural biology*: World Scientific.

20 Long M, Langley CH 1993. Natural selection and the origin of jingwei, a chimeric processed functional
21 gene in *Drosophila*. *Science* 260: 91-95. doi: 10.1126/science.7682012

22 Long M, VanKuren NW, Chen S, Vibranovski MD 2013. New gene evolution: little did we know. *Annu*
23 *Rev Genet* 47: 307-333. doi: 10.1146/annurev-genet-111212-133301

24 Mayr E. 1982. *The growth of biological thought: Diversity, evolution, and inheritance*: Harvard
25 University Press.

26 Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN 2009. Protein disorder in the human
27 diseasome: unfoldomics of human genetic diseases. *BMC Genomics* 10: S12. doi:
28 10.1186/1471-2164-10-S1-S12

29 Montañés JC, Huertas M, Messeguer X, Albà MM 2023. Evolutionary Trajectories of New Duplicated
30 and Putative De Novo Genes. *Molecular Biology and Evolution* 40. doi: 10.1093/molbev/msad098

31 Morris R, Black KA, Stollar EJ 2022. Uncovering protein function: from classification to complexes.
32 *Essays Biochem* 66: 255-285. doi: 10.1042/ebc20200108

3 Nikam R, Yugandhar K, Gromiha MM 2023. Deep learning-based method for predicting and classifying
4 the binding affinity of protein-protein complexes. *Biochimica et Biophysica Acta (BBA) - Proteins and*
5 *Proteomics* 1871: 140948. doi: <https://doi.org/10.1016/j.bbapap.2023.140948>

6 Ohno S. 1970. *Evolution by Gene Duplication*: Springer-Verlag.

7 Ohno S 1972. So much "junk" DNA in our genome. *Brookhaven symposia in biology* 23: 366-370.

8 Papadopoulos C, et al. 2021. Intergenic ORFs as elementary structural modules of de novo gene birth
9 and protein evolution. *Genome research* 31: 2303-2315.

0 Peng J, Zhao L 2023. The origin and structural evolution of de novo genes in *Drosophila*. *biorxiv*. doi:
1 10.1101/2023.03.13.532420

2 Qi J, et al. 2023. A Human-Specific De Novo Gene Promotes Cortical Expansion and Folding. *Adv Sci*
3 (Weinh) 10: e2204140. doi: 10.1002/advs.202204140

4 Schmitz JF, Ullrich KK, Bornberg-Bauer E 2018. Incipient de novo genes can evolve from frozen
5 accidents that escaped rapid transcript turnover. *Nature ecology & evolution* 2: 1626-1632.

6 Stein JC, et al. 2018. Genomes of 13 domesticated and wild rice relatives highlight genetic
7 conservation, turnover and innovation across the genus *Oryza*. *Nat Genet* 50: 285-296. doi:
8 10.1038/s41588-018-0040-0

9 Suenaga Y, et al. 2014. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein
10 that inhibits GSK3 β resulting in the stabilization of MYCN in human neuroblastomas. *PLOS Genetics*
11 10: e1003996.

12 Tautz D 2014. The discovery of de novo gene evolution. *Perspect Biol Med* 57: 149-161. doi:
13 10.1353/pbm.2014.0006

14 Tompa P 2002. Intrinsically unstructured proteins. *Trends in Biochemical Sciences* 27: 527-533. doi:
15 10.1016/S0968-0004(02)02169-2

16 Tsaban T, et al. 2022. Harnessing protein folding neural networks for peptide–protein docking. *Nature*
17 *Communications* 13: 176. doi: 10.1038/s41467-021-27838-9

18 Uversky VN 2013. A decade and a half of protein intrinsic disorder: biology still waits for physics.
19 *Protein Sci* 22: 693-724. doi: 10.1002/pro.2261

20 Vakirlis N, et al. 2018. A molecular portrait of de novo genes in yeasts. *Molecular Biology and Evolution*
21 35: 631-645.

22 Vakirlis N, Vance Z, Duggan KM, McLysaght A 2022. De novo birth of functional microproteins in the
23 human lineage. *Cell Reports* 41: 111808. doi: <https://doi.org/10.1016/j.celrep.2022.111808>

24 Vangone A, Bonvin AMJJ 2015. Contacts-based prediction of binding affinity in protein–protein
25 complexes. *eLife* 4: e07454. doi: 10.7554/eLife.07454

26 Vavouri T, Semple JI, Garcia-Verdugo R, Lehner B 2009. Intrinsic Protein Disorder and Interaction
27 Promiscuity Are Widely Associated with Dosage Sensitivity. *Cell* 138: 198-208. doi:
28 10.1016/j.cell.2009.04.029

29 Weibel CA, Wheeler AL, James JE, Willis SM, Masel J. 2023. A new codon adaptation metric predicts
30 vertebrate body size and tendency to protein disorder. In: *eLife Sciences Publications, Ltd.*

31 Wilson BA, Foy SG, Neme R, Masel J 2017. Young genes are highly disordered as predicted by the
32 preadaptation hypothesis of de novo gene birth. *Nature ecology & evolution* 1: 0146.

33 Xia S, et al. 2021. Genomic analyses of new genes and their phenotypic effects reveal rapid evolution
34 of essential functions in *Drosophila* development. *PLOS Genetics* 17: e1009654. doi:
35 10.1371/journal.pgen.1009654

36 Xie C, et al. 2019a. Studying the dawn of de novo gene emergence in mice reveals fast integration of
37 new genes into functional networks. *biorxiv*: 510214. doi: 10.1101/510214

38 Xie C, et al. 2019b. A de novo evolved gene in the house mouse regulates female pregnancy cycles.
39 *eLife* 8: e44392. doi: 10.7554/eLife.44392

40 Xu Y, Wang H, Nussinov R, Ma B 2013. Protein charge and mass contribute to the spatio-temporal
41 dynamics of protein-protein interactions in a minimal proteome. *Proteomics* 13: 1339-1351. doi:
42 10.1002/pmic.201100540

43 Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A 2016. PRODIGY: a web server for
44 predicting the binding affinity of protein–protein complexes. *Bioinformatics* 32: 3676-3678. doi:
45 10.1093/bioinformatics/btw514

46 Yan J, Dunker AK, Uversky VN, Kurgan L 2016. Molecular recognition features (MoRFs) in three
47 domains of life. *Mol Biosyst* 12: 697-710. doi: 10.1039/c5mb00640f

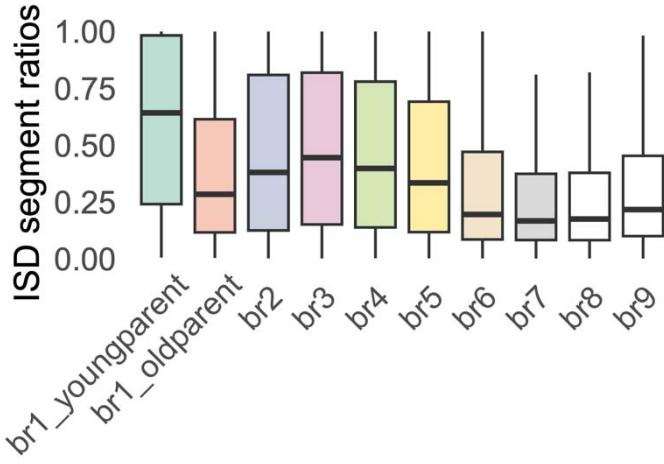
48 Yugandhar K, Gromiha MM 2014. Protein–protein binding affinity prediction from amino acid sequence.
49 *Bioinformatics* 30: 3583-3589.

50 Zhang L, et al. 2019. Rapid evolution of protein diversity by de novo origination in *Oryza*. *Nature ecology & evolution* 3: 679-690.

51 Zhang T, Faraggi E, Li Z, Zhou Y 2013. Intrinsically semi-disordered state and its role in induced
52 folding and protein aggregation. *Cell Biochem Biophys* 67: 1193-1205. doi:
53 10.1007/s12013-013-9638-0

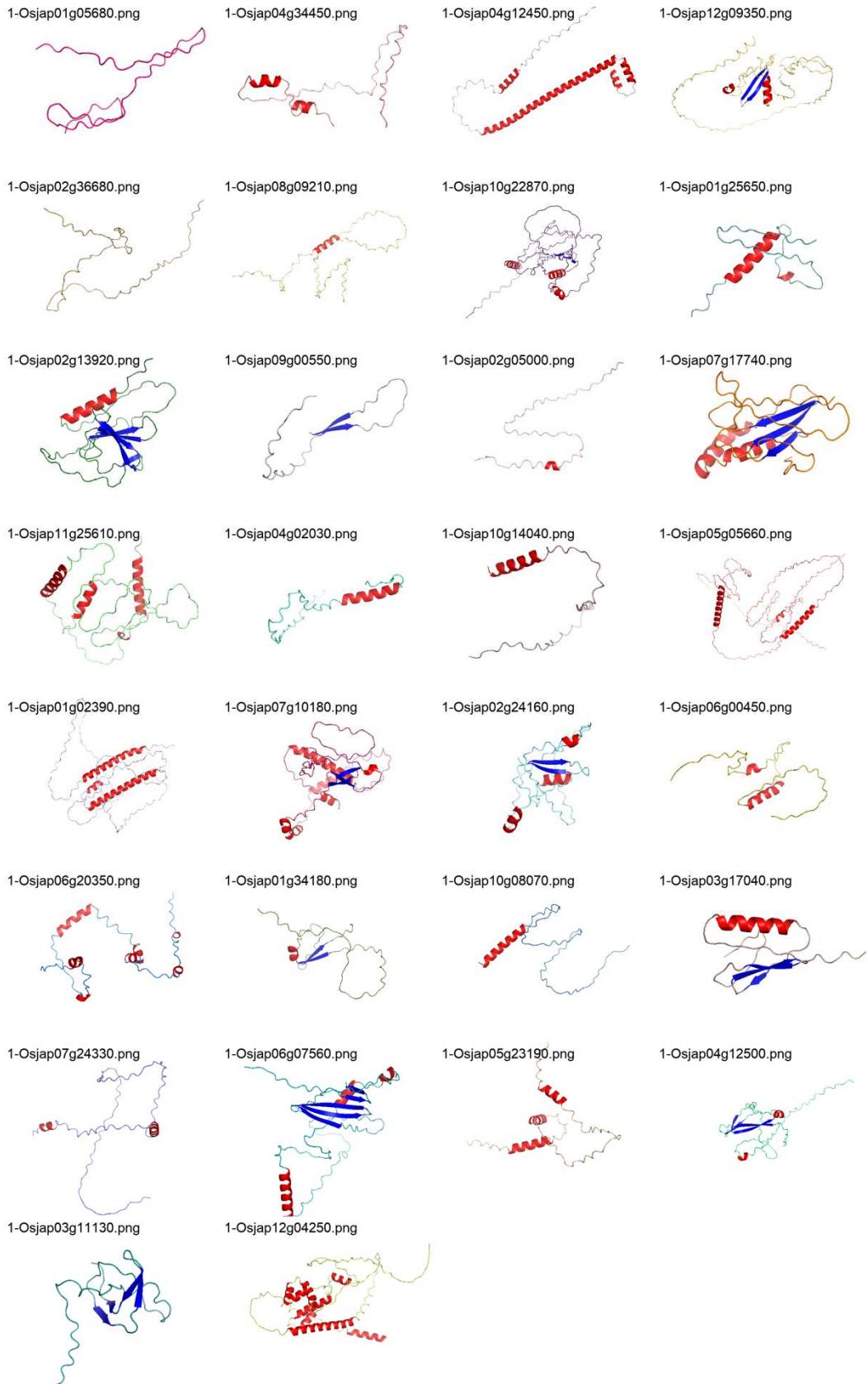
55 Zhao L, Saelao P, Jones CD, Begun DJ 2014. Origin and spread of de novo genes in *Drosophila*
56 *melanogaster* populations. *Science* 343: 769-772.

57 Zhuang X, Cheng CC 2021. Propagation of a De Novo Gene under Natural Selection: Antifreeze
58 Glycoprotein Genes and Their Evolutionary History in Codfishes. *Genes (Basel)* 12. doi:
59 10.3390/genes12111777

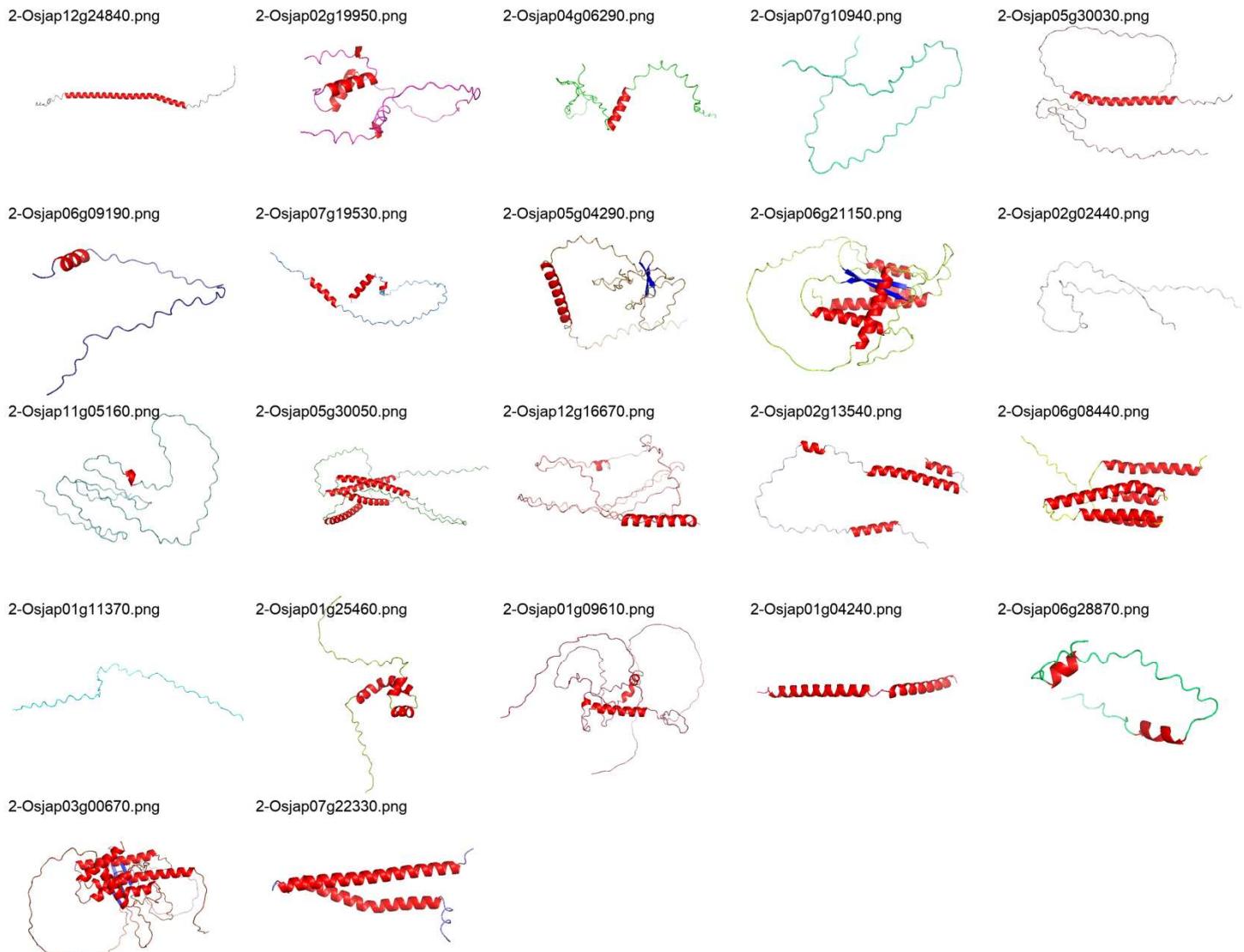

60 Zhuang X, Yang C, Murphy KR, Cheng C-HC 2019. Molecular mechanism and history of non-sense to
61 sense evolution of antifreeze glycoprotein gene in northern gadids. *Proceedings of the National
62 Academy of Sciences* 116: 4400-4405. doi: doi:10.1073/pnas.1817138116

63

64

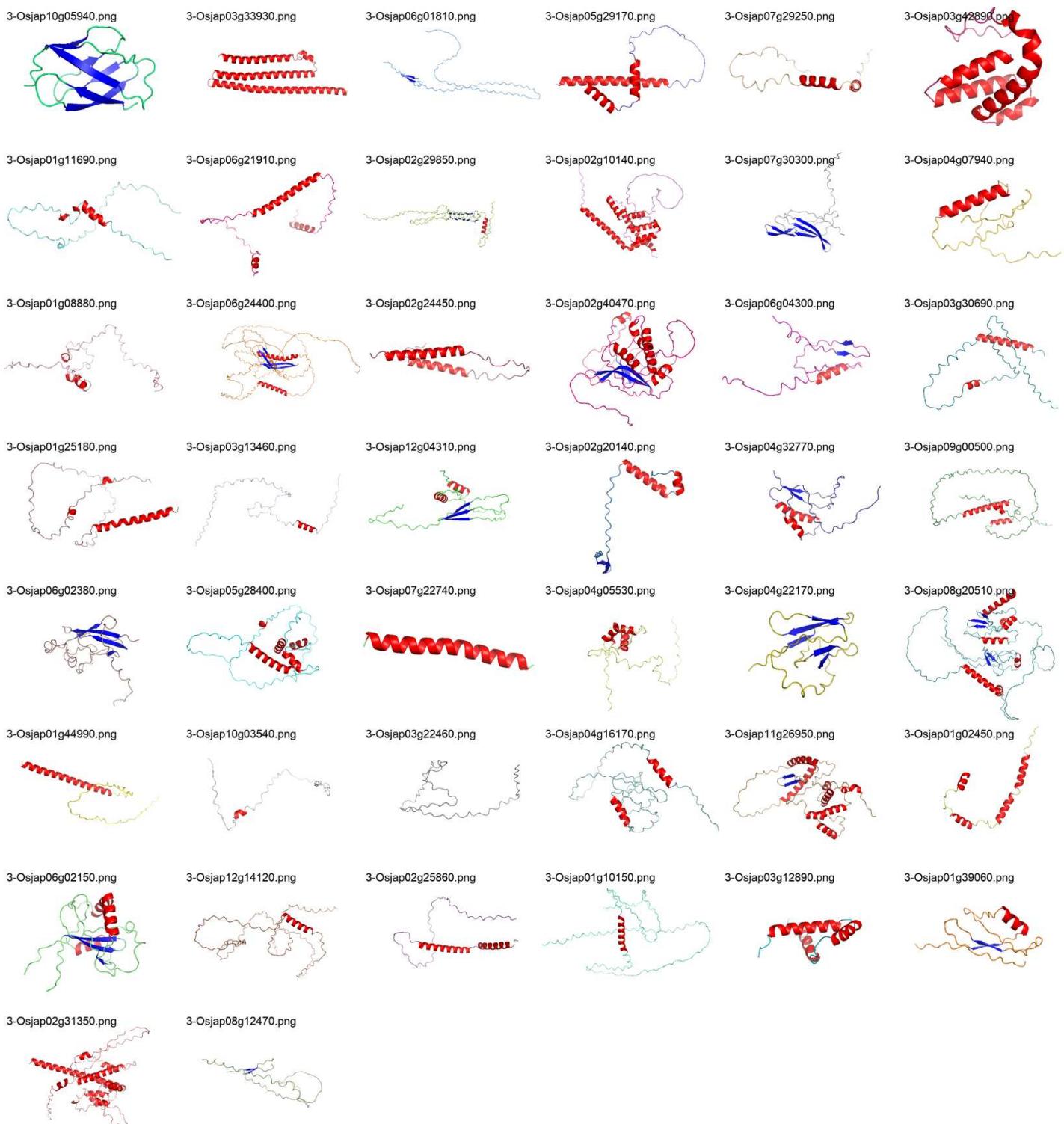

65

56 **Supplementary figures and legends**

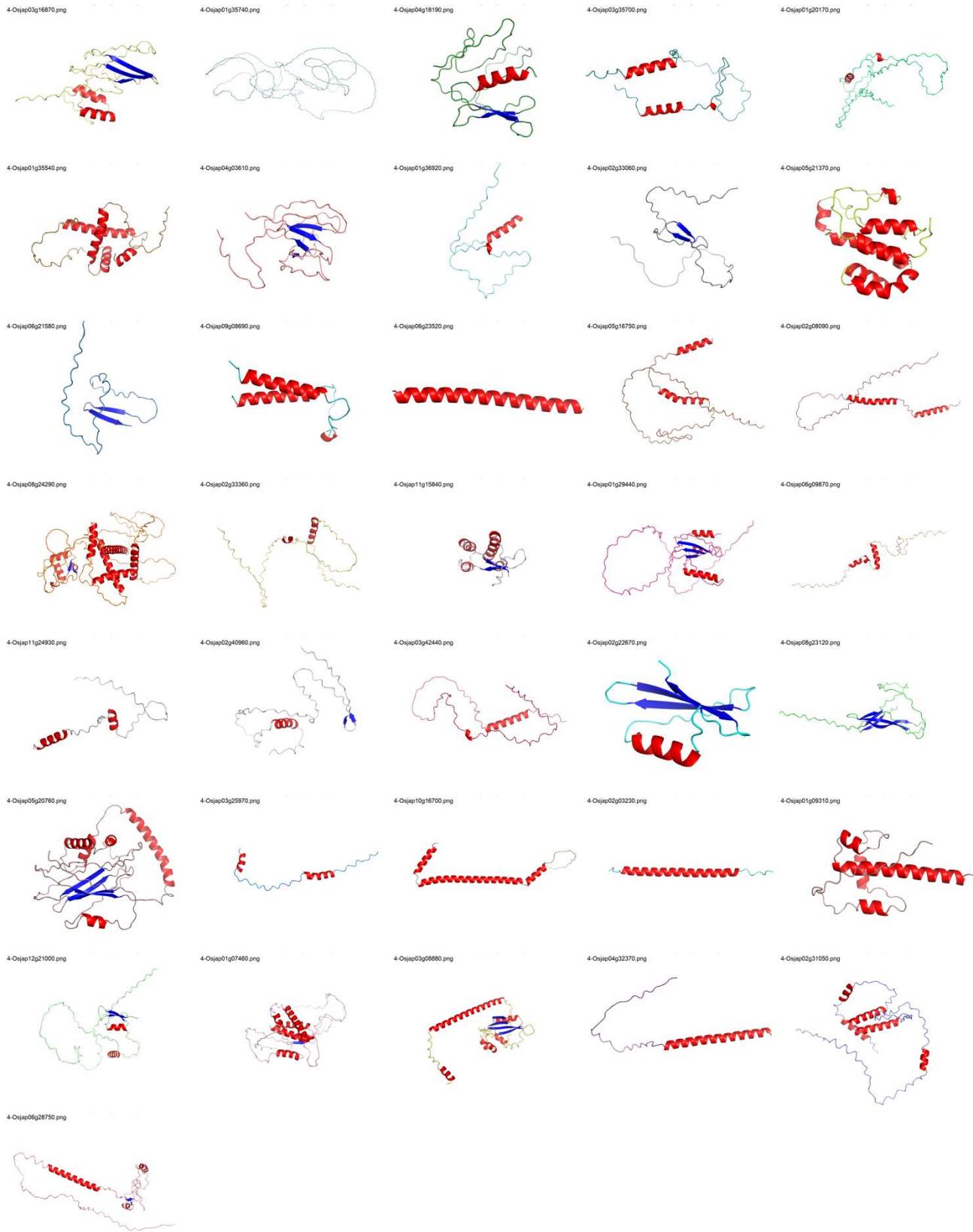


57

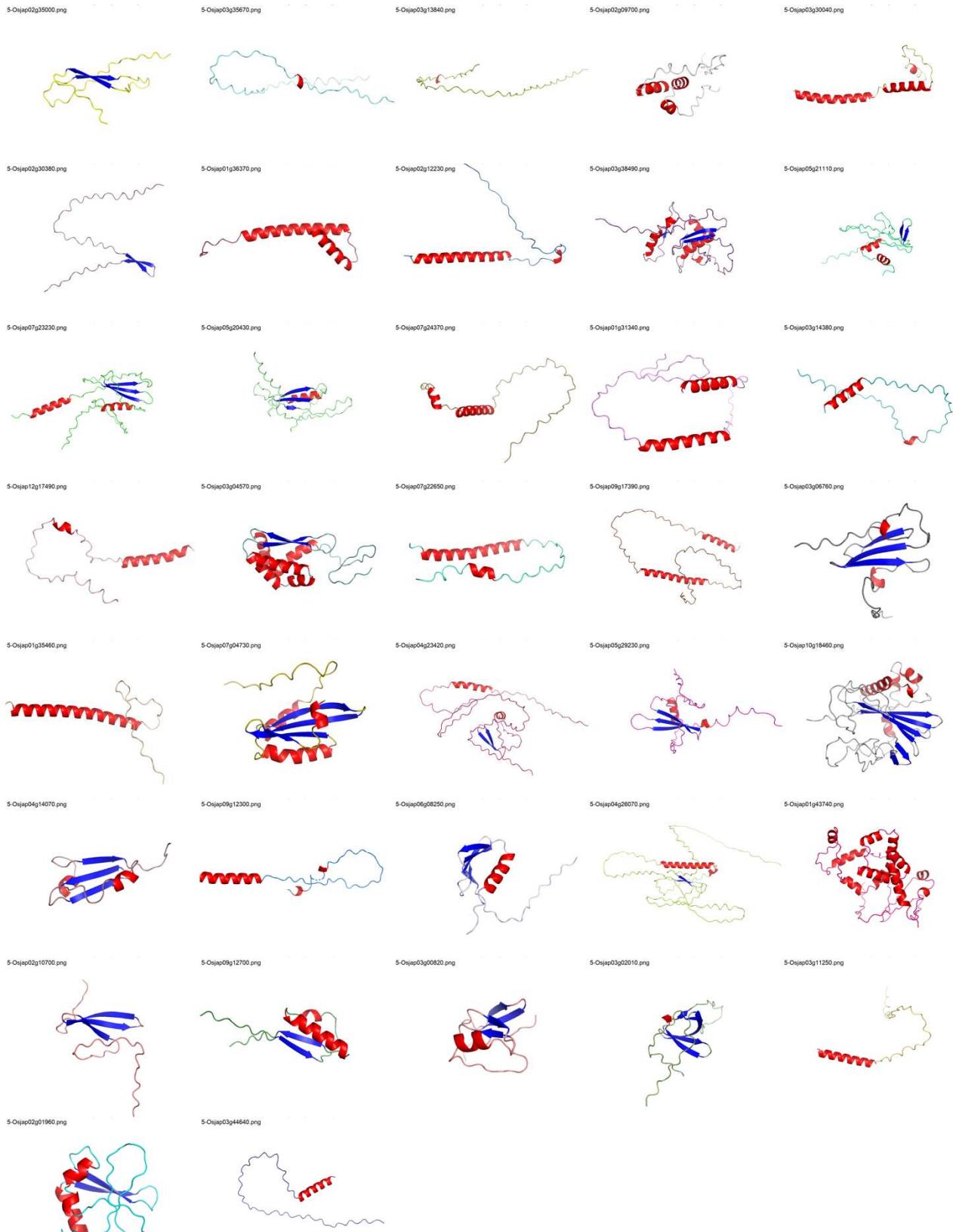
58 Supplementary figure 1. The fractions of intrinsic structure disordered regions for duplicated genes
59 across evolutionary ages from young to old. The br1_youngparent and br1_olddparent indicate young
60 gene duplicates at br1 with parental genes from br2-5 and br6-9, respectively.

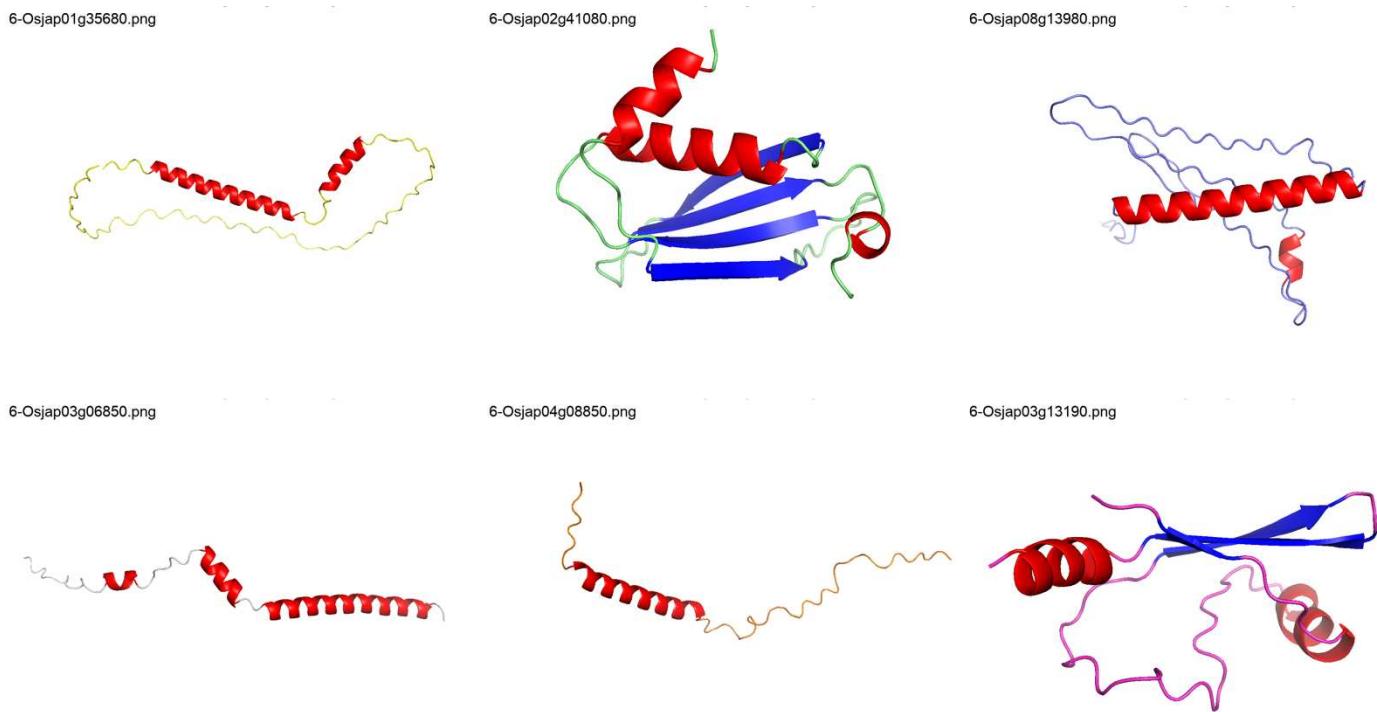


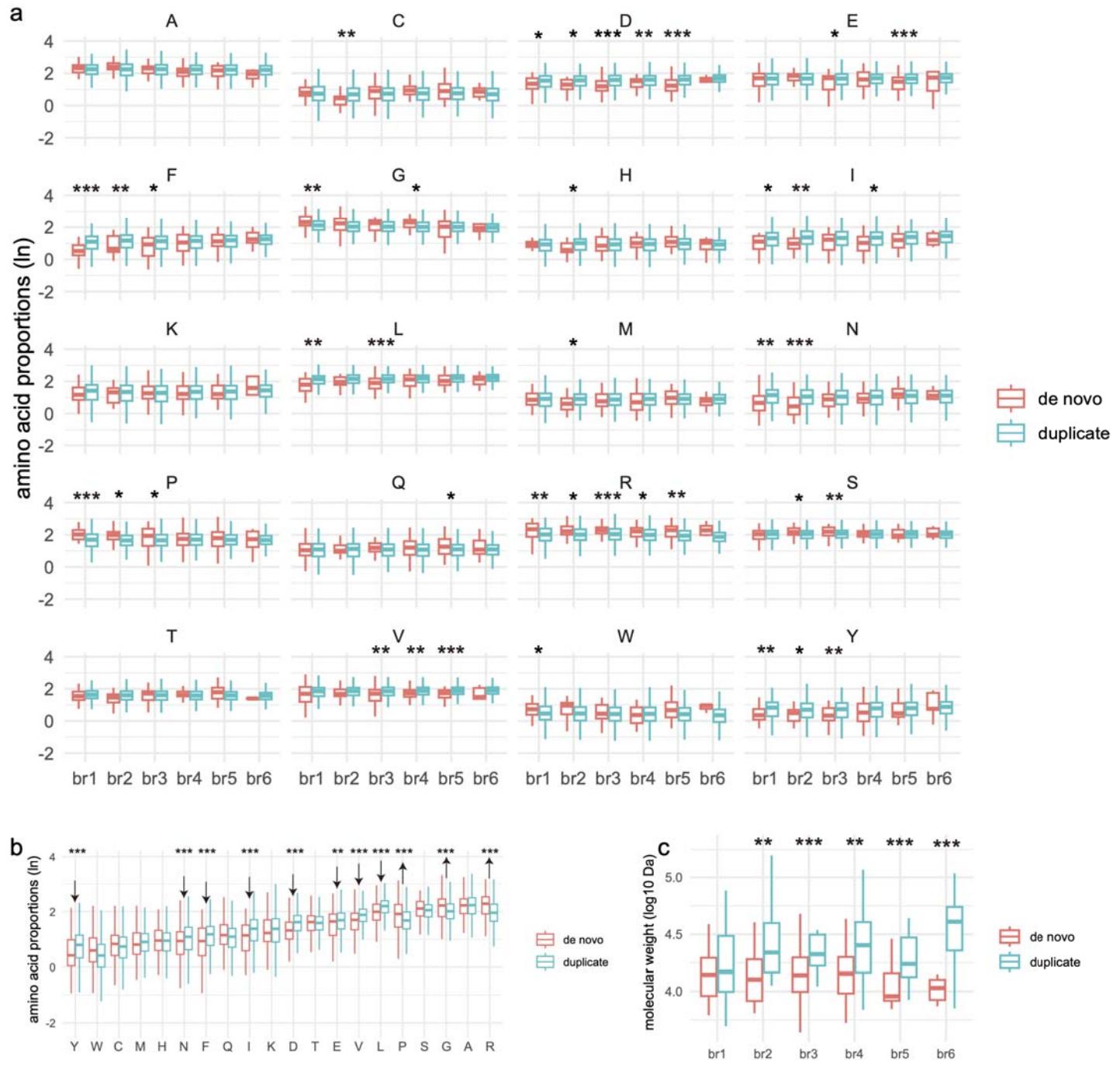
72 Supplementary figure 2. The protein tertiary structure of de novo genes at br1 predicted with
73 AlphaFold2 (ranked_0). The different colors show the predicted different elements (random coil,
74 α -helices, and β -strands). The folding qualities and categories were listed in Supplementary table 5.



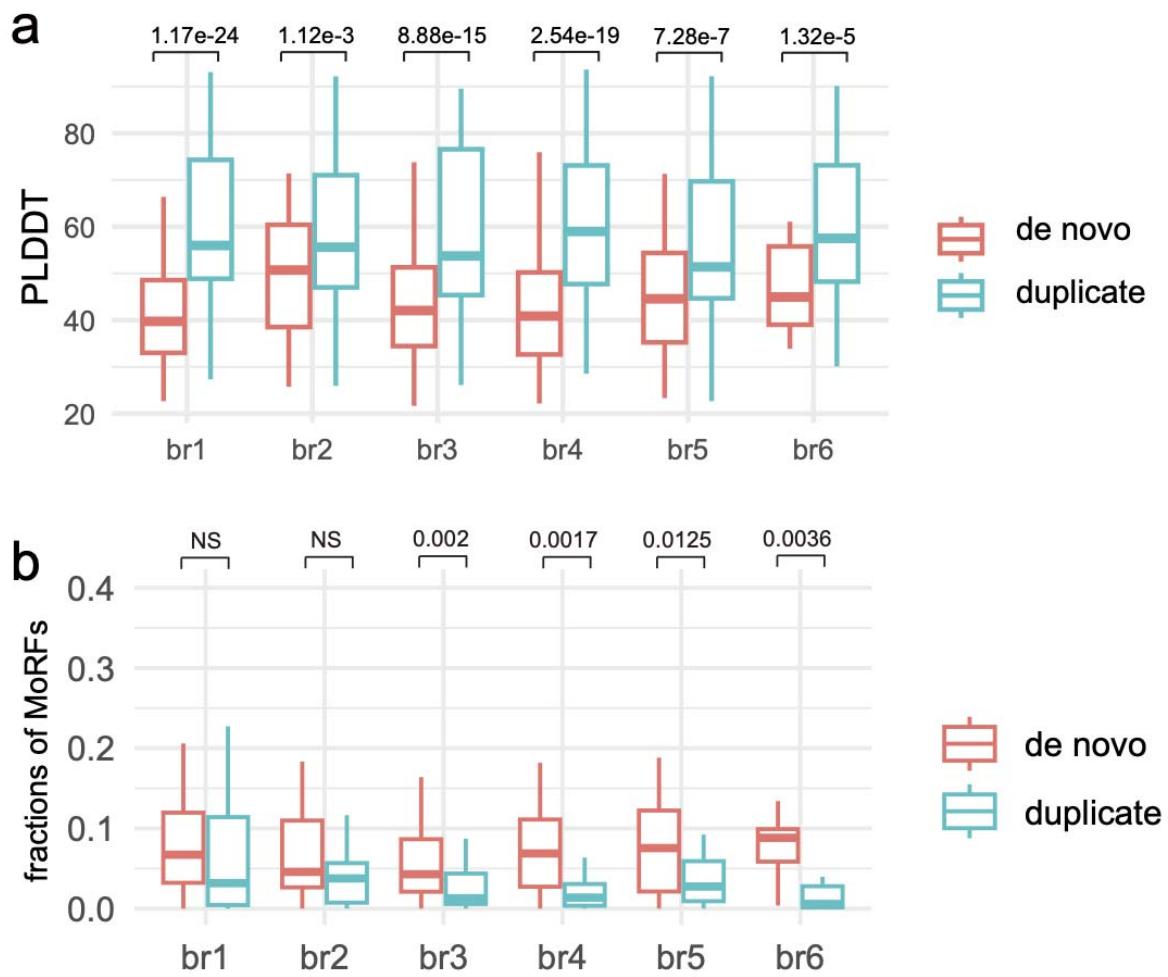
75
76 Supplementary figure 3. The protein tertiary structure of de novo genes at br2 predicted with
77 AlphaFold2 (ranked_0). The different colors show the predicted different elements (random coil,

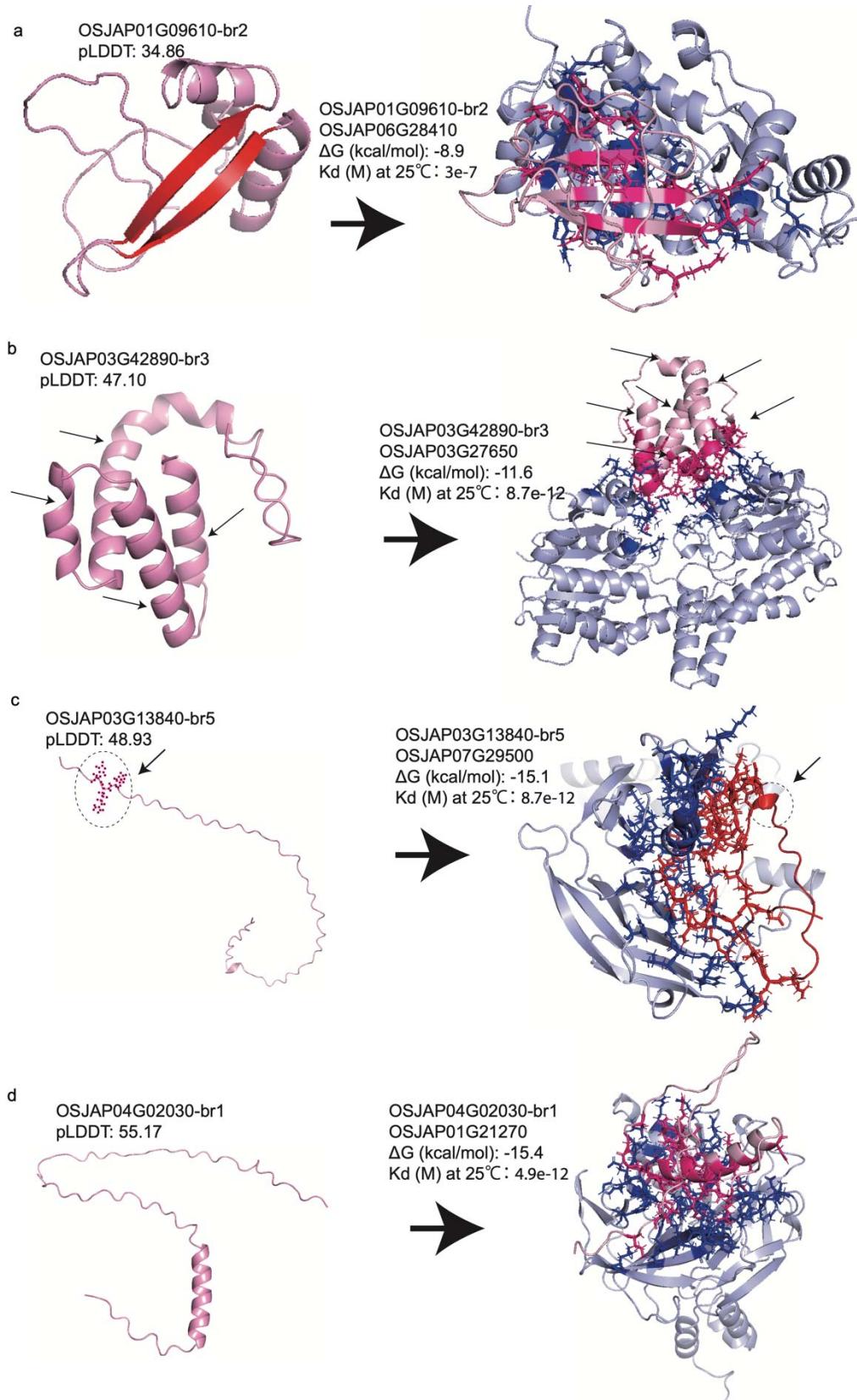

78 α -helices, and β -strands). The folding qualities and categories were listed in Supplementary table 5.


30 Supplementary figure 4. The protein tertiary structure of de novo genes at br3 predicted with
31 AlphaFold2 (ranked_0). The different colors show the predicted different elements (random coil,
32 α -helices, and β -strands). The folding qualities and categories were listed in Supplementary table 5.


34 Supplementary figure 5. The protein tertiary structure of de novo genes at br4 predicted with
35 AlphaFold2 (ranked_0). The different colors show the predicted different elements (random coil,
36 α -helices, and β -strands). The folding qualities and categories were listed in Supplementary table 5.

38 Supplementary figure 6. The protein tertiary structure of de novo genes at br5 predicted with
39 AlphaFold2 (ranked_0). The different colors show the predicted different elements (random coil,
40 α -helices, and β -strands). The folding qualities and categories were listed in Supplementary table 5.


41
42 Supplementary figure 7. The protein tertiary structure of de novo genes at br6 predicted with
43 AlphaFold2 (ranked_0). The different colors show the predicted different elements (random coil,
44 α -helices, and β -strands). The folding qualities and categories were listed in Supplementary table 5.


5

6 Supplementary Figure 8. Comparisons of amino acid compositions between de novo genes and gene
 7 duplicates across evolutionary branches. (a) Comparisons of the compositions (expressed as the
 8 natural logarithm of percentages) between de novo genes and gene duplicates for different amino

9 acids within various branches. (b) Overall comparisons of compositions (natural logarithm of
0 percentages) between de novo genes and gene duplicates for different amino acids, without age
1 differentiation. Arrows pointing upward indicate significantly higher medians in de novo genes, and
2 vice versa. (c) The comparisons of molecular weight (logarithm) between de novo genes and gene
3 duplicates for genes of different ages. Note: All comparisons are based on the Wilcoxon test and only
4 the significant pairs are shown ("*", $p < 0.05$; "**", $p < 0.01$; "***", $p < 0.001$).

)6 Supplementary Figure 9. Comparisons of pLDDT scores and Gibbs free energies between de novo
)7 genes and gene duplicates. (a) pLDDT score comparisons between de novo proteins and duplicates
)8 for folding predictions of isolated proteins with AlphaFold2 across evolutionary branches (ranked_0 to
)9 ranked_4). (b) The comparisons of proportions of MoRFs between de novo proteins and duplicates
)10 with the Wilcox test (p values are shown above).

12 Supplementary Figure 10. The four examples of 3D structures of de novo genes and their protein
13 complex with binding affinities (Supplementary table 7). pLDDT indicates modeling quality for the
14 model of ranked_0 from AlphaFold2. (a) A new β -strand appears upon binding relative to protein in
15 isolation. (b) Two more α -helices appear in protein complex (shown with arrows). (c) The random coil
16 segment changes into an α -helix in protein complex (shown with arrows). (d) No visible change from
17 single protein to the complex for de novo protein.