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Abstract

A subset of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are
encoded in their biosynthetic gene clusters (BGCs) with enzymes annotated as lantibiotic
dehydratases. The functions of these putative lantibiotic dehydratases remain unknown. Here, we
characterize an NRPS-PKS BGC with a putative lantibiotic dehydratase from the bacterium
Stackebrandtia nassauensis (sna). Heterologous expression revealed several metabolites
produced by the BGC, and the omission of selected biosynthetic enzymes revealed the
biosynthetic sequence towards these compounds. The putative lantibiotic dehydratase catalyzes
peptide bond formation that extends the peptide scaffold opposite to the NRPS and PKS
biosynthetic direction. The condensation domain of the NRPS catalyzes the formation of a ureido
group, and bioinformatics analysis revealed distinct active site residues of ureido-generating
condensation (UreaC) domains. This work demonstrates that the annotated Ilantibiotic
dehydratase serves as a separate amide bond-forming machinery in addition to the NRPS, and
that the lantibiotic dehydratase enzyme family possesses diverse catalytic activities in the

biosynthesis of both ribosomal and non-ribosomal natural products.
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Introduction

Nonribosomal peptides (NRPs) are natural products that possess a range of biological activities,
such as antibiotic,” anticancer,? biosurfactant,® and immunosuppressant.* Their peptide scaffold
is biosynthesized by nonribosomal peptide synthetases (NRPSs), multimodular enzymes that
work like assembly lines.>” A typical peptide elongation module consists of three domains:
condensation (C), adenylation (A), and thiolation (T). A conserved serine of the T domain is
posttranslationally modified by the addition of phosphopantetheine.?® The A domain activates an
amino acid by adenylation and loads it onto the phosphopantetheine arm of the T domain as an
acyl-thioester intermediate. The C domain then catalyzes the formation of peptide bonds between

intermediates bound to the T domain to extend the peptide chain (Figure 1A).

A subset of NRPSs are encoded in biosynthetic gene clusters (BGCs) with enzymes annotated
as lantibiotic dehydratases %" Lantibiotic dehydratases (protein family PF04738) generate the
dehydroamino acids'? of ribosomally synthesized and post-translationally modified peptides
(RiPPs)," including lanthipeptides™ (called lantibiotics if they display antibiotic activity) and
thiopeptides.'* The dehydration reaction involves the glutamylation of serine and threonine
hydroxyl groups using glutamyl-tRNAGY and subsequent elimination of glutamate to generate
peptidyl dehydroamino acids'®'s (Figure 1B). Other enzymes frequently mis-annotated as
lantibiotic dehydratase are peptide aminoacyl-tRNA ligases (PEARLs).'6-'® PEARLs catalyze
peptide bond formation at the C-terminus of a carrier peptide using adenosine-5'-triphosphate
(ATP) and aminoacyl-tRNA'"” (Figure 1B). The amino acid added by the PEARL will undergo
enzymatic modifications and proteolysis to yield amino acid-derived natural products.'®-2?!
However, neither a RiPP precursor peptide nor a cognate PEARL carrier peptide can be identified
in the NRPS BGCs, indicating the putative lantibiotic dehydratases serve a different function in

the biosynthesis of NRPs.
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Figure 1. (A) The peptide bond formation chemistry of NRPSs. (B) Known enzymatic activities of
the lantibiotic dehydratase enzyme family. (C) Schematic diagram of the sna BGC from
Stackebrandtia nassauensis. KS: ketosynthase. Te: thioesterase. For the accession IDs for all

proteins in the sna BGC, see the Supporting Information.

In this study, we investigated a hybrid NRPS-PKS BGC???* from Stackebrandtia nassauensis that
contains a putative lantibiotic dehydratase (Fig. 1C). Heterologous expression, comparative
metabolomics, and structural elucidation revealed a series of novel metabolites. The biosynthetic
sequence was revealed by omitting select biosynthetic enzymes during heterologous expression.
The NRPS SnaA links two arginine amine groups through a ureido group, leaving an inert
carboxylate at the initiation position that cannot be further extended by the NRPS machinery. The

putative lantibiotic dehydratase SnaE catalyzes peptide bond formation at this unactivated
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carboxylate of the terminal ureido group, achieving chain extension in the opposite direction to
NRPS-PKS biosynthesis. The results show that the annotated lantibiotic dehydratases that
colocalize with NRPS/PKSs likely biosynthesize amide bonds that are not amenable to thioester

assembly line biochemistry.

Ureido group formation is one of the many versatile reactions during NRP biosynthesis.?526 In
vitro studies of SyIC in syringolin biosynthesis suggest that the ureido moiety likely originates from
bicarbonate.?” This unusual head-to-head condensation reaction between two amino acids led us
to hypothesize that the condensation domain of the NRPS SnaA is specialized for ureido group
formation. Analysis of the condensation domain sequences associated with ureido-containing
NRPs predicts that the active site signature of ureido-generating condensation (UreaC) domain
is EHHXXHDG (X represents any amino acid) compared to the canonical XHHXXXDG motif for
peptide bond formation.®?® Condensation domains that do not generate ureido groups in the
Minimum Information about a Biosynthetic Gene cluster (MiBiG) database®® never have the
EHHXXHDG motif, suggesting the extra conservation of glutamate and histidine residues in the

active site of C domains marks the signature of ureido group formation.

Results

Products produced by the sna BGC

Around two thousand NRPS/PKS BGCs contain enzymes annotated as lantibiotic dehydratase
(NCBI, June 2023). Most of the annotated lantibiotic dehydratases are stand-alone enzymes, but
some of them are fused to thioesterase or condensation domains. No lanthipeptide precursor
peptides can be bioinformatically identified in these BGCs. This observation suggests that these
putative lantibiotic dehydratases are involved in NRP or polyketide (PK) biosynthesis rather than

lanthipeptide biosynthesis.
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The BGCs in question are mostly from Actinobacteria. We chose one representative candidate
gene cluster from S. nassauensis (Figure 1C) for heterologous expression in Streptomyces albus
J1074.39 Expression of a construct containing snaABCDOET T, under control of the SP44
constitutive promoter®' produced several new metabolites detected by liquid chromatography-
mass spectrometry (LC-MS). Expression in two liters of media, purification, and characterization
by nuclear magnetic resonance spectroscopy revealed the structures of three major metabolites

(compounds A, B, and C, Figure 2).
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Figure 2. Structures of metabolites produced from the sna BGC using different heterologous
expression constructs. EIC: extracted ion chromatogram. Only key NMR connectivities used to

solve the structures are shown. For complete NMR data, see the Supporting Information.
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To investigate the enzymes required to produce these compounds, snaA (NRPS), snaO
(dehydrogenase), and snakE (putative lantibiotic dehydratase) were individually inactivated during
heterologous expression (Figure 2). For snaA, both serine codons of the T domains were mutated
to alanine to yield an inactive mutant that cannot be converted to the holo form. In-frame deletions
were used to inactivate snaO and snaE (Supporting Information). Production of compound A with
two arginines required SnaA but not SnaO or SnaE (Figure 2). Compound B contains one more
Thr than compound A, and its biosynthesis required SnaA and SnaE but not SnaO. Compound C
has an additional alkene group compared to compound B, and required SnaA, Snak, and SnaO
for biosynthesis. These results suggest that compound A is an early-stage biosynthetic
intermediate produced by the NRPS and PKS (vide infra), and compound C is likely a later
intermediate or the final product. Structural comparison between A and B strongly suggests that
the putative lantibiotic dehydratase SnaE catalyzes the formation of a peptide bond between a
threonine donor and a motif made by the NRPS/PKS. Therefore, SnaE is a peptide bond-forming

enzyme rather than a dehydratase.

In addition to compounds A-C, we observed three other products, compounds D-F. Compounds
Aand D, B and E, and C and F are always produced together, respectively (Figure 2, 3A). High-
resolution mass spectrometry suggests the difference in molecular formulae of each pair is H20.
A spontaneous intramolecular dehydrative cyclization between the ureido NH and the ketone
explains the formation of compounds A, B, and C from D, E, and F, respectively. Similar reactions
of guanidino nitrogens spontaneously cyclizing onto an arginine ethyl ketone have been observed
in the study of saxitoxin biosynthesis.??-3* Compounds D-F eluded spectroscopic characterization
because of their high cyclization reactivity during purification efforts, but high-resolution MS/MS
spectra (Figure S1-3) as well as observed non-enzymatic conversion of D to A, E to B, and F to

C during purification strongly support the structural assignment.
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Proposed biosynthetic pathway

Knowing the required enzymes for the biosynthesis of each metabolite, we propose the following
biosynthetic sequence (Figure 3B). The two adenylation domains of SnaA (NCBI ADD43706.1)
both activate and load arginine onto the peptidyl carrier protein (PCP) as activated thioesters. The
condensation domain is unusual from bioinformatic analysis (vide infra) and catalyzes the
condensation between two amine groups of arginine to form a ureido group that is likely derived
from bicarbonate (HCO3’).2” The PKS SnaB (NCBI ADD43707.1) incorporates a propionate
extension unit into the growing chain, as shown by isotope enrichment upon feeding 2-13C sodium
propionate to the heterologous expression system (Figure S4). The SnaB-bound intermediate
may be hydrolyzed by the thioesterase SnaD (NCBI ADD43709.1) to form compound D which
upon cyclization gives compound A (Figure S5A). Threonine addition by SnaE (NCBI
ADD43711.1) can occur on PCP/acyl carrier protein (ACP)-bound intermediates | or Il (Figure 3B)
or on the free molecules D or H (Figure S5). Based on precedence with the dehydrogenase
EpnF,3%36 compound F could be produced from compound G by SnaO (NCBI ADD43710.1) via a
decarboxylation-dehydrogenation reaction sequence, but conversion of compound E to F by
SnaO cannot be ruled out. As outlined in the Discussion section, we consider compound F the
final product of the pathway and term this compound threopeptin, whereas the formation of
compounds A-E are proposed to be off-pathway via non-enzymatic cyclization and/or premature

thioesterase activity (Figure S5).
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Figure 3. (A) Proposed structures of compounds D, E, and F. Stereochemistry could not be
determined because of the high cyclization reactivity of these compounds. (B) The proposed

biosynthetic sequence to generate compound F (threopeptin).

Biochemical and bioinformatic studies on ureido group formation

Ureido group formation is one of the many versatile reactions catalyzed by C domains during NRP
biosynthesis.?>?¢ Based on current understanding, we could not have predicted that the sna BGC
would produce a ureido structure. Therefore, we bioinformatically investigated whether the C

domains associated with known ureido-containing natural products (UreaC domains) have a
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distinct active site amino acid signature. We compiled the UreaC domains in the MiBiG database
based on collinearity to product structures (e.g. anabaenopeptins,?” bulbfieramide,3 chitinimide,3®
and pseudovibriomide*?) as well as examples with in vitro confirmation of the ureido formation
enzyme activity (e.g. syringolin A,?” pacidamycin,*' antipain,*> and muraymycin*?). Multiple
sequence alignment showed that UreaC domains have a conserved EHHXXHDG active site
(Figure 4A) compared to the canonical XHHXXXDG active site of the amide bond-forming C
domains.%?® Examining all C domain sequences in MiBiG showed that none of the C domains
with other functions have an EHHXXHDG active site. Therefore, based on current examples, the
EHHXXHDG signature of the C domain active site appears to be sufficient and necessary to

indicate the ureido formation activity.

The ureido-forming activity of SnaA was confirmed in vitro using holo-SnaA hetereologously
expressed in E. coli BAP1.43 The PCP-bound products of SnaA were intercepted using
cysteamine** followed by chemical derivatization with fluorenylmethyloxycarbonyl chloride (Fmoc-
Cl) and LC-MS analysis*® (Figure 4B). The observed products confirmed that SnaA is responsible
for formation of intermediate | (Figure 3). When the active site glutamate and histidine residues
of the UreaC domain were individually mutated to alanine, the resulting mutants showed
significantly decreased production of the arginine ureido dipeptide in vitro (Figure 4C), indicating
that the conserved glutamate and histidine residues in the UreaC active site are important (but

not essential) for the ureido bond-forming activity of SnaA.
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Figure 4. (A) Multiple sequence alignment of UreaC domains. The Supporting Information Table
S3 contains the MiBiG BGC repository identification numbers for the listed enzymes. (B) Scheme
of the derivatization of the bisarginine ureido structure generated by SnaA in vitro. (C) EICs of
Fmoc- and cysteamine-derivatized bisarginine ureido structures generated in vitro by wild type

and mutant SnaA.

Discussion

The formation of a ureido group during NRP biosynthesis is termed a chain-reversal event

because it generates a carboxylate rather than the usual amine group at the initiation position.
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Proposed mechanisms of ureido group formation are presented in Figure S6. For ureido-forming
BGCs that contain two A domains, the specificity of the A domain of the loading A-T didomain
usually corresponds to the amino acid at the terminal position of the ureido group.37-384042
Similarly, the A domain specificity of the first extension module (UreaC-A-T) usually corresponds
to the internal amino acid of the ureido group.37:3840.42 After ureido bond formation, the amino acid
at the internal position is still attached to the PCP as a thioester and can be further extended by
NRPS/PKS biochemistry.#2 However, the terminal amino acid is left with an unactivated
carboxylate and can no longer be extended by the assembly line chemistry.*? This model explains
why all isolated ureido-containing NRPs only have one side of the ureido moiety further extended
by the NRPS/PKS (Figure S7). If chain extension of the terminal carboxylate is desired for
biological activity, two possible solutions can be envisioned. Either the ureido forming process will
need to take place using a T-domain bound polypeptide (rather than amino acid) that is activated
by ATP (Figure S6C), a mechanism that has been ruled out in the case of SylC.?” Alternatively,
the system needs a separate amidation machinery. The PEARL-like enzyme SnaE appears to
have been recruited for this latter purpose. Based on its sequence homology to PEARLs, SnaE
is likely to add threonine using a similar ATP- and aminoacyl-tRNA-dependent mechanism,"” in
which ATP is used to phosphorylate the terminal carboxylate to form an activated acyl-phosphate
intermediate, which is then attacked by Thr-tRNAT™ as the Thr donor in a condensation reaction.

Hydrolysis of the tRNA as is observed in PEARLs would then provide the observed products.

The formation of the ethyl ketone in compound D and E follows a unique mechanism where the
ethyl group originates from the decarboxylation of methylmalonate. Ethyl ketones are commonly
observed motifs during PK/NRP biosynthesis, but the biosynthetic precursors of the ethyl group
are usually S-adenosyl methionine (SAM) and malonate. For instance, the ethyl ketone derivative
of arginine is a biosynthetic intermediate of saxitoxin3?3% and is biosynthesized by a polyketide-

like synthase SxtA.*¢ Malonyl-CoA is loaded onto the ACP and is then methylated by the
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methyltransferase domain of SxtA. The methylmalonyl-ACP is thought to be decarboxylated to
propionyl-ACP, which is followed by a pyridoxal phosphate-dependent condensation between

arginine and propionyl-ACP to yield the arginine ethyl ketone.*¢

In the case of epoxyketone proteasome inhibitors such as epoxomicin and eponemycin,*’4° the
ethyl groups of the epoxyketone warhead originate similarly from malonyl-CoA and on-ACP
methylation(s) by a methyltransferase domain of the PKS EpxE/EpnH.35% The epoxide is thought
to be generated by a conserved acyl-CoA dehydrogenase-like enzyme EpxF/EpnF via a
decarboxylation-dehydrogenation-epoxidation sequence after thioesterase-mediated release
from the assembly lines.®® Given that the vinylketone in compounds C/F originates from
methylmalonate, the acyl-CoA dehydrogenase-like enzyme SnaO may also use a decarboxylative
dehydrogenation mechanism to install the a,B-unsaturated ketone. Interestingly, the reaction of
SnaO seems to stop at dehydrogenation, because no epoxidation was observed during

heterologous expression in S. albus.

Different from the biosynthetic pathways of saxitoxin and epoxyketones, the methyltransferase
domain for the methylation of malonate is absent in the sna BGC. This absence is consistent with
the PKS SnaB using methylmalonyl-CoA to produce the ethyl group of threopeptin. The ethyl
group of the epoxyketone macyranone could also originate from methylmalonate since its

biosynthetic PKS module lacks a methyltransferase domain.*®

We hypothesize that compound F (threopeptin) is the final product of the sna BGC because its
biosynthesis depends on SnaA, Sna0O, and SnaE, and it carries an a,B-unsaturated ketone that
could function as an electrophilic warhead. The antipain group of protease inhibitors®' structurally
resembles threopeptin. The aldehyde of antipain covalently targets protease active site serine or
cysteine residues and the vinyl ketone of threopeptin may similarly target a protease active site

serine or cysteine residue via 1,4-conjugate addition. Although the instability of threopeptin
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prevented isolation and bioactivity testing, S. nassauensis may produce the compound to inhibit

proteases of competitor or predator organisms after secretion by SnaTq and Ta.
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