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Abstract  
 
In graph theory, "multilayer networks" represent systems involving several interconnected 
topological levels. A neuroscience example is the hierarchy of connections between 
different cortical depths or "lamina". This hierarchy is becoming non-invasively accessible 
in humans using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer 
graph theory to examine functional connectivity across different cortical depths in 
humans, using 7T fMRI (1-mm3 voxels; 30 participants). Blood oxygenation level 
dependent (BOLD) signals were derived from five depths between the white matter and 
pial surface. We then compared networks where the inter-regional connections were 
limited to a single cortical depth only ("layer-by-layer matrices") to those considering all 
possible connections between regions and cortical depths ("multilayer matrix"). We 
utilized global and local graph theory features that quantitatively characterize network 
attributes such as network composition, nodal centrality, path-based measures, and hub 
segregation. Detecting functional differences between cortical depths was improved 
using multilayer connectomics compared to the layer-by-layer versions. Superficial 
aspects of the cortex dominated information transfer and deeper aspects clustering. 
These differences were largest in frontotemporal and limbic brain regions. fMRI functional 
connectivity across different cortical depths may contain neurophysiologically relevant 
information. Multilayer connectomics could provide a methodological framework for 
studies on how information flows across this hierarchy. 
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Introduction 
 
Investigating brain activity and functionality through network analyses has become an 
integral methodological foundation of neuroscience. Connectomics has yielded significant 
advances in understanding brain structure and function [1, 2]. Modeling the brain as a 
system of nodes (brain regions) connected by edges (mathematical relationships), often 
using graph theory, can be used to provide insight into brain characteristics and 
topological properties [3]. Brain networks can be derived from structural neuroimaging 
such as MRI or diffusion tensor imaging (DTI) (structural connectomics) [4-6] or functional 
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neuroimaging such as fMRI, EEG, or magnetoencephalography (MEG) (functional 
connectomics) [7-11]. Both structural and functional connectomics have been used to 
understand disease models [12-15], aid in surgical mapping [16-19], and characterize 
therapeutic effects of neuropsychiatric treatments [20-25].  
 
An emerging field within connectomics, and more broadly graph theory, is the exploration 
of multilayer networks [26, 27]. Multilayer networks are composed of individual layers of 
networks with interconnecting edges between different layers. Connections between 
layers can be solely between homologous nodes (multiplex) or connect nodes regardless 
of layer or nodal position (multilayer). Multilayer connectomics enables the study of 
multifaceted and multimodal neuroimaging data, with the different groups of data divided 
into distinct layers of the connectivity matrix [28-30]. For example, multilayer networks 
can be derived using correlations between different frequency bands of MEG recordings 
to identify the interplay between frequencies [31]. Additionally, different modalities such 
as MEG, fMRI, and diffusion MRI can be combined to identify patterns in brain processing 
[32] or pathological dysfunction [33] that were not found in traditional single-layer analysis. 
Thus, multilayer connectomics allows for the incorporation of multidimensional 
neuroimaging data and can identify relationships between distinct neuroimaging 
techniques and analyses. 
 
One potential application of multilayer connectomics is understanding the hierarchical 
organization of the cerebral cortex. Neuroanatomical [34-36] and electrophysiological [37, 
38] studies in animal models have identified that laminar input/output patterns can inform 
about bottom-up (feedforward) or top-down (feedback) processes between cortical 
regions. Despite its unparalleled resolution, a limitation of laminar electrophysiological 
recordings in comprehensive connectivity analyses is that the coverage area is typically 
very small. At the same time, mapping anatomical connections using fiber tracing has 
limited options for mapping of the post-synaptic targets [39]. Intracortical depth analyses 
of ultra-high resolution fMRI data have the benefit that the coverage can be extended to 
the entire cerebral cortex. Advancements in ultra-high-resolution fMRI (f 1)mm3 voxel 
size) have enabled sampling of functional signals from different depths of the cortical gray 
matter [40-43]. However, there are multiple challenges and unanswered questions for the 
feasibility of using cortical depth profiles of fMRI signals [41]. Because deoxygenated 
blood also drains up to the cortical surface through the intracortical diving venules, voxels 
intersecting the superficial layers could also be affected by deeper neuronal activations 
[44]. Despite this limitation, studies using this emerging methodology have attempted to 
identify feedback and feedforward relationships non-invasively in the human brain [45-
56], akin to micro-scale recordings in animal models.  
 
Even with the advent of high-resolution functional neuroimaging, multilayer connectomics 
have mostly focused on anatomical networks derived from structural MRI and DTI [57, 
58] due to their direct relationship to cortical architecture. For example, DTI and 
histological samples identified that cortical areas with similar laminar structure were more 
likely to be connected [59]. Additionally, even in functional laminar studies, previous works 
have predominantly utilized task-based studies in pre-defined brain regions [40, 45-56, 
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60]. Consequently, the functional components of the whole-brain cortical depths continue 
to be underexplored.  
 
In contrast to task-based studies, which primarily focus on specific cortical areas [61], 
resting-state analysis enables whole-brain investigation of laminar organization [43, 62]. 
These resting-state connections have been shown to reflect anatomical connectivity [63-
66]. Thus, network differences within laminar resting-state fMRI networks represent 
functional differences between cortical depths. This work explores the laminar structure 
of the cortex using high-resolution resting-state fMRI and multilayer connectomics. We 
use a dual-pipeline approach in comparing the information extracted from layer-by-layer 
vs. multilayer connectomics. We demonstrate the validity of multilayer functional laminar 
connectomics through showing that cortical depths have distinct graph theory 
characteristics that are more clearly identifiable through multilayer connectomics 
compared to the traditional single layer methodology. 
 

Methods 
 

 
Figure 1. Multilayer connectomic pipeline to analyze functional connectivity across 
different cortical depths. Here, "layers" refer to the dimensions of the connectivity 
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matrices which represent fMRI signals gathered from different "cortical depths." (A) The 
cortex was uniformly divided into five surfaces at different depths, as seen above 
projected on a 0.75-mm isotropic-resolution anatomical T1-weighted image. (B) The 
brain was parcellated into 148 regions-of-interest (ROIs) (74 per hemisphere) based on 
the Destrieux atlas in FreeSurfer [67, 68]. The ROIs are shown on an inflated left-
hemisphere cortical surface. (C) Schematic showing the difference between a layer-by-
layer network and a multilayer network. In the layer-by-layer approach, each layer 
(network) is independent of other layers while in the multilayer approach, the layers are 
inter-connected. A sparser multilayer network is shown for visualization purposes. (D) 
Example matrix construction from both the layer-by-layer and multilayer approaches. 
While both approaches use matrices derived from Pearson correlations from the 
different layers, the multilayer approach generates a supra-adjacency matrix that also 
has correlations between different layers (shown in grayscale). (E) Example matrix 
construction for within-layer and between-layer matrices. For within-layer matrices, 
each sub-matrix is extracted individually for analysis. White areas represent 
connections excluded from the analysis.  

 
 
Participants 
 

Thirty healthy adults (mean age ± standard deviation = 32.4 ± 10 years, 15 women, all 
right-handed) were recruited using an internal online recruiting platform. Participants were 
screened for vision problems, hearing problems, cognition-altering medications, and 
exclusions for MRI (metal in the body). Twenty-eight of the participants were native 
English-speakers. Informed consent was obtained from all participants, and MRI safety 
screening forms were completed before each scan. The study design, protocol, and 
consent were approved by the Mass General Brigham Institutional Review Board. 
 
Image Acquisition 
 
Participants were measured in sets of 7.9-min resting-state fMRI scans occurring on 
different days (3 to 4 sessions per participant). Twenty-three participants were measured 
in twelve resting-state scans. Seven participants had between ten to eighteen resting-
state scans (10 scans: n = 1; 11 scans: n = 1; 13 scans: n = 2; 14 scans: n = 2, 18 scans: 
n = 1). The participants were instructed to avoid movement during the scans and keep 
their eyes open and fixated on a fixation cross projected on a screen viewed through a 
mirror. The average duration of the sessions was around two hours. Breathing and heart 
rate were recorded using the built-in Siemens system at a sampling rate of 400 Hz. 
Inhalation and exhalation were measured with the Siemens respiratory-effort transducer 
attached to a respiratory belt. The heart rate was recorded using Siemens 
photoplethysmogram transducers on the participant9s index finger. 
 
The functional and structural neuroimaging data was acquired using a 7T whole-body 
MRI scanner (MAGNETOM Terra, Siemens, Erlangen, Germany) with a home-built 
custom-built 64-channel array coil [69]. To reduce participant head motion inside the 
scanner, MRI-compatible paddings were placed around the head and neck. In each 
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imaging session, T1-weighted anatomical images were measured using a 0.75-mm 
isotropic multi-echo MPRAGE pulse sequence [70, 71] with repetition time (TR) = 2530 

ms, four echoes with echo time (TE) of 1.72, 3.53, 5.34, and 7.15 ms, 7° flip angle, 240 × 
240 mm2 field of view (FoV), and 224 sagittal slices. To help with pial surface placement 
by avoiding dura mater, T2-weighted anatomical images (voxel size = 0.83 x 0.83 x 0.80 

mm, TR = 9000 ms, TE = 269 ms, flip angle = 120°, FoV = 225 x 225 mm2, 270 sagittal 
slices) were acquired for twenty-eight out of thirty participants in one of the imaging 
sessions. Resting-state functional imaging was collected using a T2*-weighted blipped-
CAIPI [72] simultaneous multi-slice (SMS) echo planar imaging (EPI) sequence using 
multi-band RF pulses [72] with 4× acceleration factor in phase-encoding direction, 3× 
acceleration factor in slice-encoding direction, TR = 2800 ms, TE = 27.0 ms, isotropic 1-

mm3 voxels, 78° flip angle, 192 × 192 mm2 FoV, 132 axial slices, anterior-to-posterior 
phase encoding direction, 1446 Hz/pixel bandwidth, 0.82 ms nominal echo spacing, and 
fat suppression. In addition, to de-warp the functional data, an EPI scan was collected 
with identical parameters but with an opposite phase-encoding polarity (posterior-to-
anterior, PA-EPI) relative to the functional scans. For four participants with missing PA-
EPI scans, the data were de-warped using a gradient-echo field map (TR = 1040 ms, TE 

= 4.71 ms and 5.73 ms, isotropic 1.3-mm3 voxels; flip angle = 75°, FoV = 240 × 240 mm2, 
120 slices, bandwidth = 303 Hz/pixel). 
 
MRI Preprocessing 
 
First, SPM12 (http://www.fil.ion.ucl.ac.uk/spm/, [SPM12-spm_preproc_run.m]; bias field 
correction, full-width at half-maximum, FWHM: 18 mm, sampling distance: 2 mm, bias 
regularization: 1E24) and customized MATLAB scripts were used to correct the bias field 
of the structural T1 and T2 images. Next, recon-all of FreeSurfer 6.0 [73] with an extension 
for submillimeter 7 T data [71] was used to automatically create cortical reconstructions 
for each participant. An average of multiple T1-weighted anatomical volumes (3 to 4 per 
participant) alongside a T2-weighted volume were used in the reconstruction to enhance 
the quality of the cortical surfaces. Nine intermediate surfaces were created between the 
white matter and pial surfaces with fixed relative distances, of which five were selected 
for the laminar analysis (described below). Lastly, the surfaces generated by recon-all 
were corrected manually for inaccuracies with Recon Edit of Freeview. 
 
For the functional data, slice-timing and motion corrections were first implemented in 
FreeSurfer 7.1 [73]. De-warping was then used to correct for geometric distortions caused 
by susceptibility-induced off-resonance fields. In de-warping, the off-resonance distortion 
field  was estimated using the functional data and the PA-EPI scan collected with reversed 
a phase-encode blip; thus, the distortions are reversed in direction in respect to the scans 
[FreeSurfer: topup, applytopup] [74, 75]. For four participants that were missing the PA-
EPI scan used above, the distortion field was estimated using the B0 field map scan in 
FreeSurfer 6.0 [FreeSurfer-epidewarp]. The respiratory and heart rate artifacts were 
corrected using the RETROspective Image CORrection (RETROICOR) algorithm (3rd 
order heart rate, respiratory, and multiplicative terms) [76]. Three participants were 
missing heart rate data and, therefore, only respiratory recordings were used in 
RETROICOR. In addition, RETROICOR was not applied to five participants with missing 
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respiratory and heart rate data. Functional data were then co-registered with the structural 
images using Boundary-Based Registration in FreeSurfer 6.0 [77]. By projecting each 
intersecting voxel onto the corresponding surface vertex using trilinear interpolation, the 
fMRI timeseries were then resampled onto the pial and white matter surfaces, and nine 
cortical depths between them. 
 
From the nine intracortical surfaces, five alternating depths were selected starting closest 
to pial surface (depths 1 to 5, superficial to deep) (Figure 1A). The outside surfaces (pial 
and white matter) were excluded to avoid partial volume effects from the cerebrospinal 
fluid and white matter, respectively. Additionally, depths included were alternated to 
minimize potential for partial volume overlap between surfaces that would bias the 
correlation matrix generation.  
 
Matrix Generation and Processing 
 
Two parallel matrix processing pipelines were used to generate individual independent 
adjacency matrices for the layer-by-layer approach while creating one supra-adjacency 
matrix for the multilayer approach (Figures 1C and 1D). The layer-by-layer approach 
creates an independent network for each cortical depth while the multilayer approach 
results in five interconnected networks that combines all cortical depths. 
 
One important distinction is between the terminology <depth= and <layer.= Here, depth 
refers to the anatomical depth in the cortex while layer refers to a specific network derived 
from a cortical depth. This distinction is critical to avoid equating a network layer with an 
associated cerebral cortical layer. 
 
The brain was parcellated into 148 regions-of-interest (ROIs) (74 per hemisphere) based 
on the Destrieux atlas in FreeSurfer [67, 68] (Figure 1B). A detailed list of parcellations 
can be found in the Table S1.  
 
Resting-state time series for each participant were concatenated across runs, leading to 
the following number of time points: 2028 for n = 23 participants; 1690 time points: n = 1; 
1859 time points: n = 1; 2197 time points: n = 2; 2366 time points: n = 2, and 3042 time 
points: n = 1. Concatenated time series were detrended and filtered using a second-order 
Butterworth filter [high-pass: 0.01 Hz, low-pass: 0.1 Hz, MATLAB-filtfilt].  
 
For the layer-by-layer approach, Pearson correlations were derived between ROIs 
within the same depth, resulting in 10878 pairwise correlations from 148 nodes (ROIs) 
after removing 148 self-correlations (number of correlations = (nodes2 3 diagonal nodes) 
/ 2). Pearson correlation coefficients were normalized using Fisher9s z-transformation 
resulting in five 148-by-148 symmetric weighted connectivity matrices for each 
participant, i.e., one matrix for each cortical depth (Figure 1D). 
 
For the multilayer approach, Pearson correlations were derived between ROIs between 
and within all depths, resulting in 273430 pairwise correlations from 740 nodes (140 ROIs 
times 5 depths) after removing 740 self-correlations. Pearson correlation coefficients 
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were then normalized using Fisher9s z-transformation with the final product being a 740 
by 740 symmetric weighted connectivity matrix for each participant (Figure 1D). 
 
For both approaches, individual matrices were normalized and thresholded at 2% 
intervals ranging from 2 to 40% graph density (ratio of edges present to total number of 
possible edges) to understand measure differences over a wide range of thresholds. 
Thresholding is required to minimize the effect spurious correlations. 
 
We also examined the account of within- and between-layer connections only in the 
context of the complete multilayer matrix. To this end, we draw two additional types of 
sub-matrices from the multi-layer matrix, selectively concentrating on either their within-
layer aspect (here, termed multilayer within-layer) or the between-layer aspects (termed 
multilayer between-layer) only. The multilayer within-layer matrices were derived by 
normalizing the supra-adjacency matrix, thresholding the matrix, and then extracting the 
nodes included in each individual layer (i.e. nodes 1 to 148 for layer 1), creating a 148-
by-148 weighted connectivity matrix. The multilayer between-layer matrices were, in 
turn, derived by normalizing the supra-adjacency matrix, thresholding the matrix, and then 
zeroing the five diagonal matrices (from each cortical depth) composing within-layer 
connections, thus resulting in only between-layer connections. (It is worth noting that 
since the within-layer and between-layer connectivity matrices were extracted after 
thresholding, analysis that requires normalization, i.e., non-thresholded matrices, could 
be conducted in the context of this analysis; Figure 1E.)  
 
Edge Consistency and Variability 
 
Connections (edges) within and between layers were explored to understand edge 
consistency and variability between participants. Edge consistency [78] was calculated 
by selecting the top five percent of edges with the lowest standard deviation in un-
thresholded multilayer networks. In contrast, edge variability [79] was calculated by 
selected the top five percent of edges with the highest standard deviation across 
participants. In both cases, edges in each layer were then summed and divided by the 
total number of significant edges to identify the percentage of significant edges in each 
layer. 
 
Matrix Similarity 
 
Matrix similarity was used to understand how matrices differed across layers. 
Thresholded (2340%) and normalized matrices were compared using cosine similarity, 
 

��!,# =
�! ç �#

||�!||	||�#||
 

 
where Xi and Xj are vectors of the upper triangular elements of two adjacency matrices 
[MATLAB-pdist2], with values ranging from 21 (maximal dissimilarity) to +1 (maximal 
similarity). Cosine similarity was shown to distinguish between matrices better than 
traditionally used Pearson correlation [79, 80]. Using both the layer-by-layer approach 
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and within-layer matrices, each layer was compared to the other layers. Additionally, to 
understand how matrix generation differs between methods, the same layer was 
compared across layer-by-layer and within-layer approaches.  
 
Connectomic Analysis 
 
Global and nodal measures were calculated in MATLAB using the Brain Connectivity 
Toolbox (MATLAB Version R2022b) [3] on the Massachusetts Life Sciences 
Center Compute Cluster (DELL R440 servers with two Intel Xeon Silver 4214R twelve 
core CPUs). Global measures characterize the entire network while nodal measures 
characterize attributes of specific node (ROI). Nodal measures can also be averaged to 
create a global measure. Measures can be grouped into four general categories to 
describe their overall network characterization: composition, centrality, integration, and 
segregation. Composition measures describe the topology of the network while 
centrality measures detail specific nodal importance for network function. Integration 
measures examine how information flows through the network and segregation 
measures explore how the network is divided into functional components. Therefore, 
different measures can be used to understand different characteristics of the network. For 
example, decreased nodal and global average strength was found in maltreated children 
indicating decreased overall brain connectivity [81] while decreased clustering coefficient 
and global efficiency in patients with Parkinson9s disease can signify deficits in brain 
network integration and segregation [82].  Table 1 denotes the measures used in this 
work, and detailed explanation of each measure can be found in Rubinov and Sporns [3].  
 

Table 1. List of network measures used in this work organized by functional category. 
(n) denotes a nodal measures. 

Composition Centrality Integration Segregation 

- Largest Cluster 
Size 
- Graph Density 
- Degree (n) 
- Strength (n) 
 
 

- Betweenness 
Centrality (n) 
- Eigenvector 
Centrality (n) 
- Participation 
Coefficient (n) 

- Characteristic 
Path Length 
- Radius 
- Diameter 
- Global Efficiency 
- Assortativity 

- Maximized 
Modularity Q 
- Transitivity 
- Clustering 
Coefficient (n) 
- Local Efficiency 
(n) 

 
Statistical Analysis 
 
To avoid the bias of selecting a single threshold, area-under-the-curve (AUC) analysis 
was conducted to create a threshold-independent measure. The measures in Table 1 
were calculated at each threshold (from 2 to 40% graph density in 2% intervals). The 
measure values at each threshold were then plotted against their threshold, and the area 
underneath the generated curve was calculated using a trapezoidal integration method 
[MATLAB-trapz].  
 
For each global measure (and averaged nodal measure), the AUC value for each layer 
for all participants was compared using a one-way analysis of variance (ANOVA) 
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[MATLAB-anova1]. A one-way ANOVA was also used to compare each nodal measure 
to find differences at each specific ROI (node). For the multilayer network and between-
layer measures, only nodal values (both averaged and individual) were compared since 
global measures for the multilayer network (and thus between-layer measures) contain 
effects from every layer. For nodal values (non-averaged), a False Discovery Rate (FDR, 
Bonferroni-Holm method) correction (alpha = 0.01) was applied to account for multiple 
comparisons [83, 84].  
 
Cortical Thickness Validation 
 
One potential confounding factor using whole-brain laminar analysis is that different brain 
regions have different cortical thicknesses [85-87]. Thus, comparing cortical thickness 
values of significant brain regions (defined above) can help evaluate whether our findings 
may be influenced by cortical thickness. Subsequently, cortical thickness values for each 
ROI for each participant were extracted using FreeSurfer and averaged across all 
subjects [73]. The distribution of significant nodes versus non-significant nodes for each 
nodal measure and pipeline with greater than ten significant nodes were compared using 
a t-test [MATLAB-ttest2].  
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Figure 2. (A) Edge consistency between each participant (multilayer matrix). The 
edges of each layer of the multilayer matrix were compared to find the edge strengths 
that had the lowest 5% standard deviation between participants. Higher values indicate 
a higher percentage of consistent edges, indicating consistent features between 
participants for those connections. (B) Edge variability between each participant 
(multilayer matrix). The edges of each layer of the multilayer matrix were compared to 
find the edge strengths that had the highest 5% standard deviation between 
participants. Higher values indicate a higher percentage of variable edges, indicating 
variable features between participants for those connections. (C) Cosine similarity 
between layer-by-layer and within-layer matrices (multilayer approach). Within 
participant, the matrix generation methods were compared using cosine similarity 
across a range of thresholds at each layer. Cosine similarity values range from 21 
(maximal dissimilarity) to +1 (maximal similarity). The mean value at each threshold is 
plotted while the shaded region indicates the standard error. (D) Area-under-the-curve 
(AUC) measure in comparing layer-by-layer and within-layer matrix generation 
methods. Spline interpolation was used for visualization. The AUC from (C) is 
calculated using trapezoidal approximation. Higher values indicate higher similarity 
between methods while lower values indicate lower similarity between methods. The 
mean AUC value at each layer is plotted while the shaded region indicates the standard 
error. 

 

Results 
 
Matrix Similarity and Edge Comparison 
 
Edges from the multilayer matrix were compared to understand differences and 
similarities between participants and to see if the laminar connectomic methodology can 
distinguish different participants. High edge consistency indicates a similar connectivity 
pattern between participants while a high edge variability increases the ability to 
distinguish been participants. Figure 2A and Table 2 shows the percentage of consistent 
edge strengths between participants that each layer contains from the multilayer matrix. 
Layer 1 (derived from the depth closest to pial surface) has the largest number of 
consistent edges (29.52%) with connections between layer 1 and layer 5 (7.06%) being 
the most consistent between participants. In contrast, Figure 2B shows the edge 
variability between participants with the highest variability found in layer 5 (closest to white 
matter) overall (33.65%) and in within layer connections (11.86%). It is important to clarify 
that edge consistency and variability are not mutually related, even though they provide 
complementary results above.  
 
After edge analysis, connectivity matrices were compared within participants to 
understand the two competing matrix generation methodologies: layer-by-layer vs. within-
layer (multilayer) approach. Cosine similarity was used to examine similarities between 
different connectivity matrices. In comparing within participant matrices across layers 
(Figure S1), layers were found to be similar with the most distant layers (layer 1 to layer 
5) having the lowest similarity in both layer-by-layer matrices and within-layer matrices. 
Matrices within the same layer and within participant were also compared across the 
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matrix generation methods (Figure 2C and 2D). Layer 3 was the most consistent across 
the two methodologies while the peripheral layers (layer 1 and layer 5) differed the most 
between methods.  
 

Table 2. Edge consistency and variability percentages for each layer derived from the 
multilayer matrix. Bolded values show the highest percentage for each measure.  

Layer Edge Consistency (%) Edge Variability (%) 

1 (Superficial) 29.52 8.25 

2 20.73 12.36 

3 15.82 19.11 

4 16.03 26.60 

5 (Deep) 17.89 33.65 

 

 
Figure 3. Area-under-the-curve (AUC) values across different layers for significant 

global measures (p £ 0.05) for layer-by-layer analysis. Significance was calculated 
using a one-way ANOVA.  Spline interpolation was used for visualization. The mean 
value across participants at each layer is plotted while the shaded region indicates the 
standard error. 

 
Single Layer Results 
 
Global 
 
Global network measures were calculated for layer-by-layer matrices. AUC values for 
each global measure can be found summarized in Table S2. Network radius (p = 0.050) 
and diameter (p = 0.018) significantly increased from the most superficial layer 1 to the 
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deepest layer 5 (Figure 3A3B). Largest cluster size (p < 0.001), average betweenness 
centrality (p = 0.0054), average local efficiency (p = 0.013), and eigenvector centrality (p 
= 0.0060) significantly decreased from layer 1 to layer 5 (Figure 3C3F), with a peak in 
layer 2 for average betweenness centrality and average local efficiency. There were no 
significant differences in modularity, transitivity, characteristic path length, assortativity, 
average degree centrality, average strength, average clustering coefficient, and average 
participation coefficient (Figure S233). Graph density and average degree centrality were 
constant across layers due to both measures being a direct function of thresholding 
(Figure S233).  
 
Nodal 
 
Table 3 shows the number of nodes in brain regions in layer-by-layer matrices with 
significant differences between layers (FDR correction with alpha = 0.01) (See Table S3 
for specific values and regions). Degree centrality, strength, and eigenvector centrality 
had the greatest number of significant nodes (4/148) (Table 3). The limbic region had 
more significant nodes than all other regions for each measure, except for clustering 
coefficient which was tied with the temporal region (one significant node for each region). 
In all measures, the right hemisphere had more significant nodes than the left hemisphere 
(Table 3). In general, the most superficial layers (1 and 2) had the highest value for 
significant nodes (Table 3, TableS3, Figure S43S5). Significant nodes were distributed 
across node thickness levels (Figure S63S7). 
 

Table 3. Number of significant nodes within each brain region for layer-by-layer 
analysis. Significance was calculated from the area-under-the curve (AUC) values 
using a one-way ANOVA with an FDR correction (alpha = 0.01) to account for multiple 
comparisons [83, 84]. Details of nodal mapping to each region can be found in Table 
S1. Orange: hemisphere with the highest number of nodes; Yellow: measure with the 
highest number of nodes; Green: region within each measure with the highest number 
of nodes. 
Network 
Measure 

Hemisphere All 
Regions 

Frontal Limbic Occipital Parietal Temporal 

Degree 
Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 

Both: 4/148 0/48 3/28 0/20 0/20 1/32 

Strength Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 

Both: 4/148 0/48 3/28 0/20 0/20 1/32 

Eigenvector 
Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 

Both: 4/148 0/48 3/28 0/20 0/20 1/32 

Betweenness 
Centrality 

Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 3/74 1/24 2/14 0/10 0/10 0/16 

Both: 3/148 1/48 2/28 0/20 0/20 0/32 

Clustering 
Coefficient 

Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 2/74 0/24 1/14 0/10 0/10 1/16 

Both: 2/148 0/48 1/28 0/20 0/20 1/32 

Local 
Efficiency 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 
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Both: 4/148 0/48 3/28 0/20 0/20 1/32 

Participation 
Coefficient 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 2/74 0/24 2/14 0/10 0/10 0/16 

Both: 3/148 0/48 3/28 0/20 0/20 0/32 

 
 
 

 
Figure 4. Area-under-the-curve (AUC) values across different layers for significant 

global measures (p £ 0.05) for within-layer analysis. Significance was calculated using 

a one-way ANOVA. Spline interpolation was used for visualization. The mean value 
across participants at each layer is plotted while the shaded region indicates the 
standard error. 

 
Multilayer Results 
 
Within-layer Global 
 
 
Figure 4 shows global network measures calculated for within-layer matrices. AUC 
values for each global measure can be found summarized in Table S4. Characteristic 
path length (p = 0.0069), radius (p = 0.034), and diameter (p < 0.001) all increased from 
layer 1 to layer 5 (Figure 4A3C). Largest cluster size (p < 0.001), graph density (p < 
0.001), average degree centrality (p < 0.001), average strength (p < 0.001), average 
eigenvector centrality (p < 0.001), average local efficiency (p = 0.035), and average 
participation coefficient (p < 0.001) significantly decreased with cortical depth (layer 1 to 
5) (Figure 4D3J). There were no significant differences for modularity, transitivity, global 
efficiency, assortativity, average betweenness centrality, and average clustering 
coefficient (Figure S839). In contrast to layer-by-layer results, graph density and average 
degree centrality were different across layers due to the within-layer matrix generation 
methodology allowing each individual layer to have a different graph density. 
 
Within-layer Local 
 
The number of nodes in brain regions with significant differences using within-layer 
matrices can be found in Table 4 (FDR correction with alpha = 0.01, see Table S5 for 
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specific values and regions). Degree centrality had the largest number of significant 
nodes (15/148) followed by strength (9/148), participation coefficient (9/148), and local 
efficiency (8/148) (Table 4). In all measures except participation coefficient, the limbic 
region had the most significant nodes; in participation coefficient, the temporal region had 
the most significant nodes (4/32). In all measures, the right hemisphere had more 
significant nodes than the left hemisphere (Table 4). For significant nodes, either layers 
1 or 2 had the highest value (Table 4, Table S5, Figure S10311). Significant nodes were 
spread across different node thicknesses (Figure S123S13). 
 
 

Table 4. Number of significant nodes within each brain region for within-layer analysis. 
Significance was calculated from the area-under-the curve (AUC) values using a one-
way ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons 
[83, 84]. Details of nodal mapping to each region can be found in Table S1. Orange: 
hemisphere with the highest number of nodes; Yellow: measure with the highest 
number of nodes; Green: region within each measure with the highest number of nodes. 
Network 
Measure 

Hemisphere All 
Regions 

Frontal Limbic Occipital Parietal Temporal 

Degree 
Centrality 

Left: 4/74 0/24 4/14 0/10 0/10 0/16 

Right: 11/74 1/24 5/14 0/10 0/10 5/16 

Both: 15/148 1/48 9/28 0/20 0/20 5/32 

Strength Left: 2/74 0/24 2/14 0/10 0/10 0/16 

Right: 7/74 0/24 3/14 0/10 0/10 4/16 

Both: 9/148 0/48 5/28 0/20 0/20 4/32 

Eigenvector 
Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 

Both: 4/148 0/48 3/28 0/20 0/20 1/32 

Betweenness 
Centrality 

Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 3/74 1/24 2/14 0/10 0/10 0/16 

Both: 3/148 1/48 2/28 0/20 0/20 0/32 

Clustering 
Coefficient 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 5/74 0/24 3/14 0/10 0/10 2/16 

Both: 6/148 0/48 4/28 0/20 0/20 2/32 

Local 
Efficiency 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 7/74 0/24 4/14 0/10 0/10 3/16 

Both: 8/148 0/48 5/28 0/20 0/20 3/32 

Participation 
Coefficient 

Left: 2/74 0/24 1/14 0/10 0/10 1/16 

Right: 7/74 1/24 2/14 1/10 0/10 3/16 

Both: 9/148 1/48 3/28 1/20 0/20 4/32 
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Figure 5. Area-under-the-curve (AUC) values across different layers for significant 

global measures (p £ 0.05) for multilayer analysis. Significance was calculated using a 
one-way ANOVA. Spline interpolation was used for visualization. The mean value 
across participants at each layer is plotted while the shaded region indicates the 
standard error. 

 
Multilayer Global 
 
Alongside measures for individual layers, global measures were calculated for the supra-
adjacency matrix created using the multilayer approach. While only global values derived 
from nodal averages were statistically compared between layers, AUC values for all 
global measures are summarized in Table S6. Average degree centrality (p < 0.001), 
average strength (p = 0.0011), and average eigenvector centrality (p < 0.001) decreased 
from layer 1 to layer 5 with a slight peak at layer 2 (Figure 5A3C). Average betweenness 
centrality (p < 0.001) and average participation coefficient (p = 0.014) also decreased 
from layer 1 to layer 5 (Figure 5D3E). In contrast, average clustering coefficient tended 
to increase from layer 1 to layer 5 (p = 0.069) (Figure S14315, Table S6). Average local 
efficiency showed no significant difference between layers (Figure S14315, Table S6).  
 
Multilayer Local 
 
Table 5 depicts the number of nodes in specific brain regions that were significantly 
different between layers for the multilayer analysis (FDR correction with alpha = 0.01) 
(See Table S7 for specific values and regions). Betweenness centrality identified the most 
significant nodes (58/148) with 19/48 frontal nodes, 16/28 limbic nodes, 2/20 occipital 
nodes, 5/20 parietal nodes, and 16/32 temporal nodes (Table 5). The limbic region had 
highest percentage of nodes in all measures except clustering coefficient (4/32 in 
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temporal) and local efficiency (no significant nodes found). Additionally, using 
betweenness centrality the frontal region had the highest number of significant nodes 
(19/48). Again, in all measures, the right hemisphere had more nodes with significant 
differences between layers (Table 5). While most significant regions across measures 
were highest in the superficial layers (layers 1,2), especially in betweenness centrality, 
the deepest layer (layer 5) had the highest values for nodes significant in clustering 
coefficient (Table 5, Table S7, Figure S16). The thickness of significant nodes was 
spread across the spectrum of thickness levels, with a preference towards thicker nodes 
for betweenness centrality (Figure S173S18). 
 

Table 5. Number of significant nodes within each brain region for multilayer analysis. 
Significance was calculated from the area-under-the curve (AUC) values using a one-
way ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons 
[83, 84]. Details of nodal mapping to each region can be found in Table S1. Orange: 
hemisphere with the highest number of nodes; Yellow: measure with the highest 
number of nodes; Green: region within each measure with the highest number of nodes. 
Network 
Measure 

Hemisphere All 
Regions 

Frontal Limbic Occipital Parietal Temporal 

Degree 
Centrality 

Left: 2/74 0/24 2/14 0/10 0/10 0/16 

Right: 4/74 0/24 2/14 0/10 0/10 2/16 

Both: 6/148 0/48 4/28 0/20 0/20 2/32 

Strength Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 4/74 0/24 2/14 0/10 0/10 2/16 

Both: 5/148 0/48 3/28 0/20 0/20 2/32 

Eigenvector 
Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 2/74 0/24 2/14 0/10 0/10 0/16 

Both: 3/148 0/48 3/28 0/20 0/20 0/32 

Betweenness 
Centrality 

Left: 24/74 8/24 6/14 1/10 2/10 7/16 

Right: 34/74 11/24 10/14 1/10 3/10 9/16 

Both: 58/148 19/48 16/28 2/20 5/20 16/32 

Clustering 
Coefficient 

Left: 1/74 0/24 0/14 0/10 0/10 1/16 

Right: 6/74 2/24 1/14 0/10 0/10 3/16 

Both: 7/148 2/48 1/28 0/20 0/20 4/32 

Local 
Efficiency 

Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 0/74 0/24 0/14 0/10 0/10 0/16 

Both: 0/148 0/48 0/28 0/20 0/20 0/32 

Participation 
Coefficient 

Left: 3/74 0/24 2/14 0/10 0/10 1/16 

Right: 4/74 1/24 2/14 0/10 0/10 1/16 

Both: 7/148 1/48 4/28 0/20 0/20 2/32 
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Figure 6. Area-under-the-curve (AUC) values across different layers for significant 

global measures (p £ 0.05) for between-layer analysis. Significance was calculated 

using a one-way ANOVA. Spline interpolation was used for visualization. The mean 
value across participants at each layer is plotted while the shaded region indicates the 
standard error. 

 
Between-layer Global 
 
Significant between-layer global measures can be found in Figure 6. AUC values for all 
global measures can be found in Table S8. Average degree centrality (p < 0.001), 
average strength (p = 0.0011), average eigenvector centrality (p < 0.001), average 
betweenness centrality (p < 0.001), and average participation coefficient (p = 0.027) 
decreased from superficial (layer 1) to deep (layer 5) with all except average participation 
coefficient showing a peak in layers 2 and 3 (Figure 6A3D, F). Average clustering 
coefficient (p = 0.0024) increased from layer 1 to layer 5 with a slight decrease from layer 
1 to layer 2 (Figure 6E). Average local efficiency was the only measure that showed no 
significant difference between layers (Figure S19320, Table S8).  
 
Between-layer Local 
 
Brain regions with nodes that were significantly different using between-layer matrices 
can be found in Table 6 (FDR correction with alpha = 0.01) (See Table S9 for specific 
values and regions). Betweenness centrality had the largest number of significant nodes 
(57/148) followed by clustering coefficient (22/148) (Table 6). For betweenness centrality, 
most significant nodes were had the highest values in the superficial layers (layers 1 and 
2) while for clustering coefficient, all significant nodes were highest in layer 5 (Figure 
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S21). In degree centrality, strength, eigenvector centrality, and betweenness centrality, 
the limbic region had the percentage of significant nodes within each region (Table 6). In 
betweenness centrality, frontal region nodes had the highest absolute number of 
significant nodes (20/48). In clustering coefficient (10/32) and participation coefficient 
(4/32), the temporal region had the most significant nodes (Table 6). Local efficiency had 
no significant nodes (Table 6, Table S9, Figure S21). The right hemisphere had more 
significant nodes than the left hemisphere for all measures (Table 6). Significant nodes 
were dispersed across different thickness levels, with betweenness centrality nodes 
leaning slightly more toward thicker regions (Figure S223S23). 
 

Table 6. Number of significant nodes within each brain region for between analysis. 
Significance was calculated from the area-under-the curve (AUC) values using a one-
way ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons 
[83, 84]. Details of nodal mapping to each region can be found in Table S1. Orange: 
hemisphere with the highest number of nodes; Yellow: measure with the highest 
number of nodes; Green: region within each measure with the highest number of nodes. 
Network 
Measure 

Hemisphere All 
Regions 

Frontal Limbic Occipital Parietal Tempora
l 

Degree 
Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 4/74 0/24 2/14 0/10 0/10 2/16 

Both: 5/148 0/48 3/28 0/20 0/20 2/32 

Strength Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 4/74 0/24 2/14 0/10 0/10 2/16 

Both: 5/148 0/48 3/28 0/20 0/20 2/32 

Eigenvector 
Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 2/74 0/24 2/14 0/10 0/10 0/16 

Both: 3/148 0/48 3/28 0/20 0/20 0/32 

Betweenness 
Centrality 

Left: 25/74 10/24 7/14 1/10 1/10 6/16 

Right: 32/74 10/24 11/14 1/10 2/10 8/16 

Both: 57/148 20/48 18/28 2/20 3/20 14/32 

Clustering 
Coefficient 

Left: 6/74 0/24 3/14 0/10 0/10 3/16 

Right: 16/74 3/24 5/14 1/10 0/10 7/16 

Both: 22/148 3/48 8/28 1/20 0/20 10/32 

Local Efficiency Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 0/74 0/24 0/14 0/10 0/10 0/16 

Both: 0/148 0/48 0/28 0/20 0/20 0/32 

Participation 
Coefficient 

Left: 2/74 0/24 1/14 0/10 0/10 1/16 

Right: 5/74 1/24 1/14 0/10 0/10 3/16 

Both: 7/148 1/48 2/28 0/20 0/20 4/32 
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Figure 7. Layer with the highest area-under-the-curve (AUC) value across different 

global network measures methods (p £ 0.05). Significance was calculated using a one-
way ANOVA. White sections indicate no significant difference between layers. Gray 
sections indicate network measures that cannot separate effects of different layers.  

 
Method Comparison 
 
All four network measure methods (layer-by-layer, within-layer, multilayer, between-layer) 
identified global differences between layers (Figure 7). Layer-by-layer and within-layer 
methods showed an increase in integration-based global measures (radius and diameter) 
from layer 1 to layer 5; however, the within-layer approach identified an increase in 
characteristic path length as well. Similarly, layer-by-layer and within-layer approaches 
identified a decrease in largest cluster size from layer 1 to layer 5, with an additional 
decrease found in graph density using the within-layer method.  
 
For nodal-averaged global measures, which can be applied to all four methods, measures 
generally decreased from superficial layers (1 and 2) to deeper layers (Figure 7). The 
layer-by-layer methodology identified significant differences in three measures (average 
eigenvector centrality, average betweenness centrality, and average local efficiency) 
while the within-layer approach found significant differences in five measures (average 
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degree centrality, average strength, average eigenvector centrality, average local 
efficiency, and average participation coefficient). The multilayer approach also found 
differences in five measures (average degree centrality, average strength, average 
eigenvector centrality, average betweenness centrality, and average participation 
coefficient). Interestingly, the between-layer method identified the most measures with 
significant differences between layers using six measures, with two measures (average 
strength and average eigenvector centrality) peaking in the middle layer. Additionally, the 
between-layer approach was the only method to identify a difference in average clustering 
coefficient which was the highest in layer 5.  
 

 
Figure 8. Nodes with significant differences between layers for each nodal measure 
pipeline (layer-by-layer, within-layer, multilayer, between-layer) for (A) betweenness 
centrality and (B) clustering coefficient. Significance was calculated from the area-
under-the curve (AUC) values using a one-way ANOVA with an FDR correction (alpha 
= 0.01) to account for multiple comparisons [83, 84]. The colored section represents 
the layer with the highest value for the node. The nodes are based on the Destrieux 
atlas in FreeSurfer [67, 68]. LH: left hemisphere; RH: right hemisphere. 

 
Similar to global measures, the multilayer-based approaches (within-layer, multilayer, 
between-layer) identified more nodal differences between layers than the layer-by-layer 
approach (Table 336). For example, the layer-by-layer method identified a maximum of 
four nodes with significant differences per measures compared to fifteen for within-layer 
(degree centrality), fifty-eight for multilayer (betweenness centrality), and fifty-seven for 
between-layer (betweenness centrality). Despite this, in a majority of measures for all four 
methods, the limbic region had the greatest number of nodes with significant differences 
between layers. The right hemisphere also had more significant nodes across all methods 
and measures (Table 336). The right (2.4127 ± 0.0306 mm; AVG ± SE) and left (2.4069 
± 0.0303 mm) hemispheres had comparable cortical thicknesses overall and across brain 
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regions (Figure S24). Additionally, while the thickness of significant nodes versus non-
significant nodes was significantly larger in betweenness centrality metrics (multilayer, 
between-layer), the absolute difference between significant and non-significant nodes 
was typically less than 1 mm (Figure S25).  
 
Two measures that showed a considerable benefit from the multilayer-based approach 
were betweenness centrality and clustering coefficient (Figure 8). For example, the 
multilayer and between-layer methods showed substantial increase in the number of 
nodes that had significant differences between layers. Similarly, the number of nodes with 
significant differences between layers in clustering coefficient increased using multilayer 
and between-layer methods. More importantly, however, is clustering coefficient in 
multilayer and between-layer approaches is the only measure to highlight the deepest 
layer as having the largest value. Likewise, the multilayer and between-layer methods are 
the only methods to include nodes that are the highest value in the middle layer (Figure 
S16, S21).  
 

Discussion 
 
Graph theory analysis of high-resolution (7T) resting-state fMRI revealed global and nodal 
network differences between cortical depths. Global integration measures (radius, 
diameter, characteristic path length) were higher in deeper layers while composition 
(largest cluster size, graph density, degree centrality, strength) and centrality (eigenvector 
centrality, betweenness centrality) measures were often higher in superficial layers 
(Figure 7).  
 
Current literature exploring graph theory measures and overall laminar connectivity 
through networks in the human brain is very limited. Structural analysis of the human 
connectome using diffusion MRI combined with T1-weighted anatomical imaging found 
qualitative differences in degree, strength, and betweenness centrality nodal distributions 
across cortical depths [88]; however, network-wide global calculations were absent. In a 
functional approach, Deshpande et al. found no global differences between layers using 
mean blind deconvoluted Pearson correlations from resting-state fMRI [89]. However, no 
threshold was used, enabling spurious correlations to impact the mean. Additionally, 
using the mean across the whole brain obfuscates any impact of a particular ROI. Our 
results, thus, significantly extend global and nodal network analysis of cortical architecture 
across the entire brain. 
 
Our findings provide evidence of an advantage of applying of multilayer graph theory to 
connectomic analysis. While differences between layers were seen across all 
methodologies, the multilayer approach provided a greater identification of these 
differences through identifying more measures with larger significant differences (Figure 
7). Previous connectomic studies have shown a benefit of applying a multilayer network 
framework [28-30]. For example, multilayer connectomics enables the integration of 
complex neuroimaging data (cortical lamina, frequency bands, multi-modal 
neuroimaging) [28-33, 57] and the creation of new network features. New network 
features can be used to explain neuroscientific findings, as in this work, or even enhance 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.23.573208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

machine learning workflows to better discriminate between disease states [90]. Future 
connectomics studies with available data should therefore consider using a multilayer 
framework to augment brain network modeling and analysis. 
 
One particular benefit of multilayer analysis in laminar connectomics is the ability to 
discriminate between and incorporate the impact of within- and between-layer 
connections. While this comparison was limited to nodal averaged global measures and 
nodal values, there was still a stark comparison between within- and between-layer 
connections. When exploring layers individually (within-layer connections), the most 
superficial layer had the highest activation and is densely connected to itself while the 
deepest layer was relatively sparsely connected and took longer network paths to transmit 
information to different brain regions (Figure 4,7). However, in between layer 
connections, layer 1 becomes less important and the superficial-middle layers (layers 2 
and 3) become integral for cortical connectivity (Figure 637). The superficial-middle 
layers (layers 2 and 3) had the highest between-layer degree, strength, and eigenvector 
centrality, indicating both layers are densely connected to other layers. Additionally, layer 
29s significantly larger betweenness centrality demonstrates it is the most important layer 
for information flow between layers (Figure 637). Lastly, the deepest layer had the 
highest clustering coefficient meaning it had the highest likelihood of forming local hubs 
(triangles) with other layers. Thus, within- and between-layer analysis provides evidence 
of a highly active superficial layer that utilizes layers 2 and 3 to transmit information to 
other cortical layers.  
 
One important note to contextualize the above findings is that while activity and hubs of 
information flow can be identified, the direction of information flow cannot be delineated. 
Cortical layer architecture can have diverse connectivity patterns across layers and 
hierarchal schemes [34]. Therefore, it is important to recognize the correlation nature of 
this work rather than infer causality. Furthermore, while our results primarily focus on 
layers with the highest measure/activity, this does not imply that other layers are inactive.  
 
The significance of connectivity patterns and characteristics for cortical depths differed 
across different brain regions. We identified extensive differences between layers in the 
frontal, limbic, and temporal brain regions (Figure 8, Table 336). Interestingly, the limbic 
cortex, often with the most significant regions per measures, typically has less layers than 
other brain regions [85]. Thus, cellular architecture may play a role in the ability for laminar 
fMRI, and potentially multilayer connectomics, to detect differences between cortical 
layers. Cortical thickness may also play a role in detecting differences between layers 
[91]. The regions (frontal, limbic, and temporal) with the most differences were often the 
thickest regions (Figure S24), with our results overlapping with previous studies [91]. 
Additionally, other factors that may impact cortical function and detectability including the 
neurite density index, orientation dispersion index, and myelin [91]. However, Fukutomi9s 
et al. findings show a varied distribution across regions for these measures [91]. Despite 
this variation, hot-spots in these metrics near the posterior-ventral part of the cingulate 
gyrus and transverse temporal sulcus often overlap with significant nodes in our work. 
Therefore, our results indicate the need to contextualize layer fMRI results within cortical 
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metrics while providing a framework for potential regions (frontal, limbic, temporal) that 
may be suited for whole-brain laminar analysis. 
 
On a global network level, there were high levels of activation in superficial layers when 
compared to deeper layers, in line with previous resting-state fMRI analyses reporting 
increased activation patterns in superficial cortical depths [43, 60, 62, 92]. Higher 
composition and centrality measures indicate a more robustly connected network (Figure 
7). Additionally, at least within the same network (layer-by-layer and within-layer), deeper 
layers had significantly longer paths to transmit information, shown by higher global 
integration measures. It is, however, important to consider the pial vein bias [60], which 
increases gradient-echo BOLD signals from the deep to the more superficial parts of 
cortex. Further studies with alternative contrast mechanisms, which are less affected by 
the draining vein effect, are thus needed to determine whether the superficial cortical 
depths play a more critical role in the brain at rest, compared to the deeper aspects of the 
cortex. 
 
Limitations 
 
This study does have some limitations, both in terms of laminar analysis and connectomic 
analysis. Regarding our laminar analysis approach, the limitations of this study include 
biases associated with our fMRI pulse sequence, signal-to-noise ratio bias, the number 
of cortical depths chosen, the depth to cortical layer incongruence, and the impact of 
resting-state versus task-based paradigms. This work uses gradient-echo BOLD pulse 
sequences which may not be fully optimal for laminar analysis [43, 93]. Gradient-echo 
BOLD can be influenced largely by large draining vessels [60, 94-96], while spin-echo 
BOLD [97-100] and VAscular Space Occupancy (VASO) [48, 101] have been proposed 
as alternative fMRI contrasts for laminar analysis to address this large vein bias [43, 93]. 
However, VASO and spin-echo BOLD have lower sensitivity and several practical 
challenges [102]. Similarly, signal-to-noise ratio (SNR) can vary at different cortical 
depths. For example, depths within the middle of the cortex will contain less tissue 
boundary effects compared to the depths near the pial and white matter surfaces [103]. 
This difference may be further exacerbated since the thickness and functionality of 
cortical layers can change based on brain region [85-87] and cortical curvature [104-107]. 
However, as shown above for nodal analysis, thickness varied across statistically 
significant nodes suggesting our results are not purely a function of cortical thickness 
(Figure S63S7, S123S13, S173S18, S223S23, S243S25). Cortical curvature was not 
explored, and future laminar work should include the anatomical constraints of the cortex 
to address this. In addition to the location of the cortical depths chosen, the number of 
depths can affect the results. Other studies have used a smaller number of depths to 
ensure independence between depths [108], six depths to match the number of cortical 
layers [109], or even a larger amount that showed an improved detection of cortical 
responses [110]. The number of depths chosen should balance independence, cortical 
response detection, and computational demands from a higher depth count. Furthermore, 
as mentioned above, the cortical depths do not directly equate to cytoarchitectural cortical 
layers. Lastly, this study used resting-state fMRI to study whole-brain connectivity; 
however, laminar resting-state fMRI activation patterns may be different than laminar 
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task-based patterns [109], limiting the broad applicability to task-based laminar 
paradigms. Despite potential activation pattern differences, the underlying anatomical 
basis of resting-state connections [63-66] can still inform task-based paradigms.  
 
Regarding our connectomic approach, limitations include the parcellation choice, 
thresholding methodology, and multilayer measure calculations. Parcellation choice can 
impact graph theory results [111, 112]. This work used the Destrieux atlas in FreeSurfer 
[67, 68], which is based on anatomical nomenclature. However, an atlas derived from 
functional connectivity may be more appropriate for a functional analysis study [113]. 
Additionally, for laminar analysis, a custom atlas using laminar cytoarchitecture and 
cortical thickness may improve the accuracy of the results. As mentioned above, graph 
theory measures are directly impacted by thresholding the network [114]. AUC analysis 
attempts to correct for this thresholding bias but still may be inadequate for eliminating 
thresholding's effect on network characteristics.  
 
Increased BOLD signal in superficial vs. deeper layers may be due to vascular-related 
bias [60, 94-96, 109]. One might conclude that the present results reflect vascular biases.  
However, the most superficial depth was excluded in this work to reduce this bias. 
Additionally, some composition and centrality measures peaked in layers 2 and 3, notably 
average strength, suggesting that some observed effects are not explainable by biases 
in superficial layers (Figure 7, S63S7, S123S13, S173S18, S223S23, S243S25).  
 
Conclusion 
 
Our multilayer connectomics findings demonstrate global and nodal network differences 
between cortical depths that can be more aptly identified through the multilayer approach 
compared to traditional single layer connectomics. These results demonstrate the validity 
of the multilayer connectomic framework on laminar fMRI and provide a methodological 
foundation for future multilayer laminar studies. Future work should further explore the 
intersection of connectomics and laminar studies and address current methodological 
constraints.  
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