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Abstract

In graph theory, "multilayer networks" represent systems involving several interconnected
topological levels. A neuroscience example is the hierarchy of connections between
different cortical depths or "lamina". This hierarchy is becoming non-invasively accessible
in humans using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer
graph theory to examine functional connectivity across different cortical depths in
humans, using 7T fMRI (1-mm?3 voxels; 30 participants). Blood oxygenation level
dependent (BOLD) signals were derived from five depths between the white matter and
pial surface. We then compared networks where the inter-regional connections were
limited to a single cortical depth only ("layer-by-layer matrices") to those considering all
possible connections between regions and cortical depths ("multilayer matrix"). We
utilized global and local graph theory features that quantitatively characterize network
attributes such as network composition, nodal centrality, path-based measures, and hub
segregation. Detecting functional differences between cortical depths was improved
using multilayer connectomics compared to the layer-by-layer versions. Superficial
aspects of the cortex dominated information transfer and deeper aspects clustering.
These differences were largest in frontotemporal and limbic brain regions. fMRI functional
connectivity across different cortical depths may contain neurophysiologically relevant
information. Multilayer connectomics could provide a methodological framework for
studies on how information flows across this hierarchy.
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Introduction

Investigating brain activity and functionality through network analyses has become an
integral methodological foundation of neuroscience. Connectomics has yielded significant
advances in understanding brain structure and function [1, 2]. Modeling the brain as a
system of nodes (brain regions) connected by edges (mathematical relationships), often
using graph theory, can be used to provide insight into brain characteristics and
topological properties [3]. Brain networks can be derived from structural neuroimaging
such as MRI or diffusion tensor imaging (DTI) (structural connectomics) [4-6] or functional
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neuroimaging such as fMRI, EEG, or magnetoencephalography (MEG) (functional
connectomics) [7-11]. Both structural and functional connectomics have been used to
understand disease models [12-15], aid in surgical mapping [16-19], and characterize
therapeutic effects of neuropsychiatric treatments [20-25].

An emerging field within connectomics, and more broadly graph theory, is the exploration
of multilayer networks [26, 27]. Multilayer networks are composed of individual layers of
networks with interconnecting edges between different layers. Connections between
layers can be solely between homologous nodes (multiplex) or connect nodes regardless
of layer or nodal position (multilayer). Multilayer connectomics enables the study of
multifaceted and multimodal neuroimaging data, with the different groups of data divided
into distinct layers of the connectivity matrix [28-30]. For example, multilayer networks
can be derived using correlations between different frequency bands of MEG recordings
to identify the interplay between frequencies [31]. Additionally, different modalities such
as MEG, fMRI, and diffusion MRI can be combined to identify patterns in brain processing
[32] or pathological dysfunction [33] that were not found in traditional single-layer analysis.
Thus, multilayer connectomics allows for the incorporation of multidimensional
neuroimaging data and can identify relationships between distinct neuroimaging
techniques and analyses.

One potential application of multilayer connectomics is understanding the hierarchical
organization of the cerebral cortex. Neuroanatomical [34-36] and electrophysiological [37,
38] studies in animal models have identified that laminar input/output patterns can inform
about bottom-up (feedforward) or top-down (feedback) processes between cortical
regions. Despite its unparalleled resolution, a limitation of laminar electrophysiological
recordings in comprehensive connectivity analyses is that the coverage area is typically
very small. At the same time, mapping anatomical connections using fiber tracing has
limited options for mapping of the post-synaptic targets [39]. Intracortical depth analyses
of ultra-high resolution fMRI data have the benefit that the coverage can be extended to
the entire cerebral cortex. Advancements in ultra-high-resolution fMRI (< 1 mm?3 voxel
size) have enabled sampling of functional signals from different depths of the cortical gray
matter [40-43]. However, there are multiple challenges and unanswered questions for the
feasibility of using cortical depth profiles of fMRI signals [41]. Because deoxygenated
blood also drains up to the cortical surface through the intracortical diving venules, voxels
intersecting the superficial layers could also be affected by deeper neuronal activations
[44]. Despite this limitation, studies using this emerging methodology have attempted to
identify feedback and feedforward relationships non-invasively in the human brain [45-
56], akin to micro-scale recordings in animal models.

Even with the advent of high-resolution functional neuroimaging, multilayer connectomics
have mostly focused on anatomical networks derived from structural MRI and DTI [57,
58] due to their direct relationship to cortical architecture. For example, DTl and
histological samples identified that cortical areas with similar laminar structure were more
likely to be connected [59]. Additionally, even in functional laminar studies, previous works
have predominantly utilized task-based studies in pre-defined brain regions [40, 45-56,
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60]. Consequently, the functional components of the whole-brain cortical depths continue
to be underexplored.

In contrast to task-based studies, which primarily focus on specific cortical areas [61],
resting-state analysis enables whole-brain investigation of laminar organization [43, 62].
These resting-state connections have been shown to reflect anatomical connectivity [63-
66]. Thus, network differences within laminar resting-state fMRI networks represent
functional differences between cortical depths. This work explores the laminar structure
of the cortex using high-resolution resting-state fMRI and multilayer connectomics. We
use a dual-pipeline approach in comparing the information extracted from layer-by-layer
vs. multilayer connectomics. We demonstrate the validity of multilayer functional laminar
connectomics through showing that cortical depths have distinct graph theory
characteristics that are more clearly identifiable through multilayer connectomics
compared to the traditional single layer methodology.

Methods
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Figure 1. Multilayer connectomic pipeline to analyze functional connectivity across
different cortical depths. Here, "layers" refer to the dimensions of the connectivity
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matrices which represent fMRI signals gathered from different "cortical depths." (A) The
cortex was uniformly divided into five surfaces at different depths, as seen above
projected on a 0.75-mm isotropic-resolution anatomical T4-weighted image. (B) The
brain was parcellated into 148 regions-of-interest (ROIs) (74 per hemisphere) based on
the Destrieux atlas in FreeSurfer [67, 68]. The ROIls are shown on an inflated left-
hemisphere cortical surface. (C) Schematic showing the difference between a layer-by-
layer network and a multilayer network. In the layer-by-layer approach, each layer
(network) is independent of other layers while in the multilayer approach, the layers are
inter-connected. A sparser multilayer network is shown for visualization purposes. (D)
Example matrix construction from both the layer-by-layer and multilayer approaches.
While both approaches use matrices derived from Pearson correlations from the
different layers, the multilayer approach generates a supra-adjacency matrix that also
has correlations between different layers (shown in grayscale). (E) Example matrix
construction for within-layer and between-layer matrices. For within-layer matrices,
each sub-matrix is extracted individually for analysis. White areas represent
connections excluded from the analysis.

Participants

Thirty healthy adults (mean age + standard deviation = 32.4 + 10 years, 15 women, all
right-handed) were recruited using an internal online recruiting platform. Participants were
screened for vision problems, hearing problems, cognition-altering medications, and
exclusions for MRI (metal in the body). Twenty-eight of the participants were native
English-speakers. Informed consent was obtained from all participants, and MRI safety
screening forms were completed before each scan. The study design, protocol, and
consent were approved by the Mass General Brigham Institutional Review Board.

Image Acquisition

Participants were measured in sets of 7.9-min resting-state fMRI scans occurring on
different days (3 to 4 sessions per participant). Twenty-three participants were measured
in twelve resting-state scans. Seven participants had between ten to eighteen resting-
state scans (10 scans: n=1; 11 scans: n=1; 13 scans: n = 2; 14 scans: n = 2, 18 scans:
n = 1). The participants were instructed to avoid movement during the scans and keep
their eyes open and fixated on a fixation cross projected on a screen viewed through a
mirror. The average duration of the sessions was around two hours. Breathing and heart
rate were recorded using the built-in Siemens system at a sampling rate of 400 Hz.
Inhalation and exhalation were measured with the Siemens respiratory-effort transducer
attached to a respiratory belt. The heart rate was recorded using Siemens
photoplethysmogram transducers on the participant’s index finger.

The functional and structural neuroimaging data was acquired using a 7T whole-body
MRI scanner (MAGNETOM Terra, Siemens, Erlangen, Germany) with a home-built
custom-built 64-channel array coil [69]. To reduce participant head motion inside the
scanner, MRI-compatible paddings were placed around the head and neck. In each
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imaging session, Ti-weighted anatomical images were measured using a 0.75-mm
isotropic multi-echo MPRAGE pulse sequence [70, 71] with repetition time (TR) = 2530
ms, four echoes with echo time (TE) of 1.72, 3.53, 5.34, and 7.15 ms, 7° flip angle, 240 x
240 mm? field of view (FoV), and 224 sagittal slices. To help with pial surface placement
by avoiding dura mater, T2>-weighted anatomical images (voxel size = 0.83 x 0.83 x 0.80
mm, TR = 9000 ms, TE = 269 ms, flip angle = 120°, FoV = 225 x 225 mm?, 270 sagittal
slices) were acquired for twenty-eight out of thirty participants in one of the imaging
sessions. Resting-state functional imaging was collected using a T>*-weighted blipped-
CAIPI [72] simultaneous multi-slice (SMS) echo planar imaging (EPI) sequence using
multi-band RF pulses [72] with 4x acceleration factor in phase-encoding direction, 3x
acceleration factor in slice-encoding direction, TR = 2800 ms, TE = 27.0 ms, isotropic 1-
mm? voxels, 78° flip angle, 192 x 192 mm? FoV, 132 axial slices, anterior-to-posterior
phase encoding direction, 1446 Hz/pixel bandwidth, 0.82 ms nominal echo spacing, and
fat suppression. In addition, to de-warp the functional data, an EPI scan was collected
with identical parameters but with an opposite phase-encoding polarity (posterior-to-
anterior, PA-EPI) relative to the functional scans. For four participants with missing PA-
EPI scans, the data were de-warped using a gradient-echo field map (TR = 1040 ms, TE
=4.71 ms and 5.73 ms, isotropic 1.3-mm? voxels; flip angle = 75°, FoV = 240 x 240 mm?,
120 slices, bandwidth = 303 Hz/pixel).

MRI Preprocessing

First, SPM12 (http://www fil.ion.ucl.ac.uk/spm/, [SPM12-spm_preproc_run.m]; bias field
correction, full-width at half-maximum, FWHM: 18 mm, sampling distance: 2 mm, bias
regularization: 1E-4) and customized MATLAB scripts were used to correct the bias field
of the structural T1 and T2 images. Next, recon-all of FreeSurfer 6.0 [73] with an extension
for submillimeter 7 T data [71] was used to automatically create cortical reconstructions
for each participant. An average of multiple T1-weighted anatomical volumes (3 to 4 per
participant) alongside a T>-weighted volume were used in the reconstruction to enhance
the quality of the cortical surfaces. Nine intermediate surfaces were created between the
white matter and pial surfaces with fixed relative distances, of which five were selected
for the laminar analysis (described below). Lastly, the surfaces generated by recon-all
were corrected manually for inaccuracies with Recon Edit of Freeview.

For the functional data, slice-timing and motion corrections were first implemented in
FreeSurfer 7.1 [73]. De-warping was then used to correct for geometric distortions caused
by susceptibility-induced off-resonance fields. In de-warping, the off-resonance distortion
field was estimated using the functional data and the PA-EPI scan collected with reversed
a phase-encode blip; thus, the distortions are reversed in direction in respect to the scans
[FreeSurfer: topup, applytopup] [74, 75]. For four participants that were missing the PA-
EPI scan used above, the distortion field was estimated using the Bo field map scan in
FreeSurfer 6.0 [FreeSurfer-epidewarp]. The respiratory and heart rate artifacts were
corrected using the RETROspective Image CORrection (RETROICOR) algorithm (3™
order heart rate, respiratory, and multiplicative terms) [76]. Three participants were
missing heart rate data and, therefore, only respiratory recordings were used in
RETROICOR. In addition, RETROICOR was not applied to five participants with missing
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respiratory and heart rate data. Functional data were then co-registered with the structural
images using Boundary-Based Registration in FreeSurfer 6.0 [77]. By projecting each
intersecting voxel onto the corresponding surface vertex using trilinear interpolation, the
fMRI timeseries were then resampled onto the pial and white matter surfaces, and nine
cortical depths between them.

From the nine intracortical surfaces, five alternating depths were selected starting closest
to pial surface (depths 1 to 5, superficial to deep) (Figure 1A). The outside surfaces (pial
and white matter) were excluded to avoid partial volume effects from the cerebrospinal
fluid and white matter, respectively. Additionally, depths included were alternated to
minimize potential for partial volume overlap between surfaces that would bias the
correlation matrix generation.

Matrix Generation and Processing

Two parallel matrix processing pipelines were used to generate individual independent
adjacency matrices for the layer-by-layer approach while creating one supra-adjacency
matrix for the multilayer approach (Figures 1C and 1D). The layer-by-layer approach
creates an independent network for each cortical depth while the multilayer approach
results in five interconnected networks that combines all cortical depths.

One important distinction is between the terminology “depth” and “layer.” Here, depth
refers to the anatomical depth in the cortex while layer refers to a specific network derived
from a cortical depth. This distinction is critical to avoid equating a network layer with an
associated cerebral cortical layer.

The brain was parcellated into 148 regions-of-interest (ROIs) (74 per hemisphere) based
on the Destrieux atlas in FreeSurfer [67, 68] (Figure 1B). A detailed list of parcellations
can be found in the Table S1.

Resting-state time series for each participant were concatenated across runs, leading to
the following number of time points: 2028 for n = 23 participants; 1690 time points: n = 1;
1859 time points: n = 1; 2197 time points: n = 2; 2366 time points: n = 2, and 3042 time
points: n = 1. Concatenated time series were detrended and filtered using a second-order
Butterworth filter [high-pass: 0.01 Hz, low-pass: 0.1 Hz, MATLAB-filtfilt].

For the layer-by-layer approach, Pearson correlations were derived between ROls
within the same depth, resulting in 10878 pairwise correlations from 148 nodes (ROIs)
after removing 148 self-correlations (number of correlations = (nodes? — diagonal nodes)
/ 2). Pearson correlation coefficients were normalized using Fisher’'s z-transformation
resulting in five 148-by-148 symmetric weighted connectivity matrices for each
participant, i.e., one matrix for each cortical depth (Figure 1D).

For the multilayer approach, Pearson correlations were derived between ROIls between
and within all depths, resulting in 273430 pairwise correlations from 740 nodes (140 ROls
times 5 depths) after removing 740 self-correlations. Pearson correlation coefficients


https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.23.573208; this version posted December 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

7

were then normalized using Fisher’s z-transformation with the final product being a 740
by 740 symmetric weighted connectivity matrix for each participant (Figure 1D).

For both approaches, individual matrices were normalized and thresholded at 2%
intervals ranging from 2 to 40% graph density (ratio of edges present to total number of
possible edges) to understand measure differences over a wide range of thresholds.
Thresholding is required to minimize the effect spurious correlations.

We also examined the account of within- and between-layer connections only in the
context of the complete multilayer matrix. To this end, we draw two additional types of
sub-matrices from the multi-layer matrix, selectively concentrating on either their within-
layer aspect (here, termed multilayer within-layer) or the between-layer aspects (termed
multilayer between-layer) only. The multilayer within-layer matrices were derived by
normalizing the supra-adjacency matrix, thresholding the matrix, and then extracting the
nodes included in each individual layer (i.e. nodes 1 to 148 for layer 1), creating a 148-
by-148 weighted connectivity matrix. The multilayer between-layer matrices were, in
turn, derived by normalizing the supra-adjacency matrix, thresholding the matrix, and then
zeroing the five diagonal matrices (from each cortical depth) composing within-layer
connections, thus resulting in only between-layer connections. (It is worth noting that
since the within-layer and between-layer connectivity matrices were extracted after
thresholding, analysis that requires normalization, i.e., non-thresholded matrices, could
be conducted in the context of this analysis; Figure 1E.)

Edge Consistency and Variability

Connections (edges) within and between layers were explored to understand edge
consistency and variability between participants. Edge consistency [78] was calculated
by selecting the top five percent of edges with the lowest standard deviation in un-
thresholded multilayer networks. In contrast, edge variability [79] was calculated by
selected the top five percent of edges with the highest standard deviation across
participants. In both cases, edges in each layer were then summed and divided by the
total number of significant edges to identify the percentage of significant edges in each
layer.

Matrix Similarity

Matrix similarity was used to understand how matrices differed across layers.
Thresholded (2—40%) and normalized matrices were compared using cosine similarity,

€5, = 1 X
Y NX X

where X; and X are vectors of the upper triangular elements of two adjacency matrices
[MATLAB-pdist2], with values ranging from -1 (maximal dissimilarity) to +1 (maximal
similarity). Cosine similarity was shown to distinguish between matrices better than
traditionally used Pearson correlation [79, 80]. Using both the layer-by-layer approach
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and within-layer matrices, each layer was compared to the other layers. Additionally, to
understand how matrix generation differs between methods, the same layer was
compared across layer-by-layer and within-layer approaches.

Connectomic Analysis

Global and nodal measures were calculated in MATLAB using the Brain Connectivity
Toolbox (MATLAB Version R2022b) [3] on the Massachusetts Life Sciences
Center Compute Cluster (DELL R440 servers with two Intel Xeon Silver 4214R twelve
core CPUs). Global measures characterize the entire network while nodal measures
characterize attributes of specific node (ROI). Nodal measures can also be averaged to
create a global measure. Measures can be grouped into four general categories to
describe their overall network characterization: composition, centrality, integration, and
segregation. Composition measures describe the topology of the network while
centrality measures detail specific nodal importance for network function. Integration
measures examine how information flows through the network and segregation
measures explore how the network is divided into functional components. Therefore,
different measures can be used to understand different characteristics of the network. For
example, decreased nodal and global average strength was found in maltreated children
indicating decreased overall brain connectivity [81] while decreased clustering coefficient
and global efficiency in patients with Parkinson’s disease can signify deficits in brain
network integration and segregation [82]. Table 1 denotes the measures used in this
work, and detailed explanation of each measure can be found in Rubinov and Sporns [3].

Table 1. List of network measures used in this work organized by functional category.
(n) denotes a nodal measures.
Composition Centrality Integration Segregation
- Largest Cluster - Betweenness - Characteristic - Maximized
Size Centrality (n) Path Length Modularity Q
- Graph Density - Eigenvector - Radius - Transitivity
- Degree (n) Centrality (n) - Diameter - Clustering
- Strength (n) - Participation - Global Efficiency | Coefficient (n)
Coefficient (n) - Assortativity - Local Efficiency
(n)

Statistical Analysis

To avoid the bias of selecting a single threshold, area-under-the-curve (AUC) analysis
was conducted to create a threshold-independent measure. The measures in Table 1
were calculated at each threshold (from 2 to 40% graph density in 2% intervals). The
measure values at each threshold were then plotted against their threshold, and the area
underneath the generated curve was calculated using a trapezoidal integration method
[MATLAB-trapz].

For each global measure (and averaged nodal measure), the AUC value for each layer
for all participants was compared using a one-way analysis of variance (ANOVA)
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[MATLAB-anova1]. A one-way ANOVA was also used to compare each nodal measure
to find differences at each specific ROI (node). For the multilayer network and between-
layer measures, only nodal values (both averaged and individual) were compared since
global measures for the multilayer network (and thus between-layer measures) contain
effects from every layer. For nodal values (non-averaged), a False Discovery Rate (FDR,
Bonferroni-Holm method) correction (alpha = 0.01) was applied to account for multiple
comparisons [83, 84].

Cortical Thickness Validation

One potential confounding factor using whole-brain laminar analysis is that different brain
regions have different cortical thicknesses [85-87]. Thus, comparing cortical thickness
values of significant brain regions (defined above) can help evaluate whether our findings
may be influenced by cortical thickness. Subsequently, cortical thickness values for each
ROI for each participant were extracted using FreeSurfer and averaged across all
subjects [73]. The distribution of significant nodes versus non-significant nodes for each
nodal measure and pipeline with greater than ten significant nodes were compared using
a t-test [MATLAB-ttest2].
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Figure 2. (A) Edge consistency between each participant (multilayer matrix). The
edges of each layer of the multilayer matrix were compared to find the edge strengths
that had the lowest 5% standard deviation between participants. Higher values indicate
a higher percentage of consistent edges, indicating consistent features between
participants for those connections. (B) Edge variability between each participant
(multilayer matrix). The edges of each layer of the multilayer matrix were compared to
find the edge strengths that had the highest 5% standard deviation between
participants. Higher values indicate a higher percentage of variable edges, indicating
variable features between participants for those connections. (C) Cosine similarity
between layer-by-layer and within-layer matrices (multilayer approach). Within
participant, the matrix generation methods were compared using cosine similarity
across a range of thresholds at each layer. Cosine similarity values range from -1
(maximal dissimilarity) to +1 (maximal similarity). The mean value at each threshold is
plotted while the shaded region indicates the standard error. (D) Area-under-the-curve
(AUC) measure in comparing layer-by-layer and within-layer matrix generation
methods. Spline interpolation was used for visualization. The AUC from (C) is
calculated using trapezoidal approximation. Higher values indicate higher similarity
between methods while lower values indicate lower similarity between methods. The
mean AUC value at each layer is plotted while the shaded region indicates the standard
error.

Results

Matrix Similarity and Edge Comparison

Edges from the multilayer matrix were compared to understand differences and
similarities between participants and to see if the laminar connectomic methodology can
distinguish different participants. High edge consistency indicates a similar connectivity
pattern between participants while a high edge variability increases the ability to
distinguish been participants. Figure 2A and Table 2 shows the percentage of consistent
edge strengths between participants that each layer contains from the multilayer matrix.
Layer 1 (derived from the depth closest to pial surface) has the largest number of
consistent edges (29.52%) with connections between layer 1 and layer 5 (7.06%) being
the most consistent between participants. In contrast, Figure 2B shows the edge
variability between participants with the highest variability found in layer 5 (closest to white
matter) overall (33.65%) and in within layer connections (11.86%). It is important to clarify
that edge consistency and variability are not mutually related, even though they provide
complementary results above.

After edge analysis, connectivity matrices were compared within participants to
understand the two competing matrix generation methodologies: layer-by-layer vs. within-
layer (multilayer) approach. Cosine similarity was used to examine similarities between
different connectivity matrices. In comparing within participant matrices across layers
(Figure S1), layers were found to be similar with the most distant layers (layer 1 to layer
5) having the lowest similarity in both layer-by-layer matrices and within-layer matrices.
Matrices within the same layer and within participant were also compared across the
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matrix generation methods (Figure 2C and 2D). Layer 3 was the most consistent across

the two methodologies while the peripheral layers (layer 1 and layer 5) differed the most
between methods.

Table 2. Edge consistency and variability percentages for each layer derived from the
multilayer matrix. Bolded values show the highest percentage for each measure.

Layer Edge Consistency (%) Edge Variability (%)
1 (Superficial) 29.52 8.25
2 20.73 12.36
3 15.82 19.11
4 16.03 26.60
5 (Deep) 17.89 33.65
A Layer-by-Layer Comparison (AUC p = 0.050) B Layer-by-Layer Comparison (AUC p = 0.018) C Layer-by-Layer Comparison (AUC p < 0.001)
290 660
35 - 5200
35100
5 £ 3 4900
& 7 %
24800
—
220
540 4700
210 B 3 . T T T T T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Cortical Depth (Superficial to Deep) Cortical Depth (Superficial to Deep) Cortical Depth (Superficial to Deep)
D Layer-by-Layer Comparison (AUC p = 0.0054) E Layer-by-Layer Comparison (AUC p = 0.013) F Layer-by-Layer Comparison (AUC p = 0.0060)
.- 122 _.2.28
8200 F § 226

3

8
ity
N
R

222

@

8

2
T

2
8

Average Betweenness Centrality (AUC)

s
=
@
o
5220
r i 8
—— 1 (Superficial) 2218
5400 - 2 Sl
3 i
o
5200 4 S2.14
—5(Deep) 2212
5000 - <
T T r 106 T T T 2.10 : T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Cortical Depth (Superficial to Deep) Cortical Depth (Superficial to Deep) Cortical Depth (Superficial to Deep)

Figure 3. Area-under-the-curve (AUC) values across different layers for significant
global measures (p < 0.05) for layer-by-layer analysis. Significance was calculated
using a one-way ANOVA. Spline interpolation was used for visualization. The mean

value across participants at each layer is plotted while the shaded region indicates the
standard error.

Single Layer Results

Global

Global network measures were calculated for layer-by-layer matrices. AUC values for
each global measure can be found summarized in Table S2. Network radius (p = 0.050)
and diameter (p = 0.018) significantly increased from the most superficial layer 1 to the
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deepest layer 5 (Figure 3A-B). Largest cluster size (p < 0.001), average betweenness
centrality (p = 0.0054), average local efficiency (p = 0.013), and eigenvector centrality (p
= 0.0060) significantly decreased from layer 1 to layer 5 (Figure 3C—F), with a peak in
layer 2 for average betweenness centrality and average local efficiency. There were no
significant differences in modularity, transitivity, characteristic path length, assortativity,
average degree centrality, average strength, average clustering coefficient, and average
participation coefficient (Figure S2-3). Graph density and average degree centrality were
constant across layers due to both measures being a direct function of thresholding
(Figure S2-3).

Nodal

Table 3 shows the number of nodes in brain regions in layer-by-layer matrices with
significant differences between layers (FDR correction with alpha = 0.01) (See Table S3
for specific values and regions). Degree centrality, strength, and eigenvector centrality
had the greatest number of significant nodes (4/148) (Table 3). The limbic region had
more significant nodes than all other regions for each measure, except for clustering
coefficient which was tied with the temporal region (one significant node for each region).
In all measures, the right hemisphere had more significant nodes than the left hemisphere
(Table 3). In general, the most superficial layers (1 and 2) had the highest value for
significant nodes (Table 3, TableS3, Figure S4-S5). Significant nodes were distributed
across node thickness levels (Figure S6-S7).

Table 3. Number of significant nodes within each brain region for layer-by-layer
analysis. Significance was calculated from the area-under-the curve (AUC) values
using a one-way ANOVA with an FDR correction (alpha = 0.01) to account for multiple
comparisons [83, 84]. Details of nodal mapping to each region can be found in Table
S1. Orange: hemisphere with the highest number of nodes; Yellow: measure with the
highest number of nodes; Green: region within each measure with the highest number
of nodes.
Network Hemisphere All Frontal Limbic Occipital | Parietal Temporal
Measure Regions
Degree Left: 1/74 0/24 1/14 0/10 0/10 0/16
Centrality Right: 3/74 0/24 2/14 0/10 0/10 1/16
Both: 4/148 0/48 3/28 0/20 0/20 1/32
Strength Left: 1/74 0/24 1/14 0/10 0/10 0/16
Right: 3/74 0/24 2/14 0/10 0/10 1/16
Both: 4/148 0/48 3/28 0/20 0/20 1/32
Eigenvector Left: 1/74 0/24 1/14 0/10 0/10 0/16
Centrality Right: 3/74 0/24 2/14 0/10 0/10 1/16
Both: 4/148 0/48 3/28 0/20 0/20 1/32
Betweenness | Left: 0/74 0/24 0/14 0/10 0/10 0/16
Centrality Right: 3/74 1/24 2/14 0/10 0/10 0/16
Both: 3/148 1/48 2/28 0/20 0/20 0/32
Clustering Left: 0/74 0/24 0/14 0/10 0/10 0/16
Coefficient Right: 2/74 0/24 1/14 0/10 0/10 1/16
Both: 2/148 0/48 1/28 0/20 0/20 1/32
Local Left: 1/74 0/24 1/14 0/10 0/10 0/16
Efficiency Right: 3/74 0/24 2/14 0/10 0/10 1/16
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Figure 4. Area-under-the-curve (AUC) values across different layers for significant
global measures (p < 0.05) for within-layer analysis. Significance was calculated using
a one-way ANOVA. Spline interpolation was used for visualization. The mean value
across participants at each layer is plotted while the shaded region indicates the
standard error.

Multilayer Results

Within-layer Global

Figure 4 shows global network measures calculated for within-layer matrices. AUC
values for each global measure can be found summarized in Table S4. Characteristic
path length (p = 0.0069), radius (p = 0.034), and diameter (p < 0.001) all increased from
layer 1 to layer 5 (Figure 4A—C). Largest cluster size (p < 0.001), graph density (p <
0.001), average degree centrality (p < 0.001), average strength (p < 0.001), average
eigenvector centrality (p < 0.001), average local efficiency (p = 0.035), and average
participation coefficient (p < 0.001) significantly decreased with cortical depth (layer 1 to
5) (Figure 4D-J). There were no significant differences for modularity, transitivity, global
efficiency, assortativity, average betweenness centrality, and average clustering
coefficient (Figure S8-9). In contrast to layer-by-layer results, graph density and average
degree centrality were different across layers due to the within-layer matrix generation
methodology allowing each individual layer to have a different graph density.

Within-layer Local

The number of nodes in brain regions with significant differences using within-layer
matrices can be found in Table 4 (FDR correction with alpha = 0.01, see Table S5 for
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specific values and regions). Degree centrality had the largest number of significant
nodes (15/148) followed by strength (9/148), participation coefficient (9/148), and local
efficiency (8/148) (Table 4). In all measures except participation coefficient, the limbic
region had the most significant nodes; in participation coefficient, the temporal region had
the most significant nodes (4/32). In all measures, the right hemisphere had more
significant nodes than the left hemisphere (Table 4). For significant nodes, either layers
1 or 2 had the highest value (Table 4, Table S5, Figure S10-11). Significant nodes were
spread across different node thicknesses (Figure S12-S13).

Table 4. Number of significant nodes within each brain region for within-layer analysis.
Significance was calculated from the area-under-the curve (AUC) values using a one-
way ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons
[83, 84]. Details of nodal mapping to each region can be found in Table S1. Orange:
hemisphere with the highest number of nodes; Yellow: measure with the highest
number of nodes; Green: region within each measure with the highest number of nodes.
Network Hemisphere All Frontal Limbic Occipital | Parietal Temporal
Measure Regions
Degree Left: 4/74 0/24 4/14 0/10 0/10 0/16
Centrality Right: 11/74 1/24 5/14 0/10 0/10 5/16
Both: 15/148 1/48 9/28 0/20 0/20 5/32
Strength Left: 2/74 0/24 2/14 0/10 0/10 0/16
Right: 7174 0/24 3/14 0/10 0/10 4/16
Both: 9/148 0/48 5/28 0/20 0/20 4/32
Eigenvector Left: 1/74 0/24 1/14 0/10 0/10 0/16
Centrality Right: 3/74 0/24 2/14 0/10 0/10 1/16
Both: 4/148 0/48 3/28 0/20 0/20 1/32
Betweenness | Left: 0/74 0/24 0/14 0/10 0/10 0/16
Centrality Right: 3/74 1/24 2/14 0/10 0/10 0/16
Both: 3/148 1/48 2/28 0/20 0/20 0/32
Clustering Left: 1/74 0/24 1/14 0/10 0/10 0/16
Coefficient Right: 5/74 0/24 3/14 0/10 0/10 2/16
Both: 6/148 0/48 4/28 0/20 0/20 2/32
Local Left: 1/74 0/24 1/14 0/10 0/10 0/16
Efficiency Right: 7174 0/24 4/14 0/10 0/10 3/16
Both: 8/148 0/48 5/28 0/20 0/20 3/32
Participation Left: 2/74 0/24 1/14 0/10 0/10 1/16
Coefficient Right: 7174 1/24 2/14 1/10 0/10 3/16
Both: 9/148 1/48 3/28 1/20 0/20 4/32
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Figure 5. Area-under-the-curve (AUC) values across different layers for significant
global measures (p < 0.05) for multilayer analysis. Significance was calculated using a
one-way ANOVA. Spline interpolation was used for visualization. The mean value

across participants at each layer is plotted while the shaded region indicates the
standard error.

Multilayer Global

Alongside measures for individual layers, global measures were calculated for the supra-
adjacency matrix created using the multilayer approach. While only global values derived
from nodal averages were statistically compared between layers, AUC values for all
global measures are summarized in Table S6. Average degree centrality (p < 0.001),
average strength (p = 0.0011), and average eigenvector centrality (p < 0.001) decreased
from layer 1 to layer 5 with a slight peak at layer 2 (Figure 5A-C). Average betweenness
centrality (p < 0.001) and average participation coefficient (p = 0.014) also decreased
from layer 1 to layer 5 (Figure 5D-E). In contrast, average clustering coefficient tended
to increase from layer 1 to layer 5 (p = 0.069) (Figure S14-15, Table S6). Average local
efficiency showed no significant difference between layers (Figure S14-15, Table S6).

Multilayer Local

Table 5 depicts the number of nodes in specific brain regions that were significantly
different between layers for the multilayer analysis (FDR correction with alpha = 0.01)
(See Table S7 for specific values and regions). Betweenness centrality identified the most
significant nodes (58/148) with 19/48 frontal nodes, 16/28 limbic nodes, 2/20 occipital
nodes, 5/20 parietal nodes, and 16/32 temporal nodes (Table 5). The limbic region had
highest percentage of nodes in all measures except clustering coefficient (4/32 in


https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.23.573208; this version posted December 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

16

temporal) and local efficiency (no significant nodes found). Additionally, using
betweenness centrality the frontal region had the highest number of significant nodes
(19/48). Again, in all measures, the right hemisphere had more nodes with significant
differences between layers (Table 5). While most significant regions across measures
were highest in the superficial layers (layers 1,2), especially in betweenness centrality,
the deepest layer (layer 5) had the highest values for nodes significant in clustering
coefficient (Table 5, Table S7, Figure S16). The thickness of significant nodes was
spread across the spectrum of thickness levels, with a preference towards thicker nodes
for betweenness centrality (Figure S17-S18).

Table 5. Number of significant nodes within each brain region for multilayer analysis.
Significance was calculated from the area-under-the curve (AUC) values using a one-
way ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons
[83, 84]. Details of nodal mapping to each region can be found in Table S1. Orange:
hemisphere with the highest number of nodes; Yellow: measure with the highest
number of nodes; Green: region within each measure with the highest number of nodes.
Network Hemisphere All Frontal Limbic Occipital | Parietal Temporal
Measure Regions
Degree Left: 2/74 0/24 2/14 0/10 0/10 0/16
Centrality Right: 4/74 0/24 2/14 0/10 0/10 2/16
Both: 6/148 0/48 4/28 0/20 0/20 2/32
Strength Left: 1/74 0/24 1/14 0/10 0/10 0/16
Right: 4/74 0/24 2/14 0/10 0/10 2/16
Both: 5/148 0/48 3/28 0/20 0/20 2/32
Eigenvector Left: 1/74 0/24 1/14 0/10 0/10 0/16
Centrality Right: 2/74 0/24 2/14 0/10 0/10 0/16
Both: 3/148 0/48 3/28 0/20 0/20 0/32
Betweenness | Left: 24/74 8/24 6/14 1/10 2/10 7/16
Centrality Right: 34/74 11/24 10/14 1/10 3/10 9/16
Both: 58/148 19/48 16/28 2/20 5/20 16/32
Clustering Left: 1/74 0/24 0/14 0/10 0/10 1/16
Coefficient Right: 6/74 2/24 1/14 0/10 0/10 3/16
Both: 7/148 2/48 1/28 0/20 0/20 4/32
Local Left: 0/74 0/24 0/14 0/10 0/10 0/16
Efficiency Right: 0/74 0/24 0/14 0/10 0/10 0/16
Both: 0/148 0/48 0/28 0/20 0/20 0/32
Participation Left: 3/74 0/24 2/14 0/10 0/10 1/16
Coefficient Right: 4/74 1/24 2/14 0/10 0/10 1/16
Both: 7/148 1/48 4/28 0/20 0/20 2/32
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Figure 6. Area-under-the-curve (AUC) values across different layers for significant
global measures (p < 0.05) for between-layer analysis. Significance was calculated
using a one-way ANOVA. Spline interpolation was used for visualization. The mean

value across participants at each layer is plotted while the shaded region indicates the
standard error.

Between-layer Global

Significant between-layer global measures can be found in Figure 6. AUC values for all
global measures can be found in Table S8. Average degree centrality (p < 0.001),
average strength (p = 0.0011), average eigenvector centrality (p < 0.001), average
betweenness centrality (p < 0.001), and average participation coefficient (p = 0.027)
decreased from superficial (layer 1) to deep (layer 5) with all except average participation
coefficient showing a peak in layers 2 and 3 (Figure 6A-D, F). Average clustering
coefficient (p = 0.0024) increased from layer 1 to layer 5 with a slight decrease from layer
1 to layer 2 (Figure 6E). Average local efficiency was the only measure that showed no
significant difference between layers (Figure $19-20, Table S8).

Between-layer Local

Brain regions with nodes that were significantly different using between-layer matrices
can be found in Table 6 (FDR correction with alpha = 0.01) (See Table S9 for specific
values and regions). Betweenness centrality had the largest number of significant nodes
(57/148) followed by clustering coefficient (22/148) (Table 6). For betweenness centrality,
most significant nodes were had the highest values in the superficial layers (layers 1 and
2) while for clustering coefficient, all significant nodes were highest in layer 5 (Figure
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S$21). In degree centrality, strength, eigenvector centrality, and betweenness centrality,
the limbic region had the percentage of significant nodes within each region (Table 6). In
betweenness centrality, frontal region nodes had the highest absolute number of
significant nodes (20/48). In clustering coefficient (10/32) and participation coefficient
(4/32), the temporal region had the most significant nodes (Table 6). Local efficiency had
no significant nodes (Table 6, Table S9, Figure S21). The right hemisphere had more
significant nodes than the left hemisphere for all measures (Table 6). Significant nodes
were dispersed across different thickness levels, with betweenness centrality nodes
leaning slightly more toward thicker regions (Figure $22-S23).

Table 6. Number of significant nodes within each brain region for between analysis.
Significance was calculated from the area-under-the curve (AUC) values using a one-
way ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons
[83, 84]. Details of nodal mapping to each region can be found in Table S1. Orange:
hemisphere with the highest number of nodes; Yellow: measure with the highest
number of nodes; Green: region within each measure with the highest number of nodes.
Network Hemisphere | All Frontal Limbic Occipital | Parietal | Tempora
Measure Regions I
Degree Left: 1/74 0/24 1/14 0/10 0/10 0/16
Centrality Right: 4/74 0/24 2/14 0/10 0/10 2/16
Both: 5/148 0/48 3/28 0/20 0/20 2/32
Strength Left: 1/74 0/24 1/14 0/10 0/10 0/16
Right: 4/74 0/24 2/14 0/10 0/10 2/16
Both: 5/148 0/48 3/28 0/20 0/20 2/32
Eigenvector Left: 1/74 0/24 1/14 0/10 0/10 0/16
Centrality Right: 274 0/24 2/14 0/10 0/10 0/16
Both: 3/148 0/48 3/28 0/20 0/20 0/32
Betweenness Left: 25/74 10/24 7/14 1/10 1/10 6/16
Centrality Right: 32/74 10/24 11/14 1/10 2/10 8/16
Both: 57/148 20/48 18/28 2/20 3/20 14/32
Clustering Left: 6/74 0/24 3/14 0/10 0/10 3/16
Coefficient Right: 16/74 3/24 5/14 1/10 0/10 7/16
Both: 22/148 3/48 8/28 1/20 0/20 10/32
Local Efficiency | Left: 0/74 0/24 0/14 0/10 0/10 0/16
Right: 0/74 0/24 0/14 0/10 0/10 0/16
Both: 0/148 0/48 0/28 0/20 0/20 0/32
Participation Left: 2/74 0/24 1/14 0/10 0/10 1/16
Coefficient Right: 5/74 1/24 1/14 0/10 0/10 3/16
Both: 7/148 1/48 2/28 0/20 0/20 4/32
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Figure 7. Layer with the highest area-under-the-curve (AUC) value across different
global network measures methods (p < 0.05). Significance was calculated using a one-
way ANOVA. White sections indicate no significant difference between layers. Gray
sections indicate network measures that cannot separate effects of different layers.

Method Comparison

All four network measure methods (layer-by-layer, within-layer, multilayer, between-layer)
identified global differences between layers (Figure 7). Layer-by-layer and within-layer
methods showed an increase in integration-based global measures (radius and diameter)
from layer 1 to layer 5; however, the within-layer approach identified an increase in
characteristic path length as well. Similarly, layer-by-layer and within-layer approaches
identified a decrease in largest cluster size from layer 1 to layer 5, with an additional
decrease found in graph density using the within-layer method.

For nodal-averaged global measures, which can be applied to all four methods, measures
generally decreased from superficial layers (1 and 2) to deeper layers (Figure 7). The
layer-by-layer methodology identified significant differences in three measures (average
eigenvector centrality, average betweenness centrality, and average local efficiency)
while the within-layer approach found significant differences in five measures (average
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degree centrality, average strength, average eigenvector centrality, average local
efficiency, and average participation coefficient). The multilayer approach also found
differences in five measures (average degree centrality, average strength, average
eigenvector centrality, average betweenness centrality, and average participation
coefficient). Interestingly, the between-layer method identified the most measures with
significant differences between layers using six measures, with two measures (average
strength and average eigenvector centrality) peaking in the middle layer. Additionally, the
between-layer approach was the only method to identify a difference in average clustering
coefficient which was the highest in layer 5.

Betweenness Centrality
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Figure 8. Nodes with significant differences between layers for each nodal measure
pipeline (layer-by-layer, within-layer, multilayer, between-layer) for (A) betweenness
centrality and (B) clustering coefficient. Significance was calculated from the area-
under-the curve (AUC) values using a one-way ANOVA with an FDR correction (alpha
= 0.01) to account for multiple comparisons [83, 84]. The colored section represents
the layer with the highest value for the node. The nodes are based on the Destrieux
atlas in FreeSurfer [67, 68]. LH: left hemisphere; RH: right hemisphere.

Similar to global measures, the multilayer-based approaches (within-layer, multilayer,
between-layer) identified more nodal differences between layers than the layer-by-layer
approach (Table 3-6). For example, the layer-by-layer method identified a maximum of
four nodes with significant differences per measures compared to fifteen for within-layer
(degree centrality), fifty-eight for multilayer (betweenness centrality), and fifty-seven for
between-layer (betweenness centrality). Despite this, in a majority of measures for all four
methods, the limbic region had the greatest number of nodes with significant differences
between layers. The right hemisphere also had more significant nodes across all methods
and measures (Table 3-6). The right (2.4127 + 0.0306 mm; AVG £ SE) and left (2.4069
1 0.0303 mm) hemispheres had comparable cortical thicknesses overall and across brain
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regions (Figure S24). Additionally, while the thickness of significant nodes versus non-
significant nodes was significantly larger in betweenness centrality metrics (multilayer,
between-layer), the absolute difference between significant and non-significant nodes
was typically less than 1 mm (Figure S25).

Two measures that showed a considerable benefit from the multilayer-based approach
were betweenness centrality and clustering coefficient (Figure 8). For example, the
multilayer and between-layer methods showed substantial increase in the number of
nodes that had significant differences between layers. Similarly, the number of nodes with
significant differences between layers in clustering coefficient increased using multilayer
and between-layer methods. More importantly, however, is clustering coefficient in
multilayer and between-layer approaches is the only measure to highlight the deepest
layer as having the largest value. Likewise, the multilayer and between-layer methods are
the only methods to include nodes that are the highest value in the middle layer (Figure
S$16, S21).

Discussion

Graph theory analysis of high-resolution (7T) resting-state fMRI revealed global and nodal
network differences between cortical depths. Global integration measures (radius,
diameter, characteristic path length) were higher in deeper layers while composition
(largest cluster size, graph density, degree centrality, strength) and centrality (eigenvector
centrality, betweenness centrality) measures were often higher in superficial layers
(Figure 7).

Current literature exploring graph theory measures and overall laminar connectivity
through networks in the human brain is very limited. Structural analysis of the human
connectome using diffusion MRI combined with T1-weighted anatomical imaging found
qualitative differences in degree, strength, and betweenness centrality nodal distributions
across cortical depths [88]; however, network-wide global calculations were absent. In a
functional approach, Deshpande et al. found no global differences between layers using
mean blind deconvoluted Pearson correlations from resting-state fMRI [89]. However, no
threshold was used, enabling spurious correlations to impact the mean. Additionally,
using the mean across the whole brain obfuscates any impact of a particular ROI. Our
results, thus, significantly extend global and nodal network analysis of cortical architecture
across the entire brain.

Our findings provide evidence of an advantage of applying of multilayer graph theory to
connectomic analysis. While differences between layers were seen across all
methodologies, the multilayer approach provided a greater identification of these
differences through identifying more measures with larger significant differences (Figure
7). Previous connectomic studies have shown a benefit of applying a multilayer network
framework [28-30]. For example, multilayer connectomics enables the integration of
complex neuroimaging data (cortical lamina, frequency bands, multi-modal
neuroimaging) [28-33, 57] and the creation of new network features. New network
features can be used to explain neuroscientific findings, as in this work, or even enhance
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machine learning workflows to better discriminate between disease states [90]. Future
connectomics studies with available data should therefore consider using a multilayer
framework to augment brain network modeling and analysis.

One particular benefit of multilayer analysis in laminar connectomics is the ability to
discriminate between and incorporate the impact of within- and between-layer
connections. While this comparison was limited to nodal averaged global measures and
nodal values, there was still a stark comparison between within- and between-layer
connections. When exploring layers individually (within-layer connections), the most
superficial layer had the highest activation and is densely connected to itself while the
deepest layer was relatively sparsely connected and took longer network paths to transmit
information to different brain regions (Figure 4,7). However, in between layer
connections, layer 1 becomes less important and the superficial-middle layers (layers 2
and 3) become integral for cortical connectivity (Figure 6-7). The superficial-middle
layers (layers 2 and 3) had the highest between-layer degree, strength, and eigenvector
centrality, indicating both layers are densely connected to other layers. Additionally, layer
2’s significantly larger betweenness centrality demonstrates it is the most important layer
for information flow between layers (Figure 6-7). Lastly, the deepest layer had the
highest clustering coefficient meaning it had the highest likelihood of forming local hubs
(triangles) with other layers. Thus, within- and between-layer analysis provides evidence
of a highly active superficial layer that utilizes layers 2 and 3 to transmit information to
other cortical layers.

One important note to contextualize the above findings is that while activity and hubs of
information flow can be identified, the direction of information flow cannot be delineated.
Cortical layer architecture can have diverse connectivity patterns across layers and
hierarchal schemes [34]. Therefore, it is important to recognize the correlation nature of
this work rather than infer causality. Furthermore, while our results primarily focus on
layers with the highest measure/activity, this does not imply that other layers are inactive.

The significance of connectivity patterns and characteristics for cortical depths differed
across different brain regions. We identified extensive differences between layers in the
frontal, limbic, and temporal brain regions (Figure 8, Table 3-6). Interestingly, the limbic
cortex, often with the most significant regions per measures, typically has less layers than
other brain regions [85]. Thus, cellular architecture may play a role in the ability for laminar
fMRI, and potentially multilayer connectomics, to detect differences between cortical
layers. Cortical thickness may also play a role in detecting differences between layers
[91]. The regions (frontal, limbic, and temporal) with the most differences were often the
thickest regions (Figure S24), with our results overlapping with previous studies [91].
Additionally, other factors that may impact cortical function and detectability including the
neurite density index, orientation dispersion index, and myelin [91]. However, Fukutomi’s
et al. findings show a varied distribution across regions for these measures [91]. Despite
this variation, hot-spots in these metrics near the posterior-ventral part of the cingulate
gyrus and transverse temporal sulcus often overlap with significant nodes in our work.
Therefore, our results indicate the need to contextualize layer fMRI results within cortical
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metrics while providing a framework for potential regions (frontal, limbic, temporal) that
may be suited for whole-brain laminar analysis.

On a global network level, there were high levels of activation in superficial layers when
compared to deeper layers, in line with previous resting-state fMRI analyses reporting
increased activation patterns in superficial cortical depths [43, 60, 62, 92]. Higher
composition and centrality measures indicate a more robustly connected network (Figure
7). Additionally, at least within the same network (layer-by-layer and within-layer), deeper
layers had significantly longer paths to transmit information, shown by higher global
integration measures. It is, however, important to consider the pial vein bias [60], which
increases gradient-echo BOLD signals from the deep to the more superficial parts of
cortex. Further studies with alternative contrast mechanisms, which are less affected by
the draining vein effect, are thus needed to determine whether the superficial cortical
depths play a more critical role in the brain at rest, compared to the deeper aspects of the
cortex.

Limitations

This study does have some limitations, both in terms of laminar analysis and connectomic
analysis. Regarding our laminar analysis approach, the limitations of this study include
biases associated with our fMRI pulse sequence, signal-to-noise ratio bias, the number
of cortical depths chosen, the depth to cortical layer incongruence, and the impact of
resting-state versus task-based paradigms. This work uses gradient-echo BOLD pulse
sequences which may not be fully optimal for laminar analysis [43, 93]. Gradient-echo
BOLD can be influenced largely by large draining vessels [60, 94-96], while spin-echo
BOLD [97-100] and VAscular Space Occupancy (VASO) [48, 101] have been proposed
as alternative fMRI contrasts for laminar analysis to address this large vein bias [43, 93].
However, VASO and spin-echo BOLD have lower sensitivity and several practical
challenges [102]. Similarly, signal-to-noise ratio (SNR) can vary at different cortical
depths. For example, depths within the middle of the cortex will contain less tissue
boundary effects compared to the depths near the pial and white matter surfaces [103].
This difference may be further exacerbated since the thickness and functionality of
cortical layers can change based on brain region [85-87] and cortical curvature [104-107].
However, as shown above for nodal analysis, thickness varied across statistically
significant nodes suggesting our results are not purely a function of cortical thickness
(Figure S6-S7, S12-S13, S17-S18, S22-S23, S24-S25). Cortical curvature was not
explored, and future laminar work should include the anatomical constraints of the cortex
to address this. In addition to the location of the cortical depths chosen, the number of
depths can affect the results. Other studies have used a smaller number of depths to
ensure independence between depths [108], six depths to match the number of cortical
layers [109], or even a larger amount that showed an improved detection of cortical
responses [110]. The number of depths chosen should balance independence, cortical
response detection, and computational demands from a higher depth count. Furthermore,
as mentioned above, the cortical depths do not directly equate to cytoarchitectural cortical
layers. Lastly, this study used resting-state fMRI to study whole-brain connectivity;
however, laminar resting-state fMRI activation patterns may be different than laminar


https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.23.573208; this version posted December 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

24

task-based patterns [109], limiting the broad applicability to task-based laminar
paradigms. Despite potential activation pattern differences, the underlying anatomical
basis of resting-state connections [63-66] can still inform task-based paradigms.

Regarding our connectomic approach, limitations include the parcellation choice,
thresholding methodology, and multilayer measure calculations. Parcellation choice can
impact graph theory results [111, 112]. This work used the Destrieux atlas in FreeSurfer
[67, 68], which is based on anatomical nomenclature. However, an atlas derived from
functional connectivity may be more appropriate for a functional analysis study [113].
Additionally, for laminar analysis, a custom atlas using laminar cytoarchitecture and
cortical thickness may improve the accuracy of the results. As mentioned above, graph
theory measures are directly impacted by thresholding the network [114]. AUC analysis
attempts to correct for this thresholding bias but still may be inadequate for eliminating
thresholding's effect on network characteristics.

Increased BOLD signal in superficial vs. deeper layers may be due to vascular-related
bias [60, 94-96, 109]. One might conclude that the present results reflect vascular biases.
However, the most superficial depth was excluded in this work to reduce this bias.
Additionally, some composition and centrality measures peaked in layers 2 and 3, notably
average strength, suggesting that some observed effects are not explainable by biases
in superficial layers (Figure 7, S6-S7, S12-S13, S17-S18, S22-S23, S24-S25).

Conclusion

Our multilayer connectomics findings demonstrate global and nodal network differences
between cortical depths that can be more aptly identified through the multilayer approach
compared to traditional single layer connectomics. These results demonstrate the validity
of the multilayer connectomic framework on laminar fMRI and provide a methodological
foundation for future multilayer laminar studies. Future work should further explore the
intersection of connectomics and laminar studies and address current methodological
constraints.
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