

1 **Global Change Biology**

2

3 **Acclimation Capacity to Global Warming of Amphibians and Freshwater Fishes: Drivers,**
4 **Patterns, and Data Limitations**

5

6 ***Running title: Acclimation: Amphibians and Freshwater Fishes***

7

8 Katharina Ruthsatz^{1,2}, Flemming Dahlke³, Katharina Alter⁴, Sylke Wohlrab^{5,6}, Paula C.
9 Eterovick¹, Mariana L. Lyra^{7,8}, Sven Gippner¹, Steven J. Cooke⁹, Myron A. Peck^{4,10}

10 ¹*Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106*
11 *Braunschweig, Germany*

12 ²*Institute of Animal Cell and Systems Biology, Universität Hamburg, Martin-Luther-King-*
13 *Platz 3, 20146 Hamburg, Germany*

14 ³*Ecology of Living Marine Resources, Universität Hamburg, Große Elbstraße 133, 22767*
15 *Hamburg, Germany*

16 ⁴*Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59*
17 *1790 AB, Den Burg (Texel), the Netherlands*

18 ⁵*Alfred Wegner Institute Helmholtz Center for Polar and Marine Research, 27570*
19 *Bremerhaven, Germany*

20 ⁶*Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg*
21 *(HIFMB), 23129 Oldenburg, Germany*

22 ⁷*New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, P.O. Box 129188, United Arab*
23 *Emirates*

24 ⁸*Center for Research on Biodiversity Dynamics and Climate Change, State University of São*
25 *Paulo-UNESP, Rio Claro, SP, Brazil.*

26 ⁹*Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute*
27 *of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6,*
28 *Canada*

29 ¹⁰Marine Animal Ecology Group, Department of Animal Sciences, Wageningen University, PO
30 Box 338, 6700 AH, Wageningen, the Netherlands

31 Key words: *acclimation response ratio, CT_{max}, thermal tolerance plasticity, developmental*
32 *phenotypic plasticity, thermal bottleneck, metamorphosis, Bogert Effect, climate variability*
33 *hypothesis*

34 Corresponding author: **Katharina Ruthsatz**; ORCID: 0000-0002-3273-2826. Current address:
35 Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106
36 Braunschweig, Germany. Phone: 0049 531 3912393. Email: katharinaruthsatz@gmail.com.

37 **Abstract**

38 Amphibians and fishes play a central role in shaping the structure and function of freshwater
39 environments. These organisms have a limited capacity to disperse across different habitats and
40 the thermal buffer offered by freshwater systems is small. Understanding determinants and
41 patterns of their physiological sensitivity across life history is, therefore, imperative to
42 predicting the impacts of climate change in freshwater systems. Based on a systematic literature
43 review including 345 studies with 998 estimates on 96 amphibian and 93 freshwater fish
44 species, we conducted a meta-analysis to explore phylogenetic, ontogenetic, and biogeographic
45 (i.e. thermal adaptation) patterns in upper thermal tolerance (CT_{max}) and thermal acclimation
46 capacity (Acclimation Response Ratio, ARR) as well as the influence of the methodology used
47 to assess these thermal traits using a conditional inference tree analysis. We found CT_{max} and
48 ARR differed between taxa, pre- and post-metamorphic life stages as well as with thermal
49 adaptation. The ARR of freshwater fishes exceeded that of amphibians by more than twice
50 across life stages. In amphibians, CT_{max} decreased throughout early development, with juveniles
51 exhibiting the lowest heat tolerance, potentially representing a life history bottleneck if other
52 strategies to reach thermal refugia, e.g. through behavioral thermoregulation, would also be
53 constrained. In contrast to the broader literature, CT_{max} was not generally higher in low latitude
54 populations but also varied with ontogeny, emphasizing the importance of assessing life stage-
55 specific sensitivity to thermal stress. Importantly, the application of different methods (e.g.
56 acclimation duration, ramping rates) changed life stage, phylogeny, and thermal adaptation
57 patterns in CT_{max} and ARR. Our analyses highlight biases and data limitations with respect to
58 coverage in taxonomy, biogeographic distribution of species, life stage, and study design. We
59 propose methods to improve robustness and comparability of thermal sensitivity knowledge
60 needed to adopt interventions to safeguard freshwater biodiversity in a future climate.

61 **1. Introduction**

62 Global climate change is not only causing an increase in mean air and water temperatures, but
63 also an increased magnitude and frequency of extreme climatic events (Lee et al. 2023). As a
64 result, ectotherms are more likely to experience temperatures beyond their critical thermal
65 maximum (CT_{max}) in both terrestrial and aquatic habitats (Duarte et al. 2012; Sunday et al.
66 2014). This is particularly true for populations already living close to their upper thermal limit.
67 Consequently, the ability to mitigate thermal stress through either migration, evolutionary
68 genetic adaptation or acclimation is crucial for the persistence of species in a changing climate
69 (Franks & Hoffmann 2002; Huey et al. 2012; Seebacher et al. 2015). Given the limited dispersal
70 ability of many species (e.g., freshwater species; Woodward et al. 2010) and rapid pace of
71 global warming (Hoffmann & Sgró 2011), physiological acclimation is arguably the most
72 important mechanism for coping with climate change (Gunderson & Leal 2015). Understanding
73 differences in acclimation capacity of species and identifying global patterns can therefore help
74 to identify climate change risks to biodiversity and develop effective conservation measures
75 (Somero 2010).

76 As an adaptive response to larger seasonal differences in temperature, thermal tolerance and
77 acclimation capacity of ectothermic species or populations tend to increase with increasing
78 latitude from tropical through temperate climate zones (e.g., Somero 2005; Deutsch et al. 2008;
79 Sunday et al. 2011; Peck et al. 2014; Rohr et al. 2018; Cicchino et al. 2023; but see: Sørensen
80 et al. 2016; Gunderson & Stillman 2015) and from higher to lower elevations (Enriquez-Urzelai
81 et al. 2020; but not: Sunday et al. 2019). This biogeographical pattern is consistent with the
82 *climate variability hypothesis* (Janzen 1967; Ghalambor et al. 2006), suggesting that climatic
83 differences across latitudinal gradients lead to corresponding adaptations in thermal physiology.
84 Low-latitude species adapted to relatively stable temperature conditions may have a lower
85 acclimation capacity and, therefore, may be more vulnerable to climate change (Tewksbury et
86 al. 2008; Sunday et al. 2014; but see: Bovo et al. 2023). However, there is still little empirical
87 evidence supporting the climate variability hypothesis, possibly due to the limited geographical
88 and phylogenetic coverage of observations, and because of the inconsistency of the methods
89 applied to measure the acclimation capacity of different species and life stages (Gutiérrez-
90 Pesquera et al. 2016; Shah et al. 2017). Moreover, the use of different methods or protocols
91 might impact the estimation of thermal traits (Terblanche et al. 2007; Chown et al. 2009; Rohr
92 et al. 2018; Pottier et al. 2022a; but not: Sunday et al. 2019). For example, acclimation duration
93 (i.e., how long organisms were held at an acclimation temperature before exposing them to the

94 test temperature) and ramping protocol (i.e., heating or cooling rate in thermal tolerance trials)
95 have been suggested to influence measurements of acclimation capacity, as the underlying
96 physiological processes occur over certain time periods.

97 In animals with complex life histories, thermal tolerance and acclimation capacity are thought
98 to change during ontogeny according to physiological and morphological reorganizations and
99 concomitant aerobic capacities in relation to oxygen demand (Pörtner 2002; Pörtner & Peck
100 2010; Ruthsatz et al. 2020a, 2022a) as well as energetic costs associated with developmental
101 processes (Ruthsatz et al. 2019). Furthermore, life stages might differ in their ability for
102 behavioral thermoregulation (Navas et al. 2008; Little & Seebacher 2017) resulting in stage-
103 specific adaptations in thermal traits (Huey et al. 1999). Therefore, determining taxon-specific
104 acclimation capacity at different ontogenetic stages should be taken into account when studying
105 climate adaptation of ectothermic species, as it will help identify life cycle bottlenecks and
106 provide robust data on the vulnerability of populations or species to global warming
107 (Bodensteiner et al. 2021; Pottier et al. 2022a; Dahlke et al. 2022). To date, most studies have
108 focused on adult life stages when addressing the *climate variability hypothesis* (e.g., Gunderson
109 & Stillman 2015; Sunday et al. 2011, 2014, 2019; Rohr et al. 2018) and the vulnerability of
110 species to global change (e.g., Calosi et al. 2008; Comte & Olden 2017a; Morley et al. 2019;
111 Molina et al. 2023), or have pooled several pre- and post-metamorphic life stages (Pottier et al.
112 2022a; Weaving et al. 2022) thereby risking to overlook a critical thermal bottleneck in the life
113 cycle (Dahlke et al. 2020). The extent to which thermal tolerance and acclimation capacity
114 change during ontogeny is, therefore, not clear for many taxa.

115 Amphibians and freshwater fishes tend to live in relatively shallow waters (e.g., wetlands,
116 ponds, rivers, lakes) and may, therefore, experience strong seasonal and daily temperature
117 fluctuations (Capon et al. 2021) and climate extremes such as heat waves (IPCC 2021). In
118 addition, both taxa have a limited ability to disperse over larger distances and habitats to avoid
119 unfavorable climatic conditions (Albert et al. 2011; Yu et al. 2013; Campos et al. 2021).
120 Consequently, as a result of local adaptation (Meek et al. 2023), there should be a close
121 correspondence between the capacity for thermal acclimation and the climatic conditions that
122 amphibians and freshwater fishes experience during their life cycle. However, freshwater
123 systems offer a wide range of thermal microhabitats that enable behavioral thermoregulation
124 (Campos et al. 2021), especially for (post-metamorphic) amphibians that can switch between
125 water and land. The potential of behavioral thermoregulation could reduce the need for
126 physiological adaptations (also known as the *Bogert Effect*, (Bogert 1949)) and thus counteract

127 the emergence of geographical patterns in thermal acclimation capacity and/or thermal
128 tolerance. Given the central role that amphibians and freshwater fishes play in shaping the
129 structure and function of these ecosystems (Closs et al. 2016; Hocking & Babbitt 2014),
130 understanding determinants and patterns of their physiological sensitivity is imperative to
131 predicting the impacts of climate change on freshwater systems.

132 Here, we aimed to define the determinants and patterns of acclimation capacity in upper thermal
133 tolerance in amphibians and freshwater fishes. To do so, we compiled literature on upper
134 thermal tolerance and collected empirical data for CT_{max} in four amphibian (i.e., larvae,
135 metamorphs, juveniles, and adults) and three freshwater fish (i.e., larvae, juveniles, and adults)
136 life stages acclimated to different temperatures. Next, we calculated the population-specific
137 acclimation capacity, i.e., mean acclimation response ratio (ARR) of upper thermal limits, and
138 conducted a meta-analysis on the acclimation capacity of amphibians and freshwater fishes to
139 test for differences among taxonomic groups, among life stages, and across thermal
140 characteristics of populations, i.e., latitudinal and altitudinal differences based on local thermal
141 adaptation. Further, we investigated how the methodological context, i.e., acclimation duration,
142 ramping rate, affects estimates of thermal traits. Finally, we summarize methodological
143 concerns, highlight key knowledge gaps and provide research recommendations for generating
144 reliable and comparable data on the acclimation capacity of ectothermic species and life stages.
145 This will improve our ability to predict future climate vulnerability of species and populations.

146 2. Materials and Methods

147 2.1 Systematic literature review

148 We conducted a systematic literature review using ISI Web of Science (ISI WOS, 2021) on
149 2022/06/30 and did not apply a timespan limit. The following Boolean search string was used
150 to capture studies manipulating acclimation temperatures of amphibians and freshwater fishes
151 at different life stages, and subsequently measured their CT_{max} : (“amphibian*” OR “newt*” OR
152 “frog*” OR “toad*” OR “salamander*” OR “freshwater” AND “fish*”) AND (“early” OR
153 “young” OR “life stage*” OR “ontogen*” OR “development*” OR “hatchling*” OR “alevin*”
154 OR “lary*” OR “tadpole*” OR “metamorph*” OR “postmetamorph*” OR “post-metamorph*”
155 OR “postlarva*” OR “post-larva*” OR “fry*” OR “parr*” OR “smolt*” OR “subadult*” OR
156 “sub-adult” OR “juvenile” OR “fingerling*” OR “adult*”) AND (“thermal” OR “temperature”
157 OR “acclimat*” OR “heat” OR “warm*”) AND (“tolerance*” OR “thermal tolerance*” OR
158 “temperature tolerance*” OR “warming tolerance*” OR “heat tolerance*” OR “thermal stress
159 tolerance*” OR “heat stress tolerance*” OR “temperature stress tolerance*” OR “limit*” OR

160 “temperature stress*” OR “thermal limit*” OR “critical temperature*” OR “CT max” OR
161 “critical thermal m*” OR “thermal performance breadth*” OR “thermal breadth*” OR
162 “performance breadth*” OR “thermal range*” OR “thermal window*” OR “thermal tolerance
163 window*” OR “tolerance window*” OR “sensitivity*” OR “thermal sensitivity”).

164 Our search resulted in 11,057 documents (Fig. S1). After removing book chapters, conference
165 contributions, reviews, meeting abstracts, editorial material, preprints, and proceedings articles,
166 10,740 published peer-reviewed articles remained in our initial database. Additionally, we
167 manually added articles included in the meta-analyses of Claussen (1977), Gunderson and
168 Stillman (2015), Comte & Olden (2017b), Morley et al. (2019) and Dahlke et al. (2020) that
169 met our inclusion criteria but were not obtained through the ISI Web of Science search. After
170 an initial subjective evaluation of titles, 3,991 articles potentially containing results matching
171 the objective of the present study were kept and further assessed for eligibility using the
172 abstract. Thirty-four articles were not accessible. We contacted the authors of the original
173 studies to request missing information and heard back from two authors. Finally, a total of 93
174 articles (34 on amphibians; 59 on freshwater fishes) met our inclusion criteria. Search methods
175 are summarized in a PRISMA flowchart (Fig. S1) and a list of included studies is available in
176 the figshare data repository under [DOI:XXX](#) (to be included after manuscript acceptance).

177 *2.2 Inclusion criteria*

178 Studies were selected based on the following eight inclusion criteria:

179 (1) Studies were conducted on amphibians (anurans, caudates, or gymnophiones) or freshwater
180 fishes (teleosts).

181 (2) Experiments were conducted under laboratory conditions (i.e., no field studies).

182 (3) Articles provided comprehensive information on methodology (acclimation temperatures
183 and duration, ramping rate), phylogeny (species names), sampling location (GPS location),
184 and life stage. If no GPS coordinates were provided but a concrete sampling location was
185 stated (e.g., Central Park, New York City, NY, USA), we searched for the coordinates of
186 the respective location on Google Maps.

187 (4) Animals were collected from their natural habitat. Data were excluded if measurements
188 were taken from specimens bred artificially to reduce confounding issues associated with
189 artificial selective history (Bennett et al. 2018). Studies were also included if adult animals
190 were collected to immediately reproduce in the lab to obtain larvae.

191 (5) The critical thermal maximum (CT_{max}) was used as a standard measure of heat tolerance
192 (Lutterschmidt & Hutchison 1997). Studies using other measures such as voluntary thermal
193 maximum, time to death, heat knockdown, or lethal temperatures as well as extrapolations
194 from thermal performance curves were not considered. In aquatic and terrestrial
195 ectotherms such as amphibians and fish, CT_{max} is generally measured as loss of equilibrium
196 (LOE) or loss of righting response (LRR) following a steady increase in water or air
197 temperature [dynamic method according to Fry (1947)]. In comparison to other endpoints
198 such as the onset of spasms (Lutterschmidt & Hutchison 1997), measuring CT_{max} as LOE
199 or LRR is a non-lethal, robust method at various body sizes that is repeatable within
200 individuals (Morgan et al. 2018).

201 (6) At CT_{max} measurements, the animals could be classified into one of four different categories
202 representing the consecutive life stages of amphibians and freshwater fish: (a) larva (pre-
203 metamorphic; amphibians: < Gosner stage 42), (b) metamorph (only for amphibians:
204 Gosner stage 42-46), (c) juvenile (post-metamorphic), and (d) adult (after reaching sexual
205 maturity). Embryos were not included in the present study because the assessment of acute
206 heat tolerance in non-mobile life stages requires different endpoints that may not be directly
207 comparable to the LOE/LRR-based CT_{max} of other life stages (Cowan et al. 2023; Lechner
208 et al. 2023).

209 (7) Animals were acclimated to at least two constant acclimation temperatures prior to the
210 CT_{max} measurements. Therefore, fluctuating treatments were not considered.

211 (8) Food was provided *ad libitum* during the acclimation time since food deprivation might
212 decrease thermal tolerance and/or acclimation capacity (Lee et al. 2016).

213 2.3 Data extraction

214 When all inclusion criteria were met, data were collated in a spreadsheet. We extracted mean
215 CT_{max} for all acclimation temperatures resulting in 998 single data points (513 for amphibians;
216 485 for freshwater fish). Some of these articles performed different studies on e.g., different
217 populations of one species, different species, or different life stages. Therefore, all available
218 datasets were included, resulting in 345 studies from 93 articles with 345 paired effect sizes
219 CT_{max} and acclimation capacity. Data presented in the text or tables were directly extracted
220 from the article. When only raw data were available, mean values were calculated. For studies
221 that presented results in figures instead of tables, Engauge Digitizer 12.1 was used (Mitchell et
222 al. 2021) to extract data from the graphs. In addition to CT_{max} data, information on the

223 methodology (i.e., acclimation temperatures and duration, ramping protocol), as well as on
224 variables representing sampling location as detailed as possible (i.e., GPS coordinates),
225 phylogeny (i.e., scientific classification according to the Linnean classification), and life stage
226 at CT_{max} assessment was extracted. The data extractions were performed by KR, KA and PCE,
227 followed by an accuracy check of the data (KA: freshwater fish sub dataset; KR: amphibian sub
228 dataset; PCE: both sub datasets).

229 *2.4 Bioclimatic variables*

230 For each sampling location, 19 bioclimatic metrics, related to temperature and precipitation,
231 and elevation were extracted using the WorldClim 2 database (<http://www.worldclim.org/>; Fick
232 & Hijmans 2017) for the average of the years 1970–2000. The data were extracted at a spatial
233 resolution of 30 seconds (~1 km²), using package ‘geodata’ (Hijmans 2021) in R (version 4.2.1;
234 R Core Team, 2020). Bioclimatic variables are coded as follows: Annual Mean Temperature
235 (bio1), Mean Diurnal Range (bio 2), Isothermality (bio 3), actual Temperature Seasonality (bio
236 4), Maximum Temperature of Warmest Month (bio 5), Minimum Temperature of Coldest
237 Month (bio 6), Annual Temperature Range (bio 7), Mean Temperature of Wettest Quarter (bio
238 8), Mean Temperature of Driest Quarter (bio 9), Mean Temperature of Warmest Quarter (bio
239 10), Mean Temperature of Coldest Quarter (bio 11), Annual Precipitation (bio 12), Precipitation
240 of Wettest Month (bio 13), Precipitation of Driest Month (Bio 14), Precipitation Seasonality
241 (bio 15), Precipitation of Wettest Quarter (bio 16), Precipitation of Driest Quarter (bio 17),
242 Precipitation of Warmest Quarter (bio 18), and Precipitation of Coldest Quarter (bio 19)
243 (<http://www.worldclim.org/data/bioclim.html>). These macroclimatic data were used as
244 approximations to identify patterns of local adaptation in amphibians and freshwater fish, as
245 microclimatic data (e.g. site-specific temperatures) were not available in original articles or in
246 the WorldClim database. Following previous studies (Morley et al. 2019; Carilo Filho et al.
247 2022), mean near-surface air temperature was assumed to reflect the temperature profile of
248 freshwater systems and used to analyze thermal adaptation in both taxa. WorldClim
249 (representing surface air temperatures) was selected for both realms. In contrast to marine
250 habitats, the temperature of small or shallow bodies of water might fluctuate with the surface
251 air temperature and animals at the surface of freshwater systems might be further exposed to
252 high temperatures. Therefore, we assume that the average near-surface air temperature is a
253 suitable estimate of the temperature of freshwater systems, thereby reflecting the thermal local
254 adaptation of investigated amphibian and freshwater populations. This is in accordance with
255 previous studies testing the effect of thermal adaptation on the thermal physiology of various

256 taxa (e.g., Gutiérrez-Pesquera et al. 2016; Morley et al. 2019; Carilo Filho et al. 2022; Sinai et
257 al. 2022). Sampling locations were assigned to latitudinal groups based on the absolute latitude
258 ($^{\circ}$ N/S) and were categorized as either tropical (0 – 25°), sub-tropical (>25 – 40°), temperate (>40 –
259 53.55°) or polar ($>53.55^{\circ}$; Morley et al. 2019).

260 *2.5 Effect size calculation: acclimation response ratio (ARR)*

261 A well-established method to measure acclimation capacity in thermal tolerance in ectothermic
262 animals is the calculation of the acclimation response ratio (ARR), i.e., the slope of the linear
263 function describing the change in thermal tolerance with a given change in acclimation
264 temperature (e.g., Hutchison 1961; Claussen 1977; Gunderson & Stillman 2015; Morley et al.
265 2019). We separately calculated the ARR for CT_{max} within each study using the equation
266 according to Claussen (1977):

$$267 ARR = \frac{CTmax_{[T2]} - CTmax_{[T1]}}{T2 - T1},$$

268 where T represents the acclimation temperature ($^{\circ}$ C; with $T2$ = highest acclimation temperature
269 and $T1$ = lowest acclimation temperature) and CT_{max} the heat tolerance estimates ($^{\circ}$ C). When
270 data on more than two acclimation temperatures were presented, we calculated the ARR for
271 each stepwise comparison (e.g., 18–20 $^{\circ}$ C, 20–22 $^{\circ}$ C, 22–24 $^{\circ}$ C; Pottier et al. 2022a) and used the
272 mean ARR of all comparisons in the statistical analysis. Higher absolute values of ARR
273 correspond to higher plasticity in thermal tolerance limits (i.e., greater acclimation capacity;
274 Claussen 1977; Kingsolver & Huey 1998; Gunderson & Stillman 2015; van Heerwarden et al.
275 2016). An acclimation response ratio of 1.00 indicates a 100% acclimation in thermal tolerance
276 to a temperature increase of 1 $^{\circ}$ C (Morley et al. 2019).

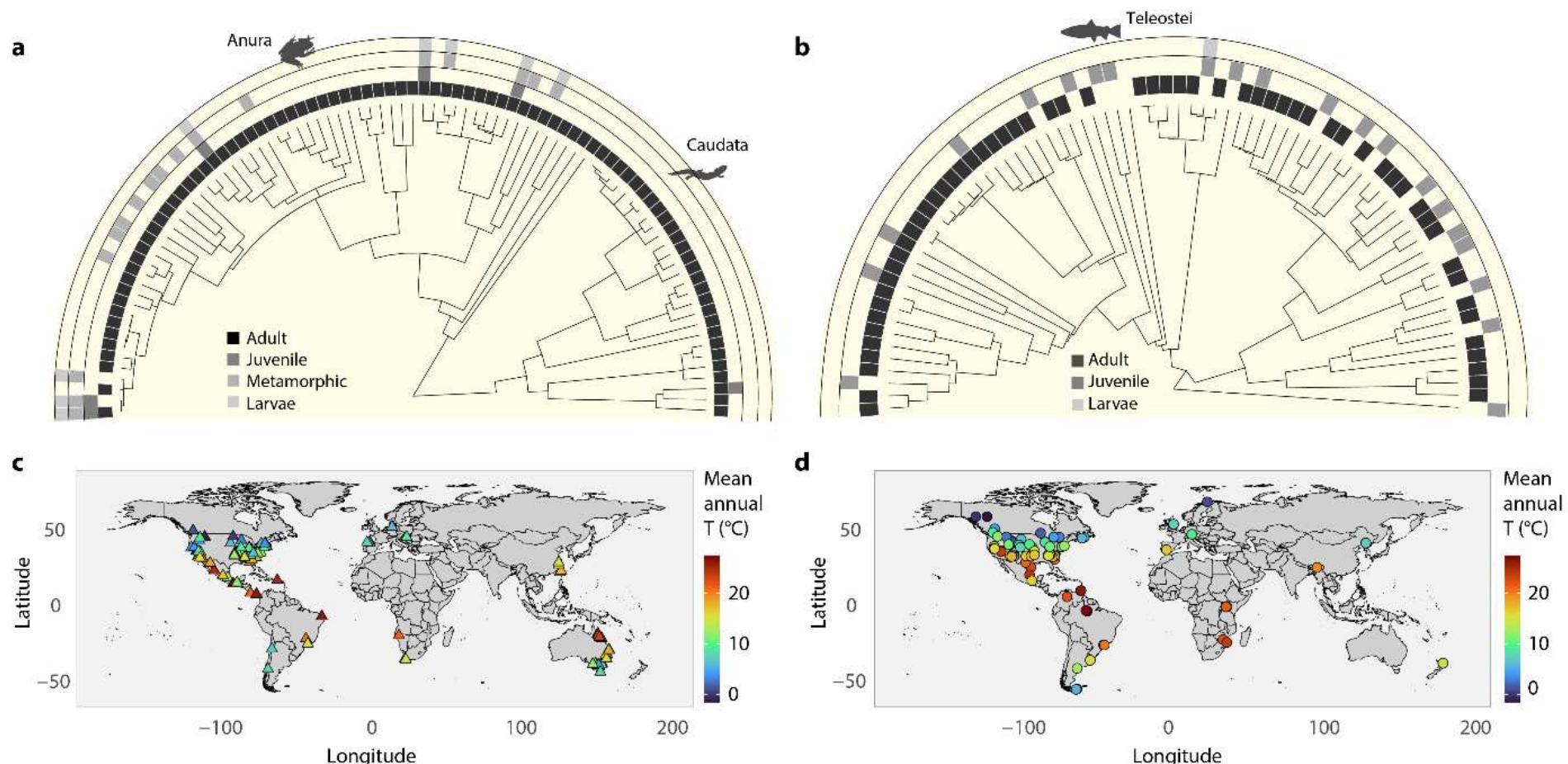
277 *2.6 Statistical analyses*

278 For all statistical tests R 4.0.2 (R Core Team, 2020) was used. All plots were constructed using
279 R packages ‘ggplot2’ (Wickham & Wickham 2009), ‘ggtree’ (Yu et al. 2017) and Adobe
280 Illustrator CS6.

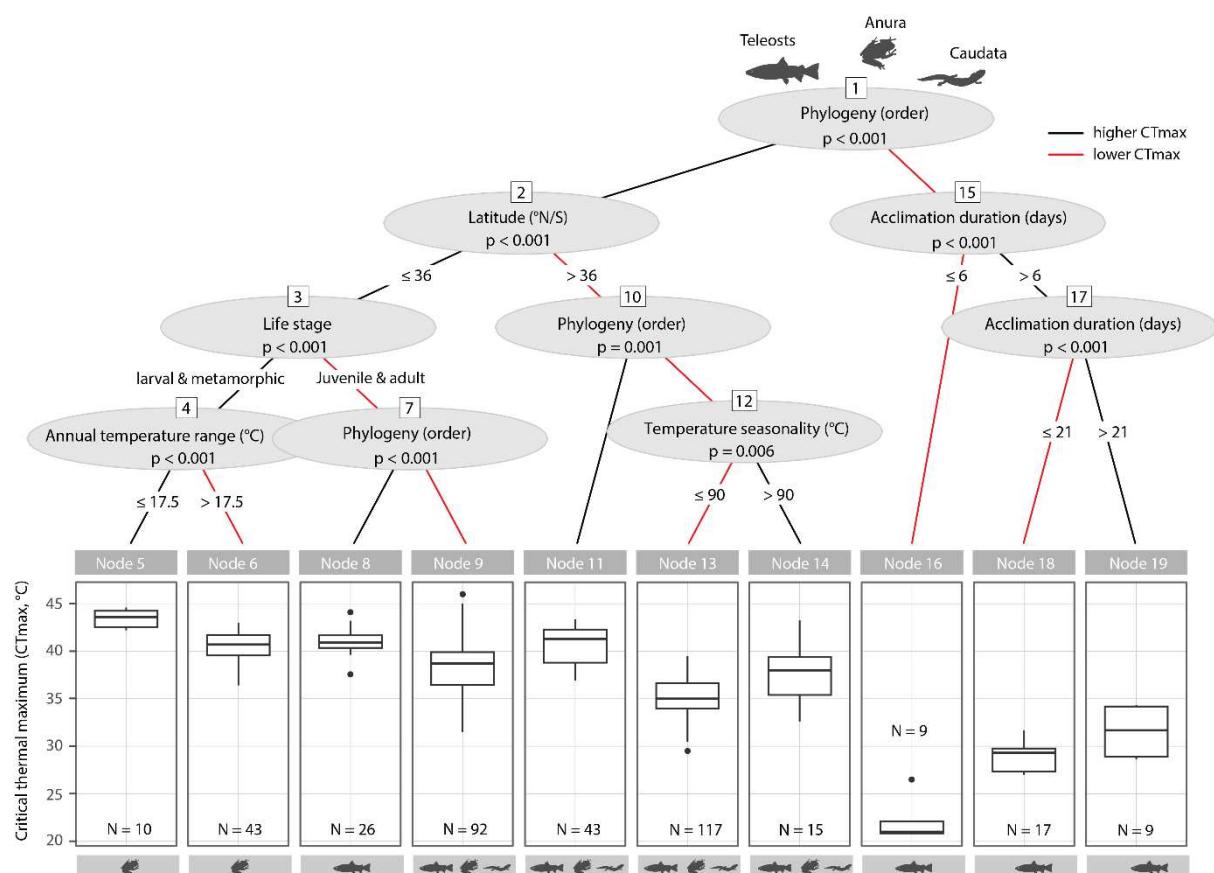
281 Conditional inference tree (CIT) analysis (R package ‘partykit’, Hothorn & Zeileis 2015) was
282 used to assess the influence of geographic origin (bioclimatic variables), phylogeny (taxon and
283 order level), experimental methodology (ramping rate, acclimation duration), and ontogeny on
284 CT_{max} and ARR of amphibians and freshwater fishes. As an advantage over traditional
285 (parametric) methods, CIT is a non-parametric method that handles complex non-linear
286 relationships without making specific assumptions about data distribution or being sensitive to

287 outliers. CIT involves recursive partitioning to split data into subsets based on the relevance of
288 predictor variables. At each node of the tree, a permutation-based test (Monte Carlo method
289 with Bonferroni correction) determines whether the split is statistically significant ($\alpha < 0.05$).
290 The initial split in the tree indicates which predictor variable has the strongest correlation with
291 the response variable (CT_{max} or ARR). The resulting tree provides a hierarchical structure and
292 classification of significant predictor variables. A post-pruning strategy based on the Akaike
293 Information Criterion (AIC, Akaike 1974) was used to avoid overfitting, i.e., removal of nodes
294 that do not improve the overall fit of the model (Hothorn & Zeileis 2015). The raw data used
295 for the analysis are provided in the electronic supplementary material (Table S1).

296 Phylogenetic trees for visualizations were created using the R package 'fishtree' (Chang et al.
297 2019) for freshwater fishes (Teleostei). The amphibian ultrametric tree was obtained from the
298 timetree.org website in June 2022 (Kumar et al. 2022). To ensure the validity, we developed a
299 workflow to filter out taxonomically invalid taxa. Firstly, a time tree was generated using the
300 "Build a Timetree" function on timetree.org. The taxa names were then extracted from the
301 generated time trees using the R package 'ape' (Paradis & Schliep 2019), excluding non-
302 binomial names. The extracted list was cross-checked with the GBIF Backbone Taxonomy
303 (GBIF Secretariat, 2021) using the species matching tool (<https://www.gbif.org/tools/species-lookup>, accessed June 2022). Matches at the species rank with an accuracy of 100% were
304 extracted and matches with lower accuracy were manually verified. The resulting species list
305 was uploaded back onto timetree.org using the "Load a List of Species" function. The newly
306 generated time tree was then downloaded and used for visualizations.

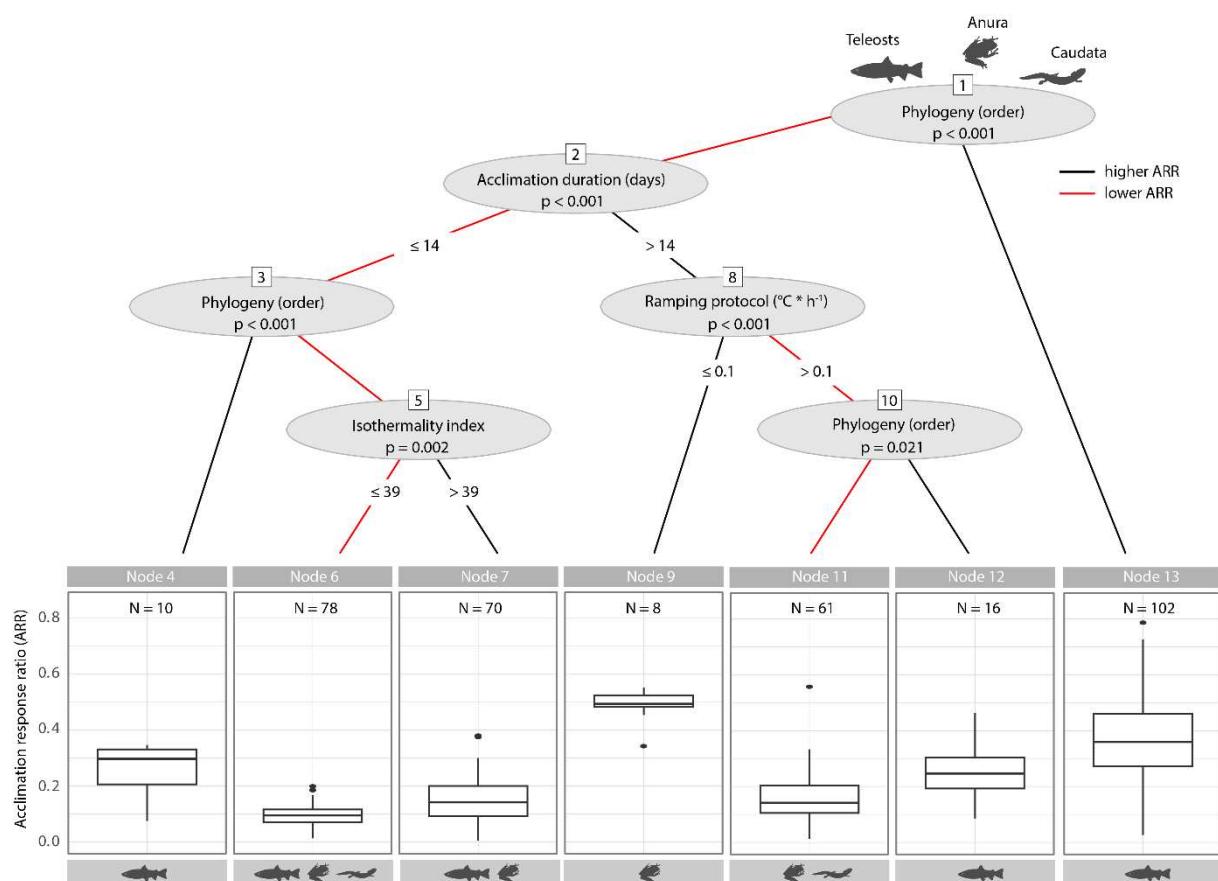

307 The relationship between absolute latitude ($^{\circ}$ N/S) and the bioclimatic variables that revealed a
308 significant effect on CT_{max} (Bio4, Bio7) and ARR (Bio3) in the CIT analysis was assessed using
309 linear regressions. Differences in respective bioclimatic variables between latitudinal groups
310 (tropical, sub-tropical, temperate, polar) were compared using Kruskal-Wallis tests followed by
311 pairwise Mann-Whitney U- tests with false discovery rate (FDR)-correction.

313 3. Results


314 The analysis of paired CT_{max} and ARR values included 201 studies of 96 amphibian species (2
315 orders) (Fig. 1a, b) and 144 studies of 93 teleost species (14 orders) (Fig. 1c, d) deriving from
316 93 published articles, corresponding to a phylogenetic coverage of approximately 1% within
317 each taxon. No data were available for Gymnophiona. Most studies determined CT_{max} and ARR
318 in adult animals. For freshwater fishes, only one study determining CT_{max} in larvae was
319 obtained, while 20% of the data covered juveniles (Fig. 1c). For amphibian species, 12% of the

320 data was available for one or several of the early-life stages, i.e. larvae, metamorphs, and/or
321 juveniles (Fig. 1a). The geographic origin of amphibian and fish species displayed a bias
322 towards temperate and subtropical regions, with 60% of all sampling sites located in North
323 America, 10% in Australia and New Zealand, 8% in South America, 6% in Europe, and 4% in
324 China (Fig. 1b, d). The CT_{max} protocols were variable in both taxa, with acclimation times
325 ranging from 0.5 to 150 d (mean = 11.2 d) and ramping rates ranging from 0.02 to $1.0^{\circ}\text{C min}^{-1}$
326 (mean = $0.75^{\circ}\text{C min}^{-1}$).

327 Across all species studied, CT_{max} ranged from 20.75°C to 46.00°C (Table S1; Fig. S2a).
328 Acclimation capacity in upper thermal tolerance was positive in 97.1 of the studies with an
329 average of 0.22°C with every 1°C increase in temperature across all studies and life stages,
330 whereas the acclimation response for CT_{max} was negative (i.e., negative ARR) in 2.0% of the
331 studies. Across all species studied, ARR ranged from -0.08 to 1.68 (Table S1; Fig. S2b).


332 **Figure 1.** Phylogenetic, ontogenetic, and geographic background of critical thermal maximum (CT_{max}) and acclimation response ratio (ARR)
 333 measurements in (a, c) amphibians (Anura and Caudata) and (b, d) freshwater fishes (Teleostei). Phylogenetic trees contain (a) 96 amphibian and (b)
 334 93 teleost species assigned to 2 and 14 orders, respectively. Grey shaded squares indicate which life stages of a species were studied. Maps show the
 335 geographical origin and local mean temperature of (c) amphibian and (d) fish species. Phylogenetic coverage was approximately 1% within each
 336 taxon. Silhouettes were taken from PhyloPic (www.phylopic.org).

337 **Figure 2.** Conditional inference tree (CIT) for critical thermal maximum (CT_{max}) of freshwater
338 fish (Teleostei) and amphibians (Anura and Caudata). The sequence of internal nodes (splits)
339 corresponds to a hierarchical structure of significant predictor variables. At each split, lines
340 indicate the classification into groups with higher (black) and lower (red) CT_{max} values.
341 Boxplots show the distribution of CT_{max} values for each terminal node (N = number of studies).
342 Pictograms show the phylogenetic composition of terminal nodes. Silhouettes were taken from
343 PhyloPic (www.phylopic.org).

344 The CIT model explained 77% of the variability in the CT_{max} studies. The model produced a
345 classification tree with 9 internal nodes (splits) and 10 terminal nodes (Fig. 2). Phylogeny,
346 latitudinal origin, and acclimation duration were the main discriminators of CT_{max}, followed by
347 life stage and local bioclimate. As indicated by the first split, acclimation duration was only a
348 significant discriminator for a group of fish with relatively low CT_{max} values. Within this group
349 of cold-water fish (mainly salmonids), CT_{max} increased with acclimation duration ($p < 0.001$,
350 node 16-18). For most other fish and amphibian species, CT_{max} depended primarily on latitude
351 (node 2), with higher tolerance limits in low-latitude species ($\leq 36^\circ$ N/S) compared to species
352 at higher latitudes ($> 36^\circ$ N/S). Differences in CT_{max} between life stages were only significant
353 within the group of low-latitude species ($p < 0.001$, nodes 3-9; Fig. 2, Fig. S3a). The
354 classification in this group was phylogenetically unbalanced, suggesting higher CT_{max} values

355 in larval and metamorphic stages of anurans compared to juveniles and adults of anurans,
 356 caudates and teleosts (Fig. S4). The influence of local bioclimatic variables was dependent on
 357 phylogeny, latitude, and life stage. For low-latitude amphibians (early-life stages of anurans),
 358 CT_{max} was higher in regions with a lower annual temperature range (Bio 7, $p < 0.001$, node 4-
 359 6; Fig. 2); and for high-latitude species, CT_{max} increased with temperature seasonality (Bio 4, p
 360 = 0.006, node 12-14; Fig. 2).

361 **Figure 3.** Conditional inference tree (CIT) for the acclimation response ratio (ARR) of
 362 freshwater fish (Teleostei) and amphibians (Anura and Caudata). The sequence of internal
 363 nodes (splits) corresponds to a hierarchical structure of significant predictor variables. At each
 364 internal node, lines indicate the classification into groups with higher (black) and lower (red)
 365 ARR values. Boxplots show the distribution of ARR values for each terminal node (N = number
 366 of studies). Pictograms show the phylogenetic composition of terminal nodes. Silhouettes were
 367 taken from PhyloPic (www.phylopic.org).

368 The CIT model for ARR explained 47% of the variability in the study. The model produced a
 369 classification tree with 6 internal splits and 7 terminal nodes (Fig. 3). Phylogeny (order/taxon)
 370 was the main discriminator of ARR, followed by experimental methodology and a minor
 371 contribution of local bioclimate. Ontogenetic differences in ARR were not detected (Fig. S3b).

372 The first split of the classification tree separated a large group of fishes (8 orders, 68 species;
373 Fig. 3) with a significantly higher mean ARR compared to the remaining fishes ($P < 0.001$).
374 The comparatively high ARR of this fish group was not related to experimental methodology
375 nor any bioclimate variable. The second split was based on methodology, dividing the studies
376 into groups with an acclimation duration longer or shorter than 14 d (node 3; Fig. 3). Longer
377 acclimation generally resulted in higher ARR values ($p < 0.001$), but the acclimation effect
378 differed according to phylogeny, ramping rate and bioclimate (node 4-13). If the acclimation
379 period was less than 14 days, a subsequent split occurred according to phylogenetic order ($p <$
380 0.001) and bioclimate (node 4 & 6), with a positive relationship between ARR and isothermality
381 score (i.e., bio3; $p = 0.002$; Fig. S4). When acclimation duration exceeded 14 d, studies were
382 further subdivided according to ramping rate (node 9, $P < 0.001$) and taxon (node 11, $p = 0.021$).
383 These terminal classifications imply higher ARR values at slow heating rates ($<0.1^{\circ}\text{C min}^{-1}$),
384 and higher ARR values in fish compared to amphibians at ramping rates $>0.1^{\circ}\text{C min}^{-1}$ (Fig. 3).

385 Isothermality (Bio3) decreased significantly with absolute latitude ($R^2 = 0.725$, $p = 0.001$). In
386 contrast, both temperature seasonality (bio4; $R^2 = 0.447$, $p < 0.001$) and annual temperature
387 range (bio7; $R^2 = 0.322$, $p < 0.001$) increased from the tropics to the polar latitudes (Fig. S5).

388 4. Discussion

389 4.1 Context-Dependent Drivers and Broad-Scale Patterns of Physiological Limits

390 The most striking result from our analyses is that the acclimation capacity of freshwater fish
391 was more than twice that of amphibians, indicating a strong phylogenetic signal. Our findings
392 align with those reported in previous syntheses (Gunderson & Stillman 2015; Rohr et al. 2018;
393 Morley et al. 2019; Pottier et al. 2022a), demonstrating a higher thermal plasticity in organisms
394 inhabiting aquatic habitats compared to their terrestrial counterparts, and with fish (marine and
395 freshwater) exhibiting greater thermal plasticity compared to amphibians (Gunderson &
396 Stillman 2015). Compared to most amphibians, freshwater fish are restricted to their aquatic
397 habitat throughout their life cycle (Comte & Grenouillet 2013). As aquatic habitats tend to have
398 less spatial variability in operative thermal conditions than terrestrial habitats (Gunderson &
399 Stillman 2015; Sunday et al. 2014), behavioral thermoregulation is constrained, and freshwater
400 fish are more likely to use thermal plasticity than amphibians to buffer against changing thermal
401 conditions. Consequently, the capacity for thermal plasticity appears to be phylogenetically
402 conserved between both taxa (Angilletta et al. 2002; Bodensteiner et al. 2021), depending on
403 the ability for behavioral thermoregulation as explained by the *Bogert effect* (Bogert 1949;
404 Cowles & Bogert 1944; Muñoz 2022), rather than on the level of thermal variation to which a

405 population is exposed to (Huey et al. 1999) as suggested by the *climate variability hypothesis*
406 (Janzen 1967). Moreover, unlike freshwater fishes, most amphibians undergo a habitat shift
407 from a larval aquatic to a post-metamorphic terrestrial habitat (Shi 2000). As an adaptive
408 response to often shallow or temporary larval habitats (Newman 1992), amphibian larvae
409 display a high degree of plasticity in growth and development (Kulkarni et al. 2017; Ruthsatz
410 et al. 2018; Burraco et al. 2021; Sinai et al. 2022), providing a means for increasing fitness
411 (Schlichting & Pigliucci 1998). Therefore, plasticity in timing of metamorphosis appears to be
412 more important than that in thermal tolerance to reduce mortality risk (Rudolf & Rödel 2007)
413 due to desiccation or temperature extremes (Burraco et al. 2022; Albecker et al. 2023).

414 Unlike acclimation capacity, latitudinal origin was the primary determinant of heat tolerance
415 in both taxa, with a higher heat tolerance in low-latitude species compared to high-latitude
416 species, thereby supporting the *climate variability hypothesis* (Janzen 1967; Bozinovic et al.
417 2011). Both taxa, therefore, exhibit physiologically adaptation to latitude-dependent thermal
418 regimes to which they are exposed. Our results agree with the findings of a large body of
419 research that has confirmed the link between physiological limits and large-scale geography
420 based on a species' local adaptation to temperature and other associated climatic variables (e.g.,
421 Gutiérrez-Pesquera et al. 2016; Sunday et al. 2011, 2019; Pintanel et al. 2022; but not: Addo-
422 Bediako et al. 2000; Sørensen et al. 2016). Yet, in contrast to the broader literature, our synthesis
423 indicated that CT_{max} was not *generally* higher in low-latitude populations and importantly it
424 varied with ontogeny and local bioclimate. These findings emphasize the importance of
425 assessing life stage-specific sensitivity to thermal stress as well as spatial climatic differences
426 in conservation science. Therefore, focusing on large-scale geographical patterns for predicting
427 how biodiversity will respond to future environmental change might bear the risk of
428 overlooking context-dependent variation in thermal traits and thus, intraspecific differences in
429 vulnerability to changing thermal conditions. For example, Bovo et al. (2023) demonstrated
430 that responses of tropical amphibians to climate variation were heterogenous as a consequence
431 of intraspecific variation in physiological traits and spatial variation in climate with elevation.
432 Furthermore, Sunday et al. (2011) and Pinsky et al. (2019) reported that the physiological
433 sensitivity of ectotherms across all latitudes depended on the realm, with terrestrial ectotherms
434 being less sensitive to warming due to their higher capacity for behavioral thermoregulation.

435 4.2 *Life Stage-Specific Thermal Sensitivity as a Key Factor in Species Vulnerability to Climate*
436 *Change*

437 In species with complex life-histories such as amphibians and teleost fish, life stages differ in
438 size, morphology, physiology, and behavior (Wilbur 1980). Therefore, selection might promote
439 stage-specific adaptations in thermal physiology (Enriquez-Urzelai et al. 2019; Ruthsatz et al.
440 2022). Ignoring those life stage-specific differences in thermal physiology may drastically
441 underestimate climate vulnerability of species with consequences for successful conservation
442 actions. Here, we found CT_{max} but not acclimation capacity to differ between pre- and post-
443 metamorphic life stages in amphibians, with a lower CT_{max} in juvenile and adult stages. Limnic
444 larvae may have a reduced capacity for behavioral thermoregulation due to their limited body
445 size impairing the movement between different microclimates (Kingsolver et al. 2011; Sinclair
446 et al. 2016; Enriquez-Urzelai et al. 2019), making them more dependent on passive responses
447 to temperature fluctuations. To cope with changes in temperatures, a high heat tolerance is
448 therefore advantageous in early life stages (Ruthsatz et al. 2022). In contrast, post-metamorphic
449 stages might rather be able to select favorable microclimates by behavioral thermoregulation
450 (Navas et al. 2007; Haesemeyer 2020). This is particularly true for amphibians, as their post-
451 metamorphic terrestrial habitats offer much spatial variability in operative thermal conditions
452 (Gunderson & Stillman 2015), while juvenile and adult (freshwater) fish are able to
453 behaviorally thermoregulate by performing vertical and horizontal movements (Amat-Trigo et
454 al. 2023; but not: Clark et al. 2022). Moreover, juvenile and adult (freshwater) fish are known
455 to show behavioral thermoregulation such as vertical and horizontal movements (Amat-Trigo
456 et al. 2023; but not: Clark et al. 2022) with juveniles often displaying an ‘aggregation response’
457 in cool water refuges (Breau et al. 2007). Our findings are in line with the pattern found for
458 aquatic larvae by Cupp (1980), Enriquez-Urzelai et al. (2019), and Ruthsatz et al. (2022), who
459 demonstrated a higher CT_{max} in amphibian larvae than in post-metamorphic stages. In contrast,
460 Dahlke et al. (2020) found no difference in heat tolerance between larval and adult stages in
461 marine and freshwater fish. Notably, our synthesis yielded only one estimate for larval CT_{max}
462 and acclimation capacity in freshwater fish and, thus, we lack the data for a definitive
463 conclusion. Given that small body sizes of larvae restricts their capacity for behavioral
464 thermoregulation, one would expect freshwater fish to exhibit the same life stage-specific
465 differences in thermal sensitivity observed in amphibians. Finally, the lack of any life-stage
466 specific pattern in acclimation capacity in the present study might be attributed to an inherent
467 bias in life stage representation among the studied species. In a recent study on the European

468 common frog (*Rana temporaria*), young larvae may define the climate sensitivity of
469 populations since that life stage exhibited the lowest acclimation capacity (Ruthsatz et al. 2022).
470 Furthermore, it is worth noting that our synthesis did not encompass embryos, which have
471 recently been reported to have the lowest heat tolerance in fish (Dahlke et al. 2020, 2022; Pottier
472 et al. 2022b) and the lowest acclimation capacity across ectotherms (Pottier et al. 2022a). To
473 better identify potential life history bottlenecks in thermal sensitivity in amphibian, fish and
474 other taxa inhabiting freshwater, future studies should adopt a more comprehensive approach
475 by considering a wider range of life stages within species.

476 *4.3 Understanding Context-Dependent Physiological Adaptation in Ectotherms*

477 Global syntheses on physiological studies can help us determine the winners and losers of
478 climate change through assessment of broad-scale patterns of species' thermal limits and
479 acclimation capacity for modifying their thermal tolerance (Somero 2010). This knowledge, in
480 turn, enables us to develop suitable conservation strategies to mitigate the negative effects of
481 climate change. However, our key findings emphasize that assessing species' vulnerability to
482 changing thermal conditions based on large-scale geographic and/or phylogenetic patterns in
483 thermal traits might cover up context-dependent physiological adaptations. In other words,
484 tropical ectothermic species are considered particularly vulnerable to global warming as they
485 live close to their physiological limits and have poor acclimation ability (Tewksbury et al. 2008;
486 Huey et al. 2009; Sunday et al. 2014), but such generalizations might for instance ignore
487 intraspecific variation in physiological limits across altitudinal variation in climate (Bovo et al.
488 2023). Physiological adaptations are driven by the interplay between microclimate temperature
489 heterogeneity and the behavioral thermoregulatory abilities of ectotherms (Huey et al. 2012;
490 Pincebourde et al. 2016; present study) depending on their habitat characteristics (Pinsky et al.
491 2019; Kulkarni et al. 2017), ontogeny (Enriquez-Urzelai et al. 2019; Ruthsatz et al. 2022a), life
492 history traits such as body size (Rubalcaba et al. 2020; Peralta-Maraver & Rezende 2021) or
493 activity patterns (Navas et al. 2007; Ruthsatz et al. 2022b), and/or energy balance (Pörtner et
494 al. 2005; Muñoz et al. 2022). Physiological traits and limits are consequently rather
495 evolutionary driven dynamic concepts than fixed values for a species (Bovo et al. 2018, 2023;
496 Navas et al. 2022). In order to improve predictions of climate change impacts on biodiversity,
497 it is imperative to deepen our understanding of context-dependent physiological adaptations
498 (Meek et al. 2023), thereby advancing the development of suitable conservation
499 measures/strategies that incorporate evolutionarily enlightened perspectives (Ashley et al.
500 2003; Cook & Sgró 2018) beyond the species level (Fig. 4).

501 *4.4 Conclusion*

502 There is a growing body of physiological studies assessing thermal limits and acclimation
503 capacity of species, investigating physiological systems setting these limits to better predict
504 shifts in the productivity and species distribution patterns in a warming world. Our synthesis
505 points to representation biases in taxonomy, species' biogeographic distribution, life stage, and
506 biases resulting from non-standardized study design. We found the influence of life stage,
507 phylogeny, and thermal adaptation to depend on acclimation duration of the animals and the
508 ramping rate used, underscoring the importance of a thoughtful selection of the methodological
509 approach. Therefore, we conclude our synthesis by addressing those data inadequacies and
510 proposing methods to enhance data collection presented in five themes (Fig. 4):

511 • **Biogeographic and taxonomic coverage**

512 We found strong latitudinal trends in physiological limits and additional research is needed in
513 poorly represented (mostly tropical) regions and generally in low- and middle-income countries
514 with little investment in research (King 2004) to yield additional, important insights. Our
515 synthesis highlights that most studies have been conducted in North America, Europe, and
516 Australia and information gaps exist for most parts of Africa, Asia, and South America (except
517 Brazil). Such regional differences in research effort are common in conservation science
518 (Schiesari et al. 2007; Winter et al. 2016; McLaughlin et al. 2022; Sinai et al. 2022) despite the
519 fact that under-studied regions contain the vast majority of global biodiversity hotspots
520 (Mittermeier et al. 2011). Furthermore, most of these studies used species that are common,
521 widely distributed, and/or easily obtained by researchers. Studies on other species (particularly
522 those already in decline) are needed to avoid taxonomic bias and reach stronger conclusions on
523 whether specific taxa might be more sensitive to global warming (da Silva et al. 2020).

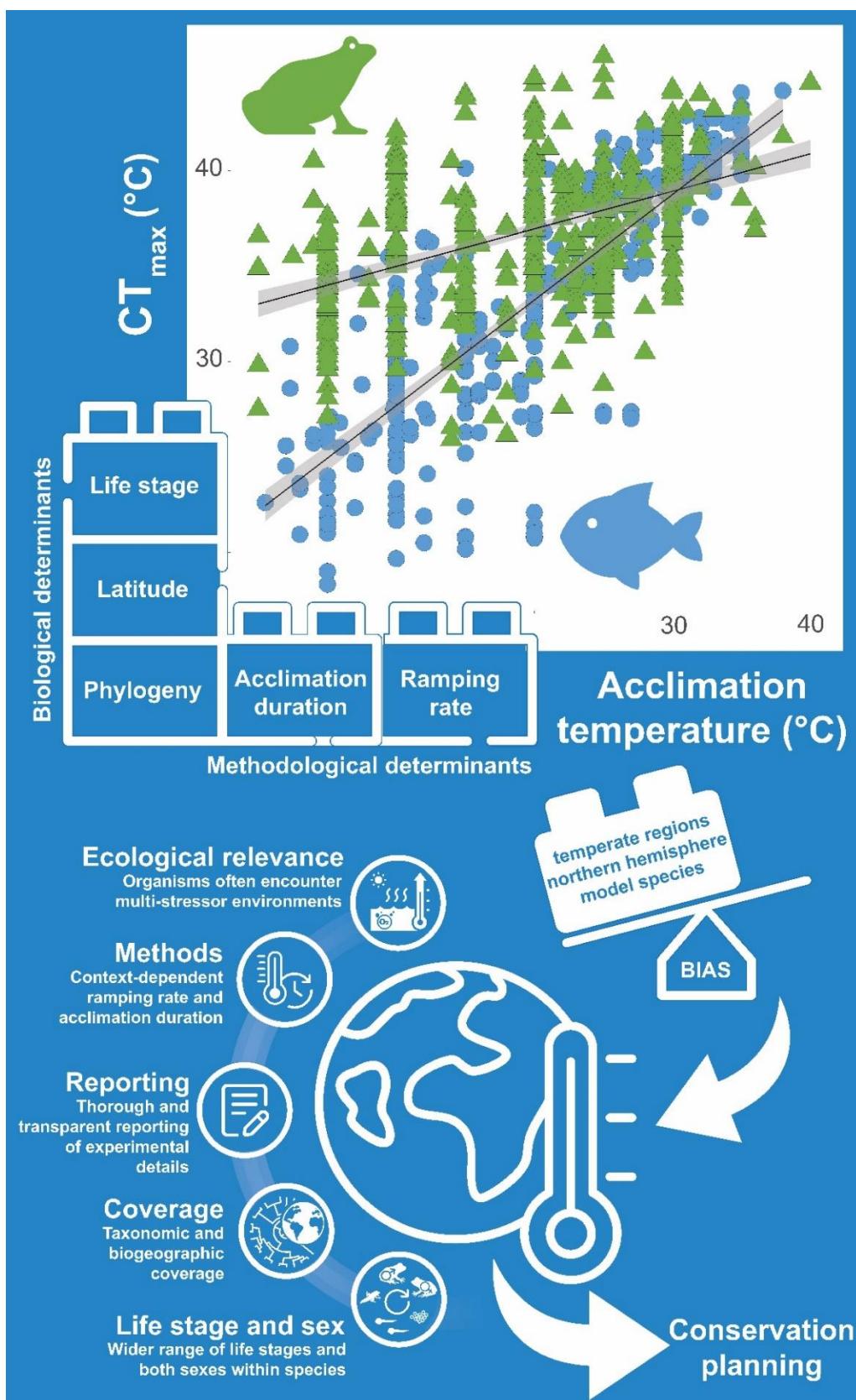
524 • **Relevance of life stage and sex**

525 We urge future studies to measure a wider range of life stages and to measure both sexes within
526 species to better identify potential life history thermal bottlenecks (Klockmann et al. 2017;
527 Dahlke et al. 2020). All of the summaries to date likely overestimate physiological limits since
528 most studies have been performed on adults and thermal tolerance increases (Klockmann et al.
529 2017; Rubalcaba & Olalla-Tárraga 2020; but not di Santo & Lobel 2017) and acclimation
530 capacity decreases (Pottier et al. 2021) with body size. Furthermore females and males differ in
531 a wide range of morphological, physiological, and behavioral aspects as well as in their

532 energetic investment in gamete production (Hayward & Gillooly 2011). A recent meta-analysis
533 across ectothermic taxa revealed that the acclimation capacity differed between males and
534 females in wild-caught animals (Pottier et al. 2021). Furthermore, Dahlke et al. (2020) found
535 narrower thermal tolerance ranges in spawning females and van Heerwaarden and Sgrò (2021)
536 demonstrated that a low heat tolerance of male fertility is a critical bottleneck in insects.

537 • **Ecological relevance**

538 Future laboratory studies should adopt a more comprehensive and multifaceted approach for
539 higher ecological relevance of thermal trait estimates (Desforges et al. 2023). Under natural
540 conditions, organisms must often cope with multiple simultaneously occurring environmental
541 stressors (Rohr & Palmer 2013; Gunderson et al. 2016) such as declining dissolved oxygen
542 levels in freshwater habitats due to climate-induced temperature increases (Pörtner & Peck
543 2010). As thermal limits are shaped by oxygen availability (Pörtner 2001, 2010), organisms
544 might exhibit lower thermal limits under natural conditions. Moreover, exposure to pollutants
545 might reduce thermal tolerance (Little & Seebacher 2015) or acclimation capacity (Ruthsatz et
546 al. 2018b) due to increased metabolic demands of detoxification processes or disruption of
547 endocrine pathways involved in physiological acclimation. Physiological responses to
548 increased water temperature as performed in the studies summarized here (i.e., a single stressor)
549 may not align with observed responses of individuals in the natural environments with multiple
550 stressors (Potts et al. 2021).


551 • **Methodological approach**

552 Customizing protocols to account for organismal and context-dependent variations in
553 physiological limits (e.g., body size, life stage, sex, thermal history) will allow researchers to
554 obtain more ecologically relevant estimates to inform conservation efforts. The application of
555 an acute thermal ramping rate and a standardized endpoint such as the loss of equilibrium are
556 used to measure critical thermal limits (Becker & Genoway 1979). The estimates are sensitive
557 to differences in the methods. For example, faster ramping (heating) rates tend to yield higher
558 thermal tolerance estimates compared to slower ramping rates (Moyano et al. 2017; Kovacevic
559 et al. 2019; Penham et al. 2023). Using wild-collected animals is important as those reared in
560 the laboratory may have physiology traits that differ from wild conspecifics (Pottier et al. 2021;
561 Morgan et al. 2022). Methodological recommendations have been recently published and
562 comparable methods are needed to compare thermal limits of different life stages (Cowan et al.
563 2023; Desforges et al. 2023).

564 • **Through reporting of research details**

565 Thorough and transparent reporting of experimental details in empirical studies such as
566 sampling location and animal origin, among others, is required to enhance the comparability of
567 studies on thermal traits. Furthermore, most studies working on adults did not report the sex of
568 animals despite the potential for sex (or reproductive state) to be important factors in thermal
569 sensitivity. The ability to make broad-scale comparisons of thermal tolerance across taxa, life
570 stages and regions will be enhanced when studies report as much methodological detail as
571 possible. Consequently, these future studies will contribute more robust estimates of climate
572 vulnerability needed to guide climate change interventions.

573 By considering our recommendations, future studies will be more comparable, facilitating the
574 utilization of respective findings in large-scale studies and models that assess species
575 vulnerability and thus, population dynamics under global warming.

576 **Figure 4.** Synthesis of biological and methodological determinants as well as key directions for
577 future research on acclimation capacity in amphibians and freshwater fish to advance the
578 application of thermal traits in assessing species' and populations' vulnerability to climate
579 change. See text for further details.

580 **5. Data availability**

581 Data associated with this study will be made available in the figshare data repository under
582 DOI:XXX after manuscript acceptance.

583 **6. References**

584 Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on
585 automatic control, 19(6), 716-723.

586 Albecker, M. A., Strobel, S. M., & Womack, M. C. (2023). Developmental Plasticity in
587 Anurans: Meta-analysis Reveals Effects of Larval Environments on Size at Metamorphosis And
588 Timing of Metamorphosis. Integrative and Comparative Biology, icad059.

589 Albert, J. S., Carvalho, T. P., Petry, P., Holder, M. A., Maxime, E. L., Espino, J., ... & Reis, R.
590 E. (2011). Aquatic biodiversity in the Amazon: habitat specialization and geographic isolation
591 promote species richness. Animals, 1(2), 205-241.

592 Amat-Trigo, F., Andreou, D., Gillingham, P. K., & Britton, J. R. (2023). Behavioural
593 thermoregulation in cold-water freshwater fish: Innate resilience to climate warming?. Fish and
594 Fisheries, 24(1), 187-195.

595 Angilletta Jr, M. J., Niewiarowski, P. H., & Navas, C. A. (2002). The evolution of thermal
596 physiology in ectotherms. Journal of thermal Biology, 27(4), 249-268.

597 Angilletta, M. J. (2009). Thermal adaptation: a theoretical and empirical synthesis.

598 Ashley, M. V., Willson, M. F., Pergams, O. R., O'Dowd, D. J., Gende, S. M., & Brown, J. S.
599 (2003). Evolutionarily enlightened management. Biological Conservation, 111(2), 115-123.

600 Becker, C. D., & Genoway, R. G. (1979). Evaluation of the critical thermal maximum for
601 determining thermal tolerance of freshwater fish. Environmental Biology of Fishes, 4, 245-256.

602 Bodensteiner, B. L., Agudelo-Cantero, G. A., Arietta, A. A., Gunderson, A. R., Muñoz, M. M.,
603 Refsnider, J. M., & Gangloff, E. J. (2021). Thermal adaptation revisited: How conserved are
604 thermal traits of reptiles and amphibians?. Journal of Experimental Zoology Part A: Ecological
605 and Integrative Physiology, 335(1), 173-194.

606 Bogert, C. M. (1949). Thermoregulation in reptiles, a factor in evolution. Evolution, 3(3), 195-
607 211.

638 Chown, S. L., Jumbam, K. R., Sørensen, J. G., & Terblanche, J. S. (2009). Phenotypic variance,
639 plasticity and heritability estimates of critical thermal limits depend on methodological context.
640 Functional Ecology, 23(1), 133-140.

641 Cicchino , A. S., Shah, A. A., Forester, B. R., Dunham, J. B., Poff, N. L., Ghalambor, C. K., &
642 Funk, W. C. (2023). Acclimation capacity of critical thermal maximum varies among
643 populations: Consequences for estimates of vulnerability. Ecosphere, 14(11), e4691.

644 Clark, T. D., Scheuffele, H., Pratchett, M. S., & Skeels, M. R. (2022). Behavioural temperature
645 regulation is a low priority in a coral reef fish (*Plectropomus leopardus*): insights from a novel
646 behavioural thermoregulation system. Journal of Experimental Biology, 225(18), jeb244212.

647 Claussen, D. L. (1977). Thermal acclimation in ambystomatid salamanders. Comparative
648 Biochemistry and Physiology--Part A: Physiology, 58(4), 333-340.Closs et al. 2016

649 Comte, L., & Grenouillet, G. (2013). Do stream fish track climate change? Assessing
650 distribution shifts in recent decades. Ecography, 36(11), 1236-1246.

651 Comte, L., & Olden, J. D. (2017a). Climatic vulnerability of the world's freshwater and marine
652 fishes. Nature Climate Change, 7(10), 718-722.

653 Comte, L., & Olden, J. D. (2017b). Evolutionary and environmental determinants of freshwater
654 fish thermal tolerance and plasticity. Global Change Biology, 23(2), 728-736.

655 Cook, C. N., & Sgrò, C. M. (2018). Understanding managers' and scientists' perspectives on
656 opportunities to achieve more evolutionarily enlightened management in conservation.
657 Evolutionary Applications, 11(8), 1371-1388.

658 Cowan, Z. L., Andreassen, A. H., De Bonville, J., Green, L., Binning, S. A., Silva-Garay, L.,
659 ... & Sundin, J. (2023). A novel method for measuring acute thermal tolerance in fish embryos.
660 Conservation Physiology, 11(1), coad061.

661 Cowles, R. B., & Bogert, C. M. (1944). A preliminary study of the thermal requirements of
662 desert reptiles. Bulletin of the AMNH; v. 83, article 5.

663 da Silva, A. F., Malhado, A. C., Correia, R. A., Ladle, R. J., Vital, M. V., & Mott, T. (2020).
664 Taxonomic bias in amphibian research: Are researchers responding to conservation need?.
665 Journal for Nature Conservation, 56, 125829.

666 Dahlke, F. T., Wohlrab, S., Butzin, M., & Pörtner, H. O. (2020). Thermal bottlenecks in the life
667 cycle define climate vulnerability of fish. Science, 369(6499), 65-70.

668 Dahlke, F., Butzin, M., Wohlrab, S., & Pörtner, H. O. (2022). Reply to: methodological
669 inconsistencies define thermal bottlenecks in fish life cycle. *Evolutionary Ecology*, 36(2), 293-
670 298. Deutsch et al. 2008

671 Desforges, J. E., Birnie - Gauvin, K., Jutfelt, F., Gilmour, K. M., Eliason, E. J., Dressler, T. L.,
672 ... & Cooke, S. J. (2023). The ecological relevance of critical thermal maxima methodology for
673 fishes. *Journal of Fish Biology*, 102(5), 1000-1016.

674 Di Santo, V., & Lobel, P. S. (2017). Body size and thermal tolerance in tropical gobies. *Journal*
675 of Experimental Marine Biology and Ecology, 487, 11-17.

676 Duarte, H., Tejedo, M., Katzenberger, M., Marangoni, F., Baldo, D., Beltrán, J. F., ... &
677 Gonzalez-Voyer, A. (2012). Can amphibians take the heat? Vulnerability to climate warming
678 in subtropical and temperate larval amphibian communities. *Global change biology*, 18(2), 412-
679 421.

680 Enriquez-Urzelai, U., Sacco, M., Palacio, A. S., Pintanel, P., Tejedo, M., & Nicieza, A. G.
681 (2019). Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental
682 acclimation in *Rana temporaria*. *Oecologia*, 189, 385-394.

683 Enriquez-Urzelai, U., Tingley, R., Kearney, M. R., Sacco, M., Palacio, A. S., Tejedo, M., &
684 Nicieza, A. G. (2020). The roles of acclimation and behaviour in buffering climate change
685 impacts along elevational gradients. *Journal of Animal Ecology*, 89(7), 1722-1734.

686 Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces
687 for global land areas. *International Journal of Climatology*, 37(12), 4302-4315.

688 Franks, S. J., & Hoffmann, A. A. (2012). Genetics of climate change adaptation. *Annual*
689 *Review of Genetics*, 46, 185-208.

690 Fry, F. (1947). Effects of the environment on animal activity. *Publ. Out. Fish. Res. Lab.*, 55(68),
691 1-62.

692 Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., & Wang, G. (2006). Are
693 mountain passes higher in the tropics? Janzen's hypothesis revisited. *Integrative and*
694 *comparative biology*, 46(1), 5-17.

695 Griffith, A. W., & Gobler, C. J. (2020). Harmful algal blooms: A climate change co-stressor in
696 marine and freshwater ecosystems. *Harmful Algae*, 91, 101590.

697 Gunderson, A. R., & Leal, M. (2016). A conceptual framework for understanding thermal
698 constraints on ectotherm activity with implications for predicting responses to global change.
699 *Ecology Letters*, 19(2), 111-120.

700 Gunderson, A. R., & Stillman, J. H. (2015). Plasticity in thermal tolerance has limited potential
701 to buffer ectotherms from global warming. *Proceedings of the Royal Society B: Biological
702 Sciences*, 282(1808), 20150401.

703 Gunderson, A. R., Armstrong, E. J., & Stillman, J. H. (2016). Multiple stressors in a changing
704 world: the need for an improved perspective on physiological responses to the dynamic marine
705 environment. *Annual Review of Marine Science*, 8, 357-378.

706 Gutiérrez-Pesquera, L. M., Tejedo, M., Olalla-Tárraga, M. Á., Duarte, H., Nicieza, A., & Solé,
707 M. (2016). Testing the climate variability hypothesis in thermal tolerance limits of tropical and
708 temperate tadpoles. *Journal of Biogeography*, 43(6), 1166-1178.

709 Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020:
710 An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with
711 interactivity for optimised digital transparency and Open Synthesis. *Campbell Systematic
712 Reviews*, 18(2), e1230.

713 Haesemeyer, M. (2020). Thermoregulation in fish. *Molecular and Cellular Endocrinology*, 518,
714 110986.

715 Hayward, A., & Gillooly, J. F. (2011). The cost of sex: quantifying energetic investment in
716 gamete production by males and females. *PLoS One*, 6(1), e16557.

717 Hocking, D. J., & Babbitt, K. J. (2014). Amphibian contributions to ecosystem services.
718 *Herpetological Conservation and Biology*, 9(1), 1–17.

719 Hoffmann, A. A., & Sgró, C. M. (2011). Climate change and evolutionary adaptation. *Nature*,
720 470: 479–485.

721 Hothorn, T., & Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R.
722 *The Journal of Machine Learning Research*, 16(1), 3905-3909.

723 Huey, R. B., Berrigan, D., Gilchrist, G. W., & Herron, J. C. (1999). Testing the adaptive
724 significance of acclimation: a strong inference approach. *American Zoologist*, 39(2), 323-336.

725 Huey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Álvarez Pérez, H. J., &
726 Garland Jr, T. (2009). Why tropical forest lizards are vulnerable to climate warming.
727 *Proceedings of the Royal Society B: Biological Sciences*, 276(1664), 1939-1948.

728 Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A., Jess, M., & Williams, S. E.
729 (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology
730 and adaptation. *Philosophical Transactions of the Royal Society B: Biological Sciences*,
731 367(1596), 1665-1679.

732 Hutchison, V. H. (1961). Critical thermal maxima in salamanders. *Physiological zoology*,
733 34(2), 92-125.

734 IPCC (2021). Summary for Policymakers. In: *Climate Change 2021: The Physical Science
735 Basis. Contribution of Working Group I to the Sixth Assessment Report of the
736 Intergovernmental Panel on Climate Change*. Cambridge: Cambridge University Press.

737 ISI WOS, Thomson Scientific, No Date. Web of Science.
738 <http://scientific.thomsonreuters.com/products/wos/>

739 Janzen, D. H. (1967). Why mountain passes are higher in the tropics. *The American Naturalist*,
740 101(919), 233-249.

741 Killen, S. S., Adriaenssens, B., Marras, S., Claireaux, G., & Cooke, S. J. (2016). Context
742 dependency of trait repeatability and its relevance for management and conservation of fish
743 populations. *Conservation Physiology*, 4(1), cow007.

744 Kingsolver, J. G., & Huey, R. B. (1998). Evolutionary analyses of morphological and
745 physiological plasticity in thermally variable environments. *American Zoologist*, 38(3), 545-
746 560.

747 Kingsolver, J. G., Arthur Woods, H., Buckley, L. B., Potter, K. A., MacLean, H. J., & Higgins,
748 J. K. (2011). Complex life cycles and the responses of insects to climate change.

749 Klockmann, M., Günter, F., & Fischer, K. (2017). Heat resistance throughout ontogeny: body
750 size constrains thermal tolerance. *Global Change Biology*, 23(2), 686-696.

751 Kovacevic, A., Latombe, G., & Chown, S. L. (2019). Rate dynamics of ectotherm responses to
752 thermal stress. *Proceedings of the Royal Society B*, 286(1902), 20190174.

753 Kumar, S., Suleski, M., Craig, J. M., Kasprowicz, A. E., Sanderford, M., Li, M., ... & Hedges,
754 S. B. (2022). TimeTree 5: an expanded resource for species divergence times. *Molecular*
755 *Biology and Evolution*, 39(8), msac174.

756 Lechner, E. R., Stewart, E. M., Wilson, C. C., & Raby, G. D (2023). CTmax in brook trout
757 (*Salvelinus fontinalis*) embryos shows an acclimation response to developmental temperatures
758 but is more variable than in later life stages. *Journal of Fish Biology*, 1–5.

759 Lee, S., Hung, S. S., Fangue, N. A., Haller, L., Verhille, C. E., Zhao, J., & Todgham, A. E.
760 (2016). Effects of feed restriction on the upper temperature tolerance and heat shock response
761 in juvenile green and white sturgeon. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 198, 87-95.

763 Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., ... & Zommers, Z.
764 (2023). Climate change 2023: synthesis report. Contribution of working groups I, II and III to
765 the sixth assessment report of the intergovernmental panel on climate change.

766 Little, A. G., & Seebacher, F. (2015). Temperature determines toxicity: bisphenol A reduces
767 thermal tolerance in fish. *Environmental Pollution*, 197, 84-89.

768 Little, A. G., & Seebacher, F. (2017). Acclimation, acclimatization, and seasonal variation in
769 amphibians and reptiles. In *Amphibian and reptile adaptations to the environment*. CRC Press,
770 41-62.

771 Lutterschmidt, W. I., & Hutchison, V. H. (1997). The critical thermal maximum: history and
772 critique. *Canadian Journal of Zoology*, 75(10), 1561-1574.

773 McLaughlin, B. C., Skikne, S. A., Beller, E., Blakey, R. V., Olliff-Yang, R. L., Morueta-Holme,
774 N., ... & Zavaleta, E. S. (2022). Conservation strategies for the climate crisis: An update on
775 three decades of biodiversity management recommendations from science. *Biological*
776 *Conservation*, 268, 109497.

777 McMenamin, S. K., & Parichy, D. M. (2013). Metamorphosis in teleosts. *Current topics in*
778 *developmental biology*, 103, 127-165.

779 Meek, M. H., Beever, E. A., Barbosa, S., Fitzpatrick, S. W., Fletcher, N. K., Mittan-Moreau,
780 C. S., ... & Hellmann, J. J. (2023). Understanding local adaptation to prepare populations for
781 climate change. *BioScience*, 73(1), 36-47.

782 Mitchell, M., et al, "Engauge Digitizer Software." Webpage:
783 <http://markummittell.github.io/engauge-digitizer>, Last Accessed: October 27, 2023

784 Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global
785 biodiversity conservation: the critical role of hotspots. In *Biodiversity hotspots: distribution and*
786 *protection of conservation priority areas*. Springer Berlin Heidelberg, 3-22.

787 Molina, A. N., Pulgar, J. M., Rezende, E. L., & Carter, M. J. (2023). Heat tolerance of marine
788 ectotherms in a warming Antarctica. *Global Change Biology*, 29(1), 179-188.

789 Morgan, R., Andreassen, A. H., Åsheim, E. R., Finnøen, M. H., Dresler, G., Brembu, T., ... &
790 Jutfelt, F. (2022). Reduced physiological plasticity in a fish adapted to stable temperatures.
791 *Proceedings of the National Academy of Sciences*, 119(22), e2201919119.

792 Morgan, R., Finnøen, M. H., & Jutfelt, F. (2018). CTmax is repeatable and doesn't reduce
793 growth in zebrafish. *Scientific Reports*, 8(1), 7099.

794 Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S., & Bates, A. E. (2019). Physiological
795 acclimation and persistence of ectothermic species under extreme heat events. *Global Ecology*
796 and *Biogeography*, 28(7), 1018-1037.

797 Moyano, M., Candebat, C., Ruhbaum, Y., Alvarez-Fernandez, S., Claireaux, G., Zambonino-
798 Infante, J. L., & Peck, M. A. (2017). Effects of warming rate, acclimation temperature and
799 ontogeny on the critical thermal maximum of temperate marine fish larvae. *PLoS One*, 12(7),
800 e0179928.

801 Muñoz, M. M. (2022). The Bogert effect, a factor in evolution. *Evolution*, 76(s1), 49-66.

802 Navas, C. A., & Otani, L. (2007). Physiology, environmental change, and anuran conservation.
803 *Phyllomedusa: Journal of Herpetology*, 6(2), 83-103.

804 Navas, C. A., Agudelo-Cantero, G. A., & Loeschke, V. (2022). Thermal boldness: Volunteer
805 exploration of extreme temperatures in fruit flies. *Journal of Insect Physiology*, 136, 104330.

806 Navas, C. A., Gomes, F. R., & Carvalho, J. E. (2008). Thermal relationships and exercise
807 physiology in anuran amphibians: integration and evolutionary implications. *Comparative
808 Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 151(3), 344-362.

809 Newman, R. A. (1992). Adaptive plasticity in amphibian metamorphosis. *BioScience*, 42(9),
810 671-678.

811 Oyamaguchi, H. M., Vo, P., Grewal, K., Do, R., Erwin, E., Jeong, N., ... & Gridi-Papp, M.
812 (2018). Thermal sensitivity of a Neotropical amphibian (*Engystomops pustulosus*) and its
813 vulnerability to climate change. *Biotropica*, 50(2), 326-337.

814 Paradis, E., & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and
815 evolutionary analyses in R. *Bioinformatics*, 35(3), 526-528.

816 Peck, L. S., Morley, S. A., Richard, J., & Clark, M. S. (2014). Acclimation and thermal
817 tolerance in Antarctic marine ectotherms. *Journal of Experimental Biology*, 217(1), 16-22.

818 Penman, R. J., Bugg, W., Rost-Komiya, B., Earhart, M. L., & Brauner, C. J. (2023). Slow
819 heating rates increase thermal tolerance and alter mRNA HSP expression in juvenile white
820 sturgeon (*Acipenser transmontanus*). *Journal of Thermal Biology*, 103599.

821 Peralta-Maraver, I., & Rezende, E. L. (2021). Heat tolerance in ectotherms scales predictably
822 with body size. *Nature Climate Change*, 11(1), 58-63.

823 Pincebourde, S., Murdock, C. C., Vickers, M., & Sears, M. W. (2016). Fine-scale microclimatic
824 variation can shape the responses of organisms to global change in both natural and urban
825 environments. *Integrative and Comparative Biology*, 56(1), 45-61.

826 Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. (2019). Greater
827 vulnerability to warming of marine versus terrestrial ectotherms. *Nature*, 569(7754), 108-111.

828 Pintanel, P., Tejedo, M., Merino-Viteri, A., Almeida-Reinoso, F., Salinas-Ivanenko, S., López-
829 Rosero, A. C., ... & Gutiérrez-Pesquera, L. M. (2022). Elevational and local climate variability
830 predicts thermal breadth of mountain tropical tadpoles. *Ecography*, 2022(5), e05906.

831 Pörtner, H. (2001). Climate change and temperature-dependent biogeography: oxygen
832 limitation of thermal tolerance in animals. *Naturwissenschaften*, 88, 137-146.

833 Pörtner, H. O. (2002). Climate variations and the physiological basis of temperature dependent
834 biogeography: systemic to molecular hierarchy of thermal tolerance in animals. *Comparative
835 Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 132(4), 739-761.

836 Pörtner, H. O. (2010). Oxygen-and capacity-limitation of thermal tolerance: a matrix for
837 integrating climate-related stressor effects in marine ecosystems. *Journal of Experimental
838 Biology*, 213(6), 881-893.

839 Pörtner, H. O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries: towards
840 a cause-and-effect understanding. *Journal of Fish Biology*, 77(8), 1745-1779.

841 Pottier, P., Burke, S., Drobniak, S. M., & Nakagawa, S. (2022b). Methodological
842 inconsistencies define thermal bottlenecks in fish life cycle: a comment on Dahlke et al. 2020.
843 *Evolutionary Ecology*, 36(2), 287-292.

844 Pottier, P., Burke, S., Drobniak, S. M., Lagisz, M., & Nakagawa, S. (2021). Sexual (in)
845 equality? A meta-analysis of sex differences in thermal acclimation capacity across ectotherms.
846 *Functional Ecology*, 35(12), 2663-2678.

847 Pottier, P., Burke, S., Zhang, R. Y., Noble, D. W., Schwanz, L. E., Drobniak, S. M., &
848 Nakagawa, S. (2022a). Developmental plasticity in thermal tolerance: Ontogenetic variation,
849 persistence, and future directions. *Ecology Letters*, 25(10), 2245-2268.

850 Potts, L. B., Mandrak, N. E., & Chapman, L. J. (2021). Coping with climate change: phenotypic
851 plasticity in an imperilled freshwater fish in response to elevated water temperature. *Aquatic
852 Conservation: Marine and Freshwater Ecosystems*, 31(10), 2726-2736.

853 R Core Team (2020). R: A language and environment for statistical computing. R Foundation
854 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

855 Rohr, J. R., Civitello, D. J., Cohen, J. M., Roznik, E. A., Sinervo, B., & Dell, A. I. (2018). The
856 complex drivers of thermal acclimation and breadth in ectotherms. *Ecology Letters*, 21(9),
857 1425-1439.

858 Rubalcaba, J. G., & Olalla-Tárraga, M. Á. (2020). The biogeography of thermal risk for
859 terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. *Journal of
860 Animal Ecology*, 89(5), 1277-1285.

861 Rudolf, V. H., & Rödel, M. O. (2007). Phenotypic plasticity and optimal timing of
862 metamorphosis under uncertain time constraints. *Evolutionary Ecology*, 21, 121-142.

863 Ruthsatz, K., Dausmann, K. H., Paesler, K., Babos, P., Sabatino, N. M., Peck, M. A., & Glos,
864 J. (2020). Shifts in sensitivity of amphibian metamorphosis to endocrine disruption: the
865 common frog (*Rana temporaria*) as a case study. *Conservation Physiology*, 8(1), coaa100.

866 Ruthsatz, K., Dausmann, K. H., Peck, M. A., & Glos, J. (2022a). Thermal tolerance and
867 acclimation capacity in the European common frog (*Rana temporaria*) change throughout

868 ontogeny. *Journal of Experimental Zoology Part A: Ecological and Integrative Physiology*,
869 337(5), 477-490.

870 Ruthsatz, K., Dausmann, K. H., Peck, M. A., Drees, C., Sabatino, N. M., Becker, L. I., ... &
871 Glos, J. (2018b). Thyroid hormone levels and temperature during development alter thermal
872 tolerance and energetics of *Xenopus laevis* larvae. *Conservation Physiology*, 6(1), coy059.

873 Ruthsatz, K., Dausmann, K. H., Reinhardt, S., Robinson, T., Sabatino, N. M., Peck, M. A., &
874 Glos, J. (2019). Endocrine disruption alters developmental energy allocation and performance
875 in *Rana temporaria*. *Integrative and Comparative Biology*, 59(1), 70-88.

876 Ruthsatz, K., Dausmann, K. H., Reinhardt, S., Robinson, T., Sabatino, N. M., Peck, M. A., &
877 Glos, J. (2020). Post-metamorphic carry-over effects of altered thyroid hormone level and
878 developmental temperature: physiological plasticity and body condition at two life stages in
879 *Rana temporaria*. *Journal of Comparative Physiology B*, 190, 297-315.

880 Ruthsatz, K., Peck, M. A., Dausmann, K. H., Sabatino, N. M., & Glos, J. (2018). Patterns of
881 temperature induced developmental plasticity in anuran larvae. *Journal of Thermal Biology*, 74,
882 123-132.

883 Ruthsatz, K., Rakotoarison, A., Razafimampiandra, J. C., Randriamahefa, V. S.,
884 Rabemananjara, F. C., Rakotondraparany, F., ... & Vences, M. (2022b). Field body
885 temperatures in Malagasy rainforest frogs. *Herpetology Notes*, 15, 565-578.

886 Schiesari, L., Grillitsch, B., & Grillitsch, H. (2007). Biogeographic biases in research and their
887 consequences for linking amphibian declines to pollution. *Conservation Biology*, 21(2), 465-
888 471.

889 Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: a reaction norm perspective.
890 Sinauer associates incorporated. In: *Phenotypic evolution: a reaction norm perspective*, Sinauer
891 Associates Incorporated, Sunderland, USA.

892 Seebacher, F., White, C. R., & Franklin, C. E. (2015). Physiological plasticity increases
893 resilience of ectothermic animals to climate change. *Nature Climate Change*, 5(1), 61-66.

894 Shah, A. A., Gill, B. A., Encalada, A. C., Flecker, A. S., Funk, W. C., Guayasamin, J. M., ... &
895 Ghalambor, C. K. (2017). Climate variability predicts thermal limits of aquatic insects across
896 elevation and latitude. *Functional Ecology*, 31(11), 2118-2127.

897 Shi, Y. B. (2000). Amphibian metamorphosis: from morphology to molecular biology (No.
898 19638). Wiley-Liss.

899 Sinai, N., Glos, J., Mohan, A. V., Lyra, M. L., Riepe, M., Thöle, E., ... & Ruthsatz, K. (2022).
900 Developmental plasticity in amphibian larvae across the world: Investigating the roles of
901 temperature and latitude. *Journal of Thermal Biology*, 106, 103233.

902 Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., ... &
903 Huey, R. B. (2016). Can we predict ectotherm responses to climate change using thermal
904 performance curves and body temperatures?. *Ecology letters*, 19(11), 1372-1385.

905 Somero, G. N. (2005). Linking biogeography to physiology: evolutionary and acclimatory
906 adjustments of thermal limits. *Frontiers in Zoology*, 2(1), 1-9.

907 Somero, G. N. (2010). The physiology of climate change: how potentials for acclimatization
908 and genetic adaptation will determine 'winners' and 'losers'. *Journal of Experimental Biology*,
909 213(6), 912-920.

910 Sørensen, J. G., Kristensen, T. N., & Overgaard, J. (2016). Evolutionary and ecological patterns
911 of thermal acclimation capacity in *Drosophila*: is it important for keeping up with climate
912 change?. *Current Opinion in Insect Science*, 17, 98-104.

913 Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2011). Global analysis of thermal tolerance and
914 latitude in ectotherms. *Proceedings of the Royal Society B: Biological Sciences*, 278(1713),
915 1823-1830.

916 Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., &
917 Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior
918 across latitude and elevation. *Proceedings of the National Academy of Sciences*, 111(15), 5610-
919 5615.

920 Sunday, J., Bennett, J. M., Calosi, P., Clusella-Trullas, S., Gravel, S., Hargreaves, A. L., ... &
921 Morales-Castilla, I. (2019). Thermal tolerance patterns across latitude and elevation.
922 *Philosophical Transactions of the Royal Society B*, 374(1778), 20190036.

923 Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C., & Chown, S. L. (2007). Critical
924 thermal limits depend on methodological context. *Proceedings of the Royal Society B: Biological Sciences*, 274(1628), 2935-2943.

926 Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals.
927 Science, 320(5881), 1296-1297.

928 van Heerwaarden, B., Kellermann, V., & Sgrò, C. M. (2016). Limited scope for plasticity to
929 increase upper thermal limits. *Functional Ecology*, 30(12), 1947-1956.

930 van Heerwaarden, B., & Sgrò, C. M. (2021). Male fertility thermal limits predict vulnerability
931 to climate warming. *Nature Communications*, 12(1), 2214.

932 Weaving, H., Terblanche, J. S., Pottier, P., & English, S. (2022). Meta-analysis reveals weak
933 but pervasive plasticity in insect thermal limits. *Nature Communications*, 13(1), 5292.

934 Wickham, H., & Wickham, H. (2009). Getting started with qplot. *ggplot2: elegant graphics for*
935 *data analysis*, 9-26.

936 Wilbur, H. M. (1980). Complex life cycles. *Annual review of Ecology and Systematics*, 11(1),
937 67-93.

938 Winter, M., Fiedler, W., Hochachka, W. M., Koehncke, A., Meiri, S., & De la Riva, I. (2016).
939 Patterns and biases in climate change research on amphibians and reptiles: a systematic review.
940 Royal Society Open Science, 3(9), 160158.

941 Woods, H. A., Dillon, M. E., & Pincebourde, S. (2015). The roles of microclimatic diversity
942 and of behavior in mediating the responses of ectotherms to climate change. *Journal of Thermal*
943 *Biology*, 54, 86-97.

944 Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change and freshwater
945 ecosystems: impacts across multiple levels of organization. *Philosophical Transactions of the*
946 *Royal Society B: Biological Sciences*, 365(1549), 2093-2106.

947 Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T. Y. (2017). *ggtree: an R package for*
948 *visualization and annotation of phylogenetic trees with their covariates and other associated*
949 *data*. *Methods in Ecology and Evolution*, 8(1), 28-36.

950 Yu, S., Wages, M. R., Cobb, G. P., & Maul, J. D. (2013). Effects of chlorothalonil on
951 development and growth of amphibian embryos and larvae. *Environmental pollution*, 181, 329-
952 334.

953 **7. Acknowledgements**

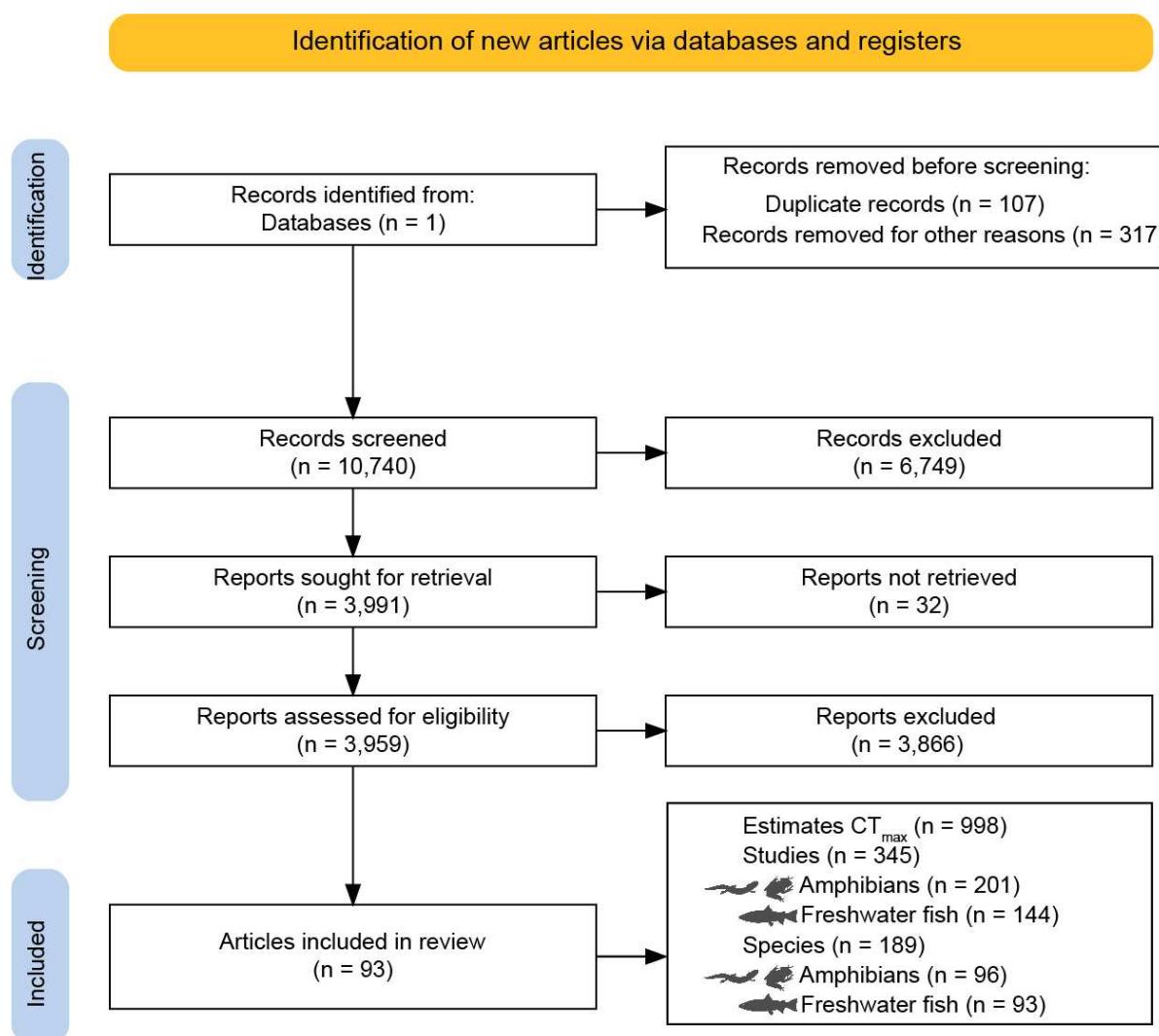
954 We would like to thank the German Research Foundation (DFG) for providing financial support
955 to KR and PCE for this study and the Universität Hamburg for providing financial support to
956 KR by the PostDoc1st award. We thank M. Multsch for assisting with the data visualization
957 and U. Enriquez-Urzelai and M. H. Bernal for providing data on request. We are particularly
958 grateful to all authors of the articles included in our systematic literature review, whose effort
959 and work made the present study possible.

960 **8. Author contributions**

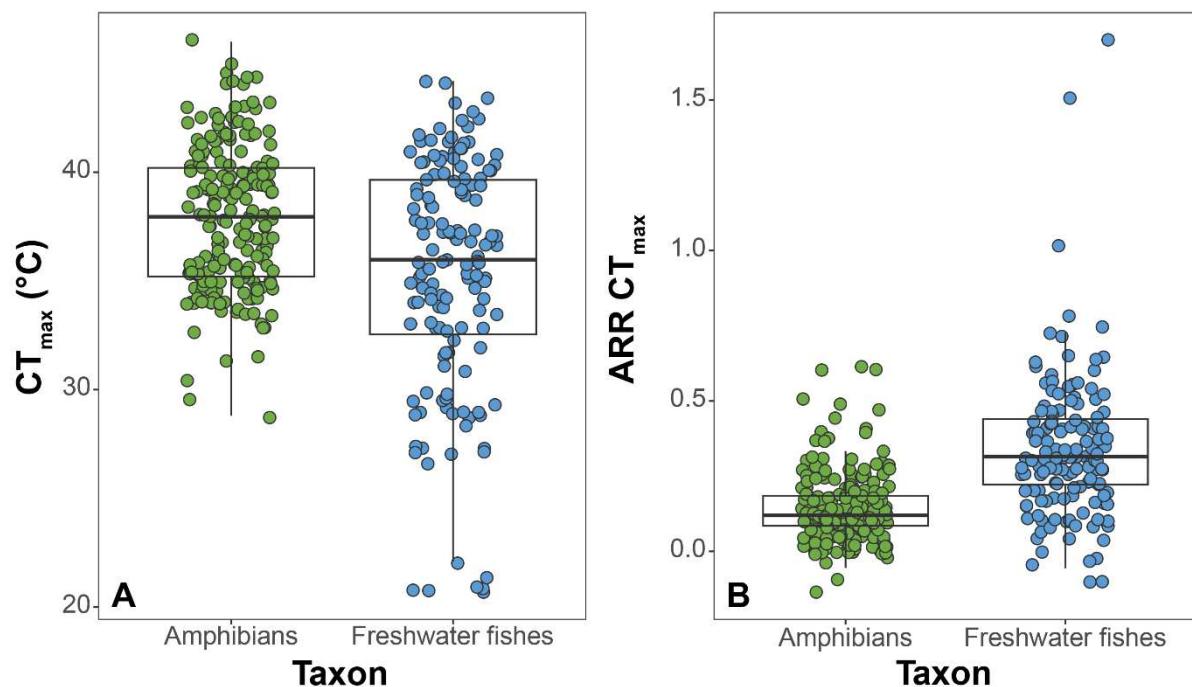
961 Conceptualization: KR and MAP. Methodology: KR, KA, FD, SW, SG, MAP. Data Extraction
962 and Quality Check: KR, KA, PCE, MLL, FD and SW. Formal Analysis: FD and SW.
963 Investigation: KR, FD, and SW. Data Curation: KR. Visualization: KR, FD, and SW. Writing
964 – Original Draft: KR, FD, and MAP. Writing – Review and Editing: all authors. Funding
965 Acquisition: KR. Project Administration: KR. Supervision: KR and MAP. All authors gave
966 their final approval for submission.

967 **9. Conflict of Interest**

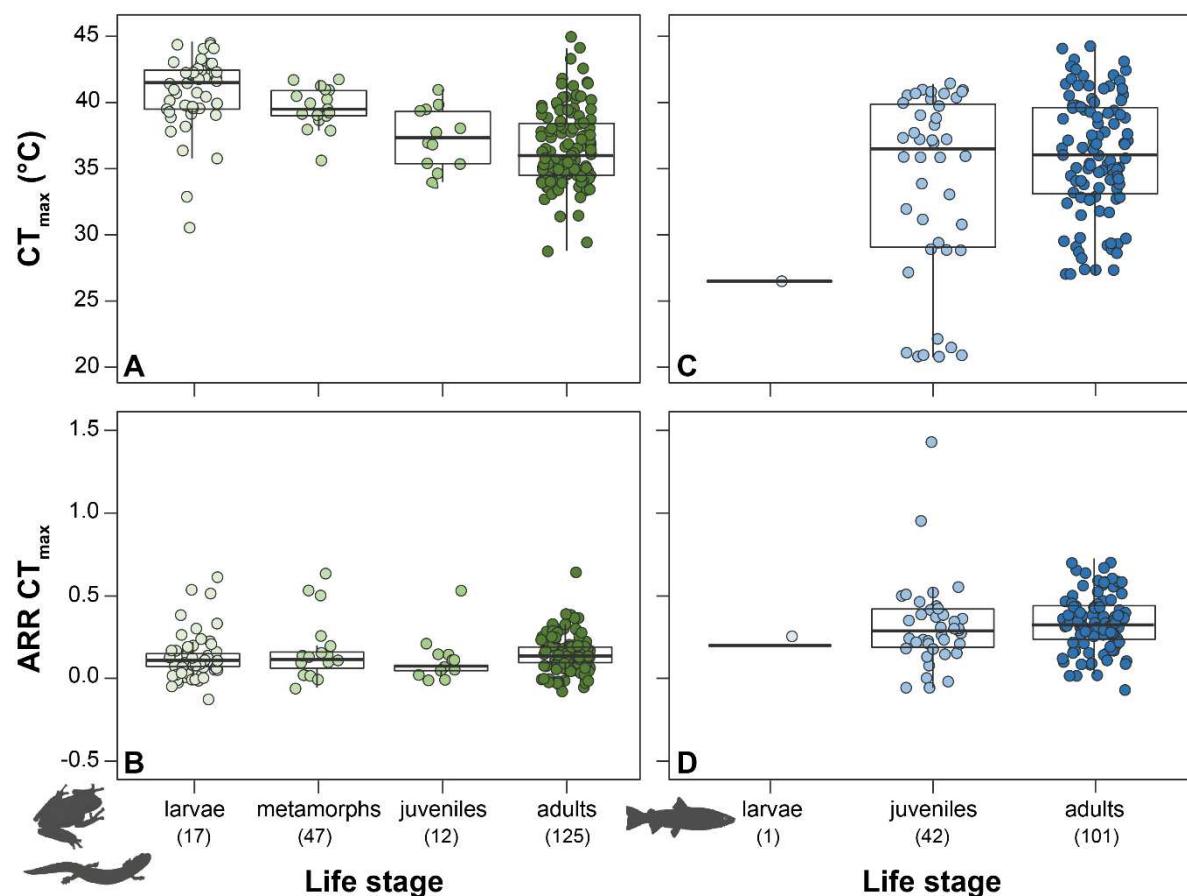
968 The authors declare that the research was conducted in the absence of any commercial or
969 financial relationships that could be construed as a potential conflict of interest.


970 **10. Statement of Ethics**

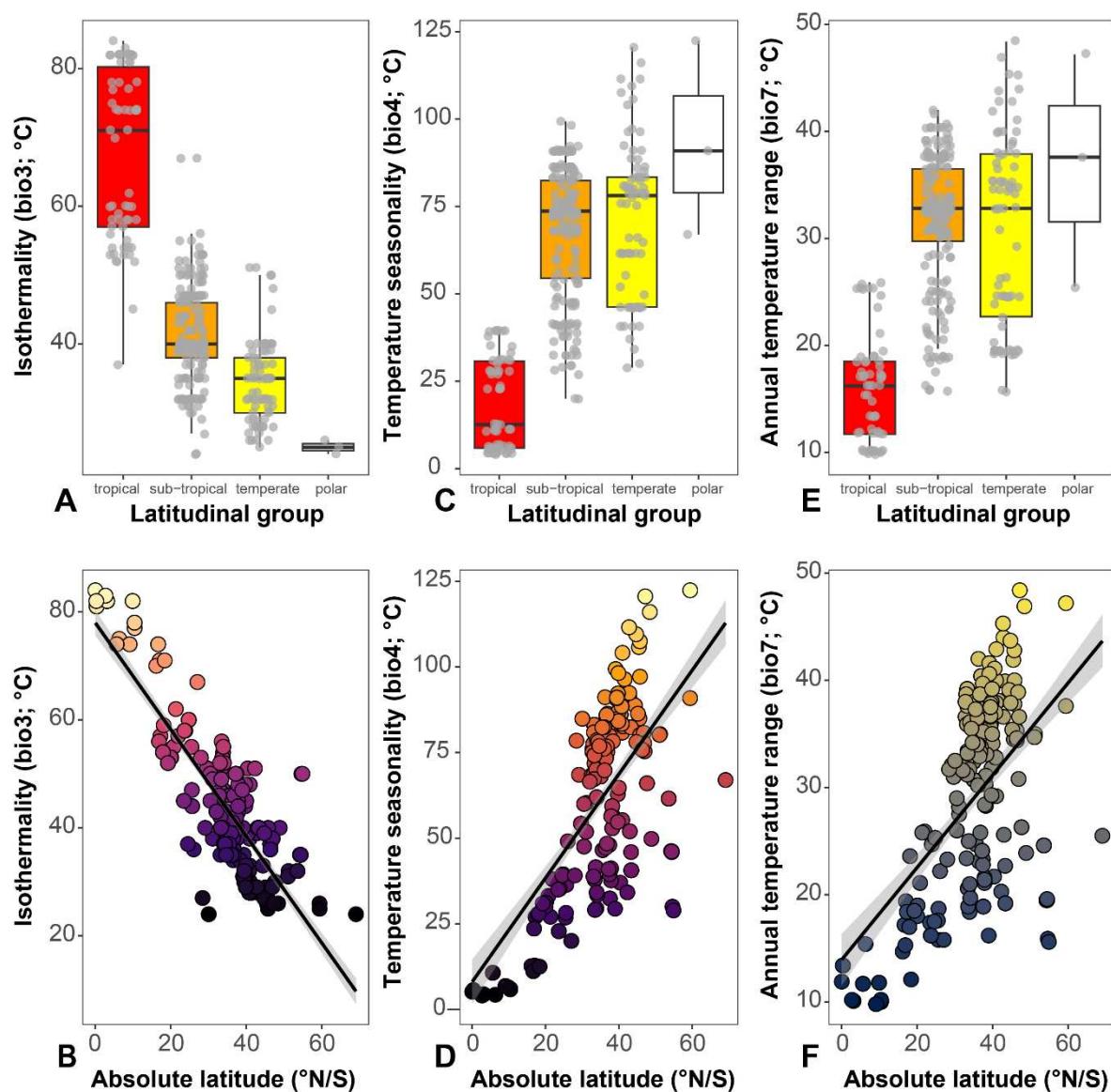
971 The authors have no ethical conflicts to disclose.


972 **11. Funding**

973 KR was supported by a PhD award (PostDoc1st) from the University of Hamburg. The German
974 Research Foundation (DFG) project (459850971; A new perspective on amphibians and global
975 change: Detecting sublethal effects of environmental stress as agents of silent population
976 declines) supported KR and PCE. MLL was supported by the São Paulo Research Foundation
977 in Brazil (FAPESP #2021/10639-5).


978 **Supplementary material**

979 **Figure S1.** PRISMA flow diagram adapted from Page et al. (2021) showing literature search
980 procedures and screening processes (created with Shiny app, Haddaway et al. 2022).



981 **Figure S2.** Taxon-specific **A** critical thermal maximum (CT_{max}) and **B** Acclimation response
982 ratio of CT_{max} (ARR CT_{max}) for amphibians and freshwater fishes. Green: Amphibians. Blue:
983 Freshwater fishes. Numbers in parentheses = sample size.

984 **Figure S3. AC** Life stage-specific critical thermal maximum (CT_{max}) and **BD** Acclimation
985 response ratio of CT_{max} (ARR CT_{max}) for amphibians and freshwater fishes. Green:
986 Amphibians. Blue: Freshwater fishes. Numbers in parentheses = sample size.

990 **Figure S5.** A. Isothermality (bio3), C. temperature seasonality (bio4), and E. annual
991 temperature (bio7) range for BDF four latitudinal groups (i.e., tropical, sub-tropical, temperate,
992 and polar) and as a function of absolute latitude ($^{\circ}\text{N/S}$).