

== REVIEW COMMONS MANUSCRIPT ==

IMPORTANT:

- Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.
- Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.
- The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.
- The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred.

GUIDELINES:

- For reviewers: <https://www.reviewcommons.org/reviewers>
- For authors: <https://www.reviewcommons.org/authors>

CONTACT:

The Review Commons office can be contacted directly at: office@reviewcommons.org

1 **Brg1 regulates fibroblast-myofibroblast transition to promote renal fibrosis**

2 Xiaoyan Wu¹, Yajun Luo², Aoqi Kang³, Jiayao Ni⁴, Ming Kong^{2*}, Tao Zhang^{4*}

3 ¹School of Sports and Health, Nanjing Sport Institute, Nanjing, China;

4 ²State Key Laboratory of Natural Medicines, Department of Pharmacology, China
5 Pharmaceutical University, Nanjing, China;

6 ³Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative
7 Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology,
8 Nanjing Medical University, Nanjing, China;

9 ⁴Department of Geriatric Nephrology, Jiangsu Province Hospital, First Affiliated Hospital of
10 Nanjing Medical University, Nanjing, China

11
12 Correspondence to:

13 Tao Zhang, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd,
14 Nanjing 210029, China

15 Email: tzgeriatrics@hotmail.com

16 Ming Kong, China Pharmaceutical University, 639 Longmian Ave, Nanjing 211198, China

17 Email: mknjmu@gmail.com

18
19
20
21 **Running title:** Brg1 regulates renal fibrosis

22 **Key words:** renal fibrosis; fibroblast; myofibroblast, transcriptional regulation

23
24

25 **Abstract**

26 Excessive fibrogenesis serves to disrupt the anatomical and functional integrity of the kidneys
27 contributing to renal failure. Renal fibroblast is the major precursor to myofibroblast, the
28 effector cell type of renal fibrosis. How fibroblast-myofibroblast transition (FMyT) is
29 regulated in the kidneys remains incompletely understood. In the present study we
30 investigated the role of Brahma related gene 1 (Brg1), a chromatin remodeling protein, in
31 renal fibrosis focusing on mechanistic insights and translational potential. We report that Brg1
32 was up-regulated during FMyT both *in vitro* and *in vivo*. Brg1 deletion in fibroblasts partially
33 blocked TGF- β induced FMyT *in vitro* and attenuated renal fibrosis in three different animal
34 models. Importantly, conditional Brg1 knockout in *Postn*⁺ mature myofibroblasts mitigated
35 renal fibrosis induced by unilateral ureteral obstruction (UUO) or ischemia-reperfusion (IR)
36 in mice. Transcriptomic analysis uncovered Prune2 as a potential target for Brg1. Brg1
37 interacted with E2F1 to activate Prune2 transcription during FMyT. Concordantly, Prune2
38 knockdown suppressed TGF- β induced FMyT *in vitro* and dampened renal fibrosis in mice.
39 Mechanistically, Prune2 likely contributed to FMyT by augmenting phosphorylation and
40 activity of the pro-fibrogenic transcription factor PU.1. Finally, small-molecule Brg1 inhibitor
41 PFI-3 exhibited strong antifibrotic potency in established models of renal fibrosis. In
42 conclusion, our data provide compelling evidence that BRG1 is a pivotal regulator of as well
43 as a promising therapeutic target for renal fibrosis.

44

45

46

47

48

49 **Introduction**

50 Chronic kidney disease (CKD) is defined as the progressive loss of renal functions due to
51 a host of etiological factors including glomerular nephropathy, diabetic nephropathy, and
52 hypertension. Owing to the global pandemic of metabolic diseases and population aging,
53 newly diagnosed cases of CKD have been steadily increasing in the past decade affecting
54 more than 700 million people worldwide(1). Without effective intervention, CKD patients
55 will eventually develop end-stage renal disease (ESRD) necessitating life-long dialysis and/or
56 kidney transplantation(2). In the US, mortality rates in individuals 66 years or older with
57 CKD are twice as high as those without creating significant socioeconomic burdens(3).
58 Regardless of etiology, renal fibrosis, defined as extensive deposition of extracellular matrix
59 proteins in the glomerulus and interstitial space, is a common pathophysiological process in
60 CKD. Renal fibrosis leads to rigidification of renal tissues, disruption of normal renal
61 architecture, and interference with key renal functions. Renal dampens prognosis in patients
62 with ESRD and is considered an endpoint against which novel pharmacotherapies are devised
63 and evaluated(4).

64

65 Myofibroblast, believed to be the effector of fibrogenesis in all organs including the
66 kidneys, is a specialized cell type possessing both the ability to produce ECM proteins like a
67 fibroblast cell and the ability to contract like a muscle cell(5). Myofibroblasts are absent from
68 the kidneys under physiological conditions, only emerge during kidney injuries, and recede
69 during the resolution of renal fibrosis(6). The origin from which myofibroblasts arise *in vivo*
70 has been a topic of great intrigue and controversy. It was once thought that tubular epithelial
71 cells, through a process known as epithelial-mesenchymal transition (EMT), and vascular
72 endothelial cells, through a similar process known as endothelial-mesenchymal transition
73 (EndMT), could trans-differentiate into myofibroblasts and thus contribute to renal fibrosis(7,
74 8). The development of genetic lineage tracing techniques has allowed fine mapping of the
75 source(s) from which myofibroblasts are derived. Using a set of sophisticatedly engineered
76 mouse strains, each of which carries a lineage-specific reporter, LeBleu et al have
77 demonstrated that resident fibroblasts account for a majority of ECM-producing
78 myofibroblasts (>50%) in the fibrotic kidneys(9). On the contrary, the contribution of either
79 epithelial cells or endothelial cells to the pool of myofibroblasts appears to be negligible.
80 More recently, with the help of a combination of genetic tracing and single-cell transcriptomic
81 tools, Kuppe et al have shown that PDGFR α^+ /PDGFR β^+ mesenchymal cells including all
82 fibroblasts represent the major myofibroblast population in human kidney fibrosis(10). *In*
83 *vitro* cultured fibroblasts can be programmed to differentiate into myofibroblasts by a host of
84 stimuli including TGF- β , PDGF, Ang II, and high glucose(11).

85

86 A profound transcriptomic change is recorded during FMyT(12). In mammalian cells,
87 transcription is acutely influenced by the epigenetic machinery, which encompasses
88 DNA/histone modifying enzymes, non-coding RNAs, and chromatin remodeling proteins(13).
89 Brahma related gene 1 (Brg1) is the core component of the SWI/SNF chromatin remodeling
90 complex providing enzymatic activity for mobilization of nucleosomes(14). It has long been
91 documented that BRG1 plays an essential role in TGF- β dependent transcription functioning
92 as a co-factor for SMADs(15). Transcriptional events mediated by TGF- β signaling through

93 SMAD family transcription factors are considered a paradigm in programming
94 fibroblast-myofibroblast transition. A previous study by Gong *et al* claimed, based on
95 immunohistochemical staining of renal tissues, that Brg1 was predominantly expressed in
96 tubular epithelial cells(16). However, recent single-cell transcriptomic studies performed in
97 humans and in mice indicate that Brg1 is expressed at equivalent levels in different renal cell
98 linages(17, 18). Fibroblasts represent the predominant source of ECM-producing
99 myofibroblasts during renal fibrosis, in which cellular compartment the role of Brg1 remains
100 unclear. Therefore, we hypothesized that Brg1 might be involved in FMyT and renal fibrosis.
101 Our data demonstrate that Brg1 plays an essential role in renal fibrosis by promoting
102 fibroblast-myofibroblast transition. Prune2 is a likely downstream target of Brg1, which
103 contributes to FMyT and renal fibrosis by activating PU.1. Finally, pharmaceutical inhibition
104 of Brg1 with a small-molecule compound PFI-3 achieves potent antifibrotic effects in mice.
105

106 **Methods**

107 *Animals*

108 All animal experiments were reviewed and approved by the Ethics Committee on
109 Humane Treatment of Laboratory Animals of Nanjing Medical University and were
110 performed in accordance with the ethical standards laid down in the 1964 Declaration of
111 Helsinki and its later amendments. *Smarca4*^{fl/fl} mice(19), *Colla2-Cre*^{ERT2} mice(20), and
112 *Postn-Cre*^{ERT2} mice(21) have been described previously. Renal fibrosis was induced by one of
113 the following methods as previously described. Briefly, for the UUO procedure (22), 8-10wk
114 male mice (25-27g) were anesthetized with isoflurane and an incision was created on the left
115 flank beneath the ribcage to expose the left ureter. Double ligation of the ureter was
116 performed with 5-0 Mersilk; for the sham procedure, the ureter was located and placed back
117 without ligation. The wound was then closed using a subcuticular suture and the mice were
118 allowed to recover on a heating pad before being returned to the cage. The mice were
119 sacrificed 2wk after the surgery. For the ischemia-reperfusion procedure (23), 8-10wk male
120 mice (25-27g) were anesthetized and a midline laparotomy incision was created with a scalpel.
121 Ischemia was induced by applying a micro serraclip onto the left renal artery and vein for
122 30min. The clamp was removed and the skin was closed with silk suture. The mice were
123 allowed to recover on a heating pad before being transferred back to the cage. For both the
124 UUO procedure and the IR procedure, iodine/alcohol solution was applied to the surgical area
125 to minimize infection.

126 To induce Cre expression in the *Colla2-Cre*^{ERT2} mice, tamoxifen (Cat#: T2859, Sigma)
127 was injected peritoneally (50mg/kg) for 7 consecutive days followed by a washing phase of 7
128 days. To induce Cre expression in the *Postn-Cre*^{ERT2} mice, tamoxifen was injected
129 peritoneally (50mg/kg) for 5 consecutive days followed by maintaining the mice on a
130 TAX-containing diet (Cat#: TD.130855, Inotiv) until the day when the mice were sacrificed.
131 In certain experiments, the mice were injected peritoneally PFI-3 (Cat#: S7315, Selleck) at a
132 dose of 50mg/kg. In certain experiments, recombinant adeno-associated virus AAV-Anc80 (24,
133 25) carrying Prune2 shRNA (GUGGGAUAGUCAUUAAGUTT) downstream of the *Postn*
134 promoter(26). The AAV was injected into C57/B6 mice intravenously (i.v.) at a dose of 1 ×
135 10¹¹ vg.

136

137 *Cell culture, plasmids, and transient transfection*

138 Primary murine renal fibroblasts were isolated and cultured as previously described(27).
139 Primary renal tubular epithelial cells and podocytes were isolated as previously described(28,
140 29). *Prune2* promoter-luciferase construct was generated by amplifying genomic DNA
141 spanning the proximal promoter and the first exon of *Prune2* gene (-1500/+50) and ligating
142 into a pGL3-basic vector (Cat#: E1751, Promega). Truncation mutants were made using a
143 QuikChange kit (Cat#: 200518, Thermo Fisher Scientific) and verified by direct sequencing.
144 Small interfering RNAs were purchased from Dharmacon (Cat#: LQ-016593-02-0010).
145 Transient transfections were performed with Lipofectamine 2000 (Cat#: 11668019, Thermo
146 Fisher Scientific). Luciferase activities were assayed 24-48 hours after transfection using a
147 luciferase reporter assay system (Cat#: E1500, Promega) as previously described(30).

148

149 *RNA Isolation and Real-time PCR*

150 RNA was extracted with the RNeasy RNA isolation kit (Cat#: 74104, Qiagen) as
151 previously described(31, 32). Reverse transcriptase reactions were performed using a
152 SuperScript First-strand Synthesis System (Cat#: 18080093, Invitrogen). Real-time PCR
153 reactions were performed on an ABI Prism 7500 system. The primers are list in the
154 supplementary Table I. Ct values of target genes were normalized to the Ct values of
155 house-keeping control gene (18s, 5'-CGCGGTTCTATTTGTTGGT-3' and
156 5'-TCGTCTTCGAAACTCCGACT-3' for both human and mouse genes) using the $\Delta\Delta Ct$
157 method and expressed as relative mRNA expression levels compared to the control group
158 which is arbitrarily set as 1.

159

160 *Protein extraction and Western blot*

161 Whole cell lysates were obtained by re-suspending cell pellets in RIPA buffer (50 mM
162 Tris pH7.4, 150 mM NaCl, 1% Triton X-100) with freshly added protease and phosphatase
163 inhibitors (Cat#: 4693132001, Roche) as previously described(33). Antibodies used for
164 Western blotting are listed in the supplementary Table II. For densitometrical quantification,
165 densities of target proteins were normalized to those of β -actin. Data are expressed as relative
166 protein levels compared to the control group which is arbitrarily set as 1.

167

168 *Chromatin Immunoprecipitation (ChIP)*

169 Chromatin immunoprecipitation (ChIP) assays were performed essentially as described
170 before(34, 35). Aliquots of lysates containing 100 μ g of protein were used for each
171 immunoprecipitation reaction with indicated antibodies followed by adsorption to protein A/G
172 PLUS-agarose beads (Cat#: sc-2003, Santa Cruz Biotechnology). DNA-protein cross-link was
173 reversed by heating the samples to 65 °C overnight. Proteins were digested with proteinase K
174 (Cat#: P2308, Sigma), and DNA was phenol/chloroform-extracted and precipitated by 100%
175 ethanol. Precipitated genomic DNA was amplified by real-time PCR. A total of 10% of the
176 starting material is also included as the input.

177

178 *Histology*

179 Histological analyses were performed essentially as described before(36). Picosirius
180 Red staining was performed with a commercially available kit (Cat#: ab150681, Abcam) per
181 vendor recommendation. Paraffin sections were de-waxed and hydrated before being
182 immersed in the Picosirius Red solution for 60 minutes under room temperature. After two
183 washes with acidified water, the slides were rinsed with 100% ethanol. The slides were
184 further dehydrated twice with 100% ethanol before being cleared and mounted for
185 visualization. Masson's trichrome staining was performed with a commercially available kit
186 (Cat#: HT15-1KT, Sigma) per vendor recommendation. Briefly, paraffin sections were
187 de-waxed and hydrated before being mordanted in Bouin's Solution at 56°C for 15 minutes.
188 The slides were washed with running tap water to remove yellow color and then stained with
189 Weigert's Iron Hematoxylin Solution for 5 minutes. After several washes and rinses, the slides
190 were stained with sequentially with Biebrich Scarlet-Acid Fucshin Solution,
191 Phosphotungstic/Phosphomolybdic Acid Solution, and Aniline Blue Solution. After several
192 more washes and rinses, the slides were dehydrated 100% ethanol before being cleared and
193 mounted for visualization. Pictures were taken using an Olympus IX-70 microscope.

194 Quantifications were performed with Image J. For each mouse, at least three slides were
195 stained and at least five different fields were analyzed for each slide.

196

197 *EdU incorporation assay*

198 Cell proliferation was evaluated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay
199 as previously described(37). Briefly, cells were seeded in triplicates in 48-well plates. EdU
200 solution (Cat#: C10086, Thermo Fisher) was added to and incubated with the cells for 18h.
201 After nuclear staining with DAPI for 30 min at room temperature, the fluorescence at 594 nm
202 was detected with an Olympus IX-70 microscope. EdU positive cells from at least 5 randomly
203 chosen fields were counted for each triplicate well. Data are expressed as relative EdU
204 staining normalized to the control group arbitrarily set as 1.

205

206 *Boyden chamber trans-well assay*

207 The cells were trypsinized and seeded into Boyden chambers (PET track-etched, 8- μ m
208 pores, 24-well format; Cat#: 353097, Becton Dickinson) in serum-free DMEM medium.
209 Complete culture medium containing 10% FBS was added to the lower chamber. The cells
210 migrating from the upper chamber were fixed with 4% paraformaldehyde, stained with 0.1%
211 crystal violet, and counted under a microscope. Cell numbers from 5 random fields were
212 counted in each well. Data are expressed as relative number of migrated cells normalized to
213 the control group arbitrarily set as 1.

214

215 *Collagen contraction assay*

216 The cells were trypsinized, mixed with 4x the volume of Collagen Gel Working Solution
217 (Cat#: 354236, Corning) and incubated for 1 hr at 37°C. 4. After collagen polymerization, 1.0 mL
218 of culture medium was added atop. The collagen gel size change was measured 24h later and
219 quantified with Image Pro Plus. Data are expressed as relative contraction normalized to the
220 control group arbitrarily set as 1.

221

222 *RNA Sequencing and Data Analysis*

223 RNA-seq was performed as previously described(38). Total RNA was extracted using the
224 TRIzol reagent according to the manufacturer's protocol. RNA purity and quantification were
225 evaluated using the NanoDrop 2000 spectrophotometer (Thermo Scientific, USA). RNA
226 integrity was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
227 CA, USA). Then the libraries were constructed using TruSeq Stranded mRNA LT Sample
228 Prep Kit (Illumina, San Diego, CA, USA) according to the manufacturer's instructions and
229 sequenced on an Illumina HiSeq X Ten platform and 150 bp paired-end reads were generated.
230 Raw data (raw reads) of fastq format were firstly processed using Trimmomatic and the low
231 quality reads were removed to obtain the clean reads. The clean reads were mapped to the
232 mouse genome (Mus_musculus.GRCm38.99) using HISAT2. FPKM of each gene was
233 calculated using Cufflinks, and the read counts of each gene were obtained by HTSeqcount.
234 Differential expression analysis was performed using the DESeq (2012) R package. P value <
235 0.05 and fold change > 1.5 or fold change < 0.66 was set as the threshold for significantly
236 differential expression. Hierarchical cluster analysis of differentially expressed genes (DEGs)
237 was performed to demonstrate the expression pattern of genes in different groups and samples.

238 GO enrichment and KEGG pathway enrichment analysis of DEGs were performed
239 respectively using R based on the hypergeometric distribution.

240

241 *Statistical analysis*

242 For comparison between two groups, two-tailed t-test was performed. For comparison
243 among three or more groups, one-way ANOVA or two-way ANOVA with post-hoc Turkey
244 analyses were performed using an SPSS package. The assumptions of normality were
245 checked using Shapiro-Wilks test and equal variance was checked using Levene's test; both
246 were satisfied. *p* values smaller than .05 were considered statistically significant (*). All *in*
247 *vitro* experiments were repeated at least three times and three replicates were estimated to
248 provide 80% power.

249

250

251 **Results**

252 ***Brg1 regulates fibroblast-myofibroblast transition in vitro***

253 When primary renal fibroblasts were exposed to TGF- β , a potent inducer of FMyT,
254 robust induction of α -SMA (encoded by *Acta2*), a prototypical myofibroblast marker, was
255 detected by qPCR (Fig.1A) and Western blotting (Fig.1B), indicative of FMyT taking place.
256 Of interest, there was a concomitant increase in Brg1 expression at both mRNA (Fig.1A) and
257 protein (Fig.1B) levels. Importantly, when primary renal fibroblasts were isolated from the
258 mice in which renal fibrosis was developing as a result of either the unilateral ureteral
259 obstruction (UUO) procedure or the ischemia-reperfusion (IR) procedure, expression of levels
260 of Brg1 and α -SMA followed almost identical kinetics (Fig.S1).

261 Next, primary renal fibroblasts were isolated from the Brg1-flox mice and Brg1 deletion
262 was achieved by the addition of Cre enzyme: Brg1 deletion markedly dampened TGF- β
263 induced FMyT as evidenced by expression levels of myofibroblast marker genes (Fig.1C, 1D)
264 and the abilities to proliferate (Fig.1E), migrate (Fig.1F), and contract (Fig.1G). On the
265 contrary, over-expression of Brg1 strongly enhanced FMyT (Fig.S2). Taken together, these
266 data suggest that Brg1 might play an essential role in FMyT *in vitro*.

267

268 ***Fibroblast-specific Brg1 ablation attenuates renal fibrosis in mice***

269 To delete Brg1 in resident fibroblasts, *Brg1*^{f/f} mice were crossed to the *Colla2-Cre*^{ERT2}
270 mice. The *Brg1*^{FCKO} mice (*Brg1*^{f/f}; *Colla2-Cre*^{ERT2}) and WT mice (*Brg1*^{f/f}) were injected with
271 tamoxifen to allow Cre-mediated homologous recombination (Fig.2A). Brg1 expression was
272 significantly down-regulated in the fibroblast fraction, but not the non-fibroblast fraction, in
273 the *Brg1*^{FCKO} mice compared to the WT mice (Fig.S3). These mice were then subjected to the
274 UUO procedure to induce renal fibrosis. Brg1 deficiency in fibroblasts did not alter renal
275 filtration function because no difference in plasma BUN levels (Fig.2B) and creatinine levels
276 (Fig.2C). However, picrosirius red staining and Masson's staining showed a decrease in
277 extracellular matrix proteins in the kidneys of the *Brg1*^{FCKO} mice compared to the WT mice
278 (Fig.2D). QPCR (Fig.2E) and Western blotting (Fig.2F) confirmed that Brg1 deletion in
279 fibroblasts diminished pro-fibrogenic/myofibroblast marker genes. In addition,
280 hydroxyproline quantification pointed to a decrease in collagenous tissue deposition (Fig.2G).
281 The conclusion that fibroblast-specific Brg1 contributes to renal fibrosis was further validated
282 in an alternative model of renal fibrosis induced by kidney ischemia-reperfusion (Fig.S4).

283

284 ***Myofibroblast-specific Brg1 ablation attenuates renal fibrosis in mice***

285 Because the ability of Brg1 to regulate renal fibrosis might not entirely reside in
286 fibroblasts, the next set of experiments was performed to determine whether Brg1 deficiency
287 in mature myofibroblast would similarly attenuate renal fibrosis. To this end, *Brg1*^{f/f} mice
288 were crossed to the *Postn-Cre*^{ERT2} mice to generate myofibroblast conditional Brg1 knockout
289 mice (*Brg1*^{MCKO}, Fig.3A). Following the UUO surgery, neither plasma BUN levels (Fig.3B)
290 nor plasma creatinine levels (Fig.3C) were significantly altered by Brg1 deletion in
291 myofibroblasts. However, there were clearly fewer extracellular matrix proteins accumulated
292 in the kidneys of the *Brg1*^{MCKO} mice than in the WT mice as evidenced by picrosirius red
293 staining and Masson's staining (Fig.3D). Measurements of pro-fibrogenic/myofibroblast
294 markers by qPCR (Fig.3E) and Western blotting (Fig.3F) and quantification of

295 hydroxyproline levels (Fig.3G) provided additional support for the notion that Brg1 might
296 contribute to renal fibrosis by maintaining the myofibroblast phenotype. Additionally, this
297 notion was further authenticated in the kidney ischemia-reperfusion model (Fig.S5).

298

299 ***Brg1 regulates fibroblast transcriptome during FMyT***

300 In order to identify transcription target(s) for Brg1 during FMyT, RNA-seq was
301 performed to compare the transcriptome of wild type (Ad-GFP) and Brg1-null (Ad-Cre) renal
302 fibroblasts (Fig.4A). Brg1 deficiency resulted in far more genes being down-regulated (909)
303 than being up-regulated (123) using 1.5x fold change as a cut-off consistent with the notion
304 that Brg1 primarily acts as an activator of transcription (Fig.4B). GO and KEGG analyses
305 indicated that most genes affected by Brg1 deficiency were involved in the regulation of cell
306 proliferation, migration, contraction, and ECM production (Fig.4C). Prune2 (also known as
307 Bmcc1) was among the top 5 genes most significantly down-regulated by Brg1 deletion
308 (Fig.4D). Because Prune2 has previously been detected as one of top up-regulated genes by
309 both TGF- β and CTGF in renal fibroblasts(39), we focused on Prune2 for the remainder of
310 the study.

311 Prune2 expression was up-regulated during FMyT *in vivo* in two different models of
312 renal fibrosis (Fig.S6A, S6B). Prune2 expression was also inducible with TGF- β treatment
313 (Fig.S6C). Brg1 deletion dampened (Fig.4E, 4F) whereas Brg1 over-expression enhanced
314 (Fig.S7) Prune2 induction by TGF- β . Further, Prune2 levels were found to be lower in the
315 kidneys of the Brg1^{MCKO} mice than in the WT mice (Fig.S8). A series of E2F1 sites were
316 identified within the Prune2 promoter region (Fig.4G). Reporter assay showed that TGF- β
317 treatment augmented the activity of the Prune2 promoter, which was further enhanced by
318 Brg1 over-expression. However, when progressive deletions went beyond -150bp relative to
319 the transcription start site (TSS), the Prune2 promoter failed to respond to either TGF- β
320 treatment or Brg1 over-expression (Fig.4G) suggesting that E2F1 motif located between -500
321 and -150 might be responsible for recruiting Brg1 to mediate Prune2 induction in response to
322 TGF- β . E2F1 knockdown indeed abrogated Prune2 induction by TGF- β (Fig.4H, 4I). ChIP
323 assay confirmed that both Brg1 and E2F1 were recruited to the Prune2 promoter and that
324 E2F1 knockdown dampened the occupancies of both E2F1 and Brg1 (Fig.4J).

325

326 ***Prune2 is essential for fibroblast-myofibroblast transition in vitro and renal fibrosis in vivo***

327 In order to determine the role of Prune2 might play in FMyT and renal fibrosis, the
328 following experiments were performed. Prune2 knockdown by two different pairs of siRNAs
329 down-regulated the expression of myofibroblast marker genes (Fig.5A), decreased
330 proliferation (Fig.5B), diminished migration (Fig.5C), and attenuated contraction (Fig.5D) of
331 renal fibroblasts exposed to TGF- β . It was observed that Prune2 silencing did not appear to
332 influence TGF- β signaling as measured by SMAD3 phosphorylation (Fig.S9). Next, shRNA
333 targeting Prune2 (shPrune2) was placed downstream of the *Postn* promoter and packaged into
334 AAV-Anc80. C57/B6 mice were injected with AAV carrying shPrune2 or a control vector
335 (shC) followed by the UUO procedure to induce renal fibrosis (Fig.5E). QPCR measurements
336 confirmed that Prune2 expression was specifically down-regulated in the fibroblasts, but not
337 in tubular epithelial cells or podocytes, by AAV-shPrune2 in the kidneys (Fig.S10).
338 Myofibroblast-specific Prune2 knockdown in mice did not appreciably alter renal filtration

339 function as evidenced by comparable levels of plasma BUN (Fig.5F) and plasma creatinine
340 (Fig.5G). However, renal fibrosis was markedly ameliorated in the shPrune2 mice compared
341 to the shC mice as evidenced by histological staining (Fig.5H), by qPCR (Fig.5I)
342 measurements of myofibroblast marker genes, and by hydroxyproline quantification (Fig.5J).
343 Likewise, Prune2 deletion in the myofibroblasts mollified renal fibrosis in an alternative
344 model induced by ischemia-reperfusion (Fig.S11).

345

346 ***Prune2 regulates FMyT through activating PU.1***

347 RNA-seq was performed to gain a genomewide perspective on the mechanism whereby
348 Prune2 might contribute to FMyT. Prune2 knockdown significantly altered the transcriptome
349 of renal fibroblasts (Fig.6A). In all, 602 genes met the threshold (1.5x fold change and
350 $p < 0.05$), of which 443 were down-regulated and 159 were up-regulated (Fig.6B). GO analysis
351 indicated that Prune2 influenced the expression of genes that might regulate cell proliferation,
352 migration and ECM production (Fig.6C). Among the top ranked genes altered by Prune2
353 knockdown there were prototypical myofibroblast marker genes (e.g., *Acta2*, *Postn*, and
354 *Col8a1*), ECM remodeling enzymes (e.g., *Mmp9*, *Mmp12*, *Mmp13*, and *Ctss*), redox enzymes
355 (e.g., *Ncf1*, *Nqo1*, and *Gsta3*), and some of the well-established antifibrotic transcription
356 factors (e.g., *Irf9*, *Stat1*, and *Stat2*) (Fig.6D). Of interest, HOMER analysis revealed that
357 Prune2 deficiency most significantly dampened the activity of PU.1 (Fig.6E), a transcription
358 factor recently identified as the master regulator of tissue fibrosis(40).

359 PU.1 (encoded by *Spil*) expression levels were up-regulated by TGF- β treatment but
360 remain unaffected by Prune2 knockdown (Fig.6F). However, PU.1 phosphorylation was
361 sensitive to both TGF- β treatment and Prune2 knockdown (Fig.6G). Consistently, PU.1
362 binding to the *Acta2* promoter and the *Colla1* promoter was dampened by Prune2 knockdown
363 (Fig.6H). Phosphorylation of PU.1 by casein kinase 2 (CK2) at serine 148 has been shown to
364 be required for its transcriptional activity(41-43). In order to further validate the model in
365 which Prune2 might contribute to FMyT by modulating PU.1 phosphorylation, renal
366 fibroblasts depleted of Prune2 were reconstituted with a mutant PU.1 in which S148 was
367 replaced by an aspartic acid (D). As shown in Fig.6I and 6J, reconstitution of the PU.1
368 phospho-mimetic rescued the deficiency of FMyT caused by Prune2 knockdown.

369

370 ***Pharmaceutical inhibition of Brg1 attenuates renal fibrosis in mice***

371 We finally explored the translational potential of our finding by testing the efficacy of a
372 small-molecule Brg1 inhibitor PFI-3 in established models of renal fibrosis (Fig.7A).
373 Administration of PFI-3 following the UUO procedure significantly improved renal function
374 as evidenced by reduced levels of plasma BUN (Fig.7B) and plasma creatinine (Fig.7C). In
375 addition, fibrogenesis in the kidneys was significantly suppressed by PFI-3 as measured by
376 picrosirius red/Masson's staining of ECM proteins (Fig.7D), by expression levels of
377 myofibroblast marker genes (Fig.7E, 7F), and by quantification of collagenous tissues
378 (Fig.7G). The efficacy of PFI-3 as a potential antifibrotic reagent was further authenticated in
379 an additional model of renal fibrosis (Fig.S12). Consistently, PFI-3 treatment antagonized
380 TGF- β induced FMyT in cultured renal fibroblasts (Fig.S13). RNA-seq analysis confirmed
381 that Brg1 inhibition by PFI-3 led to changes in genes involved in FMyT (Fig.S14).

382

383 **Discussion**

384 Renal fibroblasts represent the major cell lineage from which myofibroblasts in the
385 fibrotic kidneys are derived through a process known as fibroblast-myofibroblast transition
386 (FMyT). Here we detail a novel pathway in which the chromatin remodeling protein Brg1
387 regulates renal fibrosis by promoting FMyT. Brg1 has a relatively well-documented role in
388 the regulation of contractile proteins in smooth muscle cells. For instance, Zhou *et al* have
389 previously reported that forced expression of myocardin/myocardin-related transcription
390 factors, master regulators of the contractile phenotype, in non-muscle cells leads to marked
391 up-regulation of contractile proteins (e.g., α -SMA), to which process Brg1 serves as the
392 rate-limiting factor(44). On the other hand, no study has systemically examined the role of
393 Brg1 in renal fibroblasts up to this point although Brg1 has shown to interact with multiple
394 transcription factors/co-factors involved in ECM production including SMAD(15), SRF(45),
395 β -catenin/TCF4(46), and TEAD(47). We show here that deletion of Brg1 in either fibroblasts
396 or myofibroblasts attenuates renal fibrosis in mice without significantly altering renal function.
397 This is conspicuously different from previous reports showing that endothelial-specific Brg1
398 deletion assuages both renal fibrosis and renal injury(22, 48). Because the contribution of
399 endothelial cell lineage to the pool of myofibroblasts is considered marginal, these
400 observations collectively suggest that myofibroblasts, at least those originating from
401 fibroblasts, play a dedicated role in producing ECM. Another implicit message taken from
402 these observations is that Brg1 may play lineage-selective and distinguishable roles in the
403 pathogenesis of renal diseases. Since postnatal Brg1 deletion in mice appears to be compatible
404 with normal life activities, it is safe to assume that indiscriminate Brg1 inhibition would
405 engender multiple desirable effects.

406

407 Our data demonstrate that Prune2, a downstream target of Brg1, promotes FMyT and
408 renal fibrosis. This observation is consistent with a previous report by Johnson *et al* that
409 shows a positive correlation between Prune2 expression and treatment with pro-fibrogenic
410 growth factors(39). Our data suggest that Prune2 likely regulates FMyT by enabling
411 CK2-mediated PU.1 phosphorylation and activation. Multiple independent investigations
412 have built a compelling case for the involvement of CK2 in cellular fibrogenic response. For
413 instance, Zhang *et al*(49) and You *et al*(50) have reported that CK2 deletion or inhibition
414 blunted TGF- β induced FMyT *in vitro*. In addition, CK2 knockdown in *db/db* mice appears to
415 ameliorate renal fibrosis(51); whether this is achieved through dampening FMyT is not clear.
416 The exact mechanism whereby Prune2 activates PU.1 remains murky at this point. Prune2
417 contains a BNIP2 and Cdc42GAP homology (BCH) domain that can mediate its interaction
418 with guanine nucleotide exchange factors (GEFs) to modulate Rho activity(52) and Akt
419 activity(53). Rho(54) and Akt(55) can potentially regulate CK2 activity thus providing a link
420 between Prune2 and PU.1. Alternatively, there is also evidence to suggest that Rho(56) and
421 Akt(57) may directly stimulate PU.1 activity. PU.1 inhibitor is available and has been tested
422 in different models of tissue fibrosis(40, 58). It would be of interest to determine whether
423 PU.1 inhibition could alter renal fibrosis *in vivo*. Clearly, more studies are needed to solve
424 these lingering issues.

425

426 We focus on Prune2 as the major Brg1 target that mediates its pro-fibrogenic effects.

427 There are other Brg1 targets that deserve to be closely examined for their roles in renal
428 fibrosis in future studies. For instance, ADAM8 expression has been shown to respond to
429 pro-fibrogenic stimuli in lung fibroblasts(59), cardiac fibroblasts(60), and dermal
430 fibroblasts(61). Consistently, genetic deletion or pharmaceutical inhibition of ADAM8
431 attenuates fibrosis in the lungs(62) and in the skull(63). Kitl (also known as stem cell
432 factor/SCF) is another interesting candidate that likely contributes to Brg1-dependent FMyT.
433 There is evidence to show that Kitl, along with its cognate receptor Kit, promotes FMyT in a
434 paracrine fashion by triggering the differentiation of neighboring fibroblasts; accordingly, Kitl
435 neutralization attenuates bleomycin-induced pulmonary fibrosis in mice(64). Of intrigue,
436 circulating Kitl levels have been identified to be positively correlated with renal interstitial
437 fibrosis but negatively correlated with renal fibrosis in healthy aging adults(65) and in
438 patients with glomerulonephritis(66). Additional investigations are warranted to establish a
439 causal relationship between these molecules and renal fibrosis.
440

441 The most important finding of the present study is that pharmaceutical inhibition of Brg1
442 by PFI-3 is associated with mollification of renal fibrosis as well as improvement of renal
443 function. This observation again argues for lineage-specific roles of Brg1 in regulating renal
444 pathophysiology (e.g., fibroblast/myofibroblast vs endothelial or macrophage). PFI-3 was
445 designed to specifically target proteins with type VIII bromodomain, which include both Brg1
446 and Brm(67). Brm-null mice are viable and larger in size compared to wild type littermates
447 owing to increased cell proliferation(68); little is known regarding the role of Brm in FMyT
448 or tissue fibrosis. Contractile genes, which constitute part of the myofibroblast signature,
449 seem to show varied dependence on Brg1 and Brm(69). More work is needed to delineate the
450 redundancy of Brg1 and Brm in this process. To date, JQ1, the specific inhibitor targeting
451 type V bromodomain protein BRD4, is among the most potent antifibrotic reagents in organ
452 fibrosis(70). Our data reinforce the notion that bromodomain-containing chromatin
453 remodeling proteins are master regulators of fibrogenesis. It is tempting to speculate that
454 dual-targeting these proteins might achieve the holy grail to lower mortalities caused by
455 fibrosis-associated organ failure.
456

457 Despite the advances proffered by the present study, major limitations caution future
458 endeavors that aim to exploit Brg1 as a potential target to treat CKD. First, CKD typically
459 develops in the course of years, if not decades, whereas the present study draws its conclusion
460 primarily from model animals in which renal fibrosis develops in the course of weeks.
461 Without strong evidence from population studies and/or CKD patients, it remains to be seen
462 whether targeting Brg1 would bring out long-term protective/therapeutic effects. Second,
463 although preliminary data suggest that Prune2 might be a novel and attractive target for the
464 intervention of renal fibrosis the effort to validate Prune2 was not as exhaustive as Brg1. For
465 instance, the kidneys are notoriously difficult for viral transduction. Even with the most
466 specific/efficiency AAV targeting system (AAV-Anc80) available(25), the conclusion that
467 fibroblast/myofibroblast-derived Prune2 is critical for renal fibrosis *in vivo* still needs further
468 verification by genetic approaches (e.g., the Cre-LoxP system). Third, our conclusion that
469 Brg1 contributes to renal fibrosis by regulating fibroblast phenotype complements, rather than
470 disputes, its roles in other renal cell lineages. Our previously published data argue that

471 deletion of Brg1 in endothelial cells protects the mice from renal injury and fibrosis(22, 48).

472 Additionally, Gong *et al* have shown that Brg1 contributes renal fibrosis by augmenting
473 senescence and suppressing autophagy in tubular cells(16). Combined with our new finding
474 as summarized here, we propose that Brg1 plays cell lineage-specific roles in the kidney to
475 regulate injury and fibrosis. This model seems to be partially supported by our observation
476 that whereas specific elimination of Brg1 from fibroblasts/myofibroblasts attenuates renal
477 fibrosis without altering renal injury, administration of PFI-3, which targets Brg1
478 non-discriminately, improves both renal injury and fibrosis. Finally, the specificity of PFI-3
479 towards Brg1 has been questioned previously(71). More recently, a novel and more selective
480 Brg1 inhibitor has been designed and tested(72). It would be of high interest to investigate
481 whether this next-gen Brg1-targeting compound, dubbed IV-255, can efficiently inhibit FMyT
482 and renal fibrosis. These limitations should be carefully considered and tackled so that safe
483 and effective translational strategies can be devised based on the proposed model (Fig.7H).

484 **Acknowledgements**

485 This work was supported by grants from the National Natural Science Foundation of China
486 (81970638 and 81670618).

487

488 **Data Sharing Statement**

489 The data that support the findings of this study are available upon reasonable request.
490 RNA-seq data have been deposited in the PubMed database with the accession number
491 GSE218814, GSE218807, and GSE246869.

492

493 **Conflicts of interests**

494 None declared.

495

496 **Author contributions**

497 T Zhang, X Wu, and M Kong conceived the project; all authors designed experiments; X Wu,
498 Y Luo, A Kang, J Ni, and M Kong performed experiments, collected data, and analyzed data;
499 all authors wrote and edited the manuscript; T Zhang and X Wu secured funding; M Kong
500 provided supervision and coordination.

501

502

503 **References**

- 504 1. 2020. Global, regional, and national burden of chronic kidney disease, 1990-2017: a
505 systematic analysis for the Global Burden of Disease Study 2017. *Lancet* 395:709-733.
- 506 2. Chawla, L.S., and Kimmel, P.L. 2012. Acute kidney injury and chronic kidney disease: an
507 integrated clinical syndrome. *Kidney Int* 82:516-524.
- 508 3. Johansen, K.L., Chertow, G.M., Foley, R.N., Gilbertson, D.T., Herzog, C.A., Ishani, A., Israni,
509 A.K., Ku, E., Kurella Tamura, M., Li, S., et al. 2021. US Renal Data System 2020 Annual
510 Data Report: Epidemiology of Kidney Disease in the United States. *Am J Kidney Dis*
511 77:A7-A8.
- 512 4. Zhou, D., and Liu, Y. 2016. Renal fibrosis in 2015: Understanding the mechanisms of kidney
513 fibrosis. *Nat Rev Nephrol* 12:68-70.
- 514 5. Falke, L.L., Gholizadeh, S., Goldschmeding, R., Kok, R.J., and Nguyen, T.Q. 2015. Diverse
515 origins of the myofibroblast-implications for kidney fibrosis. *Nat Rev Nephrol* 11:233-244.
- 516 6. Mack, M., and Yanagita, M. 2015. Origin of myofibroblasts and cellular events triggering
517 fibrosis. *Kidney Int* 87:297-307.
- 518 7. Quaggin, S.E., and Kapus, A. 2011. Scar wars: mapping the fate of
519 epithelial-mesenchymal-myofibroblast transition. *Kidney Int* 80:41-50.
- 520 8. Zeisberg, E.M., Potenta, S.E., Sugimoto, H., Zeisberg, M., and Kalluri, R. 2008. Fibroblasts in
521 kidney fibrosis emerge via endothelial-to-mesenchymal transition. *J Am Soc Nephrol*
522 19:2282-2287.
- 523 9. LeBleu, V.S., Taduri, G., O'Connell, J., Teng, Y., Cooke, V.G., Woda, C., Sugimoto, H., and
524 Kalluri, R. 2013. Origin and function of myofibroblasts in kidney fibrosis. *Nat Med*
525 19:1047-1053.
- 526 10. Kuppe, C., Ibrahim, M.M., Kranz, J., Zhang, X., Ziegler, S., Perales-Paton, J., Jansen, J.,
527 Reimer, K.C., Smith, J.R., Dobie, R., et al. 2021. Decoding myofibroblast origins in human
528 kidney fibrosis. *Nature* 589:281-286.
- 529 11. Edeling, M., Ragi, G., Huang, S., Pavenstadt, H., and Susztak, K. 2016. Developmental
530 signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. *Nat Rev Nephrol*
531 12:426-439.
- 532 12. Wu, H., Kirita, Y., Donnelly, E.L., and Humphreys, B.D. 2019. Advantages of Single-Nucleus
533 over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States
534 Revealed in Fibrosis. *J Am Soc Nephrol* 30:23-32.
- 535 13. Helin, K., and Dhanak, D. 2013. Chromatin proteins and modifications as drug targets. *Nature*
536 502:480-488.
- 537 14. Hargreaves, D.C., and Crabtree, G.R. 2011. ATP-dependent chromatin remodeling: genetics,
538 genomics and mechanisms. *Cell Res* 21:396-420.
- 539 15. Ross, S., Cheung, E., Petrakis, T.G., Howell, M., Kraus, W.L., and Hill, C.S. 2006. Smads
540 orchestrate specific histone modifications and chromatin remodeling to activate transcription.
541 *EMBO J* 25:4490-4502.
- 542 16. Gong, W., Luo, C., Peng, F., Xiao, J., Zeng, Y., Yin, B., Chen, X., Li, S., He, X., Liu, Y., et al.
543 2021. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through
544 Wnt/beta-catenin/autophagy axis. *Clin Sci (Lond)* 135:1873-1895.
- 545 17. Lake, B.B., Menon, R., Winfree, S., Hu, Q., Melo Ferreira, R., Kalhor, K., Barwinska, D.,
546 Otto, E.A., Ferkowicz, M., Diep, D., et al. 2023. An atlas of healthy and injured cell states and

547 niches in the human kidney. *Nature* 619:585-594.

548 18. O'Sullivan, E.D., Mylonas, K.J., Bell, R., Carvalho, C., Baird, D.P., Cairns, C., Gallagher, K.M., Campbell, R., Docherty, M., Laird, A., et al. 2022. Single-cell analysis of senescent epithelia reveals targetable mechanisms promoting fibrosis. *JCI Insight* 7.

549 19. Dong, W., Zhu, Y., Zhang, Y., Fan, Z., Zhang, Z., Fan, X., and Xu, Y. 2021. BRG1 Links TLR4 Trans-Activation to LPS-Induced SREBP1a Expression and Liver Injury. *Front Cell Dev Biol* 9:617073.

550 20. Khalil, H., Kanisicak, O., Prasad, V., Correll, R.N., Fu, X., Schips, T., Vagozzi, R.J., Liu, R., Huynh, T., Lee, S.J., et al. 2017. Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. *J Clin Invest* 127:3770-3783.

551 21. Kanisicak, O., Khalil, H., Ivey, M.J., Karch, J., Maliken, B.D., Correll, R.N., Brody, M.J., SC, J.L., Aronow, B.J., Tallquist, M.D., et al. 2016. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. *Nat Commun* 7:12260.

552 22. Liu, L., Mao, L., Wu, X., Wu, T., Liu, W., Yang, Y., Zhang, T., and Xu, Y. 2019. BRG1 regulates endothelial-derived IL-33 to promote ischemia-reperfusion induced renal injury and fibrosis in mice. *Biochim Biophys Acta Mol Basis Dis* 1865:2551-2561.

553 23. Liu, L., Wu, X., Xu, H., Yu, L., Zhang, X., Li, L., Jin, J., Zhang, T., and Xu, Y. 2018. Myocardin-related transcription factor A (MRTF-A) contributes to acute kidney injury by regulating macrophage ROS production. *Biochim Biophys Acta Mol Basis Dis* 1864:3109-3121.

554 24. Landegger, L.D., Pan, B., Askew, C., Wassmer, S.J., Gluck, S.D., Galvin, A., Taylor, R., Forge, A., Stankovic, K.M., Holt, J.R., et al. 2017. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. *Nat Biotechnol* 35:280-284.

555 25. Ikeda, Y., Sun, Z., Ru, X., Vandenbergh, L.H., and Humphreys, B.D. 2018. Efficient Gene Transfer to Kidney Mesenchymal Cells Using a Synthetic Adeno-Associated Viral Vector. *J Am Soc Nephrol* 29:2287-2297.

556 26. Piras, B.A., Tian, Y., Xu, Y., Thomas, N.A., O'Connor, D.M., and French, B.A. 2016. Systemic injection of AAV9 carrying a periostin promoter targets gene expression to a myofibroblast-like lineage in mouse hearts after reperfused myocardial infarction. *Gene Ther* 23:469-478.

557 27. Nakai, T., Iwamura, Y., and Suzuki, N. 2021. Efficient isolation of interstitial fibroblasts directly from mouse kidneys or indirectly after ex vivo expansion. *STAR Protoc* 2:100826.

558 28. Xu, H., Wu, X., Qin, H., Tian, W., Chen, J., Sun, L., Fang, M., and Xu, Y. 2015. Myocardin-Related Transcription Factor A Epigenetically Regulates Renal Fibrosis in Diabetic Nephropathy. *J Am Soc Nephrol* 26:1648-1660.

559 29. Hatje, F.A., Wedekind, U., Sachs, W., Loreth, D., Reichelt, J., Demir, F., Kosub, C., Heintz, L., Tomas, N.M., Huber, T.B., et al. 2021. Tripartite Separation of Glomerular Cell Types and Proteomes from Reporter-Free Mice. *J Am Soc Nephrol* 32:2175-2193.

560 30. Lv, F., Shao, T., Xue, Y., Miao, X., Guo, Y., Wang, Y., and Xu, Y. 2021. Dual regulation of tank binding kinase 1 (TBK1) by BRG1 in hepatocytes contributes to ROS production. *Front Cell Dev Biol* 9:745985.

561 31. Kong, M., Dong, W., Zhu, Y., Fan, Z., Miao, X., Guo, Y., Li, C., Duan, Y., Lu, Y., Li, Z., et al. 2021. Redox-sensitive activation of CCL7 by BRG1 in hepatocytes during liver injury. *Redox Biol* 46:102079.

591 32. Kong, M., Dong, W., Xu, H., Fan, Z., Miao, X., Guo, Y., Li, C., Ye, Q., Wang, Y., and Xu, Y.
592 2021. Choline Kinase Alpha Is a Novel Transcriptional Target of the Brg1 in Hepatocyte:
593 Implication in Liver Regeneration. *Front Cell Dev Biol* 9:705302.

594 33. Fan, Z., Kong, M., Miao, X., Guo, Y., Ren, H., Wang, J., Wang, S., Tang, N., Shang, L., Zhu,
595 Z., et al. 2021. An E2F5-TFDP1-BRG1 complex mediates transcriptional activation of MYCN
596 in hepatocytes. *Front Cell Dev Biol* 9:742319.

597 34. Liu, L., Zhao, Q., Kong, M., Mao, L., Yang, Y., and Xu, Y. 2022. Myocardin-related
598 transcription factor A regulates integrin beta 2 transcription to promote macrophage
599 infiltration and cardiac hypertrophy in mice. *Cardiovasc Res* 118:844-858.

600 35. Dong, W., Kong, M., Liu, H., Xue, Y., Li, Z., Wang, Y., and Xu, Y. 2022. Myocardin-related
601 transcription factor A drives ROS-fueled expansion of hepatic stellate cells by regulating
602 p38-MAPK signalling. *Clin Transl Med* 12:e688.

603 36. Shao, T., Xue, Y., and Fang, M. 2021. Epigenetic Repression of Chloride Channel Accessory 2
604 Transcription in Cardiac Fibroblast: Implication in Cardiac Fibrosis. *Front Cell Dev Biol*
605 9:771466.

606 37. Wu, X., Miao, X., Guo, Y., Shao, T., Tang, S., Lin, Y., Xu, Y., Li, N., and Zhang, T. 2023. Slug
607 enables redox-sensitive trans-activation of LRP1 by COUP-TFII: Implication in antifibrotic
608 intervention in the kidneys. *Life Sci*:121412.

609 38. Wu, X., Dong, W., Kong, M., Ren, H., Wang, J., Shang, L., Zhu, Z., Zhu, W., and Shi, X. 2021.
610 Down-regulation of CXXC5 de-represses MYCL1 to promote hepatic stellate cell activation.
611 *Front Cell Dev Biol* 9:680344.

612 39. Johnson, B.G., Ren, S., Karaca, G., Gomez, I.G., Fligny, C., Smith, B., Ergun, A., Locke, G.,
613 Gao, B., Hayes, S., et al. 2017. Connective Tissue Growth Factor Domain 4 Amplifies Fibrotic
614 Kidney Disease through Activation of LDL Receptor-Related Protein 6. *J Am Soc Nephrol*
615 28:1769-1782.

616 40. Wohlfahrt, T., Rauber, S., Uebe, S., Luber, M., Soare, A., Ekici, A., Weber, S., Matei, A.E.,
617 Chen, C.W., Maier, C., et al. 2019. PU.1 controls fibroblast polarization and tissue fibrosis.
618 *Nature* 566:344-349.

619 41. Lodie, T.A., Reiner, M., Coniglio, S., Viglianti, G., and Fenton, M.J. 1998. Both PU.1 and
620 nuclear factor-kappa B mediate lipopolysaccharide- induced HIV-1 long terminal repeat
621 transcription in macrophages. *J Immunol* 161:268-276.

622 42. Pongubala, J.M., Van Beveren, C., Nagulapalli, S., Klemsz, M.J., McKercher, S.R., Maki,
623 R.A., and Atchison, M.L. 1993. Effect of PU.1 phosphorylation on interaction with NF-EM5
624 and transcriptional activation. *Science* 259:1622-1625.

625 43. Liang, M.D., Zhang, Y., McDevit, D., Marecki, S., and Nikolajczyk, B.S. 2006. The
626 interleukin-1beta gene is transcribed from a poised promoter architecture in monocytes. *J Biol
627 Chem* 281:9227-9237.

628 44. Wang, X., Hu, G., Gao, X., Wang, Y., Zhang, W., Harmon, E.Y., Zhi, X., Xu, Z., Lennartz,
629 M.R., Barroso, M., et al. 2012. The induction of yes-associated protein expression after
630 arterial injury is crucial for smooth muscle phenotypic modulation and neointima formation.
631 *Arterioscler Thromb Vasc Biol* 32:2662-2669.

632 45. Zhang, M., Fang, H., Zhou, J., and Herring, B.P. 2007. A novel role of Brg1 in the regulation
633 of SRF/MRTFA-dependent smooth muscle-specific gene expression. *J Biol Chem*
634 282:25708-25716.

635 46. Sun, L., Chen, B., Wu, J., Jiang, C., Fan, Z., Feng, Y., and Xu, Y. 2020. Epigenetic regulation
636 of a disintegrin and metalloproteinase (ADAM) promotes colorectal cancer cell migration and
637 invasion. *Front Cell Dev Biol*:581692.

638 47. Bi-Lin, K.W., Seshachalam, P.V., Tuoc, T., Stoykova, A., Ghosh, S., and Singh, M.K. 2021.
639 Critical role of the BAF chromatin remodeling complex during murine neural crest
640 development. *PLoS Genet* 17:e1009446.

641 48. Liu, L., Mao, L., Xu, Y., and Wu, X. 2019. Endothelial-specific deletion of Brahma-related
642 gene 1 (BRG1) assuages unilateral ureteral obstruction induced renal injury in mice. *Biochem
643 Biophys Res Commun* 517:244-252.

644 49. Zhang, Y., Dees, C., Beyer, C., Lin, N.Y., Distler, A., Zerr, P., Palumbo, K., Susok, L., Kreuter,
645 A., Distler, O., et al. 2015. Inhibition of casein kinase II reduces TGFbeta induced fibroblast
646 activation and ameliorates experimental fibrosis. *Ann Rheum Dis* 74:936-943.

647 50. You, E., Jeong, J., Lee, J., Keum, S., Hwang, Y.E., Choi, J.H., and Rhee, S. 2022. Casein
648 kinase 2 promotes the TGF-beta-induced activation of alpha-tubulin acetyltransferase 1 in
649 fibroblasts cultured on a soft matrix. *BMB Rep* 55:192-197.

650 51. Huang, J., Chen, Z., Li, J., Chen, Q., Gong, W., Liu, P., and Huang, H. 2017. Protein kinase
651 CK2alpha catalytic subunit ameliorates diabetic renal inflammatory fibrosis via NF-kappaB
652 signaling pathway. *Biochem Pharmacol* 132:102-117.

653 52. Soh, U.J., and Low, B.C. 2008. BNIP2 extra long inhibits RhoA and cellular transformation
654 by Lbc RhoGEF via its BCH domain. *J Cell Sci* 121:1739-1749.

655 53. Tatsumi, Y., Takano, R., Islam, M.S., Yokochi, T., Itami, M., Nakamura, Y., and Nakagawara,
656 A. 2015. BMCC1, which is an interacting partner of BCL2, attenuates AKT activity,
657 accompanied by apoptosis. *Cell Death Dis* 6:e1607.

658 54. Herrmann, D., Straubinger, M., and Hashemolhosseini, S. 2015. Protein kinase CK2 interacts
659 at the neuromuscular synapse with Rapsyn, Rac1, 14-3-3gamma, and Dok-7 proteins and
660 phosphorylates the latter two. *J Biol Chem* 290:22370-22384.

661 55. Ruzzene, M., Bertacchini, J., Toker, A., and Marmiroli, S. 2017. Cross-talk between the CK2
662 and AKT signaling pathways in cancer. *Adv Biol Regul* 64:1-8.

663 56. Yang, L., Wang, L., Kalfa, T.A., Cancelas, J.A., Shang, X., Pushkaran, S., Mo, J., Williams,
664 D.A., and Zheng, Y. 2007. Cdc42 critically regulates the balance between myelopoiesis and
665 erythropoiesis. *Blood* 110:3853-3861.

666 57. Rieske, P., and Pongubala, J.M. 2001. AKT induces transcriptional activity of PU.1 through
667 phosphorylation-mediated modifications within its transactivation domain. *J Biol Chem*
668 276:8460-8468.

669 58. Hu, J., Zhang, J.J., Li, L., Wang, S.L., Yang, H.T., Fan, X.W., Zhang, L.M., Hu, G.L., Fu, H.X.,
670 Song, W.F., et al. 2021. PU.1 inhibition attenuates atrial fibrosis and atrial fibrillation
671 vulnerability induced by angiotensin-II by reducing TGF-beta1/Smads pathway activation. *J
672 Cell Mol Med* 25:6746-6759.

673 59. da Silva Antunes, R., Mehta, A.K., Madge, L., Tocker, J., and Croft, M. 2018. TNFSF14
674 (LIGHT) Exhibits Inflammatory Activities in Lung Fibroblasts Complementary to IL-13 and
675 TGF-beta. *Front Immunol* 9:576.

676 60. Yao, L., Shao, W., Chen, Y., Wang, S., and Huang, D. 2022. Suppression of ADAM8
677 attenuates angiotensin II-induced cardiac fibrosis and endothelial-mesenchymal transition via
678 inhibiting TGF-beta1/Smad2/Smad3 pathways. *Exp Anim* 71:90-99.

679 61. Wolk, K., Brembach, F.C., Simaité, D., Bartnik, E., Cucinotta, S., Pokrywka, A., Irmer, M.L.,
680 Triebus, J., Witte-Handel, E., Salinas, G., et al. 2021. Activity and components of the
681 granulocyte colony-stimulating factor pathway in hidradenitis suppurativa. *Br J Dermatol*
682 185:164-176.

683 62. Chen, J., Deng, L., Dreymuller, D., Jiang, X., Long, J., Duan, Y., Wang, Y., Luo, M., Lin, F.,
684 Mao, L., et al. 2016. A novel peptide ADAM8 inhibitor attenuates bronchial
685 hyperresponsiveness and Th2 cytokine mediated inflammation of murine asthmatic models.
686 *Sci Rep* 6:30451.

687 63. Ishizuka, H., Garcia-Palacios, V., Lu, G., Subler, M.A., Zhang, H., Boykin, C.S., Choi, S.J.,
688 Zhao, L., Patrene, K., Galson, D.L., et al. 2011. ADAM8 enhances osteoclast precursor fusion
689 and osteoclast formation in vitro and in vivo. *J Bone Miner Res* 26:169-181.

690 64. Ding, L., Dolgachev, V., Wu, Z., Liu, T., Nakashima, T., Ullenbruch, M., Lukacs, N.W., Chen,
691 Z., and Phan, S.H. 2013. Essential role of stem cell factor-c-Kit signalling pathway in
692 bleomycin-induced pulmonary fibrosis. *J Pathol* 230:205-214.

693 65. Zhang, W., Jia, L., Liu, D.L.X., Chen, L., Wang, Q., Song, K., Nie, S., Ma, J., Chen, X., Xiu,
694 M., et al. 2019. Serum Stem Cell Factor Level Predicts Decline in Kidney Function in Healthy
695 Aging Adults. *J Nutr Health Aging* 23:813-820.

696 66. El-Koraie, A.F., Baddour, N.M., Adam, A.G., El Kashef, E.H., and El Nahas, A.M. 2001. Role
697 of stem cell factor and mast cells in the progression of chronic glomerulonephritides. *Kidney
698 Int* 60:167-172.

699 67. Gerstenberger, B.S., Trzupek, J.D., Tallant, C., Fedorov, O., Filippakopoulos, P., Brennan, P.E.,
700 Fedele, V., Martin, S., Picaud, S., Rogers, C., et al. 2016. Identification of a Chemical Probe
701 for Family VIII Bromodomains through Optimization of a Fragment Hit. *J Med Chem*
702 59:4800-4811.

703 68. Reyes, J.C., Barra, J., Muchardt, C., Camus, A., Babinet, C., and Yaniv, M. 1998. Altered
704 control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). *EMBO J*
705 17:6979-6991.

706 69. Zhou, J., Zhang, M., Fang, H., El-Mounayri, O., Rodenberg, J.M., Imbalzano, A.N., and
707 Herring, B.P. 2009. The SWI/SNF chromatin remodeling complex regulates
708 myocardin-induced smooth muscle-specific gene expression. *Arterioscler Thromb Vasc Biol*
709 29:921-928.

710 70. Stratton, M.S., Haldar, S.M., and McKinsey, T.A. 2017. BRD4 inhibition for the treatment of
711 pathological organ fibrosis. *F1000Res* 6.

712 71. Blake, J.F., Burkard, M., Chan, J., Chen, H., Chou, K.J., Diaz, D., Dudley, D.A., Gaudino, J.J.,
713 Gould, S.E., Grina, J., et al. 2016. Discovery of
714 (S)-1-(4-Chloro-3-fluorophenyl)-2-hydroxyethyl)-4-(2-((1-methyl-1H-pyrazol-5-yl)amino)
715 pyrimidin-4-yl)pyridin-2(1H)-one (GDC-0994), an Extracellular Signal-Regulated Kinase 1/2
716 (ERK1/2) Inhibitor in Early Clinical Development. *J Med Chem* 59:5650-5660.

717 72. Yang, C., He, Y., Wang, Y., McKinnon, P.J., Shahani, V., Miller, D.D., and Pfeffer, L.M. 2023.
718 Next-generation bromodomain inhibitors of the SWI/SNF complex enhance DNA damage and
719 cell death in glioblastoma. *J Cell Mol Med*.

720

721

722

723 **Figure legends**

724 **Figure 1: Brg1 regulates fibroblast-myofibroblast transition in vitro.** (A, B) Primary renal
725 fibroblasts were treated with TGF- β (2ng/ml) and harvested at indicated time points. Brg1
726 expression was examined by qPCR and Western blotting. (C-G) Primary renal fibroblasts
727 isolated from *Brg1*^{f/f} mice were transduced with Ad-GFP or Ad-Cre followed by treatment
728 with TGF- β . Myofibroblast marker genes were examined by qPCR (C) and Western blotting
729 (D). Proliferation was evaluated by EdU incorporation (E). Migration was evaluated by
730 Boyden chamber assay (F). Collagen contraction assay (G). Scale bar, 50 μ m

731

732 **Figure 2: Fibroblast-specific Brg1 ablation attenuates renal fibrosis in mice.** WT and
733 *Brg1*^{FCKO} mice were subjected to the UUO procedure as described in Methods. (A) Scheme of
734 protocol. (B) Plasma BUN levels. (C) Plasma creatinine levels. (D) Paraffin sections were
735 stained with Picosirius Red and Masson's trichrome. (E, F) Pro-fibrogenic genes were
736 examined by qPCR and Western blotting. (G) Hydroxyproline levels. N=8 mice for each
737 group. Data are expressed as the means \pm SD. *, $p < 0.05$.

738

739 **Figure 3: Myofibroblast-specific Brg1 ablation attenuates renal fibrosis in mice.** WT and
740 *Brg1*^{MCKO} mice were subjected to the UUO procedure as described in Methods. (A) Scheme of
741 protocol. (B) Plasma BUN levels. (C) Plasma creatinine levels. (D) Paraffin sections were
742 stained with Picosirius Red and Masson's trichrome. (E, F) Pro-fibrogenic genes were
743 examined by qPCR and Western blotting. (G) Hydroxyproline levels. N=4-8 mice for each
744 group. Data are expressed as the means \pm SD. *, $p < 0.05$.

745

746 **Figure 4: Brg1 regulates fibroblast transcriptome during FMyT.** (A-D) Primary renal
747 fibroblasts isolated from *Brg1*^{f/f} mice were transduced with Ad-GFP or Ad-Cre followed by
748 treatment with TGF- β . RNA-seq was performed as described in Methods. (A) PCA plot. (B)
749 Volcano plot. (C) GO and KEGG analyses. (D) Heatmap of top differentially expressed genes.
750 (E, F) Primary renal fibroblasts isolated from *Brg1*^{f/f} mice were transduced with Ad-GFP or
751 Ad-Cre followed by treatment with TGF- β . Prune2 expression was examined by qPCR and
752 Western blotting. (G) Prune2 promoter-luciferase constructs were transfected into mouse
753 embryonic fibroblasts (MEFs) with or without Brg1 followed by treatment with TGF- β .
754 Luciferase constructs were normalized by protein concentration and GFP fluorescence. (H-J)
755 Primary murine renal fibroblasts were transfected with indicated siRNAs followed by
756 treatment with TGF- β . Prune2 expression in the kidney tissues was examined by qPCR and
757 Western blotting. ChIP assays were performed with anti-E2F1, anti-Brg1, or IgG.

758

759 **Figure 5: Prune2 is essential for fibroblast-myofibroblast transition in vitro and renal**
760 **fibrosis in vivo.** (A-D) Primary renal fibroblasts were transfected with siRNAs targeting
761 Prune2 or scrambled siRNAs (SCR) followed by treatment with TGF- β . Myofibroblast
762 marker genes were examined by qPCR (A). Proliferation was evaluated by EdU incorporation
763 (B). Migration was evaluated by Boyden chamber assay (C). Collagen contraction assay (D).
764 Scale bar, 50 μ m (E-K) C57/BL6 mice were injected with AAV-Anc80 carrying shRNA
765 targeting Prune2 (shPrune2) or control shRNA (shC) followed by the UUO procedure to
766 induce renal fibrosis. Scheme of protocol (E). Plasma BUN levels (F). Plasma creatinine

767 levels (G). Paraffin sections were stained with Picosirius Red and Masson's trichrome (H).
768 Pro-fibrogenic genes were examined by qPCR (I). Hydroxyproline levels (J). N=6 mice for
769 each group. Data are expressed as the means \pm SD. *, $p < 0.05$.
770

771 **Figure 6: Prune2 regulates FMyT through activating PU.1.** (A-E) RNA-seq was performed
772 as described in Methods. (A) PCA plot. (B) Volcano plot. (C) GO analyses. (D) Heatmap of
773 top differentially expressed genes. (E) HOMER analysis. (F, G) Primary renal fibroblasts
774 were transfected with siRNAs targeting Prune2 or scrambled siRNAs (SCR) followed by
775 treatment with TGF- β . PU.1 expression was examined by qPCR. Whole cell lysates were
776 immunoprecipitated with anti-PU.1.
777

778 **Figure 7: Pharmaceutical inhibition of Brg1 attenuates renal fibrosis in mice.** (A-G)
779 C57/BL6 mice were subjected to the UUO procedure to induce renal fibrosis. PFI-3 was
780 given via peritoneal injection every other day following the surgery. Scheme of protocol (A).
781 Plasma BUN levels (B). Plasma creatinine levels (C). Paraffin sections were stained with
782 Picosirius Red and Masson's trichrome (D). Pro-fibrogenic genes were examined by qPCR
783 (E) and Western blotting (F). Hydroxyproline levels (G). N=5-8 mice for each group. Data are
784 expressed as the means \pm SD. *, $p < 0.05$. (H) A schematic model summarizing the key
785 findings.
786
787

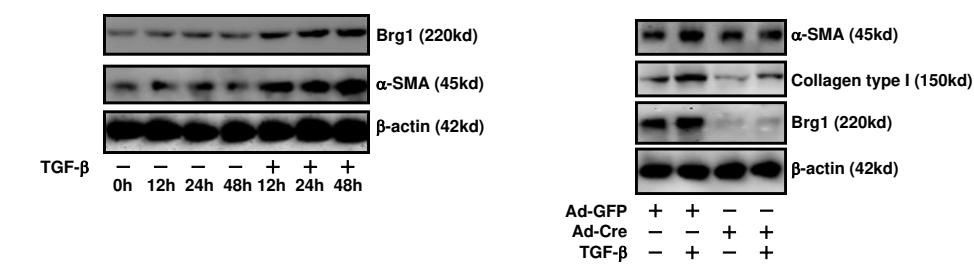
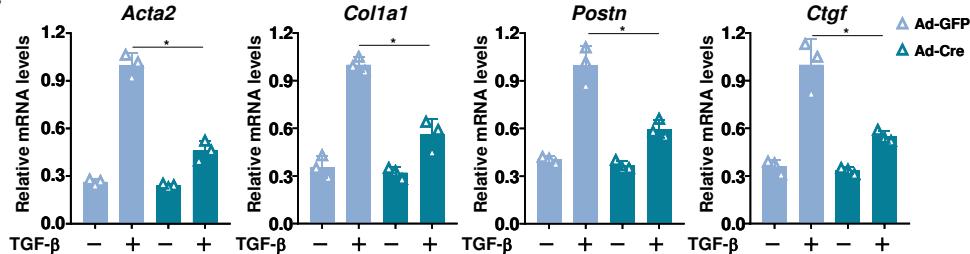
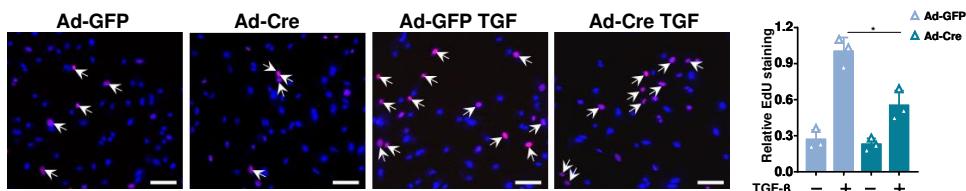
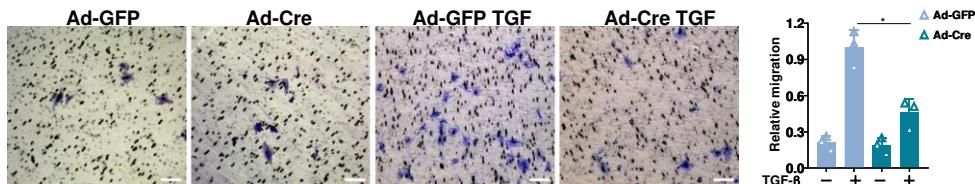
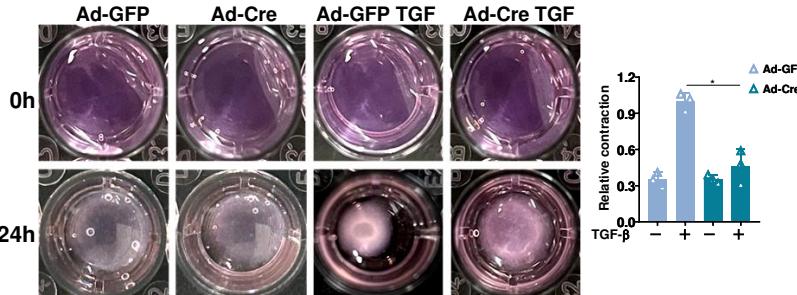

788

Figure 1

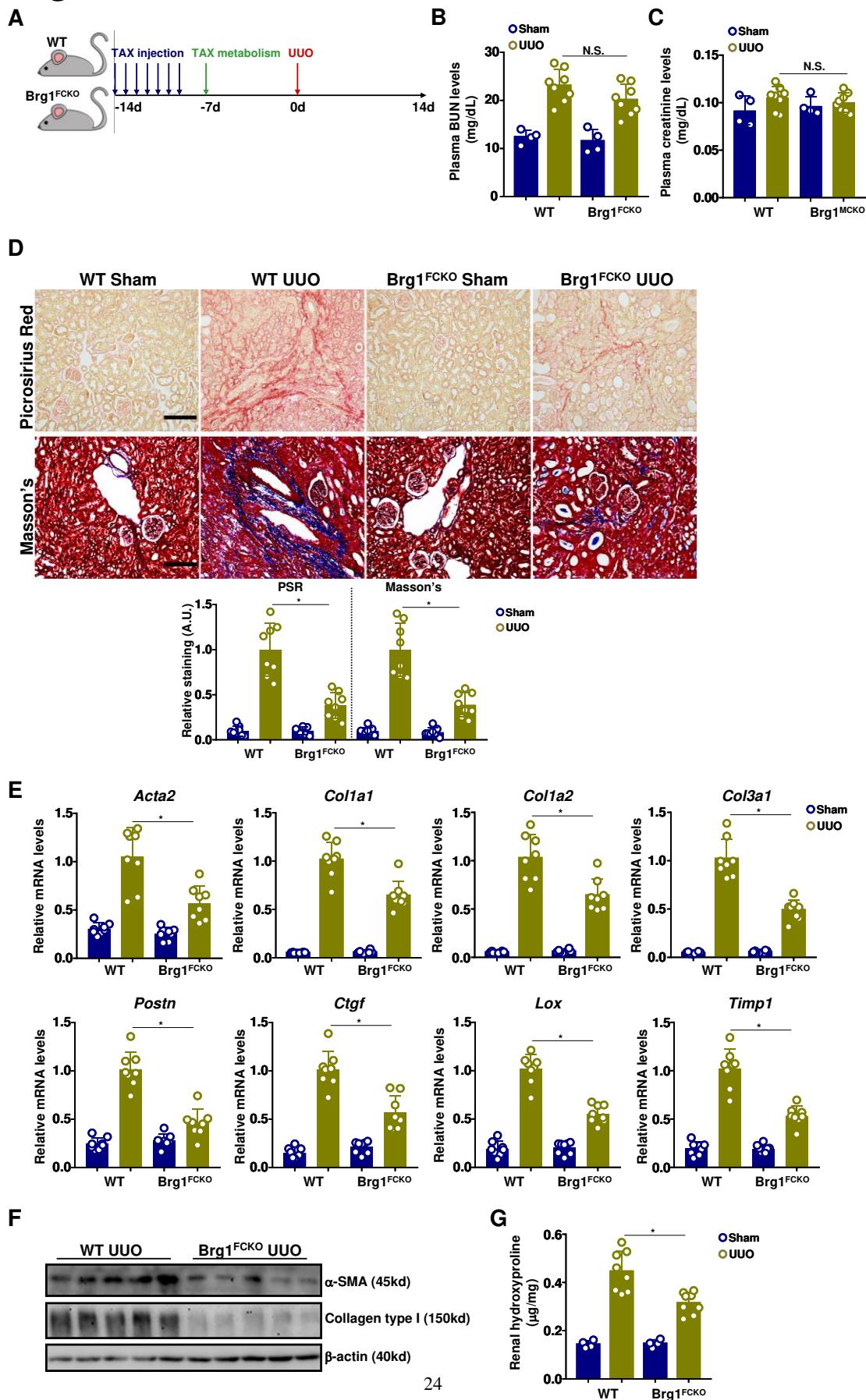

A


D


C

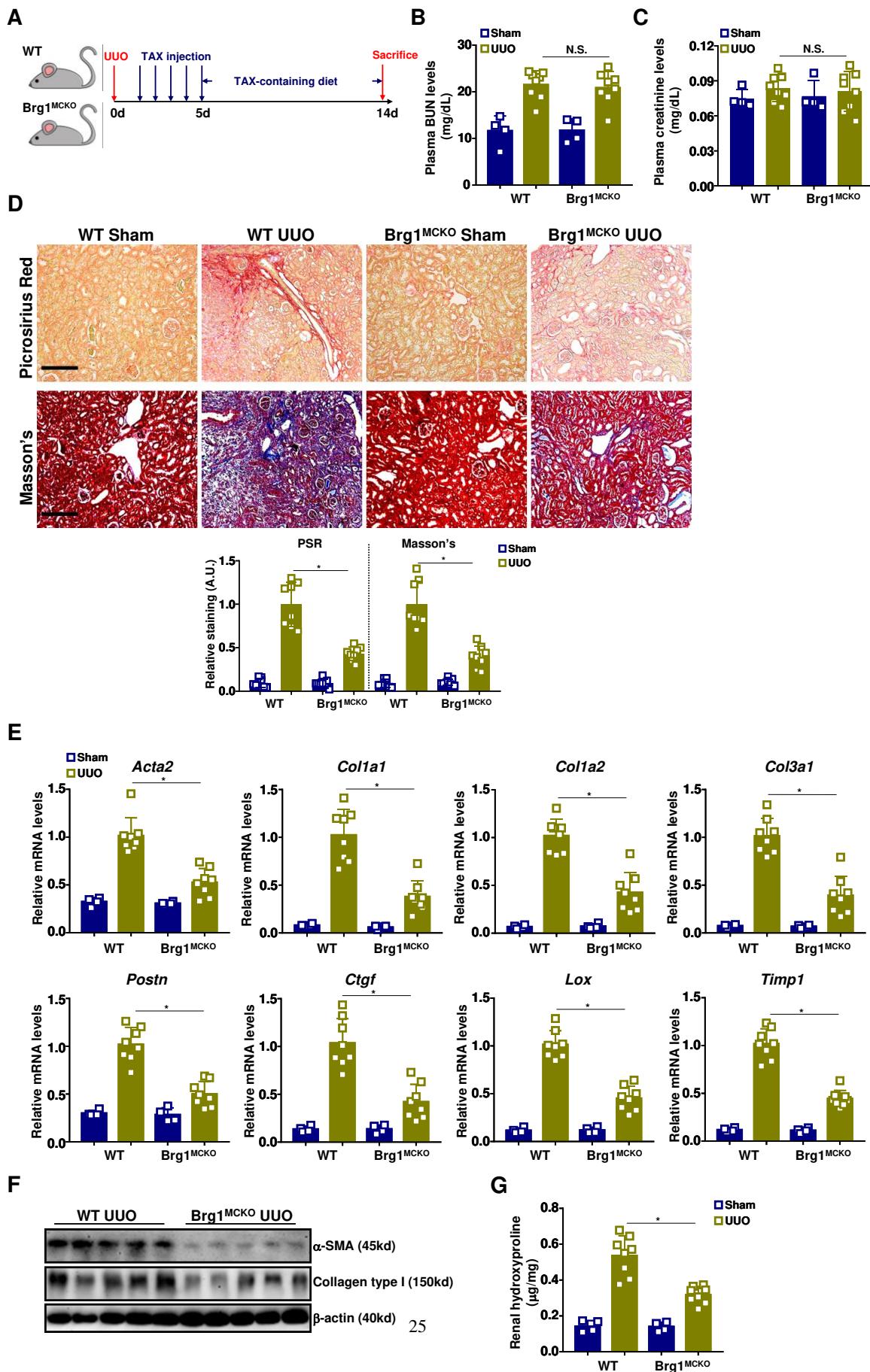

E

F


G

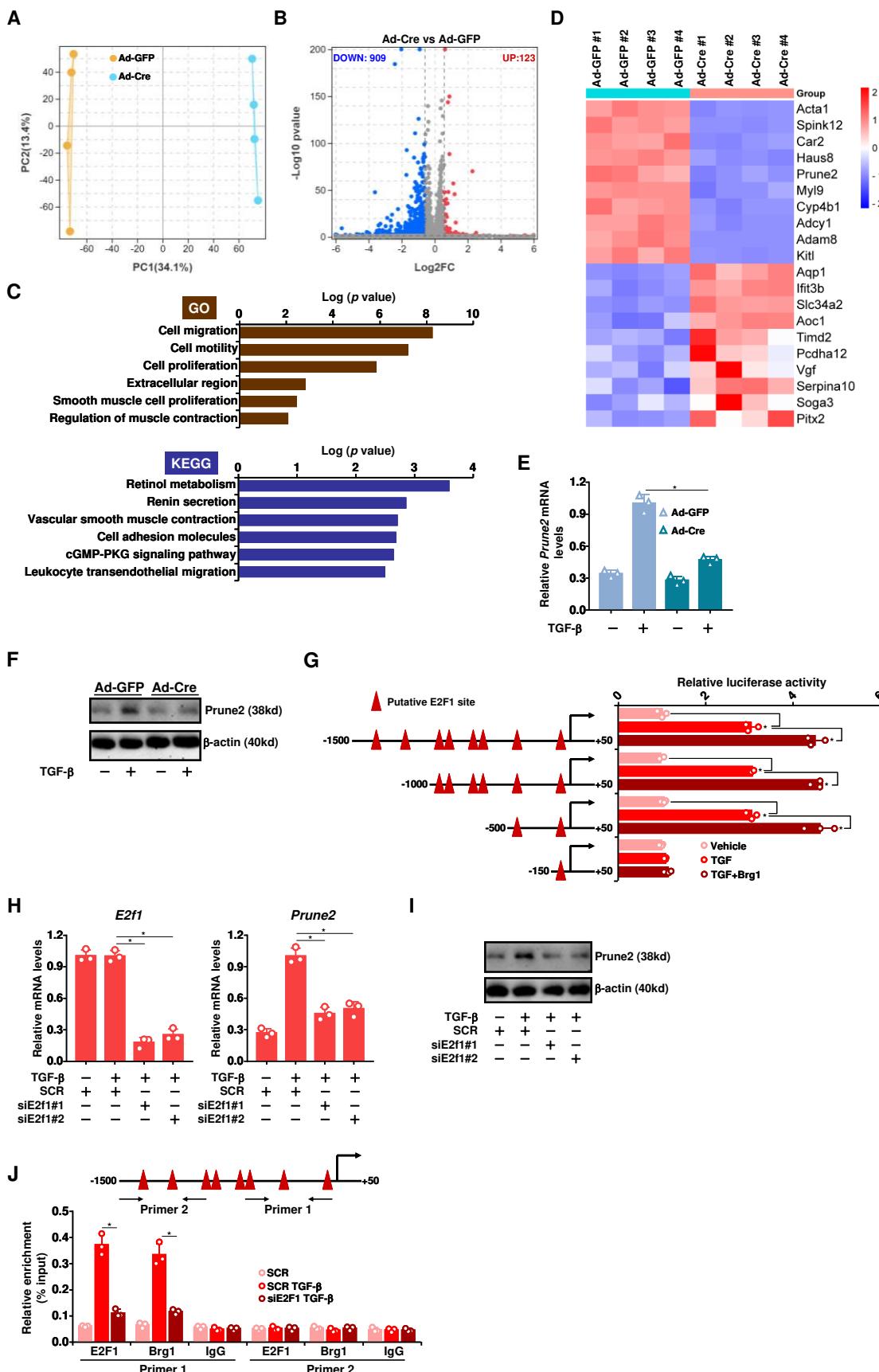
789

790


Figure 2

791

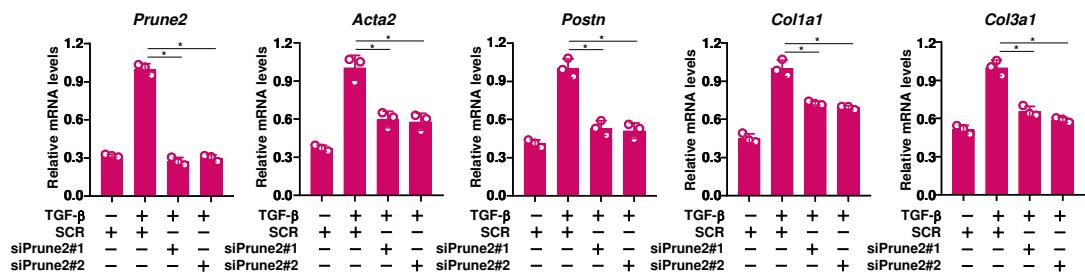
792


Figure 3

793

794

Figure 4



795

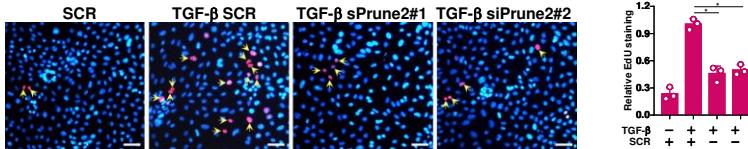
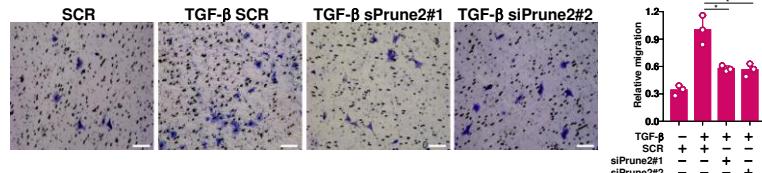
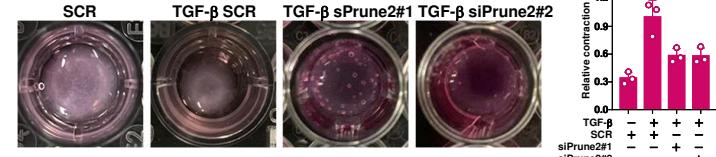
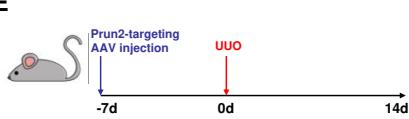
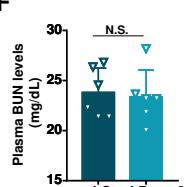

796

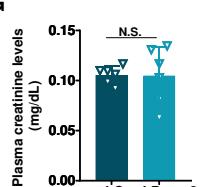
Figure 5

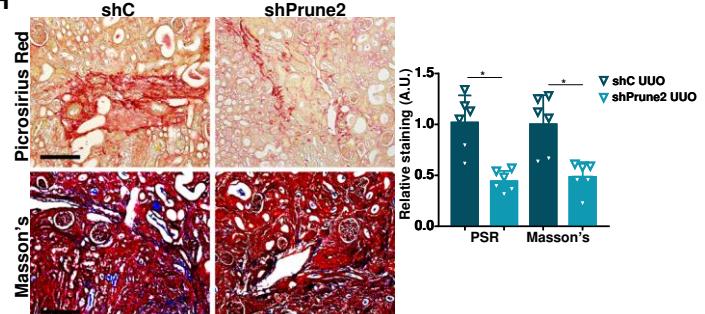

A

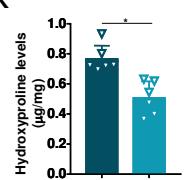

B

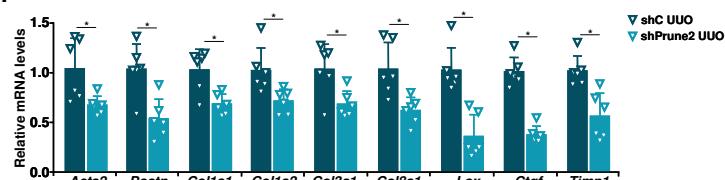

C


D

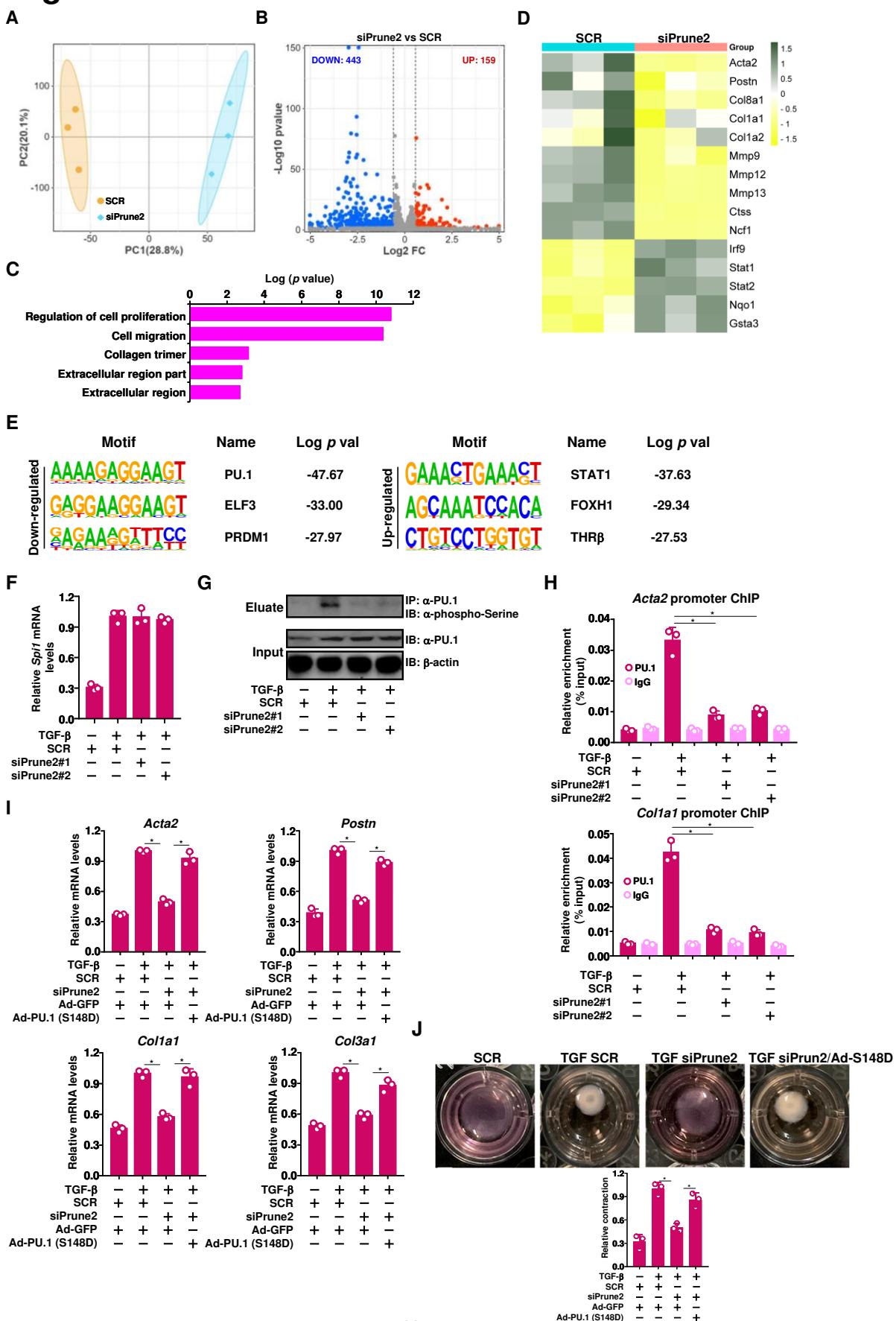

E


F


G

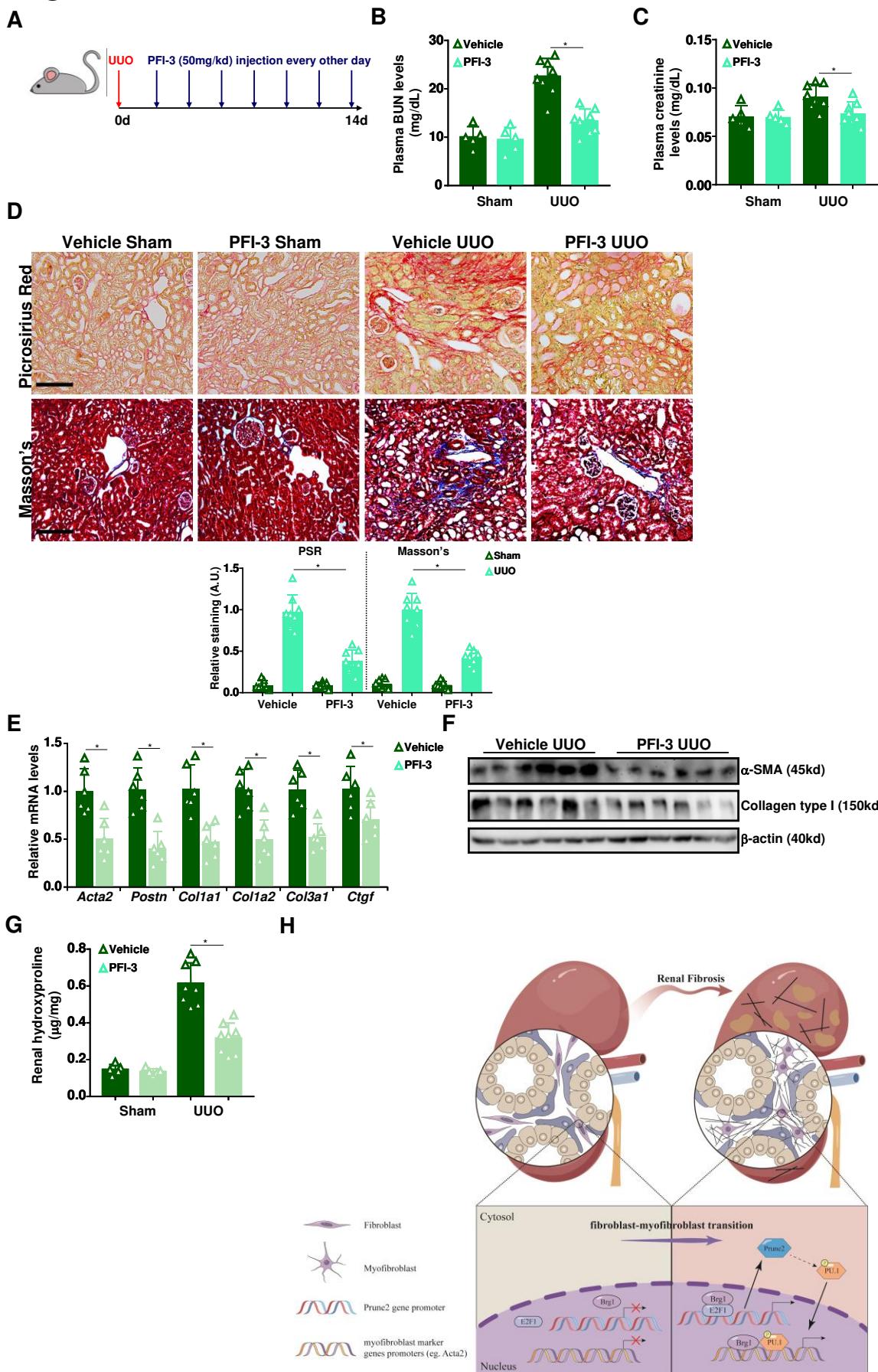

H

K


I

797

798


Figure 6

799

800
801

Figure 7

