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Spatial-omics data allow in-depth analysis of tissue architectures, opening new opportunities for bi-9

ological discovery. In particular, imaging techniques offer single-cell resolutions, providing essential10

insights into cellular organizations and dynamics. Yet, the complexity of such data presents analyti-11

cal challenges and demands substantial computing resources. Moreover, the proliferation of diverse12

spatial-omics technologies, such as Xenium, MERSCOPE, CosMX in spatial-transcriptomics, and13

MACSima and PhenoCycler in multiplex imaging, hinders the generality of existing tools. We intro-14

duce Sopa (https://github.com/gustaveroussy/sopa), a technology-invariant, memory-15

efficient pipeline with a unified visualizer for all image-based spatial omics. Built upon the universal16

SpatialData framework, Sopa optimizes tasks like segmentation, transcript/channel aggregation, an-17

notation, and geometric/spatial analysis. Its output includes user-friendly web reports and visualizer18

files, as well as comprehensive data files for in-depth analysis. Overall, Sopa represents a significant19

step toward unifying spatial data analysis, enabling a more comprehensive understanding of cellular20

interactions and tissue organization in biological systems.21
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1 Introduction22

Spatial-omics data offer opportunities to improve our understanding of cellular interactions within their23

micro-environment and the intricacies of tissue organization1, 2. Recent advancements in imaging technolo-24

gies have expanded these capabilities, enabling the measurement of 1000+ genes through Spatial Transcriptomics3
25

and/or the analysis of 50+ proteins via Multiplex Imaging4. These include Merfish5, ISH11, ISS6, MICS7,26

PhenoCycler8 and IMC9, all of which provide single-cell resolution, previously unachieved with spot-based27

techniques like 10X Visium10 or Nanostring GeoMX12. Therefore, image-based technologies provide a28

higher resolution — up to the subcellular level — which is needed for a detailed exploration of individual29

cells and their gene expression profiles within their spatial context. This level of precision has been essen-30

tial for unravelling tissue architecture and understanding cellular interactions; it marks the beginning of a31

significant leap forward in our comprehension of biological systems8, 13, 14.32

In parallel with these technological advancements, the analysis of image-based spatial omics has33

encountered significant computational challenges and limitations3, 15–18. Most existing methods19–21 are not34

designed to handle large images with millions of cells. Their usage typically demands high-performance35

computational clusters with substantial memory resources, which limits accessibility to spatial omics due36

to cost and hardware constraints. As a result, most companies have developed proprietary tools for their37

own data types, primarily focusing only on segmentation and visualization. Yet, these proprietary tools38

have certain constraints, such as (i) a limit on specific functionalities, (ii) no incorporation of the latest39

state-of-the-art methods, and (iii) a lack of versatility, as they cannot be applied to other technologies. Two40

other limitations related to tool diversity are that there is a learning and adaptation process for each suite41

and that the tools’ specificities lead to variations in the analysis of comparable data types. In a similar42

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.571863doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.571863
http://creativecommons.org/licenses/by/4.0/


fashion, current open-source analysis libraries often rely on (i) already-segmented data22, 23, (ii) specific43

data types24, 25, or (iii) a subset of analysis tasks24, 25, resulting in fragmented approaches and difficulty in44

adapting one approach to a different type of technology. The absence of a unified data representation and45

modular programming interface further complicates the integration of various analysis steps.46

To address these gaps, our work introduces Spatial Omics Pipeline and Analysis, or Sopa, a novel47

computational framework that enhances the accessibility, efficiency, and interpretability of image-based48

spatial-omics data. Sopa is a memory-efficient pipeline that works across all image-based spatial-omics49

technologies and that can display results in a shared visualizer. This includes the most recent Spatial Tran-50

scriptomics technologies (Xenium, MERSCOPE, CosMX) and also the multiplex imaging techniques (e.g.,51

MACSima, PhenoCycler, Hyperion). Sopa’s capabilities include segmentation and multilevel annotation,52

both based on transcripts and/or stainings, as well as spatial statistics and niche geometry analysis. We53

demonstrate Sopa’s performance on four public datasets: two spatial-transcriptomics (MERSCOPE, Xe-54

nium) and two multiplex imaging technologies (PhenoCycler, MACSima), and provide a memory and time55

benchmark over multiple dataset sizes. Additionally, we demonstrate Sopa’s capabilities for geometric56

and spatial analysis on the MERSCOPE dataset by analyzing cell colocalization with regard to cell types57

and niches, showing promise for biological discoveries. All these functionalities are accessible via our58

open-source code, which includes a Command Line Interface (CLI), an Application Programming Inter-59

face (API), and a flexible Snakemake26 workflow, enabling users with various levels of expertise to process60

spatial-omics data seamlessly, from no-code simplicity to full flexibility. The pipeline’s generic nature en-61

sures effortless transitions to other types of spatial-omics data, making it a versatile and powerful tool for62

the scientific community.63
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2 Results64

2.1 Technology-invariant pipeline65

To establish versatile tools, a common strategy involves adopting a shared data structure that seamlessly in-66

tegrates across diverse technologies. SpatialData29 serves as one such comprehensive framework, including67

readers tailored for the most widely used spatial-omics technologies. Building upon this, Sopa converts any68

data into a SpatialData object, on which all of the six following tasks are performed. First, if needed, users69

can interactively select a region of interest, facilitating the exclusion of less relevant or lower-quality areas.70

Next, we generate overlapping patches of images and/or transcripts. Segmentation can than be performed71

for each individual patch, and we currently support Cellpose19 (image-based segmentation) and Baysor20
72

(transcripts-based segmentation). Afterwards, the cell segmentation masks are converted into polygons and73

merged over all patches to remove potential artefacts. Following these first four steps, we average the stain-74

ing intensities and count the transcripts inside each cell (see subsection 3.4 and subsection 3.5), allowing75

further tasks such as annotation. For example, Sopa currently supports Tangram21 for transcript-based anno-76

tation, and a simple Z-score method for staining-based annotation (subsection 3.7). Finally, we implemented77

spatial and geometric analysis tools to fully exploit the spatial nature of the data (subsection 3.8). For con-78

venience, all image-based technologies can be visualized in a shared explorer (see subsection 2.2), and an79

HTML report is provided for pipeline quality checks. The full process described above is summarised in80

Figure 1.81
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Figure 1: Overview of Sopa. a. The pipeline input consists of experimental files of any image-based spatial-omics. It is transformed into a

SpatialData object, on which we can optionally select a region of interest (ROI) interactively. b. Afterwards, the data is split into overlapping

patches, and segmentation is run on each patch (for instance, Cellpose, Baysor, or a custom segmentation tool). Since patches are overlapping,

some cells can be segmented multiple times on different patches. Therefore, these conflicts have to be resolved: two boundaries with a significant

overlap are merged into one cell, while two cells barely touching are kept separate. The next step is aggregation, i.e., counting transcripts and

averaging each channel intensity inside each cell. This allows annotation, either based on transcripts (using Tangram) or on channel intensities. c.

Afterwards, Sopa outputs a user-friendly report and files to be opened in the Xenium Explorer (whatever the input technology). d. All data files are

kept for further analysis in Sopa, such as spatial statistics, or integration with community tools.

2.2 Shared interactive visualizer82

In spatial-omics analysis, effective visualization is crucial but has presented challenges due to the size of83

the datasets. While open-source initiatives like Napari37 are emerging, they currently face limitations in84
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handling large amounts of transcripts. Also, most companies provide technology-specific visualizers, of-85

fering limited user possibilities (see supplementary subsection 9.3). Yet, 10X Genomics has introduced the86

Xenium Explorer, an optimized visualizer whose file format is open, i.e., formats that can be generated for87

various SpatialData types. In Sopa, we have incorporated a converter that transforms the pipeline output into88

the input files compatible with the Xenium Explorer (see subsection 3.6 and Figure 1c). This integration89

ensures access to an efficient and robust visualizer, extending its functionalities to any technology whose90

data is readable by Sopa. Importantly, this adaptation applies to both spatial transcriptomics and multiplex91

imaging data, with the ”Transcripts” panel selectively available for transcriptomics data. The Figure 3b/e92

show views using this Explorer, while supplemental Figure 1/Figure 2 are full-window examples. In addi-93

tion to visualisation, the Xenium Explorer contains an interactive tool to align images from which we can94

export a transformation matrix and use it to align images on the SpatialData object to benefit from all the95

functionalities in Sopa (see supplementary subsection 9.5).96

2.3 Memory efficiency of Sopa97

Managing large datasets is a critical challenge in spatial omics, particularly when dealing with images that98

can reach hundreds of gigabytes and contain hundreds of millions of transcripts in spatial transcriptomics99

data. This necessitates implementing memory optimization techniques to ensure the scalability of the anal-100

ysis. Notably, segmentation algorithms like Cellpose19 and Baysor20 encounter scalability issues with large101

images, as illustrated in Figure 2a/b. To tackle this, these segmentation models are applied to smaller regions102

called patches, drastically decreasing random-access-memory (RAM) usage and time. While this patching103

process generates possible segmentation conflicts, we show in Figure 2c that this does not impact segmenta-104

tion quality, since few conflicts are difficult to resolve, i.e., with a score between 0.2 and 0.8. Additionally,105
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a. b.

d.

f.e.

c.
High accordance

(good resolution: almost 

identical boundaries)

Low accordance

(good resolution: keep 

two distinct cells)

Mid accordance

(bad conflict resolution)

Figure 2: Computational efficiency of Sopa in terms of RAM and time on different dataset sizes. a. Cellpose segmentation comparison: with

and without patching. The RAM usage is given per core. b. Baysor segmentation comparison: with and without patching. The RAM usage is

given per core. c. Violin plots showing the intersection-over-min-area density of segmentation conflicts when using patches (for both Cellpose and

Baysor). When resolving a conflict, the two good cases are either (i) a high concordance between the two cells (which will be merged), or (ii) a low

concordance between them (the two cells are kept). Anything between 0.2 and 0.8 is considered a bad segmentation overlap and could deteriorate

further analyses. d. Channels averaging for each cell: Sopa and standard average inside numpy masks. e. Counting each gene inside each cell: with

Sopa compared to GeoPandas join operation on the whole DataFrame. f. Writing image as a tiff file for the Xenium Explorer: with Sopa compared

to what is recommended by 10X Genomics, i.e. loading the whole image in memory.

the conventional storage of cell boundaries as raster masks demands significant memory for storage and106

processing (see Figure 2d). To address this, we adopt a more efficient approach by storing cell boundaries as107

polygons using Shapely30, which proves highly effective for both on-disk and in-memory storage. This also108

facilitates geometry-related operations, such as cell expansion, area/perimeter computations, and cell-cell109
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intersections. Combined with the image lazy loading offered by SpatialData29 and Xarray34, we implement110

a fast channel averaging on cell boundaries by combining geometry operations and image chunk lazy load-111

ing (see Figure 2d), i.e., deferring loading until needed for processing. Additionally, using memory-efficient112

tools like Dask31, we extend geometric operations of GeoPandas32 on chunks of transcripts, ensuring paral-113

lel processing of as many chunks as possible without exceeding memory limits (see Figure 2e). For image114

conversion to a pyramidal ‘.tif‘, we significantly lower the memory usage compared to what is recommended115

by 10X Genomics (see subsection 3.6) by writing tiles in a lazy manner, which avoids loading the full image116

in memory (see Figure 2f). To highlight Sopa’s memory efficiency, we compared its RAM usage against117

standard methods for all tasks mentioned above across various dataset sizes, summarized in Figure 2. Over-118

all, the latter figure shows significant improvements in terms of RAM and time: depending on the tasks,119

Sopa can require between 10 and 100 times less memory than normal techniques and can be up to 100 times120

faster. Even on the largest image, Sopa can be run with a simple laptop with 16GB of RAM.121

2.4 Wide use cases and customization122

Sopa offers three distinct options, each tailored to different use cases: (i) a Snakemake26 pipeline that enables123

a quick start within minutes, (ii) a CLI that facilitates rapid prototyping of a personalized pipeline, and (iii) an124

API that allows direct usage of Sopa as a Python package1, providing full flexibility and customization. The125

Snakemake pipeline remains consistent across various technologies, with only its configuration differing.126

Users can leverage existing configuration files, selecting one that aligns with their technology, which then127

enables them to execute the pipeline without any code updates. Another advantage of Sopa’s generality128

and scalability is that more advanced users seeking customisable pipelines can use the CLI. Notably, Sopa’s129

1https://github.com/gustaveroussy/sopa

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.571863doi: bioRxiv preprint 

https://github.com/gustaveroussy/sopa
https://doi.org/10.1101/2023.12.22.571863
http://creativecommons.org/licenses/by/4.0/


general design allows for an easy integration of new or custom segmentation methods, rendering them130

memory-efficient and accessible for all image-based spatial-omics applications. Additionally, the Python131

API is available for users interested in incorporating specific parts of Sopa into their personal libraries. This132

API also facilitates integration with other tools of the scverse44 ecosystem, such as Scanpy33 or Squidpy22
133

(see supplemental subsection 9.2). In particular, the integration with Squidpy enables the use of post-134

processing tools for cell-cell interaction and spatially variable gene analysis.135

2.5 High resolution of the tumour microenvironment136

Segmentation plays a crucial role in image-based spatial-omics analysis. Sopa focuses significantly on im-137

proving this step (see subsection 3.3) by enabling the usage of state-of-the-art segmentation models like138

Baysor20 on large datasets. Indeed, as shown on Figure 2a/b, these high-quality segmentation tools use a139

lot of memory, which hinders their usage on large spatial datasets. To evaluate the resolution provided by140

Sopa after segmentation, we annotated major cell types and conducted tests on four datasets: two spatial-141

transcriptomics datasets (MERSCOPE and Xenium) and two multiplex-imaging datasets (PhenoCycler and142

MACSima)2. For the MERSCOPE and Xenium datasets, proprietary segmentations were provided by Viz-143

gen and 10X Genomics, respectively. In comparison to these segmentations, Sopa shows an improved144

cell-type distinction on UMAP28 plots (see Figure 3a/d) by leveraging Baysor. To support these visual ob-145

servations, we used multiple metrics (see subsection 3.2), indicating that Sopa can generate more significant146

population-specific genes, greater intra-cluster distance, and improved cluster separation (see Figure 3c/f).147

The increased resolution in spatial omics data allows for a more in-depth exploration compared to previous148

segmentations (see supplementary Figure 3 for more details).149

2See subsection 3.1 and supplementary subsection 9.7 for more details
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a. b.

c.

10,000 ¿m

d.

f.

10,000 ¿m

e.

Figure 3: Data resolution after Sopa segmentation compared to proprietary segmentation over two spatial-transcriptomics technologies:

MERSCOPE (a-c) and Xenium (d-f). a. UMAPs of cells after Vizgen default segmentation on the MERSCOPE dataset (left) and after Sopa

segmentation on the same dataset (right). b. Visualization of cell types on the MERSCOPE dataset after annotation with Sopa. Colours correspond

to the legend of (a). c. Three cluster separation metrics compare the quality of these two segmentations on the MERSCOPE dataset. d. UMAPs of

cells after 10X Genomics default segmentation on the Xenium dataset (left) and after Sopa segmentation on the same dataset (right). e. Visualization

of cell types on the Xenium dataset after annotation with Sopa. Colours correspond to the legend of (d). f. Three cluster separation metrics compare

the quality of these two segmentations on the Xenium dataset.

Sopa also facilitates the concurrent analysis of both RNA and proteins. To demonstrate this, we150

used the Xenium dataset, which includes transcriptomic expression and protein stainings (CD20, PPY and151

TROP2). CD20 is a common marker for B cells, PPY is expressed by endocrine cells, and TROP2 is152
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a. b.

c. d.

2,500 ¿m

14,000 ¿m

Figure 4: Data resolution after Sopa segmentation over two multiplex-imaging technologies: MACSima (a-b), and PhenoCycler (c-d).

a. UMAP representing cell types on the MACSima dataset, annotated based on 61 protein stainings. b. Cells of the MACSima dataset visualized.

The colours correspond to the legend of (a). c. UMAP representing cell types on the PhenoCycler dataset, annotated based on 31 protein stainings.

This represents approximately 2,500,000 cells. d. Cells of the PhenoCycler dataset visualized. The colours correspond to the legend of (c).

overexpressed in tumour cells. 10X Genomics currently does not produce files with protein expression153

per cell, while Sopa does support the analysis of proteins. To demonstrate, we aligned the Xenium stain-154

ing image to the original coordinate system (see supplemental subsection 9.5), and Sopa computed the155

CD20/PPY/TROP2 intensity within all cell boundaries. Combined with transcriptomic expression, CD20156

staining greatly facilitates the annotation of B cells, as shown by their clear delimitation on Figure 3d and157

Figure 3c. In the future, we expect technologies to be able to run more protein stainings in parallel with158

transcriptomics data, making this kind of analysis even more valuable.159

Regarding multiplex imaging, Sopa shows efficiency in (i) managing large protein staining panels160

and (ii) segmenting millions of cells (using Cellpose). The former is exemplified by the MACSima dataset161

with 61 stained proteins. Again, we computed staining intensity per cell, and Figure 4a demonstrates Sopa’s162
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capacity to annotate high-resolution cell types. Secondly, the PhenoCycler dataset underscores Sopa’s abil-163

ity to handle datasets of substantial size, with an area of 3 squared centimetres, containing approximately164

2,500,000 cells. The corresponding cell resolution is shown in Figure 4c.165

In summary, these studies demonstrate that Sopa can (i) be applied across diverse technologies, (ii)166

efficiently handle millions of cells, and (iii) seamlessly operate on both transcriptomics and protein stainings.167

2.6 Geometric and spatial analyses168

Spatial omics naturally unlock multiple biological questions related to spatial organization. While some are169

addressed in libraries such as Squidpy22, metrics related to the distance between cell-types/niches and the170

geometric characteristics of those niches are not provided. These metrics could help in the understanding of171

the morphology of the tumour micro-environment and its location with regards to different cell types. Such172

statistics have been shown to be relevant for predicting disease progression or response to treatment54, 55.173

For instance, it is known that tertiary lymphoid structures (TLS) have a good prognosis47, but their geometry174

has not been studied. TLS may come in different sizes, shapes, occurrences, or locations with regard to other175

niches. Such statistics are generalized in subsection 3.8 for all cell categories (usually, cell types or niches).176

Leveraging this spatial analysis, we demonstrate a better understanding of the dynamics among different177

cell types and their relation to different spatial niches on the MERSCOPE liver dataset (Figure 5). To use178

Sopa geometric analysis, we run STAGATE27 to identify eight distinct niches (or ”spatial domains”) across179

various tumour regions (Figure 5a). First, we show in Figure 5b four geometric properties related to these180

niches: for each niche compartment, we counted their occurrence on the same slide, as well as their mean181

area, perimeter, and roundness (see subsection 3.8 for more details). For instance, our geometric analysis182

shows a high occurrence of vascular niches, that are small in area and perimeter, but have a high roundness.183
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a. b.

d.

e.

c.

f. g.

Niches

Cell types

Legend

10,000 ¿m

Niches (or spatial

domains)

Figure 5: Geometric analyses and spatial statistics on the MERSCOPE liver dataset. a. Niches (or spatial domains) after geometric conversion

to shapely polygons. b. Geometric statistics of the niches: their occurrence, perimeter, area, and roundness. c. Heatmap of average hop distance

between niches and niches. d. Localisation of TREM2 macrophages shown in the visualizer. The TREM2 and C1QC genes are shown, and cells

are coloured by their gene counts for the two selected genes. e. Heatmap of average hop distance between cell types and all other cell types. LRP1,

CEBP, and TREM2 macrophages show a high proximity. f. Heatmap of average hop distance between cell types and niches. The macrophage

subpopulations show heterogeneous localisation with respect to the niches. LRP1, CEBP, and TREM2 macrophages are enriched in the necrosis

niche. g. Network plot summarising the distance metrics of (c)/(e)/(f). Each node of the network corresponds either to a niche (hexagon) or a cell

type (circle). The lower the mean distance between the two nodes, the higher the weight of the edge between these two nodes. A high node-node

proximity is shown by a dark edge. Overall, it provides an overview of the colocalisation of cell types and niches in the tumour environment.
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Conversely, the stroma has only one occurrence and is highly ”unround”, and Figure 5c shows that this184

shape enables a ”proximity” to every other niche. Figure 5c also highlights how far the vascular niche is185

from the necrosis. While such observations are not novel, our geometric computation allows for statistical186

comparisons over multiple patients, which could lead to the discovery of significant geometric biomarkers187

in large-scale studies.188

We also utilised Sopa to assess the intricacies of the tumour complexity. We annotated the immune189

populations of the MERSCOPE dataset in higher definition (see supplementary Figure 4a/b) and in paral-190

lel performed a differential analysis on each niche to better understand niche complexity. This revealed a191

distinct necrotic niche correlated with TREM2 macrophages (expressing TREM2, C1QC and CSF1R), a192

population of macrophages reported across cancer types and often associated with bad prognosis50, 51 (see193

Figure 5d and Figure 4c). To deepen this understanding of tissue intricacies, we investigated whether these194

TREM2 macrophages were in close distance with any other cell type (see Figure 5e). Strikingly, this figure195

highlighted that three macrophage populations (LRP1, CEBP, and TREM2-macrophages) exclusively inter-196

acted with themselves. Correlating their location with the niche revealed that their co-occurrence is specific197

to the necrotic niche (see Figure 5f). When combining all (cell-cell/cell-niche/niche-niche) interactions,198

this affirms again the association of LRP1/CEBP/TREM2-macrophages in the necrotic niche, yet it also199

highlights the heterogeneity of all macrophage populations and their relation to the niche in the whole tis-200

sue environment (see Figure 5g). These combined interactions also showed that, inversely, the conventional201

dendritic cells (DCs) are not associated with any niche environment, accentuating how some populations can202

also be niche-independent. This observed spatial location underscores a potential reprogramming feature of203

macrophages based on their specific niche. While it is known that the accumulation of TREM2 macrophages204

has been associated with enrichment in the tumour regions45, 48, 49, Sopa can provide insights for a refined205
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understanding of a macrophage-specific tumour-associated phenotype. These examples illustrate that this206

geometric and spatial analysis — computed with Sopa — helps better understand the tumour’s architecture207

and its relationship with cell type phenotypes.208

3 Online Methods209

3.1 Datasets used210

Four public datasets were used to demonstrate Sopa’s abilities. First, we used a MERSCOPE dataset211

(from Vizgen) of the human liver Hepatocellular carcinoma (HCC), called FFPE Human Immuno-oncology212

Data Set May 2022. It is composed of a 500-gene panel, and has DAPI staining and PolyT staining.213

It contains about 500,000 cells, depending on the segmentation. Secondly, we used a Xenium dataset214

(from 10X Genomics) of pancreatic cancer (adenocarcinoma, Grade I-II) with the Xenium Human Multi-215

Tissue and Cancer Panel, in parallel with corresponding H&E image, and a protein-staining image with216

DAPI/CD20/PPY/TROP2. Note that the two latter images has to be aligned on the default main DAPI217

image. It contains about 180,000 cells, depending on the segmentation. Thirdly, we used a PhenoCycler218

dataset (from Akoya Biosciences) of the human tonsil (FFPE) with 31 protein stainings. It contains about219

2,500,000 cells, depending on the segmentation. Finally, we used a MACSima dataset (from Miltenyi) of220

head and neck squamous cell carcinoma (HNSCC) with 61 protein stainings. It contains about 40,000 cells,221

depending on the segmentation. For more details about the accessibility of these datasets, see section 7.222
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3.2 Metrics used and computational details223

The Calinski-Harabasz-Score is defined as the ratio of the sum of between-cluster dispersion and of within-224

cluster dispersion. To compute this score, we used the implementation in scikit-learn40. The mean cluster225

distance is the average distance between all pairwise combinations of cells between two different clusters;226

thus, a higher distance indicates a better cluster separation. For the differential expression analysis, we227

ran the scanpy33 rank genes groups function, and we averaged the score of the 20 most significant genes228

for each cell type. The time and memory benchmarks were performed on a Slurm cluster on the same229

CPU nodes. The benchmark related to Cellpose was performed on crops of the MERSCOPE dataset, while230

the other time and memory benchmarks were performed on a synthetic dataset (see subsection 9.6). Fig-231

ure 2c was generated based on the corresponding 16,000-pixels-wide datasets; this involves 25 Cellpose232

patches and 4 Baysor patches. The percentage of conflicts for Cellpose (compared to all pairs of cells) was233

0.007%, while this percentage was 0.001% for Baysor. The UMAPs of Figure 3 and Figure 4 were generated234

with scanpy33, using the default parameters. The MERSCOPE and Xenium datasets have been segmented235

with Baysor, while the PhenoCycler and MACSima datasets have been segmented with Cellpose. Both the236

MERSCOPE and Xenium datasets have been annotated using Tangram (see supplementary subsection 9.7237

for more details).238

3.3 Segmentation on patches239

For computational efficiency, segmentation is performed on patches, i.e., small image regions. These patches240

have a certain overlap, which is typically chosen to be at least twice as big as the average diameter of cells241

(e.g., 20 microns). This way, each cell should be complete in at least one patch, which avoids artefacts242

due to cutting cells at the border of the patches. Subsequently, any segmentation algorithm compatible243
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with images and/or transcripts can be applied. While Cellpose19 and/or Baysor20 are commonly used, Sopa244

does allow the integration of other segmentation algorithms. Following segmentation on individual tiles, the245

cell boundaries are transformed into polygons using Shapely30. Since patches overlap, some cells may be246

segmented across different patches, leading to segmentation conflicts where multiple polygons correspond247

to a single cell. To resolve this, we adopt a method similar to the one used in Vizgen’s preprocessing tool248

(VPT3). Specifically, we merge pairs of cells when the intersection area exceeds half the area of the smaller249

cell, ensuring a substantial overlap. If the intersection area is too small, indicating distinct cells, both250

polygons are retained. When the overlap area divided by the smallest cell area is close to 1, this corresponds251

to two almost identical cells, while a score close to 0 corresponds to two cells barely touching. On Figure 2c,252

we studied the distribution of this score, showing that most of the conflicts are associated with a score that253

is either very close to 0 or very close to 1, indicating a good conflict resolution. Additionally, note that,254

before segmentation, the user can decide to select a region of interest: this can be done interactively with255

matplotlib36 on a low-resolution image.256

3.4 Channel averaging257

When dealing with image-based technologies, a crucial step involves averaging the intensity of each channel258

within each cell. While this task can be achieved using cell masks, it proves highly inefficient in terms of259

both time and memory consumption. To address this challenge, we adopt a chunk-level approach: (i) For260

each chunk, we identify cell boundaries (i.e., polygons) that intersect with the chunk coordinates, then (ii)261

we determine the bounding box for each of these cells, then (iii) we extract the image values for each of262

these bounding boxes, and finally (iv) we rasterize the cell polygons to average the staining intensity over263

3https://vizgen.github.io/vizgen-postprocessing/
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the local bounding box. In this way, we only load small arrays corresponding to each cell, instead of loading264

large cell masks. This process is repeated over all chunks, and we make sure that the channel intensity for265

cells located on multiple chunks is computed correctly.266

3.5 Counting transcripts267

GeoPandas32 is a Python library that enhances Pandas35 Dataframes by incorporating support for Shapely30
268

geometries. It facilitates scaling operations on geometries, making it particularly suitable for transcript269

counting, where transcripts can be represented as Shapely points and cells as Shapely polygons. How-270

ever, the memory requirements for such operations can be substantial, especially for spatial transcriptomics271

datasets that may contain up to one billion transcripts. To optimize this process, we leverage Dask and272

execute the GeoPandas32 ”join” operation at the partition level to assign each point (i.e., a transcript) to a273

polygon (i.e., a cell). Thus, each operation is carried out on smaller data frames, each less than 100MB in274

size. Dask efficiently assigns each partition to different workers in parallel, mitigating memory concerns.275

This approach proves highly effective, especially when utilizing a high-performance cluster, as Dask is276

designed to seamlessly scale these processes on clusters without necessitating any code modifications.277

3.6 Conversion to the Xenium Explorer278

Converting a spatial-omics object into the Xenium Explorer requires the creation of six files: (i) the image,279

(ii) a JSON metadata file, (iii) the cell boundaries, (iv) the cell categories (e.g., cell type or clustering),280

(v) the gene counts table, and (vi) the transcripts (if they exist). The conversion is done automatically281

by Sopa, but it can also be done manually via our CLI: sopa explorer write <sdata path>282

<output path>.283
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For image creation, a Python function is recommended in the Xenium Explorer documentation4 but284

is not optimized for large images. We updated it to support Dask31 arrays, i.e. (the image type used by285

Sopa). Pyramids of resolutions are generated via the SpatialData library29. To decrease memory usage,286

each (1024x1024) image tile is generated using an iterator that only computes the minimally required data287

from the Dask array at each tile generation. For higher pyramidal levels, where the image size decreases,288

we allow loading an image into memory if it fits, accelerating conversion.289

As transcripts typically cannot be loaded entirely into memory, the Xenium Explorer avoids load-290

ing all transcripts. On low-resolution levels, only a subset of transcripts is displayed (subsampled), while291

zooming in reveals all transcripts from the current field of view. This pyramidal transcript view ensures292

low memory usage during visualization. The highest-resolution tiles are 250-micron-wide squares. For293

each pyramid level, the tile width doubles, and only one-fourth of the transcripts from the previous level294

are retained. The process stops when there is only one remaining tile that is larger than the original slide.295

Transcript coordinates are stored as separate chunks for each tile and resolution, saved as a Zarr file5. This296

allows loading only the transcripts corresponding to the displayed tiles when zooming in.297

Cell boundaries are padded to have the same number of vertices (13). Polygon simplification is298

applied to polygons with more than 13 vertices using the Shapely library, reducing the number of vertices299

while preserving shape geometry. A fixed number of vertices enables lighter cell-boundary storage and300

faster visualization.301

Transcript counts (cell-by-gene table) use sparse array storage. One 1D array stores all non-zero302

4https://www.10xgenomics.com/support/software/xenium-explorer/tutorials/

xe-image-file-conversion

5https://zarr.readthedocs.io/en/stable/index.html
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transcript counts, another array stores the cell index for each count, and a third array is a pointer indicating303

the gene index for these counts. Cell categories are similarly saved using indices and corresponding pointers.304

Once again, the file format employed is a Zarr file.305

3.7 Cell-type annotation306

Transcript-based annotation. Tangram21 is used for cell-type annotation based on an annotated scRNAseq307

reference. To make Tangram21 scalable for large datasets, we adopt a strategy of splitting the data into ”bags308

of cells”, with the size determined by the user. This approach ensures that each Tangram iteration operates309

within manageable memory limits, and we subsequently merge the results to obtain the annotation for the310

entire dataset. Following this, Leiden38 clustering can be applied to refine the annotation, associating each311

Leiden cluster with its most prevalent Tangram cell type. Additionally, we have implemented a multi-level312

annotation feature based on Tangram to enhance the annotation of minor cell types if needed. The process313

involves initially annotating global cell populations, followed by running Tangram on specific cell groups314

(e.g., Myeloid cells) for a more detailed annotation (e.g., pDCs, TREM2 macrophages, etc.). All that is315

required is to provide multiple cell-type annotation columns in the reference scRNAseq data, and Sopa will316

seamlessly execute the multi-level annotation.317

Staining-based annotation. For non-transcriptomics data, we also provide a fluorescence-based annota-

tion. As each channel intensity is averaged inside each cell, we obtain a matrix X of shape (N,P ), where

N is the number of cells, and P the number of stainings/channels. Then, these intensities are preprocessed

as in a recent article42:

X
′ = (X′

j)1fjfP , with X
′

j = arcsinh(
Xj

5Q(0.2,Xj)
),
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where X
′ is the preprocessed matrix, arcsinh is the inverse hyperbolic sinus function, and Q(0.2,Xj) is318

the 20th percentile of Xj . Afterwards, we use a list of stainings corresponding to a population, and each319

cell is annotated according to the channel whose preprocessed intensity is the highest. If desired, Leiden320

clustering38 can be run to have a deeper annotation. Each cluster can be annotated via differential analysis321

or by showing a heatmap of staining expression per cluster.322

3.8 Spatial statistics323

All spatial statistics are performed after computing a Delaunay graph based on the spatial location of cells.324

This is done with Squidpy22, which is itself based on Scipy39. We also prune long edges that cannot corre-325

spond to a physical cell-cell interaction (typically, edges longer than 40 microns). In the paragraphs below,326

N denotes the number of cells.327

Cell category to cell-category statistics. One relevant spatial statistic is the computation of the mean or

minimum distance between two cell categories. This includes the pairwise distance between cell types

(e.g., the mean distance between CD8 T cells and tumour cells), as well as the distance between cell types

and niches (e.g., the distance between tumour cells and tertiary lymphoid structures). Let (C1, . . . , CN )

represent categories assigned to the N cells (e.g., cell types), and (C ′
1
, . . . , C ′

N ) represent other categories

(such as the niche to which the cell belongs). For instance, if cell ”i” is a T cell inside the stroma, then Ci =

”T cell” and C ′
i = ”stroma”. The sets of unique categories are denoted G and G′, respectively; for instance,

G can be the set of unique cell types, and G′ can be the set of unique niches. Then, ∀g ∈ G and ∀g′ ∈ G′,

we define the mean distance between the category g and g′ as follow:

D(g, g′) =
1

Card({i |Ci = g})
∑

i |Ci=g

min
j |C′

j
=g′

dij ,
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where Card represents the cardinal, and dij is the hop-distance between cell i and cell j. Note that328

minj |C′

j
=g′ dij is the distance between cell i and the closest cell of category g′, that is how many hops329

are needed for cell i to ”find” the category of interest. In practice, we compute D(g, g′) by multi-node330

graph traversal, starting from all nodes whose category is g′. In this way, for each g′ ∈ G′, we compute331

(min
j |C′

j
=g

′ dij)1fifN in a single graph traversal. All the resulting distances can be stored in a matrix332

((D(g, g′)))g∈G,g′∈G′ and shown as a heatmap. Additionally, we combine the four matrices of distances333

(cell-type to cell-type, cell-type to niches, niches to cell type, and niches to niches) into an adjacency matrix334

whose weights are the inverse of the distance. Then, the corresponding network can be plotted using the335

netgraph41 library, as in Figure 5g, providing an interpretable visualization of the tumour microenviron-336

ment’s structure.337

Niche geometry statistics. When niches (or spatial domains) are performed with an algorithm such as338

STAGATE27, users can decide to extract these niches as geometries to compute some relevant statistics,339

such as their area, perimeter, or roundness. From now on, for each cell i, 1 f i f N , Ci denotes the niche340

to which the cell belongs, and G is the corresponding set of unique niches (i.e., for all cell i, Ci ∈ G). First,341

we prune all the edges (i, j) that are in between niches from the Delaunay graph, i.e., if Ci ̸= Cj . Then, we342

extract the connected components of the graph. Because of the way we pruned the edges, each component343

corresponds to one niche, but one niche can be composed of multiple components (or occurrences). For344

each component, we search simplices (i.e., triangles from the Delaunay graph) at the component’s border,345

that is, the simplices that have one or two simplex neighbours. From all the border simplices, we extract the346

corresponding border edges; these edges are then linked to make one or multiple rings (i.e. cyclic lines).347

If we have only one ring, it is transformed into a polygon, which corresponds to a ”full” component. If348

there are multiple rings, the largest ring is the outer polygon, and the others correspond to ”holes” inside349
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the main polygon: this can happen when some components are completely surrounded by another niche.350

Repeating this process for all components allows the transformation of each niche g ∈ G into multiple351

polygons. We can then count how many occurrences (or polygons) each niche is made of, and we can352

also compute the mean area Ag, perimeter Lg, and roundness Rg of each niche using Shapely30. Note that353

Rg =
4πAg

L2
g

∈ [0, 1], where higher values correspond to a ”circle-like” shape. Also, for each niche, we filter354

out components whose areas are less than 5% of the area of the same niche’s largest component, as they355

usually correspond to low-quality artefacts from the clustering of niches.356

4 Discussion357

Advances in technology development for spatial omics hold great promise for biological discoveries. Yet,358

to build strong and unified foundations for spatial omics data analysis, new tools are required. With this359

purpose in mind, we designed and built Sopa to address several crucial aspects of spatial omics analysis:360

versatility, reproducibility, and scalability. It offers a suite of tools — or building blocks — designed for361

spatial omics, which are assembled to build a pipeline for any image-based spatial omics technology. At362

the end of the pipeline, it produces standardized outputs, which ease exploration and visualization. While363

each company’s technology comes with its own suite of tools — which differ in terms of capabilities and364

functionalities — Sopa does not require learning from multiple data types and software. In addition, Sopa365

is scalable from simple laptops to high-performance clusters, offering an extension of versatility for users.366

Moreover, Sopa can easily integrate new methods and tools: as new segmentation or annotation meth-367

ods are developed, they can be added to Sopa once published and validated. This incorporation into Sopa en-368

ables scalability and availability to any new technology with only minor configuration changes. As datasets369

become increasingly bigger, Sopa’s scalability is crucial. For instance, Sopa enabled the possibility of run-370
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ning Baysor on data produced by the MERSCOPE, which was previously impossible due to RAM usage371

and time. We also demonstrated that it significantly increases data quality compared to the default Viz-372

gen and 10X Genomics segmentation tools. As shown on the MERSCOPE liver dataset, we were able373

to annotate spatial-specific macrophages, particularly TREM2 macrophages, in the necrotic niche. Addi-374

tionally, TREM2 has been shown to increase with HCC, suggesting a potential immunosuppressive role375

of TREM245, 49, while necrosis has been associated with worse prognosis52, 53. With the help of Sopa,376

the exploration of this relationship between tissue architecture and cell phenotypes can advance biological377

knowledge.378

Besides higher data resolution, Sopa can also incorporate protein information into spatial analysis.379

Without this information, extracting the B cell population in the Xenium data would not have been possible.380

While current spatial technologies involve either a high number of proteins or transcripts, new developments381

could add extra layers of information, contributing to a better understanding of biological systems. This382

paper has demonstrated through various techniques that Sopa is ready to handle large multi-modal spatial383

technologies.384
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6 Code availability389

The code developed in this article is available as an open-source Python package, accessible on Github at390

https://github.com/gustaveroussy/sopa. The code used to run the benchmark is available at391

https://github.com/quentinblampey/sopa_benchmark.392

7 Data availability393

The MERSCOPE dataset is freely available online at https://info.vizgen.com/merscope-ffpe-solution,394

and the Xenium at https://www.10xgenomics.com/resources/datasets/pancreatic-cancer-with-395

The PhenoCycler dataset is available upon request to Akoya Biosciences, see https://www.akoyabio.396

com/fusion/data-gallery/. The MACSima dataset is available upon request to Miltenyi.397
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9 Supplementary information501

9.1 Choice of SpatialData as a data structure502

SpatialData29 is a data structure developed in Python that aims to store spatial-related objects. It also pro-503

vides transformations between coordinate systems (for instance, between microns and pixels), lazy repre-504

sentation for large images with Dask31 and Xarray34, transcripts stored as Dask31 dataframes, and cells505

polygons stored as GeoPandas32 polygons. The general structure of this data, the community support, and506
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integration with the scverse44 ecosystem make it a reliable tool to store spatial-omics objects in Sopa. No-507

tably, the usage of Python is appreciated since most recent models in spatial-omics are gradually moving to508

Python for package development3.509

9.2 Integration with the scverse ecosystem510

The scverse44 ecosystem is a Python-based suite of fundamental tools for single-cell omics data analysis.511

This includes the data structures SpatialData29 that we use for Sopa, as well as Scanpy33 which covers a512

wide range of use cases in single-cell analysis. Also, still in the scverse ecosystem, Squidpy22 is a Python513

library for the analysis of spatial single-cell data such as spatial neighbourhood analysis or ligand-receptor514

interaction analysis. Since Squidpy supports SpatialData, Sopa is also naturally integrating with Squidpy.515

Indeed, the pipeline output being a SpatialData object, Squidpy can operate on this, enabling all Squidpy516

functionalities to be leveraged after Sopa, or inside the pipeline. Squidpy is complementary to Sopa since it517

operates on processed spatial omics, contrary to Sopa, which analyses raw data. Also, the spatial statistics518

tools available in Sopa do not exist in Squidpy. Thus, these packages have non-overlapping and comple-519

mentary functionalities.520

9.3 Limitation of the proprietary visualization software521

All visualizers are exclusive to their data structure, and require an investment of time to the users for learning522

their proprietary software. Besides this, some of the software comes only with the purchased machine and523

requires a license key for use. This limits the number of users who have a collaborative engagement and are524

not in possession of the machine. Data analysis from the MERSCOPE comes with a dedicated visualizer,525

called the ”Merscope Visualizer”. Its input is proprietary ”.vzg” files, a non-open format. While VPT offers526
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the possibility to update it, a new vzg cannot be recreated for another type of technology. In addition, the527

update of this file requires performing again all required operations, even for minor changes, because every-528

thing is included in one file. Therefore, minor modifications still imply a significant runtime to be updated529

in the visualizer. Concerning CosMX data, they offer an online suite of tools, called AtoMx, which is cloud-530

based only, limiting the accessibility, especially for users wanting to use their own high-processing-cluster.531

Concerning the visualizer of the PhenoCycler and MACSima, they are specific to multiplex imaging, i.e.532

no transcript can be shown. Contrary to the other visualizers, Xenium Explorer can be both (i) downloaded533

freely and (ii) supports open file formats. This makes it a reliable choice for conversion from SpatialData.534

Also, it supports missing data, i.e. it will not crash when reading multiplex imaging data (from which no535

transcripts are available).536

9.4 Visualization with the Xenium Explorer537

After using Sopa, the files required by the Xenium Explorer are created. In particular, a file called ”ex-538

periment.xenium” can be opened in the Xenium Explorer. The later software is freely available for both539

Windows and MacOS. Sopa has been tested on versions 1.2 and 1.3 of the Xenium Explorer. We show two540

examples of visualization in Figure 1 (Xenium dataset, 10X) and Figure 2 (MERSCOPE dataset, Vizgen).541

9.5 Image alignment with the Xenium Explorer542

One challenge for spatial transcriptomics can be to align images from different technologies when they are543

run on the same sample. Most of the time, a simple affine transformation is enough to align them. Since544

Sopa create outputs in the Xenium Explorer, it is possible to use the alignment tool available on the software.545

It consists of applying some mirroring transformations, rotations, and alignment based on user-defined refer-546
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Supplementary Figure 1: Xenium pancreas dataset (10X Genomics) open in the Xenium Explorer. The transcript panel is shown, with a few genes

selected. Cells are coloured by a colour gradient representing transcript count.

ence points. Then, the transformation matrix can be saved via the visualizer, which will create a ”matrix.csv”547

transformation file. Afterwards, we can use this transformation matrix to align the new image on our Spatial-548

Data object and perform any operation available in Sopa. This can be done via the Sopa CLI, by specifying549

sopa explorer add-aligned <sdata path> <image path> <matrix path>. Typically,550

when adding an IF image, we can compute the mean channel intensity for all cells and for all channels.551

9.6 Synthetic dataset generation552

In order to demonstrate Sopa’s efficiency on multiple dataset sizes, we created synthetic datasets. Let L be553

the width of the image, and d be the cell density in the image. An evenly distributed grid of size (L
√
d, L

√
d)554
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Supplementary Figure 2: MERSCOPE liver dataset (Vizgen) open in the Xenium Explorer. The cell panel is shown, and the ”annot level0” category

is displayed. Colors correspond to a cell-type.

is generated, each vertex corresponding to a cell location. We apply a Gaussian noise of standard-deviation555

1

2

√
d

on these cell locations to have a more natural distribution of cells. Images are generated by applying a556

Gaussian blur of standard deviation 1

2

√
d

on the pixels at the location of the cell vertices, and 100 transcripts557

per cell are generated via a 2D Gaussian distribution of the same standard deviation.558

9.7 Annotation of example datasets559

Dataset annotation followed the procedure outlined in subsection 3.7. Automatic annotation utilized the fol-560

lowing references: Liver dataset6 and Pancreas dataset7. Initial global annotation involved combining major561

6https://www.immunesinglecell.org/atlas/liver

7https://www.immunesinglecell.org/atlas/pancreas
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a. b.

c.

d. e.

MERSCOPE Liver

MACSima HNSCC PhenoCycler Tonsil

Xenium Pancreas

Supplementary Figure 3: Visual validation of the annotations. a. Heatmap of genes expression per population on the MERSCOPE liver dataset.

b. Heatmap of genes expression per population on the Xenium pancreas dataset. c. Protein staining per cell on the Xenium pancreas dataset after

aligning the staining image to the original Xenium image. d. Heatmap of genes expression per population on the MACSima HNSCC dataset. e.

Heatmap of genes expression per population on the Phenocycler tonsil dataset.

cell populations, followed by refinement using Leiden clustering 38. Subsequent in-depth analysis employed562

manual annotation with Leiden clustering. For MACSima and PhenoCycler datasets, exclusion criteria in-563

volved DAPI, boundary staining, and low-quality proteins to enhance resolution. Manual clustering with564

Leiden was then applied for population annotation. Niche calculations were performed using STAGATE27.565

Niches were annotated based on cell type abundance and tissue structure, validated by a pathologist.566
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a.

b. c.

Supplementary Figure 4: Annotation of MERSCOPE liver immune cells and niche differential gene expressions (DEGs). a. Heatmap of DEGs

per immune population on the MERSCOPE liver dataset. b. UMAP of immune cells of the MERSCOPE liver dataset c. Heatmap of DEGs per

niche of the MERSCOPE liver dataset.
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