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o Spatial-omics data allow in-depth analysis of tissue architectures, opening new opportunities for bi-
10 ological discovery. In particular, imaging techniques offer single-cell resolutions, providing essential
11 insights into cellular organizations and dynamics. Yet, the complexity of such data presents analyti-
12 cal challenges and demands substantial computing resources. Moreover, the proliferation of diverse
13 spatial-omics technologies, such as Xenium, MERSCOPE, CosMX in spatial-transcriptomics, and
14 MACSima and PhenoCycler in multiplex imaging, hinders the generality of existing tools. We intro-
15 duce Sopa (https://github.com/gustaveroussy/sopa), a technology-invariant, memory-
16 efficient pipeline with a unified visualizer for all image-based spatial omics. Built upon the universal
17 SpatialData framework, Sopa optimizes tasks like segmentation, transcript/channel aggregation, an-
18 notation, and geometric/spatial analysis. Its output includes user-friendly web reports and visualizer
19 files, as well as comprehensive data files for in-depth analysis. Overall, Sopa represents a significant
20 step toward unifying spatial data analysis, enabling a more comprehensive understanding of cellular

21 interactions and tissue organization in biological systems.
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» 1 Introduction

23 Spatial-omics data offer opportunities to improve our understanding of cellular interactions within their

24 micro-environment and the intricacies of tissue organization'-2. Recent advancements in imaging technolo-

25 gies have expanded these capabilities, enabling the measurement of 1000+ genes through Spatial Transcriptomics®
26 and/or the analysis of 50+ proteins via Multiplex Imaging*. These include Merfish®, ISH'!, 1SS, MICS’,

27 PhenoCycler® and IMC?, all of which provide single-cell resolution, previously unachieved with spot-based

2 techniques like 10X Visium'® or Nanostring GeoMX!?. Therefore, image-based technologies provide a

29 higher resolution — up to the subcellular level — which is needed for a detailed exploration of individual

s cells and their gene expression profiles within their spatial context. This level of precision has been essen-

a1 tial for unravelling tissue architecture and understanding cellular interactions; it marks the beginning of a

s2 significant leap forward in our comprehension of biological systems® 1314,

33 In parallel with these technological advancements, the analysis of image-based spatial omics has

19-21 are not

s« encountered significant computational challenges and limitations '3-18, Most existing methods
35 designed to handle large images with millions of cells. Their usage typically demands high-performance
ss computational clusters with substantial memory resources, which limits accessibility to spatial omics due
37 to cost and hardware constraints. As a result, most companies have developed proprietary tools for their
ss own data types, primarily focusing only on segmentation and visualization. Yet, these proprietary tools
ss have certain constraints, such as (i) a limit on specific functionalities, (ii) no incorporation of the latest
40 state-of-the-art methods, and (iii) a lack of versatility, as they cannot be applied to other technologies. Two

41 other limitations related to tool diversity are that there is a learning and adaptation process for each suite

42 and that the tools’ specificities lead to variations in the analysis of comparable data types. In a similar
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45 fashion, current open-source analysis libraries often rely on (i) already-segmented data’>?3, (ii) specific

24,25 24,25

4 data types , or (iii) a subset of analysis tasks , resulting in fragmented approaches and difficulty in
45 adapting one approach to a different type of technology. The absence of a unified data representation and

46 modular programming interface further complicates the integration of various analysis steps.

47 To address these gaps, our work introduces Spatial Omics Pipeline and Analysis, or Sopa, a novel
4s computational framework that enhances the accessibility, efficiency, and interpretability of image-based
49 spatial-omics data. Sopa is a memory-efficient pipeline that works across all image-based spatial-omics
so technologies and that can display results in a shared visualizer. This includes the most recent Spatial Tran-
51 scriptomics technologies (Xenium, MERSCOPE, CosMX) and also the multiplex imaging techniques (e.g.,
s2. MACSima, PhenoCycler, Hyperion). Sopa’s capabilities include segmentation and multilevel annotation,
53 both based on transcripts and/or stainings, as well as spatial statistics and niche geometry analysis. We
s« demonstrate Sopa’s performance on four public datasets: two spatial-transcriptomics (MERSCOPE, Xe-
55 nium) and two multiplex imaging technologies (PhenoCycler, MACSima), and provide a memory and time
s6 benchmark over multiple dataset sizes. Additionally, we demonstrate Sopa’s capabilities for geometric
57 and spatial analysis on the MERSCOPE dataset by analyzing cell colocalization with regard to cell types
ss and niches, showing promise for biological discoveries. All these functionalities are accessible via our
ss open-source code, which includes a Command Line Interface (CLI), an Application Programming Inter-
s face (API), and a flexible Snakemake®® workflow, enabling users with various levels of expertise to process
61 spatial-omics data seamlessly, from no-code simplicity to full flexibility. The pipeline’s generic nature en-
62 sures effortless transitions to other types of spatial-omics data, making it a versatile and powerful tool for

63 the scientific community.


https://doi.org/10.1101/2023.12.22.571863
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.22.571863; this version posted December 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

« 2 Results

es 2.1 Technology-invariant pipeline

es To establish versatile tools, a common strategy involves adopting a shared data structure that seamlessly in-
67 tegrates across diverse technologies. SpatialData” serves as one such comprehensive framework, including
es readers tailored for the most widely used spatial-omics technologies. Building upon this, Sopa converts any
e data into a SpatialData object, on which all of the six following tasks are performed. First, if needed, users
70 can interactively select a region of interest, facilitating the exclusion of less relevant or lower-quality areas.
71 Next, we generate overlapping patches of images and/or transcripts. Segmentation can than be performed
72 for each individual patch, and we currently support Cellpose!® (image-based segmentation) and Baysor?”
73 (transcripts-based segmentation). Afterwards, the cell segmentation masks are converted into polygons and
74 merged over all patches to remove potential artefacts. Following these first four steps, we average the stain-
75 ing intensities and count the transcripts inside each cell (see subsection 3.4 and subsection 3.5), allowing
76 further tasks such as annotation. For example, Sopa currently supports Tangram?! for transcript-based anno-
77 tation, and a simple Z-score method for staining-based annotation (subsection 3.7). Finally, we implemented
78 spatial and geometric analysis tools to fully exploit the spatial nature of the data (subsection 3.8). For con-
79 venience, all image-based technologies can be visualized in a shared explorer (see subsection 2.2), and an

so  HTML report is provided for pipeline quality checks. The full process described above is summarised in

81 Figure 1.
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Figure 1: Overview of Sopa. a. The pipeline input consists of experimental files of any image-based spatial-omics. It is transformed into a

SpatialData object, on which we can optionally select a region of interest (ROI) interactively. b. Afterwards, the data is split into overlapping
patches, and segmentation is run on each patch (for instance, Cellpose, Baysor, or a custom segmentation tool). Since patches are overlapping,
some cells can be segmented multiple times on different patches. Therefore, these conflicts have to be resolved: two boundaries with a significant
overlap are merged into one cell, while two cells barely touching are kept separate. The next step is aggregation, i.e., counting transcripts and
averaging each channel intensity inside each cell. This allows annotation, either based on transcripts (using Tangram) or on channel intensities. ¢
Afterwards, Sopa outputs a user-friendly report and files to be opened in the Xenium Explorer (whatever the input technology). d. All data files are

kept for further analysis in Sopa, such as spatial statistics, or integration with community tools.

g2 2.2 Shared interactive visualizer

s3 In spatial-omics analysis, effective visualization is crucial but has presented challenges due to the size of

s« the datasets. While open-source initiatives like Napari®’ are emerging, they currently face limitations in
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85 handling large amounts of transcripts. Also, most companies provide technology-specific visualizers, of-
ss fering limited user possibilities (see supplementary subsection 9.3). Yet, 10X Genomics has introduced the
sz Xenium Explorer, an optimized visualizer whose file format is open, i.e., formats that can be generated for
ss various SpatialData types. In Sopa, we have incorporated a converter that transforms the pipeline output into
s the input files compatible with the Xenium Explorer (see subsection 3.6 and Figure 1c). This integration
90 ensures access to an efficient and robust visualizer, extending its functionalities to any technology whose
91 data is readable by Sopa. Importantly, this adaptation applies to both spatial transcriptomics and multiplex
92 1imaging data, with the “Transcripts” panel selectively available for transcriptomics data. The Figure 3b/e
93 show views using this Explorer, while supplemental Figure 1/Figure 2 are full-window examples. In addi-
94 tion to visualisation, the Xenium Explorer contains an interactive tool to align images from which we can
95 export a transformation matrix and use it to align images on the SpatialData object to benefit from all the

o6 functionalities in Sopa (see supplementary subsection 9.5).

97 2.3 Memory efficiency of Sopa

9s Managing large datasets is a critical challenge in spatial omics, particularly when dealing with images that
99 can reach hundreds of gigabytes and contain hundreds of millions of transcripts in spatial transcriptomics
100 data. This necessitates implementing memory optimization techniques to ensure the scalability of the anal-
101 ysis. Notably, segmentation algorithms like Cellpose'® and Baysor?® encounter scalability issues with large
102 1mages, as illustrated in Figure 2a/b. To tackle this, these segmentation models are applied to smaller regions
10s called patches, drastically decreasing random-access-memory (RAM) usage and time. While this patching
104 process generates possible segmentation conflicts, we show in Figure 2¢ that this does not impact segmenta-

105 tion quality, since few conflicts are difficult to resolve, i.e., with a score between 0.2 and 0.8. Additionally,


https://doi.org/10.1101/2023.12.22.571863
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.22.571863; this version posted December 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

106

107

108

109

a. Running Cellpose Running Cellpose Running Baysor 25 days Running Baysor
H 3000 ]
10000 25 days q 000
1 »
60 hours 4 '
o 3000 60 hours _® —® Sopa (1 core) @™ 300 ,’ ,. » —® Sopa (1 core)
© 1000 ~ —e- Sopa (4 cores) o /7 10 hours 4 /" 7  —e Sopa (4 cores)
s . 2 100 ¢ ° ¥ 4 1
& 300 » 2 10 hours o Sopa (16 cores) & 7 2 2, Sopa (16 cores)
g 100 /7 = 1 4 pRe Sopa (64 cores) EREY ‘, P / Sopa (64 cores)
s 30 ,/ 1 hour s —e- No patching = /7 1 hour § 7 —e- No patching
é ,’ » Extrapolation § 10 ,d- o002 X / 4 Extrapolation
10 10 min 7 , 10mind —
3 /’ - P 3] ¢ ¢
P e 1 min .
1 - 1 1 min~
————— — ————— ——————
4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64128
Image width (x1000 pixels) Image width (x1000 pixels) Image width (x1000 pixels) Image width (x1000 pixels)
C. 10- d. R
verage channels
© High accordance 1000 Average channels g
g (good resolution: almost :
2081 identical boundaries) 300
= 25 days
£ @ 100 »
= i ]
g 0.6 Mid accordance s 30 / ° 60 hours ,’ ~o- With Sopa
g (bad conflict resolution) E ,. E 10 hours .’ =~ Numpy ma.sks
g 0.4 ; 10 // 1 hour Il Extrapolation
h’) é 3 7 0] 10 min ,'
2 0.2 / e . ’ o
% Low accordance 1z s o 4 1ming & a8
= (good resolution: keep : g 10secd &~
0.0- two distinct cells) —_— ——————
4 8 16 32 64128 4 8 16 32 64128
! . ! Image width (x1000 pixels) Image width (x1000 pixels)
Cellpose conflicts Baysor conflicts
e. f. N N
Transcript count Transcript count 1000 Image writing 10 hours 1 Image writing
300 1 hour q » .
/ /
100 /’ ' 2 3004 7 1 hour ] /
. 10 min 4 ;/ & II P
@ G 100 e 7
L 30 ’ < 4 10 min T ]
Y ,/ ° ¥ —e- With Sopa o ! © /4 T WithSopa
2 i g 304 / £ Iy Load full
g 10 ya E 1min{ /./ - Geopandas g 1 = s, image
3 / = ,/ join 1 1mind a8
= ,. . &’ g 104 1 /
3 - ] /
ES I,," 10 sec '$/ Pid 10 sec // /'
1 , S 3] e 00— é .8
: 4 ]
La 1secd 4 1- 1 sec

———
4 8 16 32 64128

———
4 8 16 32 64128

————
4 8 16 32 64128

—————
4 8 16 32 64128

Image width (x1000 pixels Image width (x1000 pixels)

Image width (x1000 pixels) Image width (x1000 pixels)
Figure 2: Computational efficiency of Sopa in terms of RAM and time on different dataset sizes. a. Cellpose segmentation comparison: with
and without patching. The RAM usage is given per core. b. Baysor segmentation comparison: with and without patching. The RAM usage is
given per core. ¢. Violin plots showing the intersection-over-min-area density of segmentation conflicts when using patches (for both Cellpose and
Baysor). When resolving a conflict, the two good cases are either (i) a high concordance between the two cells (which will be merged), or (ii) a low
concordance between them (the two cells are kept). Anything between 0.2 and 0.8 is considered a bad segmentation overlap and could deteriorate
further analyses. d. Channels averaging for each cell: Sopa and standard average inside numpy masks. e. Counting each gene inside each cell: with

Sopa compared to GeoPandas join operation on the whole DataFrame. f. Writing image as a tiff file for the Xenium Explorer: with Sopa compared

to what is recommended by 10X Genomics, i.e. loading the whole image in memory.
the conventional storage of cell boundaries as raster masks demands significant memory for storage and
processing (see Figure 2d). To address this, we adopt a more efficient approach by storing cell boundaries as

polygons using Shapely>?, which proves highly effective for both on-disk and in-memory storage. This also

facilitates geometry-related operations, such as cell expansion, area/perimeter computations, and cell-cell
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110 intersections. Combined with the image lazy loading offered by SpatialData®® and Xarray>#, we implement
111 a fast channel averaging on cell boundaries by combining geometry operations and image chunk lazy load-
112 ing (see Figure 2d), i.e., deferring loading until needed for processing. Additionally, using memory-efficient
113 tools like Dask®!, we extend geometric operations of GeoPandas>? on chunks of transcripts, ensuring paral-
114 lel processing of as many chunks as possible without exceeding memory limits (see Figure 2e). For image
115 conversion to a pyramidal ‘.tif*, we significantly lower the memory usage compared to what is recommended
116 by 10X Genomics (see subsection 3.6) by writing tiles in a lazy manner, which avoids loading the full image
117 in memory (see Figure 2f). To highlight Sopa’s memory efficiency, we compared its RAM usage against
1e  standard methods for all tasks mentioned above across various dataset sizes, summarized in Figure 2. Over-
19 all, the latter figure shows significant improvements in terms of RAM and time: depending on the tasks,
120 Sopa can require between 10 and 100 times less memory than normal techniques and can be up to 100 times

121 faster. Even on the largest image, Sopa can be run with a simple laptop with 16GB of RAM.

122 2.4 Wide use cases and customization

12 Sopa offers three distinct options, each tailored to different use cases: (i) a Snakemake?® pipeline that enables
124 aquick start within minutes, (ii) a CLI that facilitates rapid prototyping of a personalized pipeline, and (iii) an
125 API that allows direct usage of Sopa as a Python package', providing full flexibility and customization. The
126 Snakemake pipeline remains consistent across various technologies, with only its configuration differing.
127 Users can leverage existing configuration files, selecting one that aligns with their technology, which then
128 enables them to execute the pipeline without any code updates. Another advantage of Sopa’s generality

129 and scalability is that more advanced users seeking customisable pipelines can use the CLI. Notably, Sopa’s

'nttps://github.com/gustaveroussy/sopa


https://github.com/gustaveroussy/sopa
https://doi.org/10.1101/2023.12.22.571863
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.22.571863; this version posted December 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

130 general design allows for an easy integration of new or custom segmentation methods, rendering them
131 memory-efficient and accessible for all image-based spatial-omics applications. Additionally, the Python
132 API is available for users interested in incorporating specific parts of Sopa into their personal libraries. This

44 ecosystem, such as Scanpy>? or Squidpy>?

133 API also facilitates integration with other tools of the scverse
134 (see supplemental subsection 9.2). In particular, the integration with Squidpy enables the use of post-

135 processing tools for cell-cell interaction and spatially variable gene analysis.

136 2.5 High resolution of the tumour microenvironment

137 Segmentation plays a crucial role in image-based spatial-omics analysis. Sopa focuses significantly on im-
138 proving this step (see subsection 3.3) by enabling the usage of state-of-the-art segmentation models like
139 Baysor?® on large datasets. Indeed, as shown on Figure 2a/b, these high-quality segmentation tools use a
140 lot of memory, which hinders their usage on large spatial datasets. To evaluate the resolution provided by
141 Sopa after segmentation, we annotated major cell types and conducted tests on four datasets: two spatial-
142 transcriptomics datasets (MERSCOPE and Xenium) and two multiplex-imaging datasets (PhenoCycler and
143 MACSima)?. For the MERSCOPE and Xenium datasets, proprietary segmentations were provided by Viz-
144 gen and 10X Genomics, respectively. In comparison to these segmentations, Sopa shows an improved
15 cell-type distinction on UMAP?® plots (see Figure 3a/d) by leveraging Baysor. To support these visual ob-
146 servations, we used multiple metrics (see subsection 3.2), indicating that Sopa can generate more significant
147 population-specific genes, greater intra-cluster distance, and improved cluster separation (see Figure 3c/f).
14s  The increased resolution in spatial omics data allows for a more in-depth exploration compared to previous

149 segmentations (see supplementary Figure 3 for more details).

2See subsection 3.1 and supplementary subsection 9.7 for more details
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Figure 3: Data resolution after Sopa segmentation compared to proprietary segmentation over two spatial-transcriptomics technologies:
MERSCOPE (a-c) and Xenium (d-f). a. UMAPs of cells after Vizgen default segmentation on the MERSCOPE dataset (left) and after Sopa
segmentation on the same dataset (right). b. Visualization of cell types on the MERSCOPE dataset after annotation with Sopa. Colours correspond
to the legend of (a). c. Three cluster separation metrics compare the quality of these two segmentations on the MERSCOPE dataset. d. UMAPs of
cells after 10X Genomics default segmentation on the Xenium dataset (left) and after Sopa segmentation on the same dataset (right). e. Visualization
of cell types on the Xenium dataset after annotation with Sopa. Colours correspond to the legend of (d). f. Three cluster separation metrics compare

the quality of these two segmentations on the Xenium dataset.

Sopa also facilitates the concurrent analysis of both RNA and proteins. To demonstrate this, we
used the Xenium dataset, which includes transcriptomic expression and protein stainings (CD20, PPY and

TROP2). CD20 is a common marker for B cells, PPY is expressed by endocrine cells, and TROP2 is

10
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Figure 4: Data resolution after Sopa segmentation over two multiplex-imaging technologies: MACSima (a-b), and PhenoCycler (c-d).
a. UMAP representing cell types on the MACSima dataset, annotated based on 61 protein stainings. b. Cells of the MACSima dataset visualized.
The colours correspond to the legend of (a). ¢. UMAP representing cell types on the PhenoCycler dataset, annotated based on 31 protein stainings.
This represents approximately 2,500,000 cells. d. Cells of the PhenoCycler dataset visualized. The colours correspond to the legend of (c).
153 overexpressed in tumour cells. 10X Genomics currently does not produce files with protein expression
154 per cell, while Sopa does support the analysis of proteins. To demonstrate, we aligned the Xenium stain-
155 ing image to the original coordinate system (see supplemental subsection 9.5), and Sopa computed the
156 CD20/PPY/TROP2 intensity within all cell boundaries. Combined with transcriptomic expression, CD20
157 staining greatly facilitates the annotation of B cells, as shown by their clear delimitation on Figure 3d and

158 Figure 3c. In the future, we expect technologies to be able to run more protein stainings in parallel with

159 transcriptomics data, making this kind of analysis even more valuable.

160 Regarding multiplex imaging, Sopa shows efficiency in (i) managing large protein staining panels
161 and (ii) segmenting millions of cells (using Cellpose). The former is exemplified by the MACSima dataset

162 with 61 stained proteins. Again, we computed staining intensity per cell, and Figure 4a demonstrates Sopa’s

11
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163 capacity to annotate high-resolution cell types. Secondly, the PhenoCycler dataset underscores Sopa’s abil-
164 ity to handle datasets of substantial size, with an area of 3 squared centimetres, containing approximately

165 2,500,000 cells. The corresponding cell resolution is shown in Figure 4c.

166 In summary, these studies demonstrate that Sopa can (i) be applied across diverse technologies, (ii)

167 efficiently handle millions of cells, and (iii) seamlessly operate on both transcriptomics and protein stainings.

168 2.6 Geometric and spatial analyses

169 Spatial omics naturally unlock multiple biological questions related to spatial organization. While some are
170 addressed in libraries such as Squidpy??, metrics related to the distance between cell-types/niches and the
171 geometric characteristics of those niches are not provided. These metrics could help in the understanding of
172 the morphology of the tumour micro-environment and its location with regards to different cell types. Such
173 statistics have been shown to be relevant for predicting disease progression or response to treatment>*>3.
174 For instance, it is known that tertiary lymphoid structures (TLS) have a good prognosis*’, but their geometry
175 has not been studied. TLS may come in different sizes, shapes, occurrences, or locations with regard to other
176 niches. Such statistics are generalized in subsection 3.8 for all cell categories (usually, cell types or niches).
177 Leveraging this spatial analysis, we demonstrate a better understanding of the dynamics among different
178 cell types and their relation to different spatial niches on the MERSCOPE liver dataset (Figure 5). To use
179 Sopa geometric analysis, we run STAGATE? to identify eight distinct niches (or “’spatial domains”) across
180 various tumour regions (Figure 5a). First, we show in Figure 5b four geometric properties related to these
181 niches: for each niche compartment, we counted their occurrence on the same slide, as well as their mean

182 area, perimeter, and roundness (see subsection 3.8 for more details). For instance, our geometric analysis

183 shows a high occurrence of vascular niches, that are small in area and perimeter, but have a high roundness.

12


https://doi.org/10.1101/2023.12.22.571863
http://creativecommons.org/licenses/by/4.0/

Cholangiocyte
Smooth muscle cells
Fibroblasts

Hepatocyte
Lymphatic endo
Endothelial

B cells

KI
]
2
S

CDA4 T cells
CD4/8 T cells
CD8 T cells
DUSP1 T cells
FOXP3 T cells
TH17 T cells
Mast cells

Cell-types (level 1)

Kupffer cells
COL1A1 Macro
SERPINAL Macro
CEBPB Macro
LRP1 Macro
TREM2 Macro
€1Q Macro
cDCL

pC2/3

CCR7 DC

pDC

°
\e

Smooth muscle cells -

available under aCC-BY 4.0 International license.

. . . Tumour
Niches (or spatial
domains) Tumour-myeloid
® Tumour Necrosis
Tumour-myeloid
® Necrosis g Lymphoid structure
£
Lymphoid structure S
: B‘{\e';u(‘t ! = Bile duct- 52
® stroma stroma .
stromal border
® \Vascular Stromal border

Vascular 28

Occurences

f. Cholangiocyte 8.

5w
Mean hop distance

Mean hop distance

Cell-types (level 1)

40 Smooth muscle cells -
Fibroblasts -
Hepatocyte -
35 Lymphatic endo il
Endothelial -
B cells
30 BAFF B cells
NK cells
u CD4 T cells
CD4/8 T cells
CD8 T cells
DUSP1 T cells k
FOXP3 T cells -
TH17 T cells -
Mast cells - SERRINAL
Mano Mac | Wac
- 10
N Kupffer ‘
| ik
i o " -0

n
omou i

Tumour-myeloid -
Necrosis
Bile duct
Stroma -

Lymphoid structure
Vascular

Stromal border

Niches

Mean Mean Mean
perimeter (mm)  area (mm2)  roundness

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.22.571863; this version posted December 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

C.

40
Tomour-myelod o I
umour-myeloid - 2
-05 " Necrosis 308
& Lymphoid structure s
2
L 0.4 s Bile duct 208
Stroma L 10 =
03 Stromal border - g
Vascular 4 =
' S0
0.2 3. 55
Q‘\ ] £3
g3
3 8%
01 D e 28
5
3 2 §
E 2 £
=] a n
<
2
Niches

Transcript count for TREM2 + C1QC

¥ TREM2
4 clac

DUSP1
LRP®Mac [CEBRB Mac Tcells B cells
c1gmac
Lymphatic
<hbc
<DE1DE2/3
Masticells
pBC
BarF CD8 Tcells
Fibro B cells
cggroxes CD4Tcells
T cells u d
E cDa/8
NK cells T8,
THY
OL1A1
Teaik WeL Mong/Mac f“'",;'c’f;'
cells
Qo Legend
‘ Niches
Cell types

Figure 5: Geometric analyses and spatial statistics on the MERSCOPE liver dataset. a. Niches (or spatial domains) after geometric conversion

to shapely polygons. b. Geometric statistics of the niches: their occurrence, perimeter, area, and roundness. ¢. Heatmap of average hop distance

between niches and niches. d. Localisation of TREM2 macrophages shown in the visualizer. The TREM2 and C1QC genes are shown, and cells

are coloured by their gene counts for the two selected genes. e. Heatmap of average hop distance between cell types and all other cell types. LRP1,

CEBP, and TREM2 macrophages show a high proximity. f. Heatmap of average hop distance between cell types and niches. The macrophage

subpopulations show heterogeneous localisation with respect to the niches. LRP1, CEBP, and TREM2 macrophages are enriched in the necrosis

niche. g. Network plot summarising the distance metrics of (c)/(e)/(f). Each node of the network corresponds either to a niche (hexagon) or a cell

type (circle). The lower the mean distance between the two nodes, the higher the weight of the edge between these two nodes. A high node-node

proximity is shown by a dark edge. Overall, it provides an overview of the colocalisation of cell types and niches in the tumour environment.
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184 Conversely, the stroma has only one occurrence and is highly “unround”, and Figure 5c shows that this
185 shape enables a ’proximity” to every other niche. Figure Sc also highlights how far the vascular niche is
186 from the necrosis. While such observations are not novel, our geometric computation allows for statistical
187 comparisons over multiple patients, which could lead to the discovery of significant geometric biomarkers

188 in large-scale studies.

189 We also utilised Sopa to assess the intricacies of the tumour complexity. We annotated the immune
190 populations of the MERSCOPE dataset in higher definition (see supplementary Figure 4a/b) and in paral-
191 lel performed a differential analysis on each niche to better understand niche complexity. This revealed a
192 distinct necrotic niche correlated with TREM2 macrophages (expressing TREM2, C1QC and CSF1R), a
193 population of macrophages reported across cancer types and often associated with bad prognosis>®>! (see
194 Figure 5d and Figure 4c). To deepen this understanding of tissue intricacies, we investigated whether these
195 TREM?2 macrophages were in close distance with any other cell type (see Figure 5e). Strikingly, this figure
196 highlighted that three macrophage populations (LRP1, CEBP, and TREM2-macrophages) exclusively inter-
197 acted with themselves. Correlating their location with the niche revealed that their co-occurrence is specific
198 to the necrotic niche (see Figure 5f). When combining all (cell-cell/cell-niche/niche-niche) interactions,
199 this affirms again the association of LRP1/CEBP/TREM2-macrophages in the necrotic niche, yet it also
200 highlights the heterogeneity of all macrophage populations and their relation to the niche in the whole tis-
201 sue environment (see Figure 5g). These combined interactions also showed that, inversely, the conventional
202 dendritic cells (DCs) are not associated with any niche environment, accentuating how some populations can
203 also be niche-independent. This observed spatial location underscores a potential reprogramming feature of
204+ macrophages based on their specific niche. While it is known that the accumulation of TREM?2 macrophages

205 has been associated with enrichment in the tumour regions*>*%4°, Sopa can provide insights for a refined
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206 understanding of a macrophage-specific tumour-associated phenotype. These examples illustrate that this
207 geometric and spatial analysis — computed with Sopa — helps better understand the tumour’s architecture

208 and its relationship with cell type phenotypes.

x» 3 Online Methods

210 3.1 Datasets used

211 Four public datasets were used to demonstrate Sopa’s abilities. First, we used a MERSCOPE dataset
212 (from Vizgen) of the human liver Hepatocellular carcinoma (HCC), called FFPE Human Immuno-oncology
213 Data Set May 2022. It is composed of a 500-gene panel, and has DAPI staining and PolyT staining.
214 It contains about 500,000 cells, depending on the segmentation. Secondly, we used a Xenium dataset
215 (from 10X Genomics) of pancreatic cancer (adenocarcinoma, Grade I-II) with the Xenium Human Multi-
216 Tissue and Cancer Panel, in parallel with corresponding H&E image, and a protein-staining image with
217 DAPI/CD20/PPY/TROP2. Note that the two latter images has to be aligned on the default main DAPI
218 image. It contains about 180,000 cells, depending on the segmentation. Thirdly, we used a PhenoCycler
219 dataset (from Akoya Biosciences) of the human tonsil (FFPE) with 31 protein stainings. It contains about
220 2,500,000 cells, depending on the segmentation. Finally, we used a MACSima dataset (from Miltenyi) of
221 head and neck squamous cell carcinoma (HNSCC) with 61 protein stainings. It contains about 40,000 cells,

222 depending on the segmentation. For more details about the accessibility of these datasets, see section 7.
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223 3.2 Metrics used and computational details

224 The Calinski-Harabasz-Score is defined as the ratio of the sum of between-cluster dispersion and of within-
225 cluster dispersion. To compute this score, we used the implementation in scikit-learn*’. The mean cluster
226 distance is the average distance between all pairwise combinations of cells between two different clusters;
227 thus, a higher distance indicates a better cluster separation. For the differential expression analysis, we
228 ran the scanpy> rank_genes_groups function, and we averaged the score of the 20 most significant genes
229 for each cell type. The time and memory benchmarks were performed on a Slurm cluster on the same
230 CPU nodes. The benchmark related to Cellpose was performed on crops of the MERSCOPE dataset, while
231 the other time and memory benchmarks were performed on a synthetic dataset (see subsection 9.6). Fig-
232 ure 2c was generated based on the corresponding 16,000-pixels-wide datasets; this involves 25 Cellpose
233 patches and 4 Baysor patches. The percentage of conflicts for Cellpose (compared to all pairs of cells) was
234 0.007%, while this percentage was 0.001% for Baysor. The UMAPs of Figure 3 and Figure 4 were generated
25 with scanpy>, using the default parameters. The MERSCOPE and Xenium datasets have been segmented
236 with Baysor, while the PhenoCycler and MACSima datasets have been segmented with Cellpose. Both the
237  MERSCOPE and Xenium datasets have been annotated using Tangram (see supplementary subsection 9.7

238 for more details).

239 3.3 Segmentation on patches

240 For computational efficiency, segmentation is performed on patches, i.e., small image regions. These patches
241 have a certain overlap, which is typically chosen to be at least twice as big as the average diameter of cells
242 (e.g., 20 microns). This way, each cell should be complete in at least one patch, which avoids artefacts

243 due to cutting cells at the border of the patches. Subsequently, any segmentation algorithm compatible
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244 with images and/or transcripts can be applied. While Cellpose'® and/or Baysor?® are commonly used, Sopa
245 does allow the integration of other segmentation algorithms. Following segmentation on individual tiles, the
246 cell boundaries are transformed into polygons using Shapely?’. Since patches overlap, some cells may be
247 segmented across different patches, leading to segmentation conflicts where multiple polygons correspond
248 to a single cell. To resolve this, we adopt a method similar to the one used in Vizgen’s preprocessing tool
219 (VPT?). Specifically, we merge pairs of cells when the intersection area exceeds half the area of the smaller
250 cell, ensuring a substantial overlap. If the intersection area is too small, indicating distinct cells, both
251 polygons are retained. When the overlap area divided by the smallest cell area is close to 1, this corresponds
252 to two almost identical cells, while a score close to 0 corresponds to two cells barely touching. On Figure 2c,
253 we studied the distribution of this score, showing that most of the conflicts are associated with a score that
254 1s either very close to 0 or very close to 1, indicating a good conflict resolution. Additionally, note that,
255 before segmentation, the user can decide to select a region of interest: this can be done interactively with

256 matplotlib®® on a low-resolution image.

257 3.4 Channel averaging

258 When dealing with image-based technologies, a crucial step involves averaging the intensity of each channel
259 within each cell. While this task can be achieved using cell masks, it proves highly inefficient in terms of
260 both time and memory consumption. To address this challenge, we adopt a chunk-level approach: (i) For
261 each chunk, we identify cell boundaries (i.e., polygons) that intersect with the chunk coordinates, then (ii)
262 we determine the bounding box for each of these cells, then (iii) we extract the image values for each of

263 these bounding boxes, and finally (iv) we rasterize the cell polygons to average the staining intensity over

*https://vizgen.github.io/vizgen-postprocessing/
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the local bounding box. In this way, we only load small arrays corresponding to each cell, instead of loading
large cell masks. This process is repeated over all chunks, and we make sure that the channel intensity for

cells located on multiple chunks is computed correctly.

3.5 Counting transcripts

GeoPandas®” is a Python library that enhances Pandas® Dataframes by incorporating support for Shapely>’
geometries. It facilitates scaling operations on geometries, making it particularly suitable for transcript
counting, where transcripts can be represented as Shapely points and cells as Shapely polygons. How-
ever, the memory requirements for such operations can be substantial, especially for spatial transcriptomics
datasets that may contain up to one billion transcripts. To optimize this process, we leverage Dask and
execute the GeoPandas3? “join” operation at the partition level to assign each point (i.e., a transcript) to a
polygon (i.e., a cell). Thus, each operation is carried out on smaller data frames, each less than 100MB in
size. Dask efficiently assigns each partition to different workers in parallel, mitigating memory concerns.

This approach proves highly effective, especially when utilizing a high-performance cluster, as Dask is

designed to seamlessly scale these processes on clusters without necessitating any code modifications.

3.6 Conversion to the Xenium Explorer

Converting a spatial-omics object into the Xenium Explorer requires the creation of six files: (i) the image,
(i1) a JSON metadata file, (iii) the cell boundaries, (iv) the cell categories (e.g., cell type or clustering),
(v) the gene counts table, and (vi) the transcripts (if they exist). The conversion is done automatically
by Sopa, but it can also be done manually via our CLL: sopa explorer write <sdata_path>

<output_path>.
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284 For image creation, a Python function is recommended in the Xenium Explorer documentation* but
285 is not optimized for large images. We updated it to support Dask®! arrays, i.e. (the image type used by
286 Sopa). Pyramids of resolutions are generated via the SpatialData library?®. To decrease memory usage,
287 each (1024x1024) image tile is generated using an iterator that only computes the minimally required data
288 from the Dask array at each tile generation. For higher pyramidal levels, where the image size decreases,

289 we allow loading an image into memory if it fits, accelerating conversion.

290 As transcripts typically cannot be loaded entirely into memory, the Xenium Explorer avoids load-
291 ing all transcripts. On low-resolution levels, only a subset of transcripts is displayed (subsampled), while
22 zooming in reveals all transcripts from the current field of view. This pyramidal transcript view ensures
203 low memory usage during visualization. The highest-resolution tiles are 250-micron-wide squares. For
204 each pyramid level, the tile width doubles, and only one-fourth of the transcripts from the previous level
205 are retained. The process stops when there is only one remaining tile that is larger than the original slide.
206 Transcript coordinates are stored as separate chunks for each tile and resolution, saved as a Zarr file>. This

297 allows loading only the transcripts corresponding to the displayed tiles when zooming in.

298 Cell boundaries are padded to have the same number of vertices (13). Polygon simplification is
299 applied to polygons with more than 13 vertices using the Shapely library, reducing the number of vertices
so0 while preserving shape geometry. A fixed number of vertices enables lighter cell-boundary storage and

so1 faster visualization.

302 Transcript counts (cell-by-gene table) use sparse array storage. One 1D array stores all non-zero

4https ://www.l0xgenomics.com/support/software/xenium-explorer/tutorials/

xe—image-file-conversion

‘https://zarr.readthedocs.io/en/stable/index.html
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303 transcript counts, another array stores the cell index for each count, and a third array is a pointer indicating
s+ the gene index for these counts. Cell categories are similarly saved using indices and corresponding pointers.

ss Once again, the file format employed is a Zarr file.

sos 3.7 Cell-type annotation

sz Transcript-based annotation. Tangram?! is used for cell-type annotation based on an annotated scRNAseq
s0s reference. To make Tangram?! scalable for large datasets, we adopt a strategy of splitting the data into “bags
s09  of cells”, with the size determined by the user. This approach ensures that each Tangram iteration operates
s10 within manageable memory limits, and we subsequently merge the results to obtain the annotation for the
a1 entire dataset. Following this, Leiden®® clustering can be applied to refine the annotation, associating each
si2  Leiden cluster with its most prevalent Tangram cell type. Additionally, we have implemented a multi-level
313 annotation feature based on Tangram to enhance the annotation of minor cell types if needed. The process
314 involves initially annotating global cell populations, followed by running Tangram on specific cell groups
315 (e.g., Myeloid cells) for a more detailed annotation (e.g., pDCs, TREM2 macrophages, etc.). All that is
st6 required is to provide multiple cell-type annotation columns in the reference scRNAseq data, and Sopa will

317 seamlessly execute the multi-level annotation.

Staining-based annotation. For non-transcriptomics data, we also provide a fluorescence-based annota-
tion. As each channel intensity is averaged inside each cell, we obtain a matrix X of shape (N, P), where
N is the number of cells, and P the number of stainings/channels. Then, these intensities are preprocessed

as in a recent article*?:

X

5Q(0.2, Xj))’

X' = (X/j)lgjgp, with X; = arcsinh(
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where X is the preprocessed matrix, arcsinh is the inverse hyperbolic sinus function, and Q(0.2, X;) is
the 20th percentile of X ;. Afterwards, we use a list of stainings corresponding to a population, and each
cell is annotated according to the channel whose preprocessed intensity is the highest. If desired, Leiden
clustering®® can be run to have a deeper annotation. Each cluster can be annotated via differential analysis

or by showing a heatmap of staining expression per cluster.

3.8 Spatial statistics

All spatial statistics are performed after computing a Delaunay graph based on the spatial location of cells.
This is done with Squidpy??, which is itself based on Scipy>®. We also prune long edges that cannot corre-
spond to a physical cell-cell interaction (typically, edges longer than 40 microns). In the paragraphs below,

N denotes the number of cells.

Cell category to cell-category statistics. One relevant spatial statistic is the computation of the mean or
minimum distance between two cell categories. This includes the pairwise distance between cell types
(e.g., the mean distance between CD8 T cells and tumour cells), as well as the distance between cell types
and niches (e.g., the distance between tumour cells and tertiary lymphoid structures). Let (Cy,...,Cx)
represent categories assigned to the N cells (e.g., cell types), and (C1, ..., C)) represent other categories

99 *99
1

(such as the niche to which the cell belongs). For instance, if cell is a T cell inside the stroma, then C; =
T cell” and C! = "’stroma”. The sets of unique categories are denoted G and G’, respectively; for instance,

G can be the set of unique cell types, and G’ can be the set of unique niches. Then, Vg € G and Vg’ € G’,

we define the mean distance between the category g and ¢’ as follow:

1
D(g,q") = - min d;;,
99)= Card(@1C = g1, 2 ity ™
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a8 where Card represents the cardinal, and d;; is the hop-distance between cell 7 and cell j. Note that
329 minﬂcjr_:g/ d;; is the distance between cell ¢ and the closest cell of category ¢’, that is how many hops
a0 are needed for cell 7 to "find” the category of interest. In practice, we compute D(g, g’) by multi-node
a3t graph traversal, starting from all nodes whose category is ¢’. In this way, for each ¢’ € G’, we compute
332 (minj =g’ d;ij)i<i<n in a single graph traversal. All the resulting distances can be stored in a matrix
s ((D(9,9")))gec,gccr and shown as a heatmap. Additionally, we combine the four matrices of distances
s (cell-type to cell-type, cell-type to niches, niches to cell type, and niches to niches) into an adjacency matrix
s3s  whose weights are the inverse of the distance. Then, the corresponding network can be plotted using the

sss netgraph*! library, as in Figure 5g, providing an interpretable visualization of the tumour microenviron-

337 ment’s structure.

sss Niche geometry statistics. When niches (or spatial domains) are performed with an algorithm such as
ass  STAGATE?’, users can decide to extract these niches as geometries to compute some relevant statistics,
a4 such as their area, perimeter, or roundness. From now on, for each cell 4, 1 < ¢ < N, C; denotes the niche
s41  to which the cell belongs, and G is the corresponding set of unique niches (i.e., for all cell ¢, C; € G). First,
sz we prune all the edges (4, j) that are in between niches from the Delaunay graph, i.e., if C; # C;. Then, we
s43 extract the connected components of the graph. Because of the way we pruned the edges, each component
s44 corresponds to one niche, but one niche can be composed of multiple components (or occurrences). For
a5 each component, we search simplices (i.e., triangles from the Delaunay graph) at the component’s border,
a4s that is, the simplices that have one or two simplex neighbours. From all the border simplices, we extract the
a7 corresponding border edges; these edges are then linked to make one or multiple rings (i.e. cyclic lines).
as If we have only one ring, it is transformed into a polygon, which corresponds to a “’full” component. If

as9 there are multiple rings, the largest ring is the outer polygon, and the others correspond to "holes” inside
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ss0 the main polygon: this can happen when some components are completely surrounded by another niche.
351 Repeating this process for all components allows the transformation of each niche g € G into multiple
32 polygons. We can then count how many occurrences (or polygons) each niche is made of, and we can

s also compute the mean area A, perimeter Ly, and roundness R, of each niche using Shapely®’. Note that

we Ry = 4712?9 € [0, 1], where higher values correspond to a “circle-like” shape. Also, for each niche, we filter
g
35 out components whose areas are less than 5% of the area of the same niche’s largest component, as they

356 usually correspond to low-quality artefacts from the clustering of niches.

s 4 Discussion

358 Advances in technology development for spatial omics hold great promise for biological discoveries. Yet,
359 to build strong and unified foundations for spatial omics data analysis, new tools are required. With this
s0  purpose in mind, we designed and built Sopa to address several crucial aspects of spatial omics analysis:
se1  versatility, reproducibility, and scalability. It offers a suite of tools — or building blocks — designed for
se2 spatial omics, which are assembled to build a pipeline for any image-based spatial omics technology. At
ses the end of the pipeline, it produces standardized outputs, which ease exploration and visualization. While
s« each company’s technology comes with its own suite of tools — which differ in terms of capabilities and
se5 functionalities — Sopa does not require learning from multiple data types and software. In addition, Sopa

se6 1 scalable from simple laptops to high-performance clusters, offering an extension of versatility for users.

367 Moreover, Sopa can easily integrate new methods and tools: as new segmentation or annotation meth-
ses  0ds are developed, they can be added to Sopa once published and validated. This incorporation into Sopa en-
se9 ables scalability and availability to any new technology with only minor configuration changes. As datasets

s70 become increasingly bigger, Sopa’s scalability is crucial. For instance, Sopa enabled the possibility of run-
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ning Baysor on data produced by the MERSCOPE, which was previously impossible due to RAM usage
and time. We also demonstrated that it significantly increases data quality compared to the default Viz-
gen and 10X Genomics segmentation tools. As shown on the MERSCOPE liver dataset, we were able
to annotate spatial-specific macrophages, particularly TREM2 macrophages, in the necrotic niche. Addi-
tionally, TREM2 has been shown to increase with HCC, suggesting a potential immunosuppressive role
of TREM2*>%°| while necrosis has been associated with worse prognosis’>>>. With the help of Sopa,
the exploration of this relationship between tissue architecture and cell phenotypes can advance biological

knowledge.

Besides higher data resolution, Sopa can also incorporate protein information into spatial analysis.
Without this information, extracting the B cell population in the Xenium data would not have been possible.
While current spatial technologies involve either a high number of proteins or transcripts, new developments
could add extra layers of information, contributing to a better understanding of biological systems. This
paper has demonstrated through various techniques that Sopa is ready to handle large multi-modal spatial

technologies.
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6 Code availability

The code developed in this article is available as an open-source Python package, accessible on Github at
https://github.com/gustaveroussy/sopa. The code used to run the benchmark is available at

https://github.com/quentinblampey/sopa_benchmark.

7 Data availability

The MERSCOPE dataset is freely available online atht tps://info.vizgen.com/merscope-ffpe-solution,
and the Xenium athttps://www.10xgenomics.com/resources/datasets/pancreatic—cancer-with-
The PhenoCycler dataset is available upon request to Akoya Biosciences, see https://www.akoyabio.

com/fusion/data-gallery/. The MACSima dataset is available upon request to Miltenyi.
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= 9 Supplementary information
so2 9.1 Choice of SpatialData as a data structure

s3  SpatialData® is a data structure developed in Python that aims to store spatial-related objects. It also pro-
so4 vides transformations between coordinate systems (for instance, between microns and pixels), lazy repre-
sos sentation for large images with Dask®' and Xarray>*, transcripts stored as Dask®' dataframes, and cells

sos polygons stored as GeoPandas®? polygons. The general structure of this data, the community support, and
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so7 integration with the scverse**

ecosystem make it a reliable tool to store spatial-omics objects in Sopa. No-
sos tably, the usage of Python is appreciated since most recent models in spatial-omics are gradually moving to

soo  Python for package development?.

st0 9.2 Integration with the scverse ecosystem

511 The scverse**

ecosystem is a Python-based suite of fundamental tools for single-cell omics data analysis.
siz This includes the data structures SpatialData®® that we use for Sopa, as well as Scanpy>? which covers a
513 wide range of use cases in single-cell analysis. Also, still in the scverse ecosystem, Squidpy?? is a Python
514 library for the analysis of spatial single-cell data such as spatial neighbourhood analysis or ligand-receptor
515 interaction analysis. Since Squidpy supports SpatialData, Sopa is also naturally integrating with Squidpy.
st6 Indeed, the pipeline output being a SpatialData object, Squidpy can operate on this, enabling all Squidpy
517 functionalities to be leveraged after Sopa, or inside the pipeline. Squidpy is complementary to Sopa since it
518 operates on processed spatial omics, contrary to Sopa, which analyses raw data. Also, the spatial statistics

s19  tools available in Sopa do not exist in Squidpy. Thus, these packages have non-overlapping and comple-

s20 mentary functionalities.

s2t 9.3 Limitation of the proprietary visualization software

sz All visualizers are exclusive to their data structure, and require an investment of time to the users for learning
ses  their proprietary software. Besides this, some of the software comes only with the purchased machine and
se4 requires a license key for use. This limits the number of users who have a collaborative engagement and are
525 not in possession of the machine. Data analysis from the MERSCOPE comes with a dedicated visualizer,

s26  called the "Merscope Visualizer”. Its input is proprietary ”.vzg” files, a non-open format. While VPT offers
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s27  the possibility to update it, a new vzg cannot be recreated for another type of technology. In addition, the
ses  update of this file requires performing again all required operations, even for minor changes, because every-
s29 thing is included in one file. Therefore, minor modifications still imply a significant runtime to be updated
s30 in the visualizer. Concerning CosMX data, they offer an online suite of tools, called AtoMx, which is cloud-
sst  based only, limiting the accessibility, especially for users wanting to use their own high-processing-cluster.
ss2 Concerning the visualizer of the PhenoCycler and MACSima, they are specific to multiplex imaging, i.e.
533 no transcript can be shown. Contrary to the other visualizers, Xenium Explorer can be both (i) downloaded
s« freely and (ii) supports open file formats. This makes it a reliable choice for conversion from SpatialData.
535 Also, it supports missing data, i.e. it will not crash when reading multiplex imaging data (from which no

53 transcripts are available).

537 9.4 Visualization with the Xenium Explorer

sss  After using Sopa, the files required by the Xenium Explorer are created. In particular, a file called “ex-
539 periment.xenium” can be opened in the Xenium Explorer. The later software is freely available for both
s40  Windows and MacOS. Sopa has been tested on versions 1.2 and 1.3 of the Xenium Explorer. We show two

s41 examples of visualization in Figure 1 (Xenium dataset, 10X) and Figure 2 (MERSCOPE dataset, Vizgen).

se2 9.5 Image alignment with the Xenium Explorer

s43  One challenge for spatial transcriptomics can be to align images from different technologies when they are
s44 run on the same sample. Most of the time, a simple affine transformation is enough to align them. Since
s45  Sopa create outputs in the Xenium Explorer, it is possible to use the alignment tool available on the software.

s46 It consists of applying some mirroring transformations, rotations, and alignment based on user-defined refer-
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Supplementary Figure 1: Xenium pancreas dataset (10X Genomics) open in the Xenium Explorer. The transcript panel is shown, with a few genes

selected. Cells are coloured by a colour gradient representing transcript count.

s47 ence points. Then, the transformation matrix can be saved via the visualizer, which will create a ”matrix.csv”

s4s  transformation file. Afterwards, we can use this transformation matrix to align the new image on our Spatial-

s49  Data object and perform any operation available in Sopa. This can be done via the Sopa CLI, by specifying

550 sopa explorer add-aligned <sdata_path> <image_path> <matrix_path>. Typically,

sst  when adding an IF image, we can compute the mean channel intensity for all cells and for all channels.

52 9.6  Synthetic dataset generation

553 In order to demonstrate Sopa’s efficiency on multiple dataset sizes, we created synthetic datasets. Let L be

ss+ the width of the image, and d be the cell density in the image. An evenly distributed grid of size (L\/g, L\/ZZ)
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Supplementary Figure 2: MERSCOPE liver dataset (Vizgen) open in the Xenium Explorer. The cell panel is shown, and the “annot_level0” category

is displayed. Colors correspond to a cell-type.

is generated, each vertex corresponding to a cell location. We apply a Gaussian noise of standard-deviation

—L_ on these cell locations to have a more natural distribution of cells. Images are generated by applying a

2Vd

Gaussian blur of standard deviation 2%/& on the pixels at the location of the cell vertices, and 100 transcripts

per cell are generated via a 2D Gaussian distribution of the same standard deviation.

9.7 Annotation of example datasets

Dataset annotation followed the procedure outlined in subsection 3.7. Automatic annotation utilized the fol-

lowing references: Liver dataset® and Pancreas dataset’. Initial global annotation involved combining major

6https ://www.immunesinglecell.org/atlas/liver

7https ://www.immunesinglecell.org/atlas/pancreas
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Supplementary Figure 3: Visual validation of the annotations. a. Heatmap of genes expression per population on the MERSCOPE liver dataset.
b. Heatmap of genes expression per population on the Xenium pancreas dataset. ¢. Protein staining per cell on the Xenium pancreas dataset after
aligning the staining image to the original Xenium image. d. Heatmap of genes expression per population on the MACSima HNSCC dataset. e.
Heatmap of genes expression per population on the Phenocycler tonsil dataset.
sz cell populations, followed by refinement using Leiden clustering 3. Subsequent in-depth analysis employed
ses manual annotation with Leiden clustering. For MACSima and PhenoCycler datasets, exclusion criteria in-
se« volved DAPI, boundary staining, and low-quality proteins to enhance resolution. Manual clustering with

ses  Leiden was then applied for population annotation. Niche calculations were performed using STAGATE?’ .

se6 Niches were annotated based on cell type abundance and tissue structure, validated by a pathologist.
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Supplementary Figure 4: Annotation of MERSCOPE liver immune cells and niche differential gene expressions (DEGs). a. Heatmap of DEGs

per immune population on the MERSCOPE liver dataset. b. UMAP of immune cells of the MERSCOPE liver dataset ¢. Heatmap of DEGs per

niche of the MERSCOPE liver dataset.
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