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ABSTRACT 31 

Upon infecting its vertebrate host, the malaria parasite initially invades the liver where it 32 

undergoes massive replication, whilst remaining clinically silent. The spatial coordination of 33 

factors regulating immune responses and metabolic zonation during malaria infection, in the 34 

true tissue context, remains unexplored. Here, we perform spatial transcriptomics in 35 

combination with single-nuclei RNA-sequencing (snRNA-seq) over multiple time points during 36 

liver infection to delineate transcriptional programs of host-pathogen interactions across P. 37 

berghei-infected liver tissues. Our data suggest changes in gene expression related to lipid 38 

metabolism in response to Plasmodium infection in the proximity of infected hepatocytes, such 39 

as the modulation of the expression of genes involved in peroxisome proliferator-activated 40 

receptor pathway signaling. The data further indicate the presence of inflammatory hotspots 41 

with distinct cell type compositions and differential liver inflammation programs along the lobular 42 

axis in the malaria-infected tissues. Furthermore, a significant upregulation of genes involved in 43 

inflammation is observed in liver tissues of control mice injected with mosquito salivary gland 44 

components, which is considerably delayed compared to P. berghei infected mice. Our study 45 

establishes a benchmark for investigating transcriptome changes during host-parasite 46 

interactions in tissues, it provides informative insights regarding in vivo study design linked to 47 

infection, and provides a useful tool for the discovery and validation of de novo intervention 48 

strategies aimed at malaria liver stage infection.  49 

  50 
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INTRODUCTION 51 

Infectious Plasmodium spp. sporozoites, transmitted by female Anopheles mosquitoes, escape 52 

the dermis after a mosquito bite and disseminates through the circulation, eventually infecting a 53 

liver hepatocyte 1. Inside the hepatocyte, the parasite forms a parasitophorous vacuole to obtain 54 

nutrients for growth and merozoite production 2,3. The parasite transitions into the symptomatic 55 

blood-stage by releasing thousands of merozoites 4 from an infected hepatocyte at around 48 56 

hours post infection (hpi) for the rodent specific Plasmodium berghei parasite 5. Notably, the 57 

liver represents a major bottleneck during the malaria life cycle and is the stage targeted by the 58 

only WHO-recommended malaria vaccine to date. Despite the limited efficacy (36% in children 59 

5-17 months of age 6) of the RTS,S vaccine, the pre-erythrocytic stages of malaria infection 60 

show substantial promise for further vaccine development.  61 

The liver serves as a critical immune organ, detecting and eliminating pathogens and toxins 62 

while simultaneously regulating energy, lipids, and protein synthesis 7,8. Its structural 63 

organization consists of lobules, including hexagonal units with portal veins at the corners and a 64 

central vein at the center, making up metabolic zones, which is commonly referred to as 65 

zonation 9,10. Labor is further divided amongst the highly diverse cell types of the liver, including 66 

parenchymal cells, such as hepatocytes and cholangiocytes which account for 70 - 80% of the 67 

total liver area, as well as non-parenchymal cells (NPCs). NPCs include liver sinusoidal 68 

endothelial cells (LSECs), which line the vasculature of the liver, as well as Kupffer cells and 69 

other immune cells, including neutrophils, mononuclear cells, T and B lymphocytes, natural killer 70 

(NK) cells and NKT cells, which are found scattered across hepatic lobules 11,12. The portal vein 71 

is considered the main entry point of gut-derived pathogens making the liver susceptible to 72 

circulating pathogens 7,12. Maintaining immune balance is crucial for liver function, as disturbed 73 

homeostasis or prolonged inflammation can lead to severe diseases like cirrhosis, non-alcoholic 74 

steatohepatitis, hepatocellular carcinoma, and liver failure 13. However, pathogens like 75 

Plasmodium may exploit the liver's immune tolerance 14.  76 
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During liver infection, P. berghei elicits a sequential transcriptional response, including 77 

interferon-mediated immune genes expressed at later parasite developmental stages in the liver 78 

15–17. Parasite development in the liver is heterogeneous and suggested to be affected by 79 

zonation, where abortive infections in periportal zones have been described 18. These findings 80 

have advanced our understanding of Plasmodium infection and hepatocyte zonation, as well as 81 

tissue-wide immune responses. However, a comprehensive map of spatial host-parasite 82 

interactions, including gene expression profiles in their true tissue context, beyond hepatocyte 83 

zonation, and including the involvement of liver resident immune cells, has been missing.  84 

In our previous work, we established the first spatial transcriptomics map of murine liver tissue, 85 

including expression by distance measurements of target structures 19. Here, we perform spatial 86 

gene expression analysis of P. berghei-infected mouse livers over multiple time points during 87 

infection (12-, 24- and 38-hours post-infection (hpi)) to map out genes and genetic pathways 88 

involved in host-parasite interactions across liver tissue sections. In this study we use a 89 

combination of the original Spatial Transcriptomics 2K arrays 19,20 (henceforth referred to as ST) 90 

and Visium (10X Genomics Inc.) 21. Spatial data resulting from ST enabled us to investigate a 91 

large sample size (n=38 tissue sections), whereas the Visium arrays (n = 8 tissue sections) 92 

allowed for increased resolution of expression analysis due to the decreased spot-size (55 µm 93 

vs. 100 µm) and shorter spot-center to center distances 21. Additionally, we performed single-94 

nuclei RNA sequencing (snRNA-seq) on the same tissue samples to identify and deconvolve 95 

cell types. This integrated approach allows for a comprehensive transcriptomics analysis of P. 96 

berghei-infected liver sections, including complete cell type information. 97 

Combining spatial transcriptomic and snRNA-seq data reveals both global and local effects of P. 98 

berghei infected liver tissue compared to controls. Notably, we identify differential expression of 99 

genes involved in lipid homeostasis at infection sites, potentially indicating a parasite immune 100 

evasion strategy. We also uncover unique tissue structures termed inflammatory hotspots 101 

(IHSs) that exhibit morphological and transcriptional distinctions and resemble focal immune cell 102 
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infiltrates observed in liver pathologies of various diseases 22–24. Based on gene expression and 103 

cell type profiles, we propose that IHSs are sites of mechanical damage due to parasite 104 

traversal or sites of successful parasite elimination. In total, this study provides a highly 105 

informative resource of spatio-temporal host tissue responses during malaria infection and 106 

development in the liver. 107 

  108 
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RESULTS  109 

 110 

Spatial Transcriptomics captures liver tissue responses induced by malaria parasite 111 

infection 112 

We used Spatial Transcriptomics (ST)19 to analyze 38 liver sections of 18 adult female mice, 113 

infected with either P. berghei parasites or uninfected An. gambiae salivary gland lysate (SGC) 114 

at different time points (12, 24, and 38 hours post-infection). We added Visium Spatial Gene 115 

Expression experiments for higher spatial resolution (see methods for details), resulting in a 116 

total of 46 spatially analyzed liver sections. The SGC sections helped control for mosquito-117 

related responses. In addition, we performed single-nuclei RNA-sequencing (snRNA-seq) to 118 

deconvolve spatial data and increase the resolution in our analyses further (Figure 1a).  119 

We first identified spatial expression patterns related to infection by performing unsupervised 120 

clustering analysis (see methods for details). We identified 12 clusters for the ST data (ST1 - 121 

ST12) (Figure 1b, Supplementary figures 1-3) and 10 clusters for the 10X Visium data (Figure 122 

1c). Four of these ST clusters - namely ST3, ST10, ST11, and ST12 - exhibited a unique pattern 123 

of gene expression influenced by the condition i.e. P. berghei infection or SGC challenge, and 124 

the collection time point (12h, 24h, or 38h) (Figure 1b, Supplementary figure 4).  125 

At 12 hpi with P. berghei, a large proportion of spots displayed ST3 expression, while SGC-126 

challenged mice showed the opposite trend, but with increasing proportions of ST3 at later time 127 

points. There was a similar observation for ST10, but with fewer associated spots. Spots 128 

belonging to ST11 show enrichment in sections infected with P. berghei parasites while spots of 129 

ST12 are missing entirely from SGC sections (Figure 1b, Supplementary figure 4).  130 

Differential gene expression analysis (DGEA) revealed that cluster ST12 is defined by 131 

upregulation of P. berghei specific transcripts (HSP70-pb, HSP90-pb, LISP2-pb), suggesting 132 

they represent parasite infected tissue sites (Supplementary figure 5, Supplementary data 1). 133 

Spots associated with clusters ST10 and ST11 exhibit an anti-correlated presence along the 134 
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infection timeline. Further, DGEA and gene ontology (GO) enrichment suggests that ST10, 135 

predominantly active during early infection, is associated with pro-inflammatory signaling (e.g., 136 

IL-17 and TNF pathways), including phagocytosis, and KEGG-terms including leishmaniasis 137 

and tuberculosis. In contrast, ST11 is enriched in pathways related to intracellular pathogen 138 

signaling (NOD-like and RIG-I-like receptor pathways), complement and coagulation cascades, 139 

and KEGG terms associated with viral infections such as COVID-19 and Hepatitis C. Moreover, 140 

most upregulated genes in ST11 are interferon-stimulated genes (ISGs), including Ifit1, Ifih1, 141 

Irf7, and Irf9 (Figure 1d, Supplementary figure 5, Supplementary data 1). 142 

 143 

Differentially expressed genes (DEGs) in the remaining clusters include ST3, which exhibits an 144 

upregulation of genes linked to acute phase response and inflammation, including the Saa 25,26 145 

and Orm  families (Supplementary figure 5, Supplementary data 1). The higher prevalence of 146 

ST3 associated spots at 12 hpi suggests an initial inflammatory stress response in the P. 147 

berghei infected liver, which is delayed in the SGC sections.  148 

Several of the identified clusters (ST1, ST4-ST5, and ST7-ST8) were previously described in 149 

healthy liver tissue and validated here 19. These clusters represent periportal, pericentral, 150 

midlobular zonation, structural integrity, and blood cell populations (Figure 1b). 151 

We identified three new clusters (ST2, ST6, and ST9) with previously undescribed expression 152 

profiles. These clusters do not show clear links to P. berghei infection or SGC challenge (Figure 153 

1b, Supplementary table 1). Cluster ST2 exhibits expression of a number of genes which are 154 

associated with pericentral localization, such as Cyp2e1 10,19,27 (Supplementary figure 5), 155 

suggesting it may represent an intermediate zone between central and portal areas, closer to 156 

the central region. We confirmed this by analyzing cluster interactions, showing that cluster ST2 157 

is enriched in spots adjacent to cluster ST4 (Figure 1e), supporting its pericentral proximity.  158 

Comparing ST and Visium data reveals significant overlap in differentially expressed genes 159 

(DEGs) across identified clusters (Supplementary figure 6, Supplementary data 1). Notably, 160 
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spots associated with P. berghei infection (ST12) are not present in every analyzed infected 161 

tissue section. This is especially the case at the early infection time points where the number of 162 

detected P. berghei infected hepatocytes per tissue section is lower, emphasizing the value of 163 

larger sample sizes for ST experiments. Further, the higher resolution of Visium compared with 164 

ST enables the distinction of spatial gene expression patterns in clusters ST2 (acute pericentral) 165 

and ST3 (acute periportal) (Figure 1c), suggesting zonation of the acute response during 166 

infection.  167 

 168 

P. berghei infection impacts both proximal and peripheral gene expression in liver tissue 169 

 170 
We found the majority of uniquely DEGs between P. berghei infected and SGC sections at 12 171 

and at 38 hpi (Supplementary figure 7, Supplementary data 2). Upregulated genes at 12 hpi in 172 

P. berghei infected tissues are linked to cellular stress responses including transcription of 173 

Saa1, Saa2, Saa3 and Lcn2 26,28. Meanwhile, most upregulated genes at 38 hpi belong to the 174 

group of ISGs including Ifit1, Ifit3, Irf7 and Usp18, which have been previously implicated with 175 

an interferon response towards Plasmodium liver infection 15,18,29 (Figure 2a, Supplementary 176 

data 2).  177 

Modules of stress response genes at 12 hpi and ISGs at 38 hpi exhibited higher expression in 178 

infected sections, but this expression was not confined to the infection sites, suggesting a 179 

widespread inflammatory response across the tissue (Figure 2b). Cluster ST11 displayed the 180 

highest expression of ISGs, indicating that the location of cluster ST11 represent foci of type I 181 

IFN response (Figure 2c). 182 

Unsupervised clustering results indicate parasite localization across the infected tissues. 183 

However, determining parasite positions solely at the RNA level proves challenging due to 184 

limited spatial resolution and low parasite transcript abundance. Despite these challenges, we 185 

can detect an increased number of parasite transcripts in the infected conditions over time 186 
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(Supplementary figure 8). In addition, robust validation of parasite positions and development is 187 

achieved through immunofluorescence (IF) staining using the parasitophorous vacuole 188 

membrane (PVM) marker UIS4 (Figure 2d).  189 

We performed a correlation analysis between the distance to the neighborhood of the parasite 190 

annotation and gene expression (see methods for details). To facilitate the interpretation of 191 

expression changes (Δ) across conditions, we centered expression at 0 µm from the parasite 192 

neighborhood. Negative correlation signifies reduced expression with increased proximity to the 193 

parasite, while positive values indicate increased expression. Notably, we observed a significant 194 

negative correlation between parasite distance and overall parasite gene expression within 400 195 

µm of parasite neighborhoods, peaking at 38 hpi (Figure 2e). 196 

Despite the significantly lower abundance of parasite transcripts compared to the host, we 197 

performed DGEA in parasite neighborhoods, aligning it with Afriat et al.'s pseudotime analysis 198 

18. This revealed a high proportion of genes from our data is linked to early latent time 199 

determined by Afriat et al. , which is possibly due to the sparse presence of P. berghei 200 

transcripts in our data (Supplementary Figure 9).  201 

Next, we determined host gene expression with positive and negative correlation to P. berghei 202 

infection sites across all time points and performed a GO term enrichment analysis (see 203 

methods for details). The GO term enrichment suggests higher expression of genes involved in 204 

chemotaxis of leukocytes, including expression of Xcl1, Fcer1g and Csf1r near the parasite at 205 

12 and 24 hpi. However, the pattern is reversed at 38 hpi, with decreased expression of the 206 

genes described above, along with other genes including, Msr1, Cd74, Csf3r, and Camk1d. 207 

These genes exhibit higher expression with increased distance from the infection site (Figure 2f-208 

g, Supplementary figure 10-13, Supplementary data 3).   209 

Leukocyte chemotaxis is crucial for inflammation and immune responses and includes the 210 

recruitment of macrophages and neutrophils to ward off invading pathogens 30,31. Our data 211 

indicate that the parasite triggers a pro-inflammatory response near the infection site but evades 212 
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phagocytosis during the late infection time-point, just prior to egress from the liver. Notably, at 213 

38 hpi, genes such as Msr1 and Cd74, which are associated with inflammation 32,33 , show 214 

positive correlation with increasing distance from the parasite (Figure 2g, Supplementary Figure 215 

12, Supplementary Data 3). Additionally, we found Insig1, which is linked to lipid homeostasis 216 

and the prevention of lipid toxicity 34, to positively correlate with parasite neighborhoods (Figure 217 

2g, Supplementary Figure 12, Supplementary Data 3). 218 

In the proximity of parasite locations, we observed higher expression of Fabp5, involved in the 219 

regulation of lipid metabolism, peroxisome proliferator-activated receptors (PPARs) and cell 220 

growth 35,36. We also identified higher expression of Mospd2, implicated in host-pathogen 221 

interactions with T. gondii 37 , and Rheb expression close to parasites (Figure 2h, 222 

Supplementary Figure 13, Supplementary Data 3). Rheb activates mTORC1, promoting 223 

proliferation and survival. Moreover, Rheb is shown to inhibit autophagy 38–40, an increasingly 224 

recognized pathway in Plasmodium liver infection 41,42.  225 

 226 

Inflammation exhibits spatial patterns in response to P. berghei and SGC challenge 227 

 228 
Several studies implicate that parasite localization in the different metabolic zones of the liver 229 

influences the developmental progress of Plasmodium in hepatocytes and suggest higher 230 

developmental success in pericentral areas 18,43,44. While our data do not indicate direct 231 

correlation between hepatic zonation and P. berghei localization in liver tissue, we observe 232 

similar trends, where parasite gene expression is higher in areas within 400 µm of 233 

computationally annotated pericentral veins (see methods for details). In addition, our data 234 

suggest that a large proportion of parasites are present and transcriptionally active in areas that 235 

we defined as intermediate, situated beyond 400 µm from both pericentral and periportal 236 

neighborhoods (Supplementary figure 14).  237 
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Our data further suggest hepatic zonation of inflammatory responses at 12 and 24 hpi (Figure 238 

1e). To further validate this observation, we investigated correlations between periportal marker 239 

genes (Cyp2f2, Sds), pericentral marker genes (Glul, Slc1a2) and differentially expressed genes 240 

in the acute periportal cluster (ST3) or the acute pericentral cluster (ST2). Marker genes of ST2 241 

(Car3, Ces3a, Ces1d, Cyp3a11, Nr1i3) correlate with gene expression of pericentral marker 242 

genes while marker genes of ST3 (Itih3, Itih4, C3, Ambp, Fgg, Qsox1, Hpx) correlated with 243 

periportal marker genes (Figure 3a), supporting the notion of hepatic zonation. Expression-by-244 

distance analysis further validated zonated expression profiles of acute periportal and acute 245 

pericentral genes (Figure 3b).  246 

Together with our observation that parasite numbers are increased in intermediate regions of 247 

hepatic zonation, this observation suggests that zonated inflammatory response to a high dose-248 

infection may influence parasite survival and assist potential clearance, both in periportal and 249 

pericentral areas.  250 

In addition to zonated inflammation, our data suggest a delayed global inflammatory response in 251 

SGC-challenged mice compared to P. berghei infection. Histological annotations reveal immune 252 

cell infiltration resembling focal structures, characterized by increased DNA signal (Figure 3c). 253 

These structures, which we have termed inflammatory hotspots (IHSs), follow the same trend as 254 

the global inflammatory response, primarily appearing at 12 and 24 hpi in the infected conditions 255 

and at lower frequency at 38 hpi. We explored gene expression profiles correlated with the 256 

distance from IHSs and found genes linked to inflammation and immune responses 257 

(Supplementary figure 15-16, Supplementary data 3). The four genes with the strongest 258 

negative correlation to IHSs include Icam1, Gbp2, Cxcl9 and Cxcl10 (Figure 3d-e). 259 

Cxcl9 and Cxcl10 are key pro-inflammatory cytokines attracting activated T cells to inflammation 260 

sites 45,46. Gbp2 exhibits antiviral activity in murine macrophages and is upregulated during 261 

infection 47. Icam1 is upregulated by several cell types, including macrophages and regulates 262 

leukocyte recruitment from circulation to inflammation sites 48. Notably, Cxcl10 upregulation in 263 
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infected hepatocytes is tied to the previously described abortive parasite phenotype 18. 264 

Additionally, IHSs seem to develop preferentially in periportal proximity (Supplementary figure 265 

17).  266 

 267 

snRNA-seq and spatial integration reveal differential expression programs and suggest 268 

enrichment of various immune cell types in the IHSs 269 

 270 
snRNA-seq enabled us to define distinct cell populations and their differential gene expression 271 

patterns across infection conditions and to further deconvolute cell type information of spatial 272 

gene expression data and estimate cell type proportions across the tissue. 273 

Comparing proportions of 14 different annotated cell types (Figure 4a, Supplementary data 4), 274 

we find 70-80% hepatocytes and 20-30% remaining cell types (Supplementary figure 18). Cell 275 

type proportions of the 4 identified immune cell clusters (Kupffer cells, monocytes and DCs, T 276 

and NK cells and B cells) showed no significant difference in proportions between infected and 277 

SGC samples, at any time point but only trends of increased proportions of Kupffer cells, 278 

monocytes and DCs in infected conditions (Figure 4b).  279 

We explored immune cell expression differences across conditions, noting upregulation of 280 

distinct genes for each immune cell type in infected livers at all time points compared to SGC 281 

controls (Figure 4c-d, Supplementary data 4). Infection-related marker genes within immune cell 282 

types exhibited higher expression at early time points (12 and 24 hpi), declining by 38 hpi. While 283 

expression in SGC controls increased over time, it did not reach the same levels as seen in 284 

infected cells (Figure 4c-d).  285 

GO enrichment analysis revealed pathways associated with phagocytosis and leukocyte 286 

migration in Kupffer cells (e.g., Marco, Msr1, Mertk, Cadm1, Itga9, Trpm2). Monocytes and DCs 287 

were enriched for antigen presentation via MHC class II (H2-Aa, H2-Eb1, H2-Ab1, Psap). 288 

Lymphoid lineage cells (B, T/NK cells) showed enrichment in leukocyte migration (Itk, Txk), 289 
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activation (Bcl11a, Mef2c for B cells; Bcl11b, Satb1 for T cells), and NK-mediated cytotoxicity 290 

(Cd247, Lck, Vav3, Prkca) (Figure 4e). Thus, GO-term enrichment analysis, along with DGEA, 291 

confirms cell types and suggests their heightened activity in P. berghei liver infection. 292 

The spatial organization of the different identified cell types across liver tissue sections 293 

confirmed the expected anti-correlated distribution of pericentral and periportal hepatocytes 294 

across tissue sections (Figure 5a, Supplementary figure 19). This was further validated by 295 

proportion-by-distance analysis (proportion-by-distance), using central or portal vein 296 

neighborhoods as the center (Figure 5b). 297 

Pearson correlations between cell type proportions and their distance to parasite neighborhoods 298 

across time points identified significant positive (indicating lower cell type proportions near the 299 

parasite) or negative (indicating higher cell type proportions near the parasite) correlations 300 

(Figure 5c). Cell types with increased proportions near the parasite included “inflammatory 301 

hepatocytes” at 12 and 38 hpi, characterized by stress response and inflammation markers 302 

(Saa1, Saa2, Saa3, Ifitm3, Ly6e) and a hepatocyte gene signature (Alb, Apoc3, Apoh, Hamp, 303 

Cyp1e2), as well as pericentral hepatocytes at 24 hpi. Conversely, cell types with decreased 304 

proportions near the parasite included B cells at 12 and 38 hpi and periportal hepatocytes at 24 305 

hpi (Figure 5c). 306 

Despite significant correlation, observed changes in cell type proportions relative to parasite 307 

neighborhood distance are small. This suggests that parasites may either have a minor impact 308 

on these cell type compositions in the liver tissue, or that only a few cells of these cell types are 309 

responsible for the observed differences. 310 

Lastly, we established Pearson correlations between cell type proportions and distances to IHS 311 

neighborhoods, jointly analyzing all time points due to the limited number of IHSs. Positive 312 

correlations were observed for pericentral hepatocytes in all conditions except 24h SGC, while 313 

negative correlations were observed cholangiocytes at 38 hpi and in controls indicating a 314 

preference for IHSs to locate far from pericentral veins and closer to periportal areas (Figure 315 
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5d). Additionally, we noted higher proportions of T/NK cells and monocytes/DCs at IHSs in early 316 

infected (12hpi) sections and 38h SGC sections (Figure 5d). These cell types play critical roles 317 

in the immune response, as they produce various cytokines and communicate through cytolytic 318 

mechanisms 49. To characterize these cell infiltrates further, we employed IF staining, revealing 319 

increased lymphocytic (CD4, CD8) and myeloid cell (CD11b) infiltration and activation over time 320 

in infected and control livers, albeit delayed in SGC-treated mice (Supplementary Figures 20-321 

22). F4/80+ macrophages within IHSs exhibited the highest abundance at 24h in infected livers 322 

and 38h in control livers (Supplementary figures 20-22). Notably, CD27 was exclusively 323 

detectable in P. berghei-infected livers at all time points, indicating heightened lymphocyte 324 

activation compared to controls (Supplementary Figures 20-22) 50. Together with previous 325 

studies, where higher proportions of extracellular matrix producing mesothelial and 326 

mesenchymal cells have been described 51,52 (Figure 5c), our results suggest that IHSs 327 

represent sites of cytolysis or injury followed by tissue regeneration. However, based on the 328 

technical limitations, further analyses, beyond the scope of this study, are necessary to validate 329 

this hypothesis in greater detail.  330 

  331 
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DISCUSSION 332 

In this study we employ Spatial Transcriptomics and snRNA-seq to explore host-parasite 333 

interactions during P. berghei liver stage development in the true tissue context. We uncover 334 

spatial elements that impact parasite growth and immune evasion, including tissue-wide and 335 

focal inflammatory responses, lipid homeostasis and liver zonation. Moreover, we evaluate the 336 

roles of myeloid and lymphoid immune cells along with other liver resident cells during malaria 337 

infection. 338 

Recent advances in next generation sequencing have greatly enhanced our understanding of 339 

multiple stages of the Plasmodium life cycle, including liver stage development 53–56. However, 340 

until recently, spatial information of host-parasite interactions in liver tissue has been missing. 341 

While Afriat and colleagues described spatio-temporal interactions at the single-cell-level 342 

between zonated hepatocytes and P. berghei parasites, comprehensive investigations within 343 

the true tissue context have been lacking. This includes potential paracrine and endocrine 344 

interactions of infected hepatocytes and surrounding cells as well as other cell types. 345 

Performing Spatial Transcriptomics with immunofluorescence staining of the intact parasites 346 

(UIS4) on the same infected tissue section, enabled us to associate transcriptional programs 347 

with parasite neighborhoods. We established correlations between gene expression involved in 348 

immune and lipid metabolism pathways near parasite neighborhoods at the late stages of 349 

infection. Moreover, we showed activation of various immune cell types during infection. Our 350 

analyses do not show a correlation of increased immune cell proportion near parasite 351 

neighborhoods, which suggests that immune cell activation may be uniformly distributed across 352 

the tissue and may effectively be evaded by successful parasites within the parenchyma.  353 

 354 

Lipids are essential for P. berghei liver stage development and are scavenged from the host 355 

cells by the parasite 57. We speculate that the changes in lipid composition at the site of 356 

infection 38 hpi may exhibit anti-inflammatory effects by restricting recruitment of effector cells 357 
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of the innate immune response to the site of infection 58–60. Our data indicate that there are no 358 

increased cell type proportions of immune effector cells in proximity to parasite positions at 38 359 

hpi. Interestingly, our data show higher expression of Fabp5 close to parasite locations, Fabp5 360 

is known to selectively enhance the activities of PPARß/∂ and PPARγ 36. It has previously been 361 

described that PPARs reduce inflammation by exhibiting anti-inflammatory potential 61–64. Thus, 362 

induced upregulation of expression of Fabp5 may exhibit a lipid metabolism-dependent evasion 363 

strategy induced by the parasite. Meanwhile, Insig1 expression increases with increased 364 

distance from the parasite. The absence of Insig1 enhances lipid and cholesterol synthesis 34, 365 

potentially providing more lipid and cholesterol for the parasite in its proximity. Further, our 366 

analyses show upregulation of expression of the autophagy antagonist Rheb 39,65 in close 367 

proximity to parasite locations in the tissues. This observation suggests that downregulation of 368 

Rheb may assist P. berghei to evade elimination of host autophagy by limiting autophagosome 369 

formation 39.  370 

 371 

Upon entering the liver, the parasite crosses the sinusoidal layer and continues to traverse 372 

multiple hepatocytes before invading a final hepatocyte, where it initiates replication 82–84. The 373 

reason for this traversal is still elusive 66 and detailed characterization of the interactions 374 

between traversed hepatocytes and immune cell responses remains a subject of investigation. 375 

Potentially, IFN-mediated immune responses are triggered by both traversed and infected cells, 376 

or result from paracrine crosstalk among infected, traversed, and neighboring immune and 377 

parenchymal cells. The high dose of sporozoites in our study may in part explain the global 378 

activation of previously reported upregulation of ISGs during infection progression 15–17.   379 

We find that tissue-wide pro-inflammatory responses occur with a delay of 12 to 26 hours (at 380 

time points 24 and 38 post-challenge) in tissue sections from SGC mice. This delayed response 381 

is likely triggered by proteins from mosquito salivary glands and residual bacterial material in the 382 

saliva.  383 
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Future studies could further explore this finding using lower numbers of parasites, more in line 384 

with a natural infection and comparing different infection methods including increasing number 385 

of exposures to mosquito bites. It would also be interesting to compare how overall innate 386 

immune responses towards salivary gland components differ from responses to sporozoites 387 

beyond 38 hours post challenge.  388 

Furthermore, we identified inflammatory hotspots (IHSs) with distinct tissue morphology, 389 

showing upregulated pro-inflammatory gene signatures nearby. This is supported by increased 390 

proportions of various immune cell types and cell surface markers near IHSs. These infiltrates, 391 

resembling responses to local inflammation, can have diverse cell compositions and effects on 392 

liver health, often involving immune response and regeneration 23,24. IHSs have been observed 393 

in viral diseases like rubella, COVID-19, and Epstein-Barr Virus, which affect the liver without 394 

causing significant liver disease, usually resulting in subclinical involvement and self-limitation 395 

22,23. To our knowledge, these focal inflammatory infiltrates or IHSs have not previously been 396 

reported in the context of malaria. However, they might be of clinical relevance as it has been 397 

suggested that liver injury in clinical malaria is an overlooked phenomenon 67. We do not 398 

observe co-localization of IHSs with parasites stained with UIS4 antibodies, UIS4 has been 399 

ascribed a critical role in avoiding parasite elimination, suggesting the parasites we detect are 400 

still intact 68. Immune infiltration could be triggered by the parasite’s initial traversal through 401 

hepatocytes during early invasion, or by parasites that failed to successfully invade or develop 402 

early during the liver stage. Moreover, the location of the IHSs in close proximity to portal veins 403 

further highlights the importance of liver zonation for parasite survival, previously reported by 404 

Afriat et al. 18. 405 

In our proposed model, malaria parasites not only resist pro-inflammatory host signals but may 406 

actively promote inflammation attenuation in their vicinity, thereby limiting the infiltration of 407 

effector immune cells. This evasion strategy involves the modulation of lipid homeostasis, 408 

including PPAR signaling and a limitation of autophagy. IHSs may form due to parasite traversal 409 
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after entering the liver parenchyma or influence parasite elimination earlier than 12 hpi, affecting 410 

developmental success of the parasite (Figure 6). However, additional studies are necessary to 411 

fully characterize their role during malaria development in the liver. 412 

In summary, our study provides a detailed spatiotemporal atlas of the host-parasite interplay 413 

during Plasmodium development in the liver, at the tissue level. Malaria eradication efforts 414 

require more extensive knowledge of the underlying biology in de novo immunization efforts. To 415 

this end, high-resolution spatial omics applications will be indispensable for understanding the 416 

coordination of immune priming in events of partial or full immunization. Future studies will also 417 

be necessary to broaden our understanding of the involvement of lipid metabolism, autophagy 418 

and IHSs reported in our study, which may provide novel avenues of combating malaria disease 419 

prior to reaching the symptomatic blood-stage infection. 420 

  421 
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METHODS  422 

Ethical statement 423 

The study was performed in strict accordance with the recommendations from the Guide for 424 

Care and Use of Laboratory Animals of the National Institutes of Health (NIH). The animal use 425 

was done in accordance with the National Institute of Allergy and Infectious Diseases Animal 426 

Care and Use Committees (NIAID ACUC), proposal LMVR 22. 427 

 428 

P. berghei infections and sample collection  429 

Challenges with Plasmodium berghei ANKA (Anka 2.34) sporozoites or salivary gland lysate 430 

(uninfected Anopeheles stephensi) in female 8-9-week-old C57BL/6 mice were performed by 431 

tail-vein injection. First, P. berghei infected A. gambiae or A. stephensi salivary glands were 432 

collected 18-21 days post infection dissected to collect sufficient sporozoites for each challenge. 433 

The corresponding number of salivary glands were collected from non-infected mosquitoes for 434 

control challenges with salivary gland lysate. Sporozoites and lysate were pelleted by 435 

centrifugation, washed and stored in cold PBS, where the final concentration of sporozoites was 436 

determined. Sporozoites were diluted to reach a total number of 300,000 - 400,000 sporozoites 437 

for each infection. After tail vein injection, livers were collected after 12, 24 or 38 hours.  438 

Collection and preparation of liver samples 439 

The livers were collected, and lobes were separated. Each lobe was segmented so cryosections 440 

would fit on the 6,200 x 6,400 µm areas of the Codelink-activated microscope or Visium slides 441 

and frozen in -30°C 2-Methylbutane (Merck, cat.no.: M32631-1L). For spatial experiments, the 442 

frozen liver samples were embedded in cryomolds (10x10 mm, TissueTek) filled with pre-chilled 443 

(4°C) OCT embedding matrix, frozen (CellPath, cat.no.: 00411243) and sectioned at 10 µm 444 

thickness with a cryostat (Cryostar NX70, ThermoFisher). Each subarray on the slide is covered 445 
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with 1934 spots with a 100 µm diameter, containing millions of uniquely barcoded 446 

oligonucleotides with poly-T20 VN capture regions per spot (barcoded slides were manufactured 447 

by 10X Genomics Inc). The full protocol, including sequencing and computational analysis was 448 

performed for a total of 38 sections of which 23 were infected with Plasmodium berghei 449 

parasites and 15 challenged with mosquito salivary gland lysate. We analyzed 4 biological 450 

replicates for infected samples collected after 12h and 24h and 2 biological replicates for 451 

infected samples after 38h. For controls, we analyzed livers for 3, 3 and 2 biological replicates, 452 

respectively. Samples were selected based on sectioning and RNA quality.  453 

 454 

Immunofluorescence staining of spatial slides 455 

We performed a modified version of the Spatial Transcriptomics workflow according to Ståhl et 456 

al. and Vickovic et al., respectively 69,70. After placing the sections on the ST or Visium slides, 457 

they were fixed for 10 minutes using 4% formaldehyde in PBS. Then, they were dried with 458 

isopropanol and parasites were labeled using immunofluorescence as read-out. In short, after 459 

fixation, a blocking step using 5% Donkey-serum (Merck, cat.no: D9663-10ML) in PBS for 15 460 

minutes was performed. Washing steps were performed using a 3 times concentrated SSC-461 

buffer in deionized and RNAse-free water and RNAse Inhibitor (SUPERase•In™ RNase 462 

Inhibitor, Thermo Fisher Scientific, cat.no: AM2694), further referred to as blocking buffer. 463 

Staining of parasites was performed using an antibody against Plasmodium berghei UIS4 464 

produced in goat (Nordic BioSite, cat.no: LS-C204260-400) in a concentration of 1:100 in 1:5 465 

concentrated blocking buffer for 20 minutes at room temperature. The sections were washed 466 

and fluorescently labeled using a Donkey anti-Goat IgG (H+L) Highly Cross-Adsorbed 467 

Secondary Antibody, Alexa Fluor Plus 594 (Thermo Fisher Scientific, cat.no: A32758) at a 468 

concentration of 1:1000 in 1:5 concentrated blocking buffer for 20 minutes at room temperature 469 

and in the dark. The slides were washed and DNA was stained using 1:1000 concentrated DAPI 470 

solution (Thermo Fisher Scientific, cat.no:62248) for 5 minutes at room temperature and in the 471 
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dark. Then, slides were mounted with 85% glycerol (Merck Millipore, cat.no.: 8187091000) 472 

including RNAse Inhibitor (SUPERase•In™ RNase Inhibitor, Thermo Fisher Scientific, cat.no: 473 

AM2694) and covered with a coverslip. Images were acquired at 20x magnification, using the 474 

Zeiss AxioImager 2Z microscope and the Metafer Slide Scanning System (Metasystems). 475 

Histological staining and annotations 476 

After immunofluorescence staining, a histological staining with Mayer's hematoxylin (Dako, 477 

cat.no.: S330930-2) followed by Eosin (Sigma-Aldrich, cat.no.: HT110216-500ML), diluted in 478 

Tris/acetic acid (pH 6.0) was performed. The stained sections were mounted with 85% glycerol 479 

(Merck Millipore, cat.no.: 8187091000) and covered with a coverslip. Bright field images were 480 

acquired at 20x magnification, using Zeiss AxioImager 2Z microscope and the Metafer Slide 481 

Scanning System (Metasystems). The liver images were assessed by an expert liver histologist 482 

(NVH) who annotated the portal (PV) and central veins (CV), based on the presence of bile 483 

ducts and portal vein mesenchyme (PV) or lack thereof (CV). When the quality of the sample 484 

did not allow for annotation, “ambiguous vein” was reported. Moreover, regions of apparent cell 485 

infiltration were annotated based on increased nuclear signal.  486 

Permeabilization, cDNA synthesis, tissue removal and probe release 487 

Next, the slides were put in slide cassettes to enable separated on-array reactions in each 488 

chamber as described previously 70. Each tissue section was pre-permeabilized using 489 

Collagenase I for 20 minutes at 37°C. Permeabilization was performed using 0.1% pepsin in 0.1 490 

M HCl for 10 minutes at 37°C. cDNA synthesis was performed overnight at 42°C. Tissue 491 

removal from the arrays prior to probe release was performed using Proteinase K in PKD buffer 492 

at a 1:7 ratio at 56°C for 1 hour. Lastly, the surface probes were released and cDNA library 493 

preparation followed by sequencing was performed. 494 
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cDNA library preparation and sequencing 495 

Released mRNA-DNA hybrids were further processed to generate cDNA libraries for 496 

sequencing. In short, the 2nd strand synthesis, cDNA purification, in vitro transcription, amplified 497 

RNA purification, adapter ligation, and post-ligation purification, were done using an automated 498 

MBS 8000+ system 71. To determine the number of PCR cycles needed for optimal indexing 499 

conditions, a qPCR was performed. After determination of the optimal cycle number for each 500 

sample, the remaining cDNA was indexed, amplified and purified 72. The average length of the 501 

indexed cDNA libraries was determined with a 2100 Bioanalyzer using the Bioanalyzer High 502 

Sensitivity DNA kit (Agilent, cat.no.:5067-4626), concentrations were measured using a Qubit 503 

dsDNA HS Assay Kit (Thermofisher, cat.no:Q32851) and libraries were diluted to 4nM. Paired-504 

end sequencing was performed on the Illumina NextSeq500 (v2.5 flow cell) or NextSeq2000 505 

platform (p2 or p3 flow cell), resulting in the generation of 80 to 150 million raw reads per 506 

sample. To assess the quality of the reads FastQC (v 0.11.8) reports were generated for all 507 

samples. 508 

Spot visualization and image alignment 509 

The staining, visualization and imaging acquisition of spots printed on the ST slides were 510 

performed. Briefly, spots were hybridized with fluorescently labeled probes for staining and 511 

subsequently imaged on the Metafer Slide Scanning system (Metasystems). The previously 512 

obtained brightfield of the tissue slides and the fluorescent spot images were then loaded in the 513 

web-based ST Spot Detector tool 73. Using the tool, the images were aligned and the spots 514 

under the tissue were recognized by the built-in recognition tool. Spots under the tissue were 515 

then slightly adjusted and extracted.  516 

 517 
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Visium experiments 518 

Spatial experiments with increased resolution were carried out using the 10X Visium Spatial 519 

Technology (10X Genomics, cat.no: 1000187) according to a slightly modified version of the 520 

protocol provided by 10X Visium. In brief, immunofluorescent staining of P. berghei parasites 521 

using an anti-UIS4 antibody and DNA using DAPI was performed as described above. After 522 

fluorescent imaging, Hematoxylin & Eosin (H&E) staining and brightfield imaging, the tissue was 523 

permeabilized for 30 minutes using the permeabilization buffer provided by the reaction kit. 524 

Then cDNA synthesis, template-switching and second strand synthesis were performed 525 

according to the protocol. Library generation was performed by amplification and purification of 526 

resulting products from the previous steps. Fragment traces were determined with a 2100 527 

Bioanalyzer using the Bioanalyzer High Sensitivity DNA kit (Agilent, cat.no.:5067-4626), 528 

concentrations were measured using a Qubit dsDNA HS Assay Kit (Thermofisher, cat.no: 529 

Q32851) and libraries were diluted to 2nM and pooled for sequencing. Sequencing was 530 

performed using a NextSeq2000 (p2 or p3 flow cell) instrument resulting in approximately 80 531 

million reads per sample.  532 

 533 

Single-nuclei RNA-sequencing (snRNA-seq) 534 

Nuclei were isolated from snap frozen liver tissue with a sucrose gradient as previously 535 

described 74. Briefly, frozen liver tissue was homogenized using the Kimble Dounce grinder set 536 

to 1 ml in the homogenization buffer with RNAse inhibitors. Homogenized tissue was then 537 

subjected to density gradient (29% cushion – Optiprep) ultracentrifugation (7700rpm, 4°C, 30 538 

mins). Nuclei were resuspended and 2 biological replicates of each condition were pooled 539 

before nuclei were stained using DAPI. Intact nuclei were FACS-purified from remaining debris. 540 

A total of 60000 nuclei were sorted into BSA coated tubes. The sorted nuclei were pelleted by 541 

centrifugation for 3 mins at 400g and 5 mins at 600g, sequentially. Nuclei were then 542 

resuspended in PBS with 0.04% BSA at ∼1000 nuclei/µl. Nuclei suspensions (target recovery of 543 
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20000 nuclei) were loaded on a GemCode Single-Cell Instrument (10x Genomics, Pleasanton, 544 

CA, USA) to generate single-cell Gel Bead-in-Emulsions (GEMs). Single-cell RNA-Seq libraries 545 

were prepared using GemCode Single-Cell 3�Gel Bead and Library Kit (10x Genomics, V2 and 546 

V3 technology) according to the manufacturer’s instructions. Briefly, GEM-RT was performed in 547 

a 96-Deep Well Reaction Module: 55°C for 45 min, 85°C for 5 min; end at 4°C. After RT, GEMs 548 

were broken down and the cDNA was cleaned up with DynaBeads MyOne Silane Beads 549 

(Thermo Fisher Scientific, 37002D) and SPRIselect Reagent Kit (SPRI; Beckman Coulter; 550 

B23318). cDNA was amplified with 96-Deep Well Reaction Module: 98°C for 3 min; cycled 12 551 

times: 98°C for 15s, 67°C for 20 s, and 72°C for 1 min; 72°C for 1 min; end at 4°C. Amplified 552 

cDNA product was cleaned up with SPRIselect Reagent Kit prior to enzymatic fragmentation. 553 

Indexed sequencing libraries were generated using the reagents in the GemCode Single-Cell 554 

3� Library Kit with the following intermediates: (1) end repair; (2) A-tailing; (3) adapter ligation; 555 

(4) post-ligation SPRIselect cleanup and (5) sample index PCR. Pre-fragmentation and post-556 

sample index PCR samples were analyzed using the Agilent 2100 Bioanalyzer. 557 

snRNA-seq libraries were pooled in equal ratios and loaded on a S4 lane Illumina NovaSeq 558 

6000, resulting in 2500 - 3000 million read-pairs. Sequencing was performed at the National 559 

Genomics Platform (NGI) in Stockholm, Sweden. Spatial (Spatial Transcriptomics, Visium) and 560 

snRNA-seq data were aligned to a combined custom reference genome combining Mus 561 

musculus (GRCm38.101) and Plasmodium berghei (PlasmoDB-48_PbergheiANKA) using 562 

stpipeline 75(v.1.8.1) and STAR (v.2.6.1e), spaceranger (v.2.0.0) or cellranger (v.3.0.0), 563 

respectively.  564 

 565 

Immunofluorescence staining of inflammatory hotspots 566 

We performed IF staining of P. berghei infected and control (salivary gland lysate challenged) 567 

tissues after 12, 24 and 38 hpi. For each experiment, three consecutive tissue sections of the 568 

same tissues utilized for spatial as well as single nuclei experiments were placed on spatially 569 
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separated positions of a Super frost slide (VWR, cat.no: 631-0108). After placement, the tissue 570 

was fixed using pre-cooled methanol and incubated for 15 minutes at -20°C. Tissue sections 571 

were permeabilized using 0.2% TritonX-100 (Sigma, cat.no: T8787) in PBS for 5 minutes and 572 

blocked for 15 minutes using 5% donkey-serum in PBS. After blocking, mouse specific primary 573 

antibodies were applied in different combinations across the three sections. These included i) 574 

10 µg/ml monoclonal CD4 (Thermo Fisher, cat.no: MA1-146, clone GK1.5), and 10 g/ml 575 

monoclonal CD8 (Thermo Fisher Scientific, cat.no: MA5-29682, clone 208), ii) 1:100 diluted 576 

monoclonal F4/80 (Thermo Fisher Scientific, cat.no: MA5-16624, clone CI:A3-1), and 2 µg/ml 577 

monoclonal CD27 (Thermo Fisher Scientific, cat.no: MA5-29671, clone 12) and iii) 10 µg/ml 578 

monoclonal CD11b (Thermo Fisher Scientific; cat.no: 53-0112-82, clone M1/70) and 5 µg/ml 579 

monoclonal CD11c (Thermo Fisher Scientific, cat.no: 42-0114-82, clone N418). All antibodies 580 

were incubated with the tissue for 60 minutes at room temperature. Tissue sections were 581 

washed three times with PBS and corresponding secondary antibodies were applied. These 582 

included i) Donkey anti-Rat IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa 583 

FluorTM 488, InvitrogenTM (cat.no: A21208) ii) Donkey anti-Rabbit IgG (H+L) Highly Cross-584 

Adsorbed Secondary Antibody, Alexa Fluor™ 555 (cat.no: A-31572), iii) Donkey anti-Rat IgG 585 

(H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa FluorTM 647 (cat.no: A78947) and 586 

iv) Donkey anti-Rabbit IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa FluorTM 587 

Plus 647 (cat.no: A32795). All antibodies were incubated with the tissue for 30 minutes at room 588 

temperature. Tissue sections were washed three times with PBS and DNA was stained using 589 

(1 µg/ml) DAPI (Thermo Fisher Scientific, cat.no: 62248) for 5 minutes at room temperature. 590 

Tissue sections were mounted using Diamond antifade mounting medium (Thermo Fisher 591 

Scientific, cat.no: S36972) and imaged. To select inflammatory hotspots which occur in all three 592 

consecutive sections, a tiled scan of the DNA counterstain was performed at 20X magnification. 593 

Selected hotspots were then imaged at 40X magnification using the same settings across each 594 
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tissue section. Imaging analysis was performed using ImageJ, were brightness and contrast 595 

were adjusted for visualization purposes and composite creation. 596 

  597 
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Computational analysis  598 

 599 

Filtering, normalization, integration, dimensionality reduction and unsupervised 600 

clustering 601 

Main computational analysis of spatial read-count matrices (ST and Visium) was performed 602 

using the STUtility package (v 0.1.0) 76 in R (v 4.0.5). The complete R workflow can be 603 

assessed and reproduced in R markdown (see code availability section). Analysis of snRNA-604 

seq data was in large parts performed using the Seurat package (v 4.1.1). For ST and Visium 605 

data only protein coding genes were considered for analysis and genes of the major urinary 606 

protein (Mup) family were filtered due to the large differences in expression between individual 607 

mice 18,77. Gene esxpression was normalized, accounting for differences sequencing depth and 608 

circadian effects caused by the dissection time point. Subsequently, normalized expression data 609 

was scaled and highly variable genes were selected using the SCTransform function in Seurat. 610 

All samples, biological replicates and dissection time points were further corrected for batch 611 

effects using the harmony package (v.0.1.0) 78. Thereafter, the first 20 harmony vectors were 612 

subjected to shared-nearest-neighbor (SNN) inspired graph-based clustering via the 613 

“FindNeighbors” and “FindClusters” functions. For modularity optimization, the Louvain 614 

algorithm was used and clustering was performed at a resolution of 0.35 for clustering 615 

granularity. 616 

 617 

Visualization and spatial annotation of clusters  618 

To visualize the clusters in low-dimensional space for snRNA-seq and spatial data as well as 619 

the spot coordinates under the tissue for spatial data, non-linear dimensionality reduction was 620 

performed using UMAP. Visualization and annotation of identified clusters in UMAP space 621 

(snRNA-seq, ST, Visium) on spot coordinates as well as superimposed on the H&E images (ST, 622 

Visium) was performed using the Seurat and STUtility package. 623 
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  624 
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Differential gene expression analysis and gene modules in space  625 

To investigate changes in gene expression between selected groups, differential gene 626 

expression analysis (DGEA) was performed. Groups for comparison were selected in a 627 

supervised (tested conditions) or unsupervised fashion (clustering). Then the FindAllMarkers 628 

function of the Seurat package was employed to identify all differentially expressed genes 629 

(DEGs) between all investigated groups, including genes with a logarithmic fold change above 630 

0.25. Only DEGs below an adjusted p-value of 0.05 were considered for further downstream 631 

analysis. To investigate differentially expressed genes between two groups only, the 632 

FindMarkers function of the Seurat package was employed using the same thresholds as 633 

described. In both cases a Wilcoxon-rank sum test was performed to identify differentially 634 

expressed genes.  635 

Functional enrichment analysis 636 

Functional enrichment of genes of interest was performed using the grpofiler2 package (v.1.0). 637 

The algorithm defined in the “gost” function takes a list of genes and associates them with 638 

known functional information sources, establishing statistically significant enriched terms. This 639 

package is able to take data from mouse and several other organisms into account to perform 640 

the analysis, but lacks data of P. berghei or other Plasmodium species. Therefore, functional 641 

enrichment analysis was only performed for Mus musculus genes. We investigated functional 642 

enrichment from the KEGG and Gene Ontology (GO) database sources and significance was 643 

adjusted using g:SCS (Set Counts and Sizes) 79. Visualization was performed for the most 644 

highly enriched terms and enrichment scores are represented as the negative log10 algorithm of 645 

the corrected p-value. 646 

 647 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.22.573046doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.573046
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 30

Cluster Interaction Analysis  648 

To approximate how expression-based clusters interacted in the tissue space, a simple 649 

interaction analysis was carried out as described in detail previously 19. Briefly, the cluster 650 

identity or the four nearest-neighboring spots within a distance threshold were registered, to 651 

ensure spots located in the actual physical neighborhood were included in the count, as this 652 

assumption might not hold for spots at the edge of the tissue. A binomial test was performed to 653 

test for significant over (or under) representation (Cluster interactions) and resulting values were 654 

visualized in a heatmap and grouped hierarchically, using complete linkage clustering, in the 655 

seaborn package (v.0.12.2) in python (v 2.7.18). Based on the fact that clusters vary 656 

considerably in size, a random permutation of cluster positions was performed to investigate 657 

which interactions are likely to be occurring by chance.  658 

Features as a function of distance 659 

To investigate the relationship between features of interest (gene expression, proportion values) 660 

and the distance to a structure of interest (vasculature, parasites, inflammation hotspots) in the 661 

tissue sections, the values of the features of interest were modeled as a function of the distance 662 

as previously described 19. In short, brightfield or fluorescence images were used to create a 663 

mask for each structure of interest. As the position of the capture locations relate to the pixel 664 

coordinates in the H&E images, the created masks were used to computationally measure the 665 

distance from each spot to each selected structure. The distance to a selected structure was 666 

defined as the minimal euclidean distance from the center of each spot to any pixel of the union 667 

of all masks.  668 

 669 

Expression-by-distance analysis and distance-based correlation analysis 670 
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After determining distances of spots (capture locations), the distance to each structure of 671 

interest was associated with each spot and used for downstream analyses, and visualization 672 

was adapted using similar to previously reported visualization approaches 19.  673 

To investigate the relationship between a structure of interest and gene expression in its 674 

neighborhood across sections, Pearson correlations between the distance to the structure and 675 

expression values of each gene in the spatial gene expression data were performed. Spots 676 

within a threshold of 400 - 800 µm from the region of interest were selected. This was based on 677 

the size of the region of interest, with a threshold of 400 µm for smaller structures (e.g. 678 

parasites) and a threshold of 800 µm for larger structures (e.g. inflammation hotspots). After 679 

calculating correlations between distance and gene expression values, only adjusted 680 

(Bonferroni correction) significant correlations were selected (p <0.05) further.  681 

Visualization of spatial relationships was carried out by plotting expression of correlated genes 682 

defined as Y over the distance to the structure of interest defined as X. To better capture trends 683 

of each relationship, loess smoothing � ~ � was applied to the data, similar as previously 684 

described 19. To better compare differences between different investigated conditions in some 685 

cases, the data were transformed to center around 0 for each condition of interest. This was 686 

performed by subtracting the fitted value of the loess regression at the minimal distance from 687 

each value in the expression data, maintaining the difference in expression ∆Y along the 688 

distance axis X. The ribbons around the smoothed curve represent the standard error (SE) as 689 

given by the loess algorithm.  690 

Expression-based classification  691 

Expression-based classification was performed for central and portal veins as previously 692 

described 19 using the hepaquery package (v.0.1). In brief, neighborhood expression profiles 693 

were created as described above (features as a function of distance) setting a threshold of 142 694 

pixels, which refers to 400 µm and represents the longest distance between adjacent spot 695 
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centers in the same row on an ST slide. After the formation of the neighborhoods, their 696 

associated weighted profiles for each gene were assembled. For each neighborhood, 697 

expression profile class label predictions were performed employing a logistic regression using 698 

the LogisticRegression class from sklearn’s (v 0.23.1) linear_model module in python. A l2 699 

penalty was used (regularization strength 1), the number of max iterations was set to 1000, 700 

default values were used for all other parameters. Performance validations were carried out 701 

using multiple levels of cross-validation as previously described 19. To prevent overfitting in the 702 

applied model due to the limited amount of structures, a reduced set of genes was used for the 703 

classification 19.  704 

 705 

Single cell analysis and cell type annotation  706 

 707 
The raw sequencing data files (.bcl files) were demultiplexed into FASTQ files using cellranger 708 

mkfastq (Cell Ranger v3.1.0, 10x Genomics) with default parameters. The demultiplexed reads 709 

were aligned to a custom genome of reference using the CellRanger (10x Genomics) pipeline. 710 

The genome of reference was created by combining the genomes of Mus musculus 711 

(GRCm38.101) and Plasmodium berghei (PlasmoDB-48_PbergheiANKA). This resulted in an 712 

expression matrix for each of the six sequenced samples (12, 24 and 38 hours infected and 713 

salivary gland control liver samples) which were individually analyzed. The quality control and 714 

clustering steps were performed using the seurat package (v.4.3.0) and following the standard 715 

workflow. The quality control pipeline involved (i) removing genes that were detected in fewer 716 

than 10 cells, (ii) filtering out cells with less than 200 genes and more than 5000 genes, (iii) 717 

excluding cells with over 15% mitochondrial transcripts and, (iv) discarding all mitochondrial and 718 

ribosomal genes from the expression matrix.  719 

Doublets in the data were removed using DoubletFinder (v 2.0.3) with a pk of 0.005, 0.22, 0.24, 720 

0.28 or 0.3, depending on the sample. Following this, the data was normalized and scaled using 721 
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SCTransform (v0.3.5) with default parameters. The high variable genes needed to perform a 722 

principal component analysis (PCA) were identified using the FindVariableFeatures with the ‘vst’ 723 

method.  724 

After initial filtering and doublet removal, gene expression of all investigated conditions were 725 

integrated using the harmony package (v0.1.0), defining the sample origin as a grouping 726 

variable. The FindNeighbors and FindClusters functions were used for clustering, and the 727 

Louvain algorithm was employed to cluster the cells with a resolution of 0.3 granularity. 728 

Subsequently, cell type annotations were performed on the integrated data using a twofold 729 

strategy. First, an automatic cell type prediction was performed using scmap (v.1.16.0). For this, 730 

the top 500 most informative features for annotation were calculated using the selectFeatures 731 

function and the steady-state annotated mouse liver data set ‘Mouse StSt’ , generated by 732 

Guilliams et al. 80 as a reference. Then, the scmap-cell pipeline was used to project the cell-type 733 

labels from the reference dataset onto our data. Following automatic annotation, a manual 734 

annotation step based on canonical marker genes was carried out which involved confirming 735 

and refining the obtained results from the automated annotation.  736 

To calculate cell type proportions of immune cells (T and NK cells, B cells, monocytes and DCs 737 

and Kupffer cells) across conditions, the annotated cell data for infected samples (12, 24, and 738 

38 hpi) and for control samples (12, 24 and 38 SGC) were each analyzed across infection time 739 

points. The average number of cell types of interest for the infected or control groups were 740 

calculated, and their proportions were obtained by dividing the cell type count by the total 741 

number of cells of the infected samples or the control samples, respectively. To assess the 742 

significance of differences between the three infected (12, 24, and 38 hpi) and the three control 743 

samples (12, 24 and 38 SGC), a two-sample t-test was performed using base R (v4.2.2). 744 

Single cell data integration (stereoscope) 745 
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We integrated our annotated snRNA-seq data using stereoscope (v.0.3.1), a probabilistic 746 

method designed for spatial mapping of cell types 81. In short, stereoscope models both single 747 

cell and spatial data as negative binomial distributed, learns the cell type specific parameters 748 

and deconvolves the gene expression in each spot into proportion values associated with the 749 

respective cell type.  750 

Stereoscope was run with 50,000 epochs and a batch size of 2048 for both sn and st modalities 751 

using subsetted snRNA-seq data and a list of highly variable genes. The annotated snRNA-seq 752 

expression matrix was subsetted to include a minimum of 25 and maximum of 250 cells per cell 753 

type, which were selected randomly. The list of highly variable genes was extracted from 754 

snRNA-seq data using Seurat (v.4.3.0) by first normalizing the data (NormalizeData, default 755 

parameters) and then identifying the highly variable genes (FindVariableFeatures, 756 

selection.method = "vst", features = 5000). 757 
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FIGURE LEGENDS 801 

Figure 1 | Spatial organization of livers infected with P. berghei parasites or SGC. 802 

a) Schematic representation of experimental design of this study. Livers were collected at 12, 24 803 

or 38 hpi with P. berghei parasites or salivary gland lysate of uninfected mosquitoes (SGC) 804 

(left). Immunofluorescence staining of the parasite and ST or 10X Visium spatial technology 805 

protocols were performed. Simultaneously, droplet-based single nuclei RNA sequencing 806 

(snRNA-seq) was performed for all infection conditions (center). Both data were further 807 

analyzed computationally, for example including spatial as well as cell clustering and annotation 808 

based on expression profiles, expression by distance analysis and differential gene expression 809 

analysis (DGEA) between infected (INF.) and SGC (C). b) Liver sections from ST analysis were 810 

normalized and batch-corrected. After dimensionality reduction the data was embedded in 811 

UMAP space and split by the original condition for visualization. Data from SGC sections are 812 

shown on the top from 12-38 hpi (left to right) and data from P. berghei infected sections are 813 

shown on the bottom from 12-38 hpi (left to right). Clusters with an obvious association to 814 

infection condition are highlighted with gray boxes in the legend.  815 

c) For identified clusters ST10 and ST11, differential genes expression analysis (DGEA) was 816 

performed followed by functional enrichment analysis for each cluster (see methods for details). 817 

Overrepresented pathways of the KEGG database for ST10 are shown in rose and for ST11 in 818 

aquamarin. Scales for expression values for overrepresented genes belonging to the individual 819 

KEGG pathways are shown for ST11 (left) or ST10 (right), from high expression (dark) to lower 820 

expression (light). Selected gene names are shown at the bottom. Enrichment scores for the 821 

pathways are shown on the right.  822 

d) Interaction analysis of clusters was performed to evaluate spatial enrichment expression 823 

programs as suggested by clustering analysis in space. Positive enrichment values (orange) 824 

indicate spots belonging to these clusters are more likely to be neighboring while negative 825 

enrichment values (blue) indicate spots associated with these expression programs are less 826 
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likely to be neighboring. Clusters without significant enrichment in each other's neighborhoods 827 

are shown in white.  828 

e) 10X Visium experiments were performed in the same fashion as ST experiments and 829 

clustering generated similar results. Clusters were imposed on spatial positions and annotated 830 

according to spatial expression features. Sections of the investigated conditions are divided for 831 

ease of inspection as in b), with the top panel comprising SGC sections across 12 -38 hpi (top, 832 

left to right) and the bottom panel comprising P. berghei infected sections across 12 - 38 hpi 833 

(bottom, left to right).  834 

 835 
Figure 2 | Global and spatially distinct effects of P. berghei on tissue gene expression 836 
 837 
a) Heatmap of differentially expressed genes between P. berghei infected sections and SGC 838 

sections at 12 hpi (top) and 38 hpi (bottom). Genes are clustered hierarchically based on 839 

expression similarity. Averaged gene expression is shown as a color gradient from low (dark 840 

purple) to high (yellow) expression. Function of expression programs with highest upregulation 841 

in the respective time points are highlighted in gray boxes, comprising “stress response” at 12 842 

hpi or “Interferon-stimulated genes (ISGs)” at 38 hpi.  843 

b) Expression of modules showing highest expression values in 12 hpi (stress response) and 38 844 

hpi (ISGs) across tissue spots for infected and SGC tissue sections at the respective time 845 

points. The scale bar denotes 500µm and module expression values are depicted as a scale 846 

ranging from low expression (dark purple) to high expression (yellow).  847 

c) Violin plot showing expression of ISGs module across spatial clusters. Clusters are depicted 848 

in the same colors as previously established in Figure 1a.  849 

d) Immunofluorescence and Hematoxylin and Eosin (H&E) stained images of P. berghei 850 

infected tissue sections across investigated conditions at 12h, 24h and 38h (left to right). 851 

Colored boxes indicate time points (12 hpi = red, 24 hpi = green, 38 hpi = blue). Positions with 852 

parasites are shown from individual IF images, showing DNA staining (DAPI), parasite staining 853 
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(UIS4) and the composite image (merge). Parasites are highlighted by white circles and scale 854 

bars indicate 100µm. The position of detected parasites is shown as a black box on the 855 

respective H&E images, recorded after immunofluorescent staining.  856 

e) Visualization of module scores of top P. berghei genes with negative correlation to parasite 857 

distance (top). Colored boxes indicate time points (12 hpi - 38 hpi, left to right) as in d) and 858 

white circles indicate positive parasite signal (UIS4). Module scores on corresponding H&E 859 

images show high expression as a scale from low (dark purple) to high (yellow). Expression-by-860 

distance analysis of P. berghei genes with negative correlation to parasite distance shows 861 

change of expression values as a function of the distance between 0 and 800 µm from parasite 862 

neighborhoods (methods for details) at 12, 24 and 38 hpi. Correlation values are indicated by r.  863 

f) Gene-Ontology (GO) enrichment of top five GO-terms of genes associated with close 864 

distance to the parasites (left) or far distance to the parasite (right). Colors indicate time points 865 

as in d) (12 hpi -38h hpi, top to bottom).  866 

g) Change in gene expression (Δ) of selection of host genes exhibiting negative correlation to 867 

distance to parasite neighborhoods (associated with close proximity to parasite) within 400 µm 868 

to parasite neighborhoods across time points of infection.  869 

h) Change in gene expression (Δ) of selection of host genes exhibiting positive correlation to 870 

distance to parasite neighborhoods (associated with further proximity to parasite) within 400 µm 871 

to parasite neighborhoods across time points of infection.  872 

  873 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.22.573046doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.573046
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 40

Figure 3 | Spatial inflammation in P. berghei infected and SGC sections  874 
 875 
a) Pearson correlations between marker genes of spots belonging to periportal in cluster ST1 876 

(blue), acute inflammation in cluster ST3 (yellow), pericentral in cluster ST4 (red) and acute 877 

pericentral in cluster ST2 (purple). Positive correlation values are indicated in orange and 878 

negative correlation values are indicated in blue.  879 

b) Gene expression of genes highlighted in a) as a function of the distance to the portal vein for 880 

marker genes of cluster ST1 and ST3 (top) or the central vein for marker genes of cluster ST2 881 

and ST4.  882 

c) Representative H&E (top) and DAPI (bottom) images of Inflammation hotspots (IHSs) 883 

observed in P.berghei infected section 12 hpi. IHSs are highlighted with white dotted lines. The 884 

scale bar indicates 50 µm.  885 

d) Change in expression (Δ) of top 4 genes with highest negative correlation as a function of the 886 

distance between 0 and 600 µm from IHSs neighborhoods (methods for details) where IHSs 887 

were present (12, 24 and 38 hpi as well as 24 and 38 hours after salivary gland challenge 888 

(control)) . 889 

e) Projection of expression modules of genes in d) on tissue sections across three conditions 890 

with highest numbers of visually annotated IHSs (12 and 24 hpi as well as 38h after salivary 891 

gland challenge (control)). Module scores are shown as color gradient from low scores (dark 892 

purple) to high scores (yellow). IHSs are highlighted with white dotted lines. View fields measure 893 

500 by 500 µm.  894 

 895 
Figure 4 | Identification of liver cell types and differential gene expression of immune cell 896 

clusters across infection conditions.  897 

a) UMAP projection of annotated liver cell types after integration of single cell expression data of 898 

all infection conditions: 12, 24 and 38 hpi as well as 12h, 24h and 38h post challenge with 899 

salivary gland lysate (SGC).  900 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.22.573046doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.573046
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 41

b) Average immune cell type proportions normalized to the total number of different immune 901 

cells (T & NK cells, B cells, Monocytes & DCs and Kupffer cells) divided by the total number of 902 

cells. Error bars indicate the standard error of the mean across time points (see methods for 903 

details).  904 

c) Heatmap visualization of differential gene expression of genes associated with cell types of 905 

the myeloid lineage including Kupffer cells, Monocytes (mono.) and Dendritic cells (DCs) across 906 

infection conditions and time points. Average gene expression across respective cell types is 907 

depicted in a color scale ranging from high (yellow) to low (purple).  908 

d) Heatmap visualization of differential gene expression of genes associated with cell types of 909 

the lymphatic lineage including B cells, T cells and NK cells across infection conditions and time 910 

points. Average gene expression across respective cell types is depicted in a color scale 911 

ranging from high (yellow) to low (purple).  912 

e) Gene-Ontology (GO) enrichment of GO- or KEGG-terms of unique genes associated with 913 

different cell types. Colors indicate the respective immune cell type including Kupffer cells, 914 

Monocytes & DCs, B cells and T & NK cells (top to bottom).  915 

 916 
Figure 5 | Integration of spatial and single nuclei data  917 
 918 
a) Visualization of pericentral (top) and periportal (bottom) cell type proportions across spatial 919 

positions of sections generated by 10X Visium protocol. Pericentral cell type proportions are 920 

shown in red and periportal cell type proportions in blue. Green and gray boxes highlight smaller 921 

regions of opposite cell type compositions in salivary gland lysate control (SGC) and infected 922 

sections, respectively, for ease of inspection. The scale bars indicate 500 µm. 923 

b) Pericentral and periportal cell type proportions along a distance between 0 and 800 µm 924 

originating at computationally annotated central (top) or portal (bottom) veins. Periportal 925 

hepatocyte proportions are shown in blue and pericentral cell type proportions in red. Gray 926 

ribbons indicate standard error.  927 
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c) Change in cell type proportions (Δ) of cell types with significant (p <= 0.05) negative 928 

(inflammatory hepatocytes, pericentral hepatocytes) or positive (B cells, periportal hepatocytes) 929 

correlation between the distance of 0 to 800 µm to parasite neighborhoods (methods for 930 

details). Conditions are indicated by colors (12h infected = red, 24h infected = green, 38h 931 

infected = blue). Correlation values (r) are indicated for each condition in the respective color.  932 

d) Change in cell type proportions (Δ) of cell types with significant (p <= 0.05) positive 933 

(pericentral hepatocytes) or negative (mesothelial & mesenchymal cells, T & NK cells, 934 

Monocytes & DCs) correlation between the distance of 0 and 800 µm to IHS neighborhoods 935 

(methods for details) where IHSs were present (12, 24 and 38 hpi as well as 24 and 38 hours 936 

after salivary gland challenge (control)). Correlations were calculated jointly for all time points. 937 

 938 

Figure 6 | Proposed model for parasite clearance in the liver  939 

Upon infection of the vertebrate host, the malaria parasite quickly enters the liver parenchyma 940 

and infects a hepatocyte (prior to the 12 hpi timepoint of this study). If the parasite, during this 941 

initial developmental phase, becomes exposed by the infected hepatocyte or surrounding non-942 

parenchymal cells, the infection may result in clearance through immune cell infiltration, which 943 

would lead to the formation of an inflammatory hotspot. However, in the case that the infection 944 

persists towards late P. berghei liver-stage infection, the parasite down-regulates genes 945 

involved in a productive immune response, while deregulating fatty acid metabolism and 946 

autophagy within the vicinity of the infection site - thus, ensuring parasite proliferation. However, 947 

if the parasite fails to deregulate these pathways in its proximity during late liver-stage infection, 948 

the parasite will most likely be aborted.  949 

 950 

  951 
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