

1 **Phylogenetic distribution and experimental characterization of corrinoid production and**
2 **dependence in soil bacterial isolates**

3
4 Zoila I. Alvarez-Aponte,¹ Alekhya M. Govindaraju,¹ Zachary F. Hallberg,¹ Alexa M. Nicolas,¹
5 Myka A. Green,¹ Kenny C. Mok,¹ Citlali Fonseca-Garcia,^{1,3} Devin Coleman-Derr,^{1,3} Eoin L.
6 Brodie,^{2,4} Hans K. Carlson,² and Michiko E. Taga¹ (taga@berkeley.edu)

7
8 ¹ Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA

9 ² Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,
10 CA, USA

11 ³ Plant Gene Expression Center, USDA-ARS, Albany, CA, USA

12 ⁴ Department of Environmental Science, Policy and Management, University of California,
13 Berkeley, Berkeley, CA, USA

14
15 Competing Interests Statement

16 The authors declare no competing financial interests

17 **ABSTRACT**

18 Soil microbial communities impact carbon sequestration and release, biogeochemical cycling,
19 and agricultural yields. These global effects rely on metabolic interactions that modulate
20 community composition and function. However, the physicochemical and taxonomic complexity
21 of soil and the scarcity of available isolates for phenotypic testing are significant barriers to
22 studying soil microbial interactions. Corrinoids—the vitamin B₁₂ family of cofactors—are critical
23 for microbial metabolism, yet they are synthesized by only a subset of microbiome members.
24 Here, we evaluated corrinoid production and dependence in soil bacteria as a model to
25 investigate the ecological roles of microbes involved in metabolic interactions. We isolated and
26 characterized a taxonomically diverse collection of 161 soil bacteria from a single study site.
27 Most corrinoid-dependent bacteria in the collection prefer B₁₂ over other corrinoids, while all
28 tested producers synthesize B₁₂, indicating metabolic compatibility between producers and
29 dependents in the collection. Furthermore, a subset of producers release B₁₂ at levels sufficient
30 to support dependent isolates in laboratory culture at estimated ratios of up to 1,000 dependents
31 per producer. Within our isolate collection, we did not find strong phylogenetic patterns in
32 corrinoid production or dependence. Upon investigating trends in the phylogenetic dispersion of
33 corrinoid metabolism categories across sequenced bacteria from various environments, we
34 found that these traits are conserved in 47 out of 85 genera. Together, these phenotypic and
35 genomic results provide evidence for corrinoid-based metabolic interactions among bacteria and
36 provide a framework for the study of nutrient-sharing ecological interactions in microbial
37 communities.

38

39 **INTRODUCTION**

40 Microbes engage in metabolic interactions that collectively define ecological networks in
41 communities (1). Microbial interactions can be key mediators of community function, and
42 disruptions to interactions can restructure whole communities (2,3). Thus, it is crucial to
43 disentangle microbial interactions and generate a predictive understanding of nutritional
44 influences on communities and, in turn, on the environment.

45

46 Experimental and computational studies have shown that microbes commonly lack the ability to
47 synthesize all of the metabolites they require (4,5). For example, many microbes are unable to
48 synthesize certain cofactors and amino acids, and therefore must acquire these nutrients from
49 other organisms in the environment (6–8). As a consequence, microbial communities are
50 composed of “producer” and “dependent” organisms that synthesize and require a given
51 nutrient, respectively. The complexity of microbial communities is due, in part, to this network of
52 interactions arising from interdependence among microbes that produce and require a range of
53 different nutrients. Such interdependence may develop because loss of biosynthesis genes can
54 be evolutionarily favored in contexts where required nutrients are abundant in the environment
55 or can be acquired from other microbes (9,10).

56

57 Investigating the molecular mechanisms and community impacts of nutritional interactions is
58 challenging for many reasons. First, many microbial communities are functionally diverse and
59 contain numerous metabolites that are produced, used, and chemically transformed by
60 community members. Second, while some metabolic capabilities can be inferred from genomic

61 data, these analyses currently lack spatial and temporal resolution, making it difficult to predict
62 how interactions among community members may be impacted by the metabolic activities of a
63 single microbe. Further, because most microbes have not been isolated in pure culture (11),
64 metabolic predictions of the uncultured majority have yet to be confirmed. The challenges
65 common to microbiome studies are amplified in soil due to its taxonomic diversity, physical and
66 chemical heterogeneity, and environmental fluctuations, as well as disturbances due to animal
67 or human activities (12–14). Nonetheless, generating mechanistic knowledge of nutrient cycling
68 in soil communities is essential because of their broad impacts on the health of our planet
69 (15,16). We address these challenges by studying the ecological roles of microbes in relation to
70 one class of model shared nutrients in a collection of newly isolated soil bacteria.

71
72 We took a reductionist approach to investigate nutrient production and dependence by focusing
73 on corrinoids as a representative class of shared metabolites. Corrinoids are produced by a
74 subset of bacteria and archaea and include the vitamin B₁₂ (cobalamin) family of cobalt-
75 containing cobamide cofactors and their biosynthetic precursors (Fig. 1A). Corrinoids are
76 required cofactors for methionine synthesis and propionate metabolism in most eukaryotes, and
77 additionally are used by prokaryotes for other diverse processes such as mercury methylation,
78 natural product biosynthesis, nucleotide synthesis, and numerous carbon and nitrogen
79 transformations (17). Corrinoid-sharing interactions between producer and dependent microbes
80 have been observed in laboratory co-cultures of bacteria (18–20), bacteria-microeukaryote pairs
81 (21–23), and in higher-order consortia (24), and are thought to be prevalent in the gut
82 microbiome (7).

83
84 Computational predictions further support the hypothesis that corrinoids are broadly shared, as
85 37% of sequenced bacterial species are predicted corrinoid producers and 49% are dependents
86 (25). The remaining 14% are predicted not to produce or use corrinoids, fulfilling their metabolic
87 needs via corrinoid-independent pathways, and are therefore considered “dependents” (Fig.
88 1B) (25). Given that dependents and producers coexist in the same environments (26–28), we
89 hypothesize that many sharing interactions have yet to be described.

90
91 An aspect of corrinoids that influences their function as shared nutrients is their structural
92 diversity (Fig. 1A), which has been shown to impact function – microbial preferences for
93 particular corrinoid structures are apparent in their differential growth responses to corrinoids
94 (17,29). Distinct groups of corrinoids have been detected in a variety of host-associated and
95 environmental microbial communities, suggesting that microbes encounter diverse corrinoids in
96 nature (30). Because most corrinoids are not commercially available, nearly all research on
97 corrinoids has been performed only with B₁₂ (17). Given that some microbes require corrinoids
98 other than B₁₂ (31), it is likely that novel bacteria that could not have been isolated on B₁₂ will be
99 culturable on other corrinoids.

100
101 In this study, we have extracted and purified four non-commercially available corrinoids to
102 investigate the impact of corrinoid structure on bacterial growth and isolation from a California
103 annual grassland soil. Previous work showed that this soil community contains an abundance of
104 predicted dependents, with producers and independents in the minority (26). Consistent with

105 these computational predictions, we found producers, dependents, and independents among
106 our diverse collection of 161 bacterial isolates. We did not observe strong phylogenetic trends in
107 corrinoid production and dependence in this collection, yet through our genomic analysis across
108 the bacterial domain, we found conservation of these traits in over half of the bacterial genera
109 we examined. Upon characterizing the corrinoid requirements of dependent isolates and
110 corrinoid biosynthesis by producers, we found that the corrinoid synthesized by producers is
111 compatible with the corrinoid requirements of all dependents in the collection. Further, corrinoids
112 are released from cells in a subset of producers at levels that exceed the requirements of
113 dependents in culture by up to 1,000-fold. These results provide an ecological framework for
114 understanding nutritional interactions in soil through the lens of corrinoids.
115

116 METHODS

117 Isolation of bacteria from soil by the limiting dilution method

118 We collected soil samples from top 10 cm of an annual grassland at the Hopland Research and
119 Extension Center in Hopland, CA (39.004056 N 123.085861 W) in November 2019 at the start
120 of the plant growing season and April 2021 when plants typically approach peak productivity.
121 Site characteristics and soil physicochemical properties for our sampling site were previously
122 documented (32,33). Soil pH, determined by preparing a slurry with 1 part soil to 2 parts
123 deionized water and measuring (n=3) with an Orion Star A111 pH Meter (Thermo Scientific,
124 Waltham, MA, USA), was 5.87 ± 0.42 in November 2020 and 6.28 ± 0.07 in April 2021.
125

126 To separate microbial biomass from the soil, we resuspended 2.5 g of soil in 25 ml phosphate
127 buffered saline with 2.24 mM sodium pyrophosphate (Alfa Aesar, Heysham, England), stirred for
128 30 minutes, and allowed the slurry to settle for 15 minutes before diluting the supernatant. All
129 isolations and subsequent growth steps were performed using a modified VL60 medium (pH
130 6.0), (34) and Supplemental Table 1) amended with 0.1 g/L each of xylose, xylan, N-
131 acetylglucosamine, and glucose, as well as 10 nM corrinoid when indicated. Cultures were
132 grown at room temperature unless otherwise noted. The corrinoids 2MA, 5OH, and ADE were
133 produced by guided biosynthesis in *Propionibacterium acidi-propionici* and CRE in *Sporomusa*
134 *ovata*; extracted from bacterial cultures; and purified as previously described (35,36). We
135 conducted a most probable number (MPN) count to determine the soil slurry dilution required to
136 reach growth in approximately 30% of wells, a density that is expected to yield 80% clonal
137 cultures, based on a Poisson distribution and previously reported isolations from human stool
138 samples (37). 80 μ l aliquots of the soil solution diluted in each medium were dispensed into the
139 wells of 384-well plates using a Biomek liquid handler (Beckman Coulter, Indianapolis, IN,
140 USA). Three plates per corrinoid condition were inoculated, and an uninoculated plate was
141 prepared for each condition, for a total of 28 plates. Plates were covered with BreatheEasy
142 (Diversified Biotech, Dedham, MA, USA) membranes for this and all subsequent steps, and
143 incubated statically at room temperature for 44 days. Despite using the MPN calculation to
144 determine the dilution, a surprisingly low number of wells showed growth in the November 2019
145 experiment (2.4%). Cultures from wells in which the OD₆₀₀ (measured on a Tecan Spark plate
146 reader (Grödig, Austria)) exceeded 0.29 were transferred into fresh medium at the end of the
147 initial incubation and grown for up to 40 days. The cultures were then split into two portions, one
148 stored at -80°C in 25% glycerol and another prepared for sequencing. The full 16S rRNA gene

149 was amplified by PCR from each well with primers 27F and 1492R (38) (IDT, Coralville, Iowa,
150 USA) and DreamTaq polymerase (Thermo Scientific). PCR purification and Sanger sequencing
151 of all amplicons using the same primers was done at the UC Berkeley DNA Sequencing Facility.
152 Sanger sequence trimming with a 0.01 error probability cutoff and *de novo* assembly of reads
153 were performed on Geneious Prime (2022.1.1). Cultures with a single, high-quality 16S
154 sequence were considered clonal.

155
156 Prior to the second isolation from soil collected in April 2021, the soil sample was stored at 4°C
157 for one month, brought to 20% moisture from an original $3.33 \pm 0.58\%$ with sterile deionized
158 water, and incubated for one week. The plates were incubated at room temperature for 49 days.
159 Because the percentage of wells showing growth was much higher than in the previous isolation
160 round (37% of total wells), Illumina sequencing of the 16S V4/V5 region, amplified with the 515F
161 and 926R primers (39,40), was performed with in-line dual Illumina indices (41,42) to identify
162 cultures containing a single 16S sequence. The amplicons were sequenced on an Illumina
163 MiSeq with 600 bp v3 reagents. Reads were processed with custom Perl scripts implementing
164 Pear for read merging (43), USearch (44) for filtering reads with more than one expected error,
165 and demultiplexing using inline indexes and Unoise (45) for filtering rare reads and
166 chimeras. 16S sequences were searched against the RDP database (46) to assign taxonomy.
167

168 Liquid cultures prepared from glycerol stocks were purified by streaking on 2X modified VL60
169 solidified with 14 g/L Difco noble agar (BD, Sparks, MD, USA). Nystatin (63 ng/ml) was added to
170 the medium in cases where fungal growth was observed. Cultures were serially purified by
171 streaking until all observed colonies were of uniform morphology. For each isolate, liquid
172 cultures inoculated from a single colony were stored at -80 °C in 40% glycerol. After purifying,
173 the identity of each isolate was confirmed by a second round of Sanger sequencing.
174

175 We identified 23 sequences with higher than 99% pairwise identity to a sequence in an
176 uninoculated well. These were considered potential contaminants and removed from the
177 dataset. After removal of isolates with chimeric sequences, the final collection is composed of
178 161 isolates.
179

180 Growth curves were generated to classify isolates into groups based on the time they required
181 to reach saturating growth (24, 48, 168, or 336 hours). Isolates were inoculated from glycerol
182 stocks into 96-well plates in triplicate and grown for 168 hours at 28 °C, shaking at 800 rpm in a
183 plate shaker (Southwest Science, Roebling, NJ, USA), and separately at room temperature with
184 no shaking. Growth curves were generated by measuring OD₆₀₀ at 0, 6, 12, 24, 36, and 48
185 hours, and every 24 hours until 168 hours for the shaken cultures and 216 hours for standing
186 cultures. Because isolates grew more consistently in the shaking condition, cultures were
187 shaken at 28 °C for all subsequent steps.
188

189 **Experimental characterization of isolates as corrinoid producers, dependents, or 190 independents**

191 To determine whether isolates were dependent on corrinoids for growth, isolates in the 24-, 48-,
192 and 168-hour groups were inoculated into 96-well plates with 200 µl of media containing the

193 corrinoid used for isolation. Following growth to saturation, each culture was diluted into two
194 wells, one amended with the same corrinoid and the other with no corrinoid, using a multi-blot
195 replicator that transferred approximately 3 μ l per well (V&P Scientific, San Diego, CA, USA).
196 Cultures were serially passaged three additional times into the same media to eliminate
197 corrinoid carryover. OD₆₀₀ was measured before and after each passage. Isolates that did not
198 grow reproducibly in media with corrinoid were not pursued further (24 isolates). Isolates that
199 continued to grow in media with corrinoid but stopped growing after being transferred into media
200 with no corrinoid were classified as dependents^E, while those that continued to grow in both
201 conditions were considered to be either producers^E or independents^E (Fig. 1B). To evaluate the
202 effect of corrinoids on the growth of isolates, we calculated the corrinoid-specific growth
203 enhancement as $\log_2 [1 + ((OD_{\text{with corrinoid}} - OD_{\text{no corrinoid}}) / (OD_{\text{no corrinoid}}))]$ (47) and determined a
204 threshold for corrinoid dependence based on the growth of bacteria isolated in the no corrinoid
205 condition that also underwent serial transfer (maximum value obtained from the equation plus
206 standard deviation). If two or three of the three replicates were classified as corrinoid
207 dependent, corrinoid dose-response assays were performed as described in ref. (48) to confirm
208 dependence and determine the corrinoid preferences of each isolate. Curve fits for dose-
209 response curves were performed using a four-parameter non-linear fit on GraphPad Prism
210 (v9.5.1).

211
212 To distinguish producers^E from independents^E (Fig. 1B), 100 μ l of each culture were collected at
213 the end of the fourth passage with no corrinoid addition and lysed by incubating at 98 °C for 20
214 minutes. An *E. coli*-based corrinoid detection bioassay was conducted as previously described
215 (35) to determine the presence or absence of corrinoid in each sample. Data were processed to
216 yield a 'growth due to corrinoid' metric by subtracting growth due to methionine (as measured by
217 the $\Delta metE \Delta metH$ control strain) from growth of the $\Delta metE$ bioassay strain and normalizing to
218 growth of the wildtype *E. coli* strain. An isolate was characterized as a producer^E if the
219 normalized result was greater than or equal to 2 or if the OD₆₀₀ of the $\Delta metE$ bioassay strain
220 was greater than or equal to 0.1. Conversely, an isolate was characterized as a non-producer,
221 and thus an independent^E, if the normalized result was less than 2 and the *E. coli* $\Delta metE$ OD₆₀₀
222 was less than 0.1. Our method was validated using a set of previously isolated soil bacteria (49)
223 that were genetically predicted to be corrinoid producers (Supplemental Table 2). Isolates that
224 repressed growth of *E. coli* (2 isolates), grew to an OD₆₀₀ less than 0.1 (7 isolates), or for which
225 the three replicates or results for the dependence and production were inconsistent (11 isolates)
226 were deemed inconclusive.

227
228 Data processing and analysis were performed using Python 3.7 on Jupyter Notebooks (version
229 6.2.0).

230
231 For further characterization of producers, we grew 1 L cultures of each in VL60 medium with no
232 corrinoid and 200X amino acids and extracted corrinoids as described previously (35). Corrinoid
233 extracts were analyzed by high-pressure liquid chromatography (HPLC) on a 1200 series HPLC
234 system equipped with a diode array detector (Agilent Technologies, CA, USA) and compared to
235 authentic corrinoid standards using Method 2, as described previously (31).

236

237 **Genus-based predictions of corrinoid metabolism**
238 We used the dataset developed by Shelton et al. (25) which reports corrinoid biosynthesis and
239 dependence predictions for 11,436 bacterial species. Species that were previously classified as
240 very likely, likely, or possible producers were considered producers (25). Corrinoid-dependent
241 species were defined as those previously classified as very likely or likely non-producers that
242 had at least one corrinoid-dependent function, regardless of whether their genomes encoded
243 specific corrinoid-independent alternative enzymes. Corrinoid-independent species were
244 defined as those that were likely or very likely non-producers and had no corrinoid-dependent
245 functions. After defining these categories, we grouped the species into their respective genera
246 (JGI IMG taxonomic metadata was downloaded on July 18, 2023, to update any reclassified
247 genomes). To establish a reliable cutoff for our predictions, we chose genera containing 20
248 species or more and made a prediction when 95% or more of the species in a genus fell under
249 the same category.

250

251 **Phylogenetic tree building**

252 The phylogenetic tree of the isolates in Figure 3 was constructed from full-length 16S
253 sequences. Taxonomy assignment and tree building were done using the Silva Alignment,
254 Classification, and Tree (ACT) service (50). To determine whether isolates were likely novel, we
255 used BLAST to search assembled sequences against the NCBI Reference Database using
256 Geneious (2022.1.1). If the pairwise identity between the isolate sequence and the top hit was
257 lower than 98.6%, we considered the isolate to be novel (51).

258

259 The phylogenetic tree in Figure 4 was generated using the full-length 16S sequences for the
260 type species of each genus (85 species) and 35 additional type species that were added for
261 context and later pruned. Sequences obtained from the NCBI Reference Sequence database
262 can be found in Supplemental Table 3, and the phylogenetic tree including all species and
263 bootstrap values can be found in Figure S3. A MUSCLE (52) alignment and FastTree (53) were
264 used to generate the tree on Geneious (2022.1.1) using default settings. Tree pruning and
265 annotation for both trees were performed on iTOL (54).

266

267 **RESULTS**

268 **Generating a collection of 161 bacterial isolates from soil**

269 To generate a collection of soil bacterial isolates with a diversity of corrinoid requirements, we
270 performed the limiting dilution method (37) in 384-well plates containing media with one of six
271 different corrinoids (Fig. 1A) or no corrinoid. A first set of 8,064 wells yielded only 2.4% of wells
272 with detectable growth; a second set of 8,064 wells yielded 37%, totaling 3,183 wells with
273 microbial growth. 16S sequencing of the resulting cultures revealed that, although we expected
274 approximately 80% of cultures to be clonal by statistical metrics alone, only 47% and 5.8% of
275 cultures in the two sets, respectively, were clonal. This suggests that cell aggregation is more
276 prevalent in soil than in the gut environment, where the same method led to the statistically
277 predicted result (37). 20 phyla were found in the total collection (Fig. S1), but among clonal
278 wells six phyla were present, of which 238 isolates representing four phyla could be revived
279 from frozen stocks. After purifying and archiving the clonal cultures, our collection contained 161
280 bacterial isolates which were used for subsequent analyses (Fig. 2).

281
282 The isolate collection is dominated by the phyla Proteobacteria and Actinobacteria, with fewer
283 representatives from the Firmicutes and Bacteroidetes phyla (Fig. 3). This is similar to the
284 relative abundances observed in bulk soil, where Proteobacteria and Actinobacteria are the
285 dominant phyla (33,55,56). Of the 161 isolates, 23% (37 isolates) were considered to be novel
286 species (51). The collection comprises 31 genera and 121 unique 16S sequences, with 11
287 genera each represented by a single isolate and three genera represented by 18 or more
288 isolates. Despite this diversity, we have not sampled the bacterial diversity in this soil
289 exhaustively (Fig. S2).

290

291 **Taxonomic and phenotypic characterization of the isolate collection**

292 To investigate whether there were phylogenetic trends for the observed phenotypes, we
293 constructed a phylogenetic tree of the isolate collection annotated with the characteristics of
294 each isolate (Fig. 3, Supplemental Table 4). We did not observe strong phylogenetic trends in
295 the time required for each isolate to reach saturating growth, except that some clades of
296 Proteobacteria contained only fast-growing isolates. Similarly, we did not observe a correlation
297 between phylogeny and the corrinoid used for isolation. An exception was a clade of producers
298 within Proteobacteria, all *Sphingomonas*, that were isolated on B12. Interestingly, the number of
299 isolates recovered in B12, 5OH, and 2MA was higher than the number of isolates in the no
300 corrinoid (NOC) condition, while ADE, CBI, and CRE led to the recovery of fewer isolates than
301 NOC (Fig. 3).

302

303 **Classifying corrinoid metabolism phenotypes in the isolate collection**

304 Next, we experimentally classified each isolate as a corrinoid producer, dependent, or
305 independent. We first assessed growth in the presence and absence of corrinoid. Isolates that
306 stopped growing following serial transfer into media without corrinoid were classified as
307 dependents^E, where the superscript E refers to experimental results, in contrast to genomic
308 predictions (superscript G, discussed below). Isolates that could grow in the absence of
309 corrinoid were tested for corrinoid production using an *E. coli*-based corrinoid detection
310 bioassay (35) to distinguish producers^E from independents^E (Fig. 1B; see Materials and
311 Methods). Based on these results, all three categories are represented in the isolate collection,
312 with the majority (64%) classified as producers^E (Fig. 3). The abundance of producers^E in our
313 collection contrasts with genome-based predictions that dependents outnumber producers
314 across bacteria and specifically in soil (25,26,57).

315

316 To investigate potential phylogenetic trends in corrinoid metabolism categories, we overlaid the
317 experimentally determined corrinoid phenotypes onto the phylogenetic tree (Fig. 3). At the
318 phylum level, we observed mixed phenotypes. For example, all three categories are
319 represented among characterized Actinobacteria and are interspersed across several clades. In
320 contrast, in the Proteobacteria the corrinoid phenotypes are largely consistent with phylogeny.
321 Most Proteobacteria clades are composed of only producer isolates, aside from one clade
322 containing genera *Phenyllobacterium* and *Caulobacter* that is composed of only dependents,
323 while in a few other clades the phenotypes are interspersed. Thus, while trends are seen in

324 some closely related isolates, large-scale phylogenetic trends in corrinoid phenotype are not
325 apparent.

326

327 **Corrinoid metabolism is conserved in a subset of genera, enabling taxonomy-based 328 metabolic predictions**

329 After investigating phylogenetic trends across isolates, we explored the extent to which
330 phylogenetic trends exist across bacteria. We analyzed our previously published corrinoid
331 metabolism classifications for over 11,000 bacterial species (25) to distinguish between the
332 competing hypotheses that 1) corrinoid production, dependence, and independence show
333 strong phylogenetic trends, enabling predictions of corrinoid metabolism based on taxonomy, or
334 2) corrinoid metabolism categories are phylogenetically interspersed, making it impossible to
335 infer corrinoid-related ecological roles based solely on taxonomy. In our previous study, trends
336 were not apparent at the phylum level except in the Bacteroidetes, which were nearly all
337 dependents^G (25). Therefore, we aimed to evaluate trends at lower taxonomic levels, starting
338 with the genus level.

339

340 We searched for phylogenetic trends among the 85 genera in our dataset and classified each
341 genus as producer^G, dependent^G or independent^G when possible. A corrinoid metabolism
342 category could be assigned with high confidence for 47 out of 85 genera (Fig. 4, Supplemental
343 Table 5). In the remaining 38 genera, a single corrinoid metabolism category does not
344 predominate, so corrinoid metabolism classifications could not be made.

345

346 To evaluate trends across higher taxonomic levels, we mapped the genomic predictions onto a
347 phylogenetic tree constructed from the full 16S sequences of the type species for each genus
348 (Fig. 4, Fig. S3). As expected, five of the six Bacteroidetes genera were predicted to be
349 dependent^G and only one Bacteroidetes genus has a small percentage of independent^G
350 species. We observed phylogenetic trends at levels higher than the genus level in some cases.
351 The Actinobacteria form two distinct clades, one dominated by producers^G and the other by
352 independents^G. Interestingly, no Actinobacteria genera were classified as dependents^G,
353 although some genera have low percentages of dependent species. All genera in one
354 Proteobacteria clade are classified as producers^G, with the notable exception of *Bartonella*,
355 which has undergone genome reduction (58) and is classified as independent^G. However, other
356 Proteobacteria clades were mixed, aside from a few sister taxa that share corrinoid genotypes
357 in some instances, such as *Rhizobium* and *Brucella* which are both producers^G or *Xanthomonas*
358 and *Lysobacter*, which are both dependents^G. For phyla that had fewer genera, the few
359 classified genera were independent^G. This may be due to a bias in the dataset, which is
360 composed of over 90% cultured bacteria that may be less likely to be dependent. Future
361 analysis of metagenomes may reveal more dependence among phyla with fewer sequenced
362 representatives.

363

364 Upon comparing the genomic classifications to our experimental results for the isolate
365 collection, we found that 19 isolates belong to genera for which genomic classifications were
366 possible. All isolates except one matched the genomic classification (Fig. 4). The exception was
367 a *Mesorhizobium* isolate that was predicted to be a producer^G but found to be independent^E,

368 suggesting either that it is not capable of synthesizing a corrinoid or did not produce a
369 detectable amount under our growth conditions. The confirmation of our genomic classifications
370 with experimental data from our isolate collection lends support to the phylogenetic predictions
371 made for certain genera.

372

373 **Corrinoid preferences of dependent isolates reveal diverse corrinoid use capabilities**

374 Our observation that the corrinoid used for isolation did not correlate with phylogeny (Fig. 3) led
375 us to investigate the corrinoid preferences of the 14 dependent isolates in our collection. We
376 measured growth in media containing a range of concentrations of different corrinoids and
377 calculated the corrinoid concentration that resulted in half-maximal growth (EC₅₀); the corrinoid
378 with the lowest EC₅₀ is considered the most preferred (Fig. 5A and Fig. S4). The corrinoid used
379 for isolation was not the most preferred corrinoid in many cases, likely because the added
380 corrinoid was in 100- to 1,000-fold excess in the isolation medium (Fig. 5B). Further, despite our
381 previous finding that most corrinoids other than B12 have not been detected in this soil (30), we
382 found that all of the isolates can use at least one corrinoid in addition to B12, with B12 preferred
383 by almost all isolates. ADE, CRE and CBI could not be used at any of the tested concentrations
384 by some isolates. Notably, these were the same corrinoids in which we recovered the lowest
385 numbers of isolates. This suggests only some isolates can use the complete corrinoids ADE
386 and CRE as cofactors or salvage CBI to make a complete corrinoid (59–61).

387

388 **B12 is the main corrinoid produced by isolates in the collection and it is only provided by 389 a subset of producers**

390 Given that dependents need to obtain corrinoids from producers in their community, we sought
391 to determine whether there is compatibility between the corrinoids produced and required by
392 isolates in our collection. To that end, we extracted corrinoids from cultures of 12 fast-growing
393 producers and analyzed them by HPLC. We detected a corrinoid by HPLC in 11 of these
394 producers. The other isolate showed no corrinoid signal when re-tested with the *E. coli* bioassay
395 and was reclassified as inconclusive. Comparison with authentic standards revealed that B12
396 was the dominant corrinoid synthesized by the 11 tested producers (Fig. 6A).

397

398 Although it is unknown to what extent dependents acquire corrinoids directly from producer
399 cells, a recent report showed that some producers cultured in the laboratory can release
400 corrinoids into the growth medium (23). We used the *E. coli*-based bioassay to quantify the
401 corrinoids in culture supernatants and cell pellets of the 11 producer isolates. Seven of the
402 producers were found to be “providers” (23) – producers for which corrinoids were present in the
403 culture supernatant – while corrinoids were detected exclusively in the cell pellet fraction in the
404 remaining four producers (Fig. 6B). The amount of provided corrinoid ranged from 1.3 to 21% of
405 the total corrinoid, and the provided amount did not correlate with the total amount of corrinoid
406 produced. The concentrations of provided corrinoid are 1 to 1,000 times higher than the EC₅₀
407 values calculated for the dependents (Fig. 5B, Supplemental Table 6), suggesting that these
408 isolates have the capacity to provide sufficient or excess corrinoid to all of the dependents in our
409 collection. Thus, our measurements of corrinoid production and providing, in the artificial
410 conditions of laboratory culture, coupled with prior genomic studies (25,26), support our
411 hypothesis that corrinoid sharing can occur within the communities of this soil.

412

413 DISCUSSION

414 Microbial nutritional interactions play pivotal roles in establishing community structure and
415 function. Characterizing and predicting the ecological roles of microbes as nutrient producers
416 and dependents can contribute to the understanding of microbial interaction networks and their
417 influence on the whole community. Here, we investigated the ecological roles of microbes by
418 overlaying experimental and computational approaches. We were able to characterize specific
419 functional roles of bacteria by focusing on a single class of model nutrients, corrinoids, the
420 sharing of which is thought to be widespread in microbial communities (17,25,27,28). The
421 importance of corrinoids for soil bacteria has long been recognized (57,62–64). Here, we report
422 the first systematic isolation and characterization of soil bacteria on corrinoids other than B12,
423 allowing us to consider the ecological roles of corrinoid producers and dependents in the
424 context of soil microbial ecology.

425

426 Microbes typically have preferences for different corrinoids that are reflected in their EC₅₀ values
427 (17,29,65). These preferences result from corrinoid transport efficiency and the affinity of
428 corrinoids for the enzymes that use them, and what corrinoid dependent processes are in use
429 (65–67). Corrinoid preferences, combined with the availability of corrinoids in a given
430 environment and competition for corrinoids in the community, can impact microbial fitness (17).
431 After experimentally determining the preferences of the corrinoid-dependent bacteria in our
432 collection, we found that our isolates have considerably lower EC₅₀ values for their preferred
433 corrinoids than bacteria for which EC₅₀ measurements have previously been reported, indicating
434 lower corrinoid concentrations are required for growth (35,48,66,68). The EC₅₀ values of our
435 isolates are comparable to those of aquatic algae (29,69), some of which live in environments
436 with corrinoid concentrations in the picomolar range (70) (Fig. 5B and Table S1). The ability to
437 use corrinoids at low concentrations could be a useful adaptation to the soil environment where
438 corrinoids may be limiting due to the physical heterogeneity of soil microbial communities, long
439 distances between cells, and fluctuations in water content throughout the year, making nutrient
440 availability highly variable (13,71,72).

441

442 The concentration of corrinoid chosen for the isolation media was four-fold higher than the
443 highest EC₅₀ and over 16,000-fold higher than the lowest EC₅₀ we measured, which explains
444 why isolates were often recovered in their non-preferred corrinoid and why we detected no
445 taxonomic trends in the corrinoid used for isolation. Despite the presence of excess corrinoid in
446 our isolation media, we recovered fewer corrinoid-dependent isolates than expected (26,57),
447 which may be due to corrinoid-dependent bacteria having additional nutrient dependencies not
448 satisfied by our isolation medium or requiring specific partners for their survival (6). Notably, all
449 of the dependent isolates were able to use corrinoids that have not been detected in this soil
450 (30).

451

452 When considering how our classifications of corrinoid metabolism fit into the context of soil
453 microbial ecology, we must consider functional diversity (73). A contemporary question
454 regarding microbiome function relates to whether groups of microbes with shared functions are
455 composed of phylogenetically close organisms or unrelated organisms that share similar

456 metabolic capabilities. Traits such as photosynthesis, methanogenesis, maximum growth rates,
457 and response to soil wet-up tend to be strongly correlated with phylogeny, while others, such as
458 use of specific carbon sources, have weak or no phylogenetic signals (74–76). Here, we found
459 some phylogenetic trends in corrinoid traits, but overall, the distribution of these traits is patchy
460 across the phylogenetic tree, suggesting that gene loss has occurred at various evolutionary
461 points, possibly due to the frequent emergence of corrinoid dependence and independence (9),
462 or that horizontal gene transfer (HGT) is important in sustaining corrinoid biosynthesis and use.
463 Indeed, corrinoid uptake genes in human gut Bacteroidetes are commonly found on mobile
464 genetic elements (77), and *Salmonella typhimurium* and *Lactobacillus reuteri* biosynthesis
465 genes are thought to have been acquired by HGT (78,79). The evolutionary history of corrinoids
466 should be explored further to identify which processes have impacted the biosynthesis and use
467 of these cofactors. Importantly, we were able to carry out the crucial step of validating some
468 genus-level predictions using our isolate collection, in which seven of the genera for which we
469 predicted a genotype were represented (Fig. 4).

470
471 Finally, the characterization of this isolate collection provides key insights about corrinoid-based
472 microbial interactions in soil. We found that dependent isolates were all able to use B12, with
473 most preferring it, and the producers we characterized all synthesize B12, indicating
474 compatibility between corrinoid production and preferences of the dependents. Among the
475 producers, however, only some release corrinoid into culture supernatants, suggesting that the
476 corrinoid provider role is fulfilled by a distinct subset of producers (23). Based on our
477 observation that these providers release corrinoids at levels sufficient to support many
478 dependents in laboratory cultures, we speculate that a small fraction of the community
479 disproportionately provides corrinoids to the dependents. In a similar vein, we previously found
480 that amino acid auxotrophs can be supported by producers at a ratio of over 40:1 (80). Because
481 corrinoid release cannot be predicted from genomes, it is necessary to combine genotypic
482 predictions of corrinoid production with phenotypic characterizations when studying interactions.
483 This collection of isolates assembled from the same study site will enable further investigation of
484 corrinoid-based interactions via culture-based studies. For example, the mechanisms of
485 corrinoid release, partner specificity in interactions, and competition for corrinoids among
486 dependent isolates can be explored. Focusing on corrinoids simplifies community interactions to
487 only one nutrient and does not take into account other possible interactions that are prevalent in
488 the soil environment, including those involving other shared nutrients (81,82) or cross-domain
489 interactions (56), which may be affected by environmental fluctuations in the native environment
490 (71). Nonetheless, focusing on this important class of shared nutrients enabled us to study the
491 diversity of metabolic capabilities that may be prototypical of interactions among soil bacteria
492 and provides a framework to expand the study of other nutrient-sharing interactions.
493

494 **ACKNOWLEDGEMENTS**

495 We thank Janani Hariharan, Mary Firestone, Britt Koskella, Will Ludington, Victor Reyes-
496 Umana, and all members of the Taga Lab for helpful discussions. We are grateful to Victoria
497 Innocent for providing corrinoids, Heejung Cho and Shi Wang for providing strains, Mary
498 Firestone for allowing us to access her study site at Hopland Research and Extension Center,

499 Katerina Estera Molina for soil sampling support, and Darryl Balderas for computational support.
500 We thank Rebecca Procknow, Dennis Suazo, Janani Hariharan, and Eleanor Wang for critical
501 reading of the manuscript. Sequencing was performed by QB3 Genomics, UC Berkeley,
502 Berkeley, CA, RRID:SCR_022170 and the UC Berkeley DNA Sequencing Facility.
503

504 This work was supported by the U.S. Department of Energy (DOE), Office of Biological and
505 Environmental Research (BER), Genomic Sciences Program (GSP) Grant DE-SC0020155
506 (M.E.T.), the GEM Foundation (Z.I.A.A.), the Kase-Tsujimoto Foundation (Z.I.A.A.), and the
507 Sponsored Projects for Undergraduate Researchers program at UC Berkeley (M.A.G.). E.L.B.
508 was supported in part by the DOE, BER, GSP LLNL 'Microbes Persist' Soil Microbiome
509 Scientific Focus Area SCW1632.
510

511 We acknowledge that this work was conducted on the ancestral and unceded land of the
512 Ohlone and Pomo people.
513

514 **Data Availability Statement**

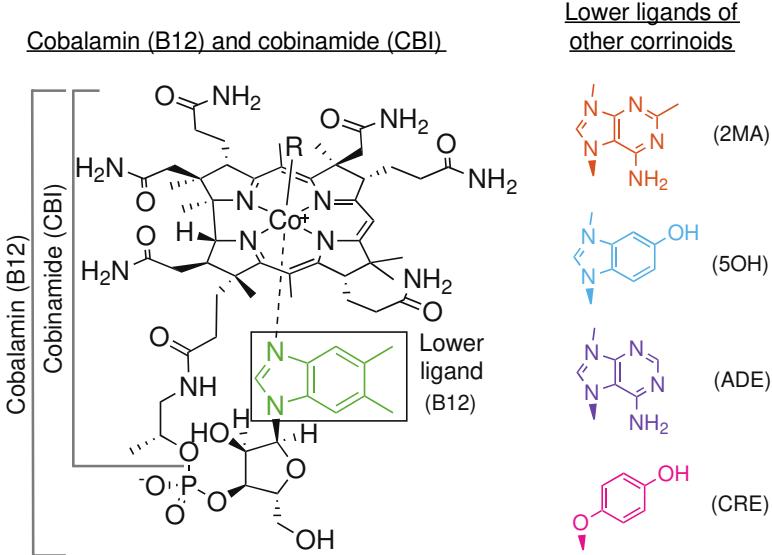
515 The sequencing data generated and analyzed during the current study are available in the NCBI
516 GenBank repository under accession numbers OR878823-OR878983. Code generated during
517 the current study is available in <https://github.com/zoilaalvarez/corrinoid-metabolism-analysis>.
518

519 **References**

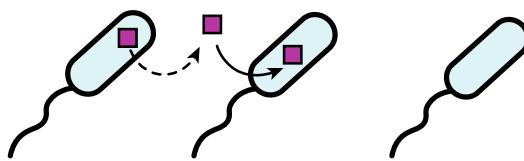
- 521 1. Stubbendieck RM, Vargas-Bautista C, Straight PD. Bacterial communities: Interactions to
522 scale. *Front Microbiol* [Internet]. 2016;7:1234.
- 523 2. Wang M, Osborn LJ, Jain S, Meng X, Weakley A, Yan J, et al. Strain dropouts reveal
524 interactions that govern the metabolic output of the gut microbiome. *Cell*. 2023 Jun
525 22;186(13):2839-2852.e21.
- 526 3. Herren CM. Disruption of cross-feeding interactions by invading taxa can cause invasional
527 meltdown in microbial communities. *Proc Biol Sci*. 2020 May 27;287(1927):20192945.
- 528 4. Ramoneda J, Jensen TBN, Price MN, Casamayor EO, Fierer N. Taxonomic and
529 environmental distribution of bacterial amino acid auxotrophies. *Nat Commun*.
530 2023;14(1):7608.
- 531 5. D'Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. Less is more: Selective
532 advantages can explain the prevalent loss of biosynthetic genes in bacteria. *Evolution*.
533 2014;68(9):2559–70.
- 534 6. Rodionov DA, Arzamasov AA, Khoroshkin MS, Iablokov SN, Leyn SA, Peterson SN, et al.
535 Micronutrient requirements and sharing capabilities of the human gut microbiome. *Front
536 Microbiol*. 2019;10:1316.

- 537 7. Sharma V, Rodionov DA, Leyn SA, Tran D, Iablokov SN, Ding H, et al. B-Vitamin sharing
538 promotes stability of gut microbial communities. *Front Microbiol.* 2019;10:1485.
- 539 8. Abreu NA, Taga ME. Decoding molecular interactions in microbial communities. *FEMS*
540 *Microbiol Rev.* 2016;40(5):648–63.
- 541 9. Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies
542 through adaptive gene loss. *mBio.* 2012;3(2):e00036-12.
- 543 10. Helliwell KE, Collins S, Kazamia E, Purton S, Wheeler GL, Smith AG. Fundamental shift in
544 vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution. *ISME*
545 *J.* 2015 Jun;9(6):1446–55.
- 546 11. Staley JT, Konopka A. Measurement of in situ activities of nonphotosynthetic
547 microorganisms in aquatic and terrestrial habitats. *Annu Rev Microbiol.* 1985;39:321–46.
- 548 12. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal
549 catalogue reveals Earth's multiscale microbial diversity. *Nature.* 2017;551(7681):457–63.
- 550 13. Tecon R, Or D. Biophysical processes supporting the diversity of microbial life in soil. *FEMS*
551 *Microbiol Rev.* 2017;41(5):599–623.
- 552 14. Howe JA, Smith AP. The soil habitat. In: Gentry TJ, Fuhrman JJ, Zuberer DA, editors.
553 *Principles and applications of soil microbiology.* Third edition. Elsevier; 2021. p. 1–22.
- 554 15. Gougoulias C, Clark JM, Shaw LJ. The role of soil microbes in the global carbon cycle:
555 tracking the below-ground microbial processing of plant-derived carbon for manipulating
556 carbon dynamics in agricultural systems. *J Sci Food Agric.* 2014;94(12):2362–71.
- 557 16. Banerjee S, van der Heijden MGA. Soil microbiomes and one health. *Nat Rev Microbiol.*
558 2023;21(1):6–20.
- 559 17. Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial
560 interactions. *Science.* 2020;369(6499):eaba0165.
- 561 18. Yan J, Ritalahti KM, Wagner DD, Löffler FE. Unexpected specificity of interspecies
562 cobamide transfer from *Geobacter* spp. to organohalide-respiring *Dehalococcoides* *mccartyi*
563 strains. *Appl Environ Microbiol.* 2012;78(18):6630–6.
- 564 19. Men Y, Seth EC, Yi S, Allen RH, Taga ME, Alvarez-Cohen L. Sustainable growth of
565 *Dehalococcoides* *mccartyi* 195 by corrinoid salvaging and remodeling in defined lactate-
566 fermenting consortia. *Appl Environ Microbiol.* 2014;80(7):2133–41.
- 567 20. Iguchi H, Yurimoto H, Sakai Y. Stimulation of methanotrophic growth in cocultures by
568 cobalamin excreted by Rhizobia. *Appl Environ Microbiol.* 2011;77(24):8509–15.

- 569 21. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12
570 through a symbiotic relationship with bacteria. *Nature*. 2005;438(7064):90–3.
- 571 22. Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, et al. Mutualistic
572 interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit
573 regulation. *Environ Microbiol*. 2012;14(6):1466–76.
- 574 23. Sultana S, Bruns S, Wilkes H, Simon M, Wienhausen G. Vitamin B12 is not shared by all
575 marine prototrophic bacteria with their environment. *ISME J*. 2023;17(6):836–45.
- 576 24. Men Y, Seth EC, Yi S, Crofts TS, Allen RH, Taga ME, et al. Identification of specific
577 corrinoids reveals corrinoid modification in dechlorinating microbial communities. *Environ
578 Microbiol*. 2015;17(12):4873–84.
- 579 25. Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, et al. Uneven distribution of
580 cobamide biosynthesis and dependence in bacteria predicted by comparative genomics.
581 *ISME J*. 2019;13(3):789–804.
- 582 26. Nicolas AM. Using Genomes to Infer Interactions Shaping Community Structure in the Soil
583 Microbiome. [Berkeley, CA]: University of California, Berkeley; 2022.
- 584 27. Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment
585 of B-vitamin biosynthesis suggests co-operation among gut microbes. *Front Genet*.
586 2015;6:148.
- 587 28. Swaney MH, Sandstrom S, Kalan LR. Cobamide sharing is predicted in the human skin
588 microbiome. *mSystems*. 2022;7(5):e00677-22.
- 589 29. Helliwell KE, Lawrence AD, Holzer A, Kudahl UJ, Sasso S, Kräutler B, et al. Cyanobacteria
590 and Eukaryotic Algae Use Different Chemical Variants of Vitamin B12. *Curr Biol*. 2016 Apr
591 25;26(8):999–1008.
- 592 30. Hallberg ZF, Seth EC, Thevasundaram K, Taga ME. Comparative analysis of corrinoid
593 profiles across host-associated and environmental samples. *Biochemistry*.
594 2022;61(24):2791–6.
- 595 31. Mok KC, Taga ME. Growth inhibition of *Sporomusa ovata* by incorporation of benzimidazole
596 bases into cobamides. *J Bacteriol*. 2013;195(9):1902–11.
- 597 32. Fossum C, Estera-Molina KY, Yuan M, Herman DJ, Chu-Jacoby I, Nico PS, et al.
598 Belowground allocation and dynamics of recently fixed plant carbon in a California annual
599 grassland. *Soil Biol Biochem*. 2022;165:108519.
- 600 33. Nicolas AM, Sieradzki ET, Pett-Ridge J, Banfield JF, Taga ME, Firestone MK, et al. A
601 subset of viruses thrives following microbial resuscitation during rewetting of a seasonally
602 dry California grassland soil. *Nat Commun*. 2023;14(1):5835.


- 603 34. Sait M, Hugenholtz P, Janssen PH. Cultivation of globally distributed soil bacteria from
604 phylogenetic lineages previously only detected in cultivation-independent surveys. *Environ*
605 *Microbiol*. 2002;4(11):654–66.
- 606 35. Mok KC, Hallberg ZF, Taga ME. Chapter Three - Purification and detection of vitamin B12
607 analogs. In: Marsh ENG, editor. *Methods in Enzymology*. Academic Press; 2022. p. 61–85.
608 (Coenzyme B Enzymes Part A; vol. 668).
- 609 36. Crofts TS, Seth EC, Hazra AB, Taga ME. Cobamide structure depends on both lower ligand
610 availability and CobT substrate specificity. *Chem Biol*. 2013;20(10):1265–74.
- 611 37. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, et al. Extensive personal
612 human gut microbiota culture collections characterized and manipulated in gnotobiotic mice.
613 *Proc Natl Acad Sci*. 2011;108(15):6252–7.
- 614 38. dos Santos HRM, Argolo CS, Argôlo-Filho RC, Loguercio LL. A 16S rDNA PCR-based
615 theoretical to actual delta approach on culturable mock communities revealed severe losses
616 of diversity information. *BMC Microbiol*. 2019;19(1):74.
- 617 39. Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA
618 primers for marine microbiomes with mock communities, time series and global field
619 samples. *Environ Microbiol*. 2016;18(5):1403–14.
- 620 40. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing noise from pyrosequenced
621 amplicons. *BMC Bioinformatics*. 2011;12(1):38.
- 622 41. Sharpless W, Sander K, Song F, Kuehl J, Arkin AP. Towards Environmental Control of
623 Microbiomes. *bioRxiv*. 2022. Available from:
624 <https://www.biorxiv.org/content/10.1101/2022.11.04.515211v1.full1>.
- 625 42. Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J, Liu H, et al. Mutant phenotypes
626 for thousands of bacterial genes of unknown function. *Nature*. 2018;557(7706):503–9.
- 627 43. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End
628 read merger. *Bioinforma Oxf Engl*. 2014;30(5):614–20.
- 629 44. Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics*.
630 2010;26(19):2460–1.
- 631 45. Edgar R. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon
632 sequencing. *BioRxiv*. 2016. <https://doi.org/10.1101/081257>
- 633 46. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database
634 Project: Data and tools for high throughput rRNA analysis. *Nucleic Acids Res*.
635 2014;42(D1):D633–42.

- 636 47. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome
637 interactions shape host fitness. *Proc Natl Acad Sci U S A*. 2018;115(51):E11951–60.
- 638 48. Mok KC, Sokolovskaya OM, Nicolas AM, Hallberg ZF, Deutschbauer A, Carlson HK, et al.
639 Identification of a Novel Cobamide Remodeling Enzyme in the Beneficial Human Gut
640 Bacterium *Akkermansia muciniphila*. *mBio*. 2020 Dec 8;11(6):e02507-20.
- 641 49. Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, et al. Dynamic root exudate
642 chemistry and microbial substrate preferences drive patterns in rhizosphere microbial
643 community assembly. *Nat Microbiol*. 2018;3(4):470–80.
- 644 50. Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence
645 alignment of ribosomal RNA genes. *Bioinformatics*. 2012;28(14):1823–9.
- 646 51. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average
647 nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of
648 prokaryotes. *Int J Syst Evol Microbiol*. 2014 Feb;64(Pt 2):346–51.
- 649 52. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
650 *Nucleic Acids Res*. 2004;32(5):1792–7.
- 651 53. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for
652 large alignments. *PLoS One*. 2010 Mar 10;5(3):e9490.
- 653 54. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
654 display and annotation. *Nucleic Acids Res*. 2021;49(W1):W293–6.
- 655 55. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ,
656 Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. *Science*.
657 2018;359(6373):320–5.
- 658 56. Starr EP, Shi S, Blazewicz SJ, Koch BJ, Probst AJ, Hungate BA, et al. Stable-isotope-
659 informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in
660 rhizosphere soil. *mSphere*. 2021;6(5):10.1128/msphere.00085-21.
- 661 57. Lu X, Heal KR, Ingalls AE, Doxey AC, Neufeld JD. Metagenomic and chemical
662 characterization of soil cobalamin production. *ISME J*. 2020;14(1):53–66.
- 663 58. Engel P, Dehio C. Genomics of host-restricted pathogens of the genus *Bartonella*. *Genome*
664 *Dyn*. 2009;6:158–69.
- 665 59. Butzin NC, Secinaro MA, Swithers KS, Gogarten JP, Noll KM. *Thermotoga lettingae* can
666 salvage cobinamide to synthesize vitamin B12. *Appl Environ Microbiol*. 2013;79(22):7006–
667 12.

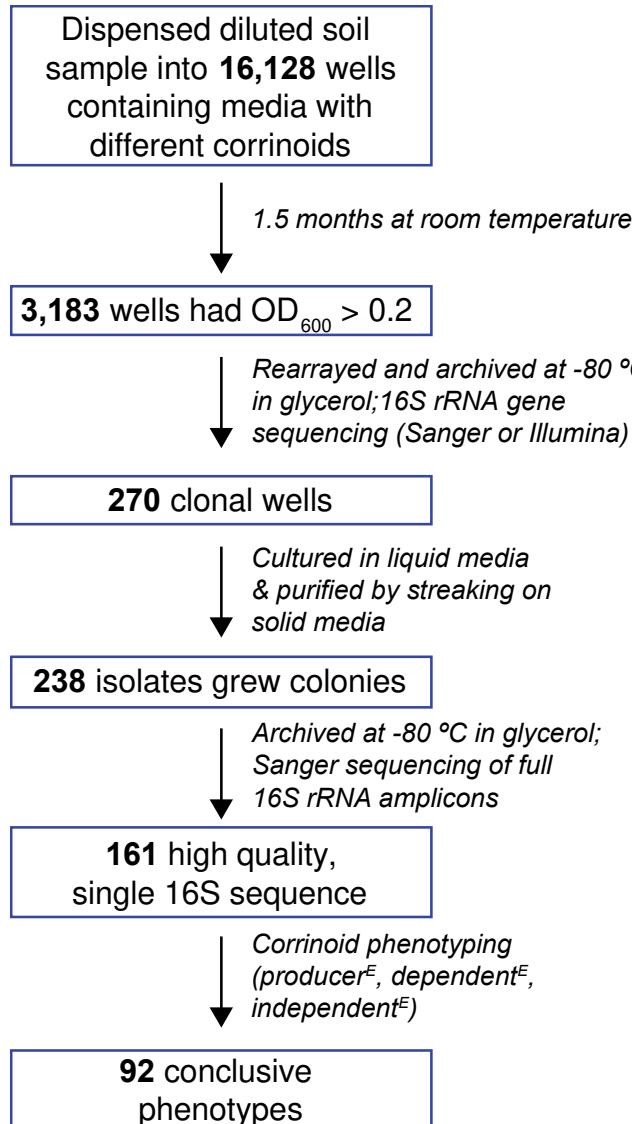

- 668 60. Yi S, Seth EC, Men YJ, Stabler SP, Allen RH, Alvarez-Cohen L, et al. Versatility in corrinoid
669 salvaging and remodeling pathways supports corrinoid-dependent metabolism in
670 *Dehalococcoides mccartyi*. *Appl Environ Microbiol*. 2012;78(21):7745–52.
- 671 61. Di Girolamo PM, Bradbeer C. Transport of vitamin B 12 in *Escherichia coli*. *J Bacteriol*.
672 1971;106(3):745–50.
- 673
- 674 62. Lochhead AG, Thexton RH. Vitamin B12 as a growth factor for soil bacteria. *Nature*.
675 1951;167(4260):1034–1034.
- 676 63. Ford JE, Hutner SH. On the nature of the vitamin B12 requirement in soil bacteria isolated
677 by Lochhead and his co-workers. *Can J Microbiol*. 1957;3(2):319–27.
- 678 64. Duda J, Malinska E, Pedziwilk Z. Relation between the vitamin B12 content and the
679 microorganism count in soil. *Acta Microbiol Pol*. 1957;6(4):355–65.
- 680 65. Sokolovskaya OM, Mok KC, Park JD, Tran JLA, Quanstrom KA, Taga ME. Cofactor
681 selectivity in methylmalonyl coenzyme A mutase, a model cobamide-dependent enzyme.
682 *mBio*. 2019;10(5):e01303-19.
- 683 66. Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL. Human gut microbes use multiple
684 transporters to distinguish vitamin B₁₂ analogs and compete in the gut. *Cell Host Microbe*.
685 2014 Jan 15;15(1):47–57.
- 686 67. Bradbeer C. Cobalamin transport in bacteria. In: Banerjee R, editor. *Chemistry and*
687 *biochemistry of B12*. John Wiley & Sons, Inc; 1999. p. 490.
- 688 68. Shelton AN, Lyu X, Taga ME. Flexible Cobamide Metabolism in *Clostridioides* (*Clostridium*)
689 *difficile* 630 Δerm. *J Bacteriol*. 2020 Jan 2;202(2):e00584-19.
- 690 69. Tang YZ, Koch F, Gobler CJ. Most harmful algal bloom species are vitamin B1 and B12
691 auxotrophs. *Proc Natl Acad Sci*. 2010 Nov 30;107(48):20756–61.
- 692 70. Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, et al. Two
693 distinct pools of B12 analogs reveal community interdependencies in the ocean. *Proc Natl*
694 *Acad Sci*. 2017;114(2):364–9.
- 695 71. Tecon R, Ebrahimi A, Kleyer H, Erev Levi S, Or D. Cell-to-cell bacterial interactions
696 promoted by drier conditions on soil surfaces. *Proc Natl Acad Sci*. 2018;115(39):9791–6.
- 697 72. Raynaud X, Nunan N. Spatial ecology of bacteria at the microscale in soil. *PLOS ONE*.
698 2014;9(1):e87217.

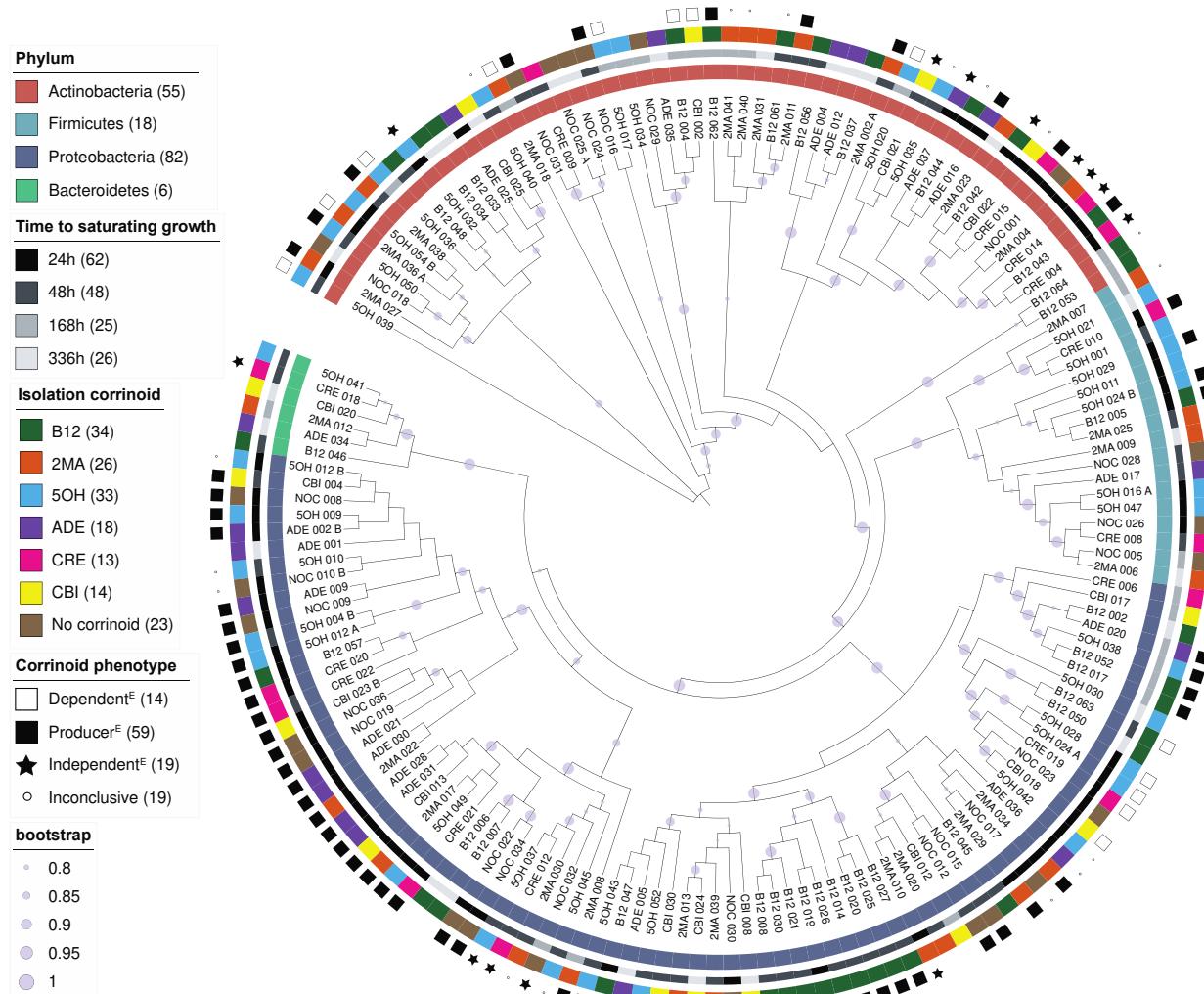
- 699 73. Escalas A, Hale L, Voordeckers JW, Yang Y, Firestone MK, Alvarez-Cohen L, et al.
700 Microbial functional diversity: From concepts to applications. *Ecol Evol*. 2019;9(20):12000–
701 16.
- 702 74. Walkup J, Dang C, Mau RL, Hayer M, Schwartz E, Stone BW, et al. The predictive power of
703 phylogeny on growth rates in soil bacterial communities. *ISME Commun*. 2023;3(1):1–8.
- 704 75. Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in
705 microorganisms. *ISME J*. 2013;7(4):830–8.
- 706 76. Placella SA, Brodie EL, Firestone MK. Rainfall-induced carbon dioxide pulses result from
707 sequential resuscitation of phylogenetically clustered microbial groups. *Proc Natl Acad Sci U
708 S A*. 2012;109(27):10931–6.
- 709 77. Frye KA, Piamthai V, Hsiao A, Degnan PH. Mobilization of vitamin B12 transporters alters
710 competitive dynamics in a human gut microbe. *Cell Rep*. 2021;37(13):110164.
- 711 78. Santos F, Vera JL, van der Heijden R, Valdez G, de Vos WM, Sesma F, et al. The complete
712 coenzyme B12 biosynthesis gene cluster of *Lactobacillus reuteri* CRL1098. *Microbiol Read
713 Engl*. 2008;154(Pt 1):81–93.
- 714 79. Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B12): synthesis and biological
715 significance. *Annu Rev Microbiol*. 1996;50:137–81.
- 716 80. Pheribo GJ, Taga ME. Bacteriophage-mediated lysis supports robust growth of amino acid
717 auxotrophs. *ISME J*. 2023;17(10):1785–8.
- 718 81. Zengler K, Zaramela LS. The social network of microorganisms — how auxotrophies shape
719 complex communities. *Nat Rev Microbiol*. 2018 Jun;16(6):383–90.
- 720 82. Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, et al.
721 Exometabolite niche partitioning among sympatric soil bacteria. *Nat Commun*. 2015;6:8289.
- 722
- 723

A

B

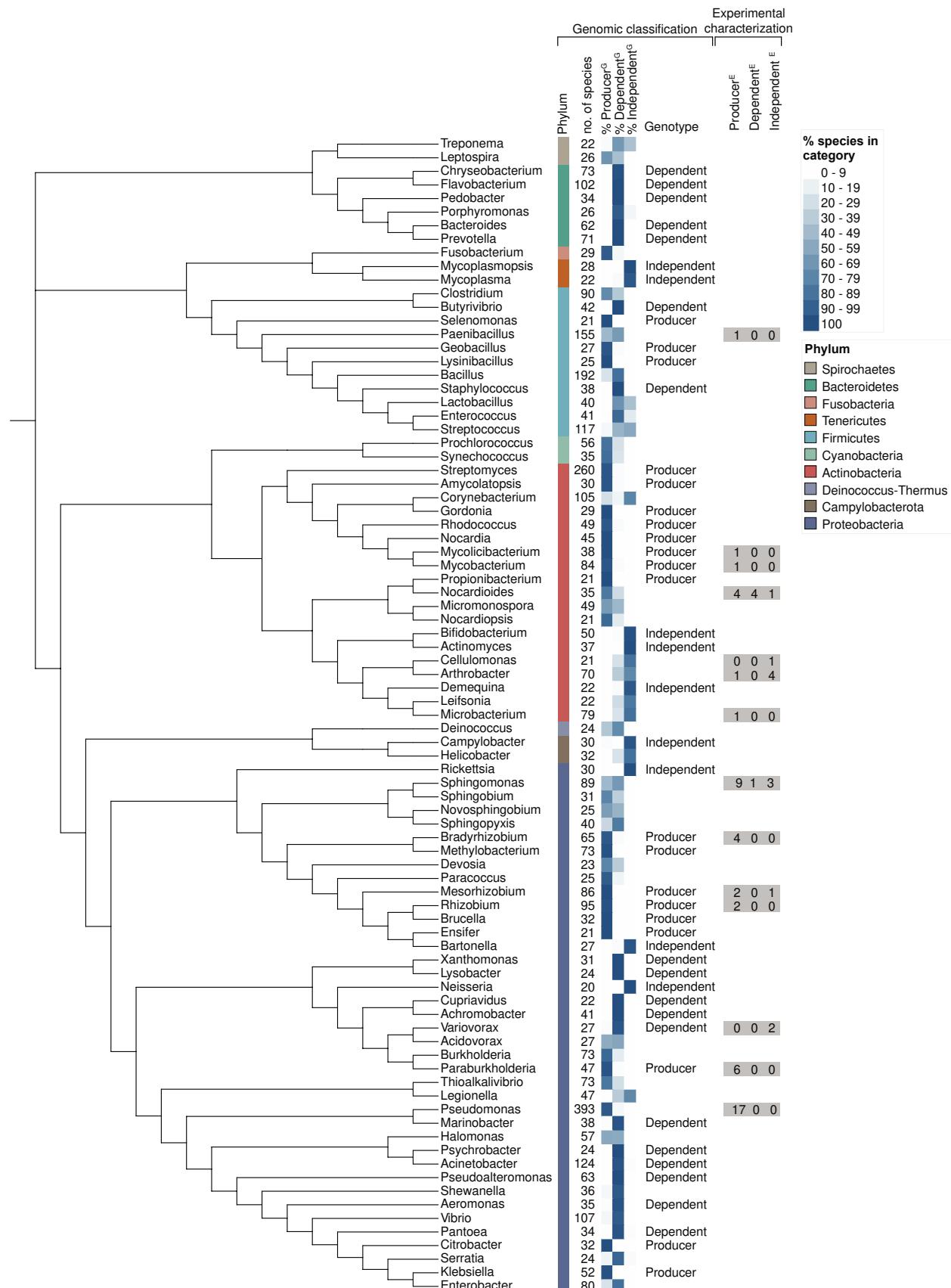
Experimental (E)

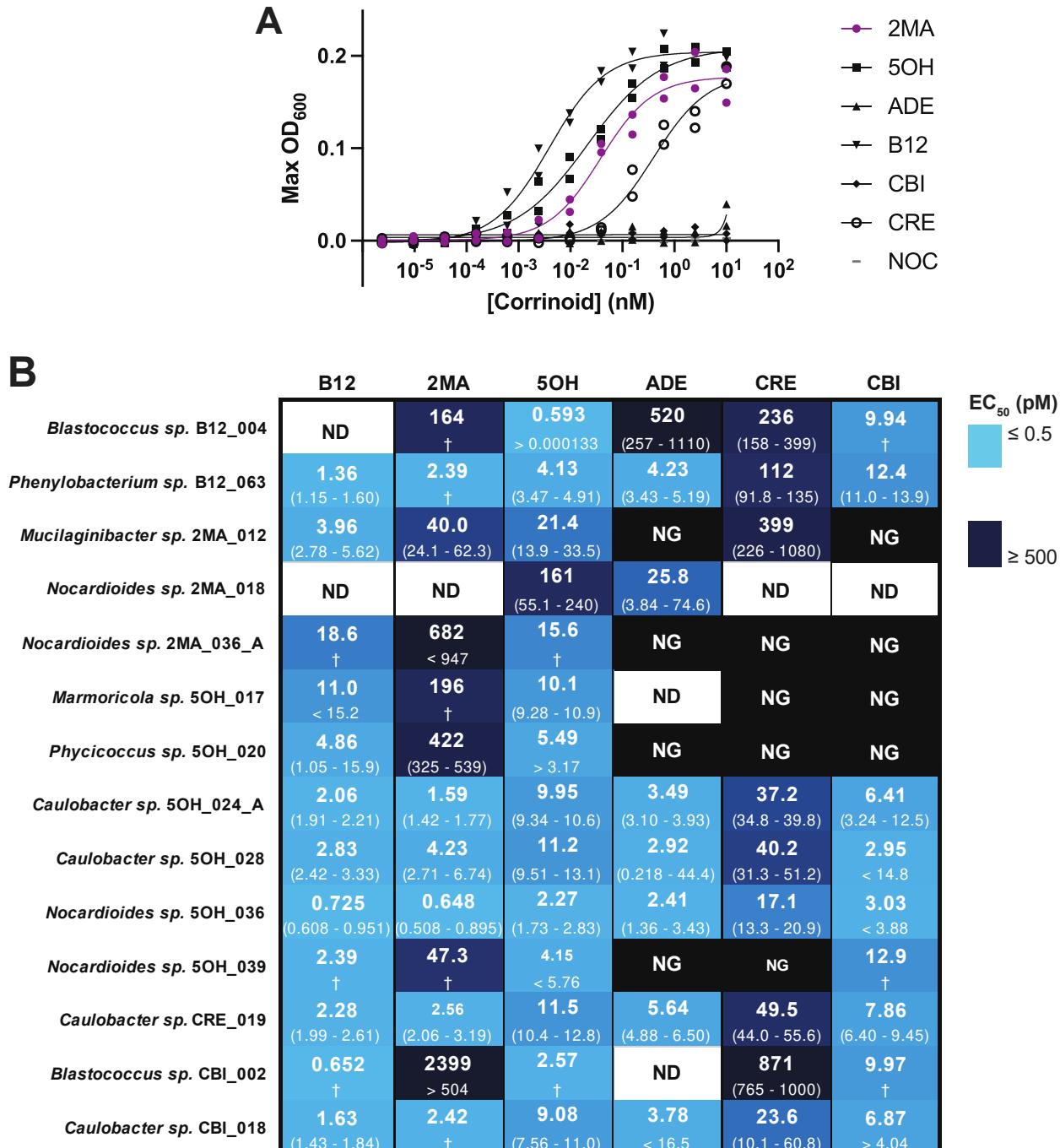

	Producer	Dependent	Independent
Growth with no corrinoid	+	-	+
Corrinoid detected	+	-	-


Genome (G)

	Producer	Dependent	Independent
Biosynthesis pathway	+	-	-
Corrinoid dependent enzymes	+	+	-

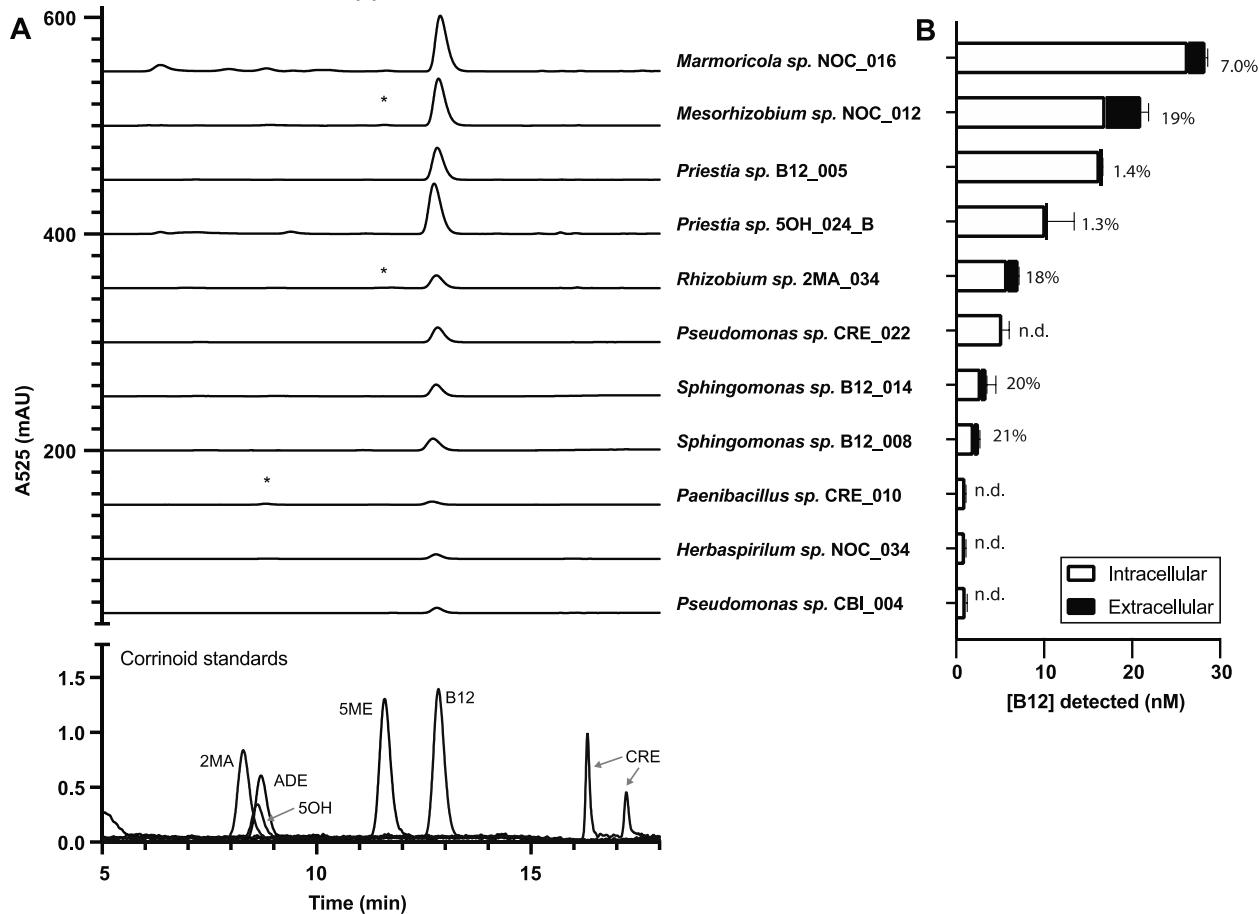
724


725 **Figure 1. Diversity of corrinoid lower ligands and metabolic roles.** (A) Chemical structure of
726 cobalamin (B12), lower ligands of other corrinoids used in this research, and 3-letter
727 abbreviations. From the top, 2-methyladeninylcobamide (2MA), 5-
728 hydroxybenzimidazolylcobamide (5OH), adeninylcobamide (ADE), and cresolylcobamide
729 (CRE). Cobinamide (CBI), shown on the left, is an incomplete corrinoid that does not contain a
730 lower ligand. (B) Corrinoid metabolism categories include producers, dependents, and
731 independents. Producers may release corrinoids (dashed line). These categories can be
732 assigned based on experimental results, denoted with superscript E, and genomic analysis,
733 denoted with superscript G, as summarized in the table. *In principle, producer^G are defined
734 based solely on the presence and completeness of the biosynthesis pathway, but all corrinoid
735 producer^G genomes examined thus far encode one or more corrinoid-dependent enzymes (25).



743
744
745
746
747
748
749
750

Figure 3. Overview of the isolate collection. A phylogenetic tree was built from the full-length 16S rRNA gene sequences of the isolates. The six- to seven-character ID is shown for each isolate. Light purple circles show bootstrap values above 0.8. Rings from the inside out show, for each isolate, (1) phylum as identified by SILVA taxonomy, (2) time to saturating growth determined from growth curves, (3) the corrinoid used in the isolation medium, and (4) the experimentally determined corrinoid metabolism category. Numbers in parentheses correspond to the number of isolates belonging to each category.


752 **Figure 4. Genome-based predictions of corrinoid metabolism at the genus level.** The
753 phylogenetic tree was built from the full-length 16S sequences of the type species of 85 genera
754 from the dataset in Reference (25) that met our cutoff by having 20 species or more. The first
755 two columns show the phylum and the number of species analyzed for each genus,
756 respectively, which total 10 phyla and 4,720 species. The next three columns show the percent
757 of species in each genus predicted to belong to each corrinoid metabolism category. A
758 corrinoid-specific genotype is indicated if 95% or more species in a genus belong to the same
759 category. The columns labeled Experimental characterization show the number of isolates in the
760 collection found to belong to each category based on experimental results. The unpruned tree
761 that was used to generate the figure is shown in Fig. S3.

762

763 **Figure 5. Corrinoid dependence in the isolate collection.** (A) Representative dose-response
764 curve belonging to isolate 2MA_012. The corrinoid in which the isolate was recovered is shown
765 in purple. Lines show non-linear fit for each corrinoid. (B) The corrinoid concentrations resulting
766 in half-maximal growth (EC₅₀) are shown for all 14 corrinoid-dependent isolates on the six
767 corrinoids used in this study. For each isolate and corrinoid combination, the top number is the
768 EC₅₀ and the numbers in parentheses represent the 95% confidence interval as calculated by a
769 four-parameter non-linear fit on GraphPad Prism (v9.5.1). Greater than and less than symbols
770 were used when the upper or lower bound of the confidence interval could not be determined,

771 respectively. NG: No Growth, ND: No Data, † 95% confidence interval not determined. Curve fit
772 data are summarized in supplemental table 7.

773
774 **Figure 6. Corrinoid production and providing in the isolate collection.** (A) HPLC analysis of
775 corrinoid extracts of 11 selected producers shows B12 is the major corrinoid produced.
776 Authentic corrinoid standards are shown at the bottom. Asterisks denote small peaks that
777 indicate the presence of a second complete corrinoid. (B) Quantification of corrinoids in the cell
778 pellet (intracellular) and supernatant (extracellular) fractions of each isolate as detected by an *E.*
779 *coli*-based corrinoid bioassay. The percent of corrinoid provided (extracellular corrinoid as a
780 fraction of the total corrinoid) is given to the right of each bar. Bars and error bars show the
781 average and standard deviation of three technical replicates, respectively. n.d., extracellular
782 corrinoid was not detected.