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Abstract

Physiological processes, such as epithelial–mesenchymal transition (EMT), are mediated by changes

in protein interactions. These changes may be better reflected in protein covariation within cellular

cluster than in the temporal dynamics of cluster-average protein abundance. To explore this pos-

sibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the

data revealed that functionally coherent protein clusters dynamically changed their protein-protein

correlations without concomitant changes in cluster-average protein abundance. These dynamics

of protein-protein correlations were monotonic in time and delineated protein modules function-

ing in actin cytoskeleton organization, energy metabolism and protein transport. These protein

modules are defined by protein covariation within the same time point and cluster and thus reflect

biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation

dynamics across single cells offer a window into protein regulation during physiological transi-

tions.
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Introduction

Epithelial-mesenchymal transition (EMT) plays a key role in embryonic and adult development,

tissue repair and wound healing, and pathologies such as fibrosis and cancer1–3. EMT involves

major changes in cell behavior. While most attention is given to cell morphology, adhesion, mi-

gration and invasiveness, EMT also impacts cell cycle activity, senescence, apoptosis, metabolism,

genomic stability, stemness and drug resistance, among other cell behaviors. The pleiotropic ef-

fect of EMT on cell behaviors is mediated by complex regulatory networks, including transcription

factors, post-transcriptional and post-translational signaling, intercellular communication and the

microenvironment.

EMT regulation across single cells is nonuniform. Single-cell RNA and morphological analysis

show significant variability among cells undergoing EMT4,5. In what ways variability in protein

abundance contributes to single-cell heterogeneity during EMT remains unclear. Since RNA level

is an unreliable predictor of protein abundance, protein level variation cannot be reliably inferred

from single-cell RNA data6–9. Indeed, post-transcriptional processes, such as endocytosis, protein

synthesis, modifications and degradation, play a significant role in EMT regulation10–12.

While this variability poses challenges for population average measurements, it offers the poten-

tial to infer regulatory processes from protein covariation across single cells13. Indeed protein

co-variation across individual cells may reflect protein interactions and can be detected by single-

cell protein measurements with sufficient accuracy, precision and throughput14,15. Such analysis

is becoming feasible due to the development of powerful single-cell mass spectrometry (MS) pro-

teomic methods16–24. As a result, protein covariation across single cells can be quantified25–28.

Here, we applied Single Cell ProtEomics29–31 to quantify the proteomes of single cells undergoing

EMT triggered by TGFβ, a prominent stimulus for EMT in physiological and pathophysiological

processes. Analyzing the system across time, we observed within cluster variation across single

cells and strong protein covariation across the single cells within each time point. We systemati-

cally quantified this covariation and its change in time. This revealed clusters of proteins whose

covariation evolved concertedly in time. These concerted changes in protein covariation include

singling proteins, cytoskeleton proteins and metabolic enzymes whose mean abundance per time

point does not change. Thus, protein covariation across single cells provides information about

cellular remodeling that is complementary to changes in protein abundance.
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Results

Dynamics of proteins abundance and variability during EMT

We aimed to quantify EMT-mediated changes in protein abundance over the time span of several

days. To this end, we performed single-cell proteomics on non-transformed human mammary ep-

ithelial cells (MCF-10A) treated with transforming growth factor beta (TGFβ) for 0 (untreated),

3 and 9 days, Fig. 1. The chosen dosage of TGFβ has been shown by us and others to induce

overt EMT in MCF-10A cells32–34. The time points were chosen to interrogate transient (3 days)

and sustained (9 days) responses to TGFβ during which cells will be in intermediary and overt

phases of EMT. Our MS measurements yielded data for 4,571 proteins across 420 individual cells.

However, many of proteins were quantified in a small fraction of the cells, and we focused on a

subset of 1,893 proteins that were quantified in over 30 single cells from the dataset and over 5

single cells from each time point.

a b

Figure 1 | Experimental design and dataset overview (a) MCF-10A cells were treated by TGFβ for the indicated

duration and then collected for protein analysis. (b) Single cells plotted in the space of their principal components are

colored by the day post TGFβ treatment.

Principal component analysis (PCA) of protein abundance data shows that cells from the three

time points segregate into clusters in PC space. The separation suggests that magnitude of changes

in protein abundance is large enough to readily distinguish cells at different phases of EMT. The

first PC primarily separates untreated cells from TGFβ-treated cells regardless of how far into
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EMT they have progressed. Cells with transient (3 d) and sustained (9 d) exposure score simi-

larly along PC1. Meanwhile, the second PC separates cells with transient vs. sustained exposure

to TGFβ. Proteins loaded heavily along this axis distinguish intermediary vs. overt stages of EMT.

Dynamics of protein covariation during EMT

Next, we sought to analyze pairwise protein correlations for a set of proteins selected by correla-

tion vector analysis (similar to previously uses in ref29,35) to be correlated at both days 0 and 9 but

in different ways. An example of such pair is shown in Fig. 2a: RSPH10B and TUBB3 correlate

negatively in epithelial cells (Day 0) and positively in mesenchymal cells (Day 9). This change

in correlation is statistically significant (p val < 10−13, q val < 0.1%). Day 3 (whose data was

not used for protein selection) exhibits and intermediate correlation pattern, suggesting concerted

changes in correlation over EMT progression.

The change in pairwise correlations in Fig. 2a is not associated with significant changes in the

mean abundance of these proteins in Days 0, 3 and 9, suggesting that the changes in correlation

patterns may reveal molecular rearrangements inaccessible from measuring mean protein levels.

This observation is bolstered by the data for other proteins pairs exhibiting similarly concerted

temporal changes in covariation without significant changes in mean abundance, Fig. 2b.

Next, we sought to expand the correlation patterns suggested by individual pairs of proteins (Fig. 2)

to a systematic exploration of changing global patterns of covariation, Fig. 3. To this end, we

started by selecting the subset of proteins with multiple pairwise observations (i.e., all proteins for

which we can compute pairwise correlations from measured protein abundances) and substantial

changes in covariation. To identify proteins with changing correlations, we subtracted the corre-

lations for Day 0 from the correlations for Day 9 and computed the norms of the vectors of cor-

relation differences. Then we selected the proteins (50% percentile) having the largest magnitude

difference between Day 0 and Day 9 (Fig. S2) or (20% percentile) having the largest magnitude

difference between Day 0 and Day 9 (Fig. S3). The correlations between these proteins defined

3 main clusters when clustered hierarchically Fig. S2, and thus we used K-means clustering with

k=3 to define 3 discrete clusters (c1, c2, and c3).

These 3 clusters are well defined, as shown by the matrices of pairwise correlations within each

cluster (Fig. 3a) and their corresponding differences across time (Fig. 3b). The global change in

correlations for each cluster is monotonic (Fig. 3), and this monotonicity is quantified by the dy-
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Figure 2 | Protein correlations change in the course of EMT. (a) Pairwise correlations between RSPH10B and

TUBB3 at each of the 3 time points. (b) Pairwise correlations between STK16 and FLNB at each of the 3 time points.

The probability of observing these changes in correlations in the randomized data is below low, p < 10
−8, q < 10

−2.

namics of mean cluster correlations displayed in Fig. 4a. Since the data from Day 3 have not been

used for selecting or clustering proteins, their consistency with the monotonic trends bolsters our

confidence in the results.

Remarkably, the dynamics of the mean protein correlations for clusters 1,2, and 3 are not reflected

in the corresponding dynamics of mean protein abundances, Fig. 4. For a particular cluster, such as

c3, the correlations scale in time while the proteins from the cluster remain positively correlated to

each other, as shown in Fig. 4a. Based on this observation, we estimated the mean correlation for

each cluster and plotted the estimates over time, Fig. 4b. Similarly we estimates, the mean protein

abundance of each cluster over time (Fig. 4c), and evaluated the dependence between these mean

cluster estimates as shown in Fig. 4d. The result indicates no dependence between the dynamics
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Figure 3 | Dynamics of protein covariation during EMT (a) Matrices of pairwise protein correlations at days 0,

3 and 9 clustered using k-means clustering with k = 3. The 3 clusters are denoted by c1, c2, and c3. (b) Matrices

of differences between pairwise protein correlations for the indicated time points. The rows and columns for all

days correspond to the same proteins ordered in the same way, namely based on clustering the matrix of correlation

differences between Day 9 and 0.

of protein correlations and mean protein abundance, consistent with the observation for the protein

pairs shown in Fig. 2. There results reveal biological signals reflected in the protein covariation

across single cells from the same time point but not from the corresponding cluster-average protein

abundance, Fig. 4a-c.

To identify biological functions corresponding to each cluster, we performed gene ontology (GO)

term analysis36 for terms enriched in each cluster relative to all analyzed proteins. We found a

many statistically significant protein groups in these clusters, which are provided as Supplemen-

tal Tables and a few characteristic groups are highlighted in Table 1. The first cluster comprises

proteins involved in cytsokeletal regulation, including actin, vimentin, tubulin subunits, vinculin,

filamins and contractility regulators, such as RhoA, myosin and tropomyosin. The proteins in this

cluster broadly span cytoskeletal regulation and show statistically significant enrichment when

the analysis is extended to more proteins, Fig. S3. Meanwhile, the proteins in the second and third

clusters showed statistically-significant enrichment for metabolism and protein synthesis and trans-

port, respectively (Supplemental Tables). The second cluster was enriched for proteins involved
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Figure 4 | Differences between the dynamics of within-cluster protein correlations and cluster-average abun-

dance. (a) Comparison of pairwise correlations for cluster 3 (c3) between days 0 and 9. (b) Mean correlations among

the proteins from each cluster across time. (c) Mean abundance of the proteins from each cluster across time. (d)

Correspondence between mean cluster correlations and mean cluster protein abundances. The correlation is weak

(r = −0.14) and not statistically significant (p = 0.7).
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Cluster Enriched function Proteins

c1 regulation of actin filament-based process fascin, RhoA, IQGAP1, Arp3

c2 glucose and pyruvate metabolic processes
pyruvate kinase, aldolase, enolase, lactate

dehydrogenase

oxidative phosphorylation ATP synthase, cytochrome C oxidase

c3 protein synthesis and transport ribosomal proteins

telomere maintenance, cell response to DNA

damage
XRCC5, XRCC6, PARP1, PCNA

Table 1 | Enriched biological functions in the correlation clusters. The table summarizes protein sets and associ-

ated representative proteins form performing GO Gorilla analysis on cluster c1, c2, and c3. All terms are significant

at 1% FDR. The full results from the analysis are available as Supplemental Tables.

in glycolysis and oxidative phosphorylation, consistent with the role of EMT in regulating aerobic

and anaerobic utilization of glucose37. Many of the enriched functions found in the third cluster

involved protein synthesis and transport, including core ribosomal proteins. The third cluster is

enriched for other functions associated with EMT, including telomere regulation, and senescence

and cell response to DNA damage. Taken together, the protein functions found across the three

clusters correspond to the multi-faceted effect of EMT on cellular functions.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.21.572913doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572913
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion

Protein covariation across single cells may identify regulatory interactions13, and here we demon-

strate its potential to delineate dynamic remodeling of protein networks during EMT. Our work

builds upon previous observations of RNA covariation38 and protein covariation25–28 and extends

the anaysis and interpretation towards temporal dynamics during cellular transitions.

Proteins covariation has to important benefits relative to RNA covariation for inferring biological

regulation. First, proteins quantification is based on sampling sufficient number of copies from

most proteins (often 100s of copies)29,39,40 to support reliable quantification of correlations across

single cells (not clusters of cells), as shown in Fig. 2. Second, much of the regulation may be

driven by protein synthesis and degradation of protein subunits of complexes41, and this compo-

nent is detectable only at the protein level. For these two reasons, protein covariation offers an

informative perspective towards biological regulation13.

We based our analysis on correlations between proteins with many pairwise observations. Many

of the proteins quantified in our dataset did not have sufficient number of pairwise observations

to be included in this analysis due to the stochastic approach of shotgun data acquisition. This

limitations can be overcome in future studies by using prioritised data acquisition (pSCoPE)28,42

or multiplexed data independent acquisition (plexDIA)43–45. Thus, using the latest generation of

single-cell proteomic technology and future innovations46 will further empower the approach that

we used in this study.

Materials and methods

Cell culture

Non-transformed human mammary epithelial cells (MCF-10A, ATCC) were maintained in growth

medium consisting of DME medium/Ham’s F-12 (ThermoFisher) containing HEPES and L-glutamine

supplemented with 5% (v/v) horse serum (ThermoFisher), 20 ng/ml EGF (Peprotech), 0.5 µg/ml

hydrocortisone, 0.1 µg/ml cholera toxin, 10 µg/ml insulin (Sigma), and 1% penicillin-streptomycin

(ThermoFisher), as described previously47. To induce EMT, cells were treated with 20 ng/ml TGFβ

(Peprotech) in growth medium for 0, 3 and 9 days32. TGFβ-containing medium was refreshed ev-

ery three days.
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Sample preparation

Cells were harvested as single-cell suspension and prepared for MS analysis using Nano-ProteOmic

sample Preparation (nPOP) as described by Leduc et al.48,49. The automated collection of prepared

samples had not been developed yet26 and so samples were manually collected using a pipette

(using 5µl of mass spectrometry grade Acetonitrile then water respectively) and transferred into

a 384-well plate (Thermo AB1384). The samples were then dried down in a SpeedVac vacuum

evaporator and resuspended in 1.07µl of 0.1% Formic Acid (buffer A) and tightly sealed using an

aluminium foil cover (Thermo Fisher AB0626).

Peptide separation and MS data acquisition

The separation was performed at a constant flow rate of 200nL/min using a Dionex UltiMate

3000 UHPLC. From the 1.07µl of sample in each well, 1 µl was loaded onto a 25cm × 75 µM

IonOpticks Odyssey Series column (ODY3-25075C18). The separation gradient was 4% buffer B

(80% acetonitrile in 0.1% Formic Acid) for 11.5 minutes, a 30 second ramp up to 8%B followed

by a 63 minute linear gradient up to 35%B. Subsequently, buffer B was ramped up to 95% over 2

minutes and maintained as such for 3 additional minutes. Finally, buffer B was dropped to 4% in

0.1 minutes and maintained for 19.9 additional minutes.

The mass spectra were acquired using a Thermo Scientific Q-Exactive mass spectrometer from

minutes 20 to 95 of the LC method. The electrospray voltage of 1700 V was applied at the liquid

liquid junction of the analytical column and transfer line. The temperature of the ion transfer tube

was 250°C, and the S-lens RF level was set to 80.

After a precursor scan from 450 to 1600 m/z at 70,000 resolving power, the top 7 most intense

precursor ions with charges 2 to 4 and above the AGC min threshold of 20,000 were isolated for

MS2 analysis via a 0.7 Th isolation window with a 0.3 Th offset. These ions were accumulated

for at most 300 ms before being fragmented via HCD at a normalized collision energy of 33 eV

(normalized to m/z 500, z = 1). The fragments were analyzed at 70,000 resolving power. Dynamic

exclusion was used with a duration of 30 s with a mass tolerance of 10 ppm.

MS data searching

The raw data was searched by MaxQuant, a software package for proteomics data analysis, against

a protein sequence database that included all entries from the human SwissProt database and

known contaminants. The MaxQuant search was performed using the standard workflow, which

includes trypsin digestion and allows for up to two missed cleavages for peptides with 7 to 25

amino acids. Tandem mass tags (TMTPro 16plex) were specified as fixed modifications, while
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methionine oxidation and protein N-terminal acetylation were set as variable modifications. Car-

bamidomethylation was disabled as a fixed modification because it was not performed. Second

peptide identification was also disabled. The calculation of peak properties was enabled. All

peptide-spectrum-matches (PSMs) and peptides found by MaxQuant were exported to the evi-

dence.txt files. The confidence in the PSMs was further updated using Dart-ID, which is a Bayesian

framework for increasing the confidence of PSMs that were consistently identified at the same re-

tention time with high-confidence PSMs for the same amino acid sequences50. The updated data

were filtered at 1% FDR for both peptides and proteins as described by Petelski et al.30.

Data filtering and analysis

The peptide by cells matrices were processed by the SCoPE2 analysis pipeline29,30,51, which re-

sulted in 4,571 proteins quantified across 420 single cells. However, each single cell had only

about 1,000 proteins quantified and many proteins were quantified in relatively few single cells.

Thus, we subset the proteins to the 1,893 proteins quantified in at least 30 single cells from the

dataset and at least 3 single cells from each time point.

We computed the pairwise Pearson correlations for each time point between these 1,893 pro-

teins using only measured abundances, without imputation, which resulted in three 1, 893× 1, 893

correlation matrices, R1, R2, and R3 for days 0, 3 and 9 respectively. We further computed the

Pearson correlations among correlation vectors of R1 and R3 corresponding to the same protein as

previously described25,29,35, resulting in a vector v. Each element of v corresponds to one protein

and quantifies the similarity of its correlations to the remaining 1,892 proteins. The elements of

v were used to explore pairwise combination of proteins whose correlations change significantly

between days 0 and 9 and the examples shown in Fig. 2. To calculate the statistical significance for

the change in the correlations, we computed the same correlation difference for 108 randomized

samples and estimated the fraction of randomized samples whose correlation difference exceeds

the difference observed in the data.

For the systematic analysis of correlations in Fig. 3, we computed the matrix of correlation

differences ∆R = R3 − R1 and preserved only its rows and columns corresponding to a set φ of

418 proteins with no missing data, i.e, the corresponding correlations could be computed only from

quantified proteins both for day 0 and 9. Then, we quantified the average magnitude of correlation

change for each of these 418 proteins by computing the norm of its corresponding column in ∆Rφ,

resulting in a vector m. To select the proteins whose correlations change the most, we selected the

subset ω of 209 proteins having norms in m larger than the 50% percentile of m (the median of

m). Then we performed means clustering with k = 3 on ∆Rω and used the 3 resulting clusters to

display R1ω, R2ω, and R3ω and their differences in Fig. 3. As an alternative approach, we clustered
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∆Rω hierarchically and used the resulting permutation to order the rows and columns of R1ω, R2ω,

and R3ω and their differences, as displayed in Fig. S2.

To quantitatively display the dynamics of correlations for the 3 clusters derived by K-means

clustering, we computed the mean correlation for all pairwise correlations between proteins as-

signed to a cluster for each of the 3 time points, Fig. 4. Similarly, we computed the average protein

abundance for all proteins (log2 fold change relative to the mean) assigned to a cluster for each

of the 3 time points. Only measured protein values were used for computing the average-cluster

protein abundance; no imputation values were used.

Availability

Data, metadata, code, and protocols are organized according to community recommendations24

and available at supplemental information and at scp.slavovlab.net/Khan et al 2023. The Raw MS

data are available at MassIVE: MSV000092872 and ProteomeXchange: PXD045423.
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Figure S1 | Gradients of expression in single cells extend mean levels observed in orthogonal bulk data. (a)

Statistically significant enrichment of related proteins in bulk data over the course of TGFβ treatment observed across

two biological replicates. (b) Z scored abundances of select, significantly differential bulk GO terms have been used

to color each single cell in PC space.
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Figure S2 | Dynamics of protein covariation during EMT The the proteins whose correlations have the largest

magnitude (exceeding the 50% percentile) difference between Day 0 and Day 9 were selected and their correlation

matrices clustered hierarchically. (a) Matrices of pairwise protein correlations at days 0, 3 and 9. (b) Matrices

of differences between pairwise protein correlations for the indicated time points. The rows and columns for all

days correspond to the same proteins ordered in the same way, namely based on clustering the matrix of correlation

differences between Day 9 and 0.
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Figure S3 | Dynamics of protein covariation during EMT. The the proteins whose correlations have the largest

magnitude (exceeding the 20% percentile) difference between Day 0 and Day 9 were selected and their correlation

matrices clustered hierarchically. (a) Matrices of pairwise protein correlations at days 0, 3 and 9. (b) Matrices

of differences between pairwise protein correlations for the indicated time points. The rows and columns for all

days correspond to the same proteins ordered in the same way, namely based on clustering the matrix of correlation

differences between Day 9 and 0.
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