

1 Genotypic and Phenotypic Analyses of Two Distinct Sets of 2 *Pseudomonas aeruginosa* Urinary Tract Isolates

3 HA Ebrahim¹, S Haldenby³, MP Moore⁴, AA Dashti⁵, RV Floyd² and JL Fothergill¹.

4

5 1 Dept of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and
6 Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.

7 2 School of Life Sciences, University of Liverpool, Liverpool, United Kingdom.

8 3 Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool,
9 United Kingdom.

10 4 School of Life Sciences, University of Warwick, Coventry, UK

11 5 Department of Medical Laboratory Sciences, Faculty of Allied Health Science, Health Sciences
12 Centre, Kuwait University, Kuwait.

13

14 Corresponding author: JL Fothergill, j.fothergill@liverpool.ac.uk

15

16 Keywords: *Pseudomonas aeruginosa*, Urinary tract infections, virulence factors, antimicrobial
17 resistance, biofilm formation.

18

19 **Abstract**

20

21 Urinary tract infections (UTIs) are associated with a high burden of morbidity, mortality, and cost.
22 *Pseudomonas aeruginosa* employs a myriad of virulence factors, including biofilm formation and
23 motility mechanisms, to cause infections including persistent UTIs. *P. aeruginosa* is highly resistant to
24 antibiotics and the World Health Organization has identified it as a pathogen for which novel
25 antimicrobials are urgently required. Genotypic and phenotypic characterization of *P. aeruginosa* from
26 UTIs are underreported. In addition, the rise of antimicrobial resistance (AMR) is a cause for concern,
27 particularly in many countries where surveillance is severely lacking.

28 22 *P. aeruginosa* UTI isolates were sourced from the United Kingdom (UK) and Kuwait. To establish
29 the phenotypes of UK isolates, growth analysis, biofilm formation assays, motility assays, and
30 antibiotic disc diffusion assays were performed. Whole genome sequencing, antimicrobial
31 susceptibility assays, and *in silico* detection of AMR-associated genes were conducted on both sets of
32 isolates.

33 In terms of their phenotypic characteristics and genomic composition, the UTI isolates varied. Multiple
34 resistance genes associated with resistance to various classes of antibiotics, such as aminoglycosides,
35 fluoroquinolones, and β -lactams, particularly in isolates from Kuwait. Extreme antibiotic resistance
36 was detected in the isolates obtained from Kuwait, indicating that the country may be an antibiotic
37 resistance hotspot.

38 This study highlights that isolates from UTIs are diverse and can display extremely high resistance.
39 Surveillance in countries such as Kuwait are currently limited and this study suggest the need for
40 greater surveillance.

41 **Author Notes:** Accession numbers TBC.

42

43 **Abbreviations**

44 AMR, Antimicrobial resistance; CARD, Comprehensive Antibiotic Resistance Database; CV, Crystal
45 violet; CAUTI, Catheter associated infections. Cystic fibrosis, CF; CGR, Centre for Genomic Research;
46 *Escherichia coli*, *E. coli*; EUCAST, European Committee on Antimicrobial Susceptibility Testing; GCC Gulf
47 Corporation Council; MIC, Minimum inhibitory concentrations; *P. aeruginosa*, *Pseudomonas*
48 *aeruginosa*; UTI, Urinary tract infection; VIM; Verona integron-encoded metallo- β -lactamases; WGS,
49 Whole Genome Sequencing; WHO, World Health organization; XDR, extensively drug resistant.

50

51

52 Introduction

53 Urinary tract infections (UTIs) are some of the most widespread infections in healthcare and
54 community settings worldwide, with around 150 million patients infected annually (1,2). According to
55 the National Health Service in England, UTIs resulted in more than 800,000 hospital visits in the period
56 between 2018 and 2023 (3). UTIs are also one of the main causes of serious *Escherichia coli* (*E. coli*)
57 bloodstream infections and a major contributor to the rise of antimicrobial resistance (AMR) in
58 England (4).

59 *Pseudomonas aeruginosa* is a Gram-negative, motile, facultative anaerobic bacteria (5). *P. aeruginosa*
60 cause opportunistic infections in people with cystic fibrosis, cancer, burns, urinary tract complications
61 and chronic wounds (6). The World Health Organization (WHO) declared *P. aeruginosa* as a
62 microorganism of concern and in urgent need of new medical interventions (7). Nosocomial infections
63 caused by *P. aeruginosa* are often difficult to treat with antibiotics due to intrinsic and acquired multi-
64 drug resistance (8). *P. aeruginosa* also utilises biofilm formation, which can complicate treatment in
65 respiratory, urinary tract and eye infections (9,10). The bacterium utilises a complex system of
66 regulatory circuits via quorum sensing, two component systems and alternative sigma factors along
67 with other regulators (11). The large complex genome of *P. aeruginosa* (6-7 MB) contributes to
68 adaptation in different environments and niches (12). In addition, *P. aeruginosa* utilises multiple
69 virulence factors such as phenazines, elastase, phospholipase C, alkaline protease, rhamnolipids and
70 hydrogen cyanide (13). In a murine model of catheter associated infections (CAUTI), *P. aeruginosa*
71 utilises type III secretion system to cause acute infections (14).

72

73 *P. aeruginosa* is efficient in causing acute or recurrent UTI, partially due to its ability to form biofilms
74 and survive intracellularly (15). The primary route to the urinary tract occurs in nosocomial settings,
75 UTIs account for 40% of hospital acquired infections (5). The percentage of CAUTIs attributed to *P.*
76 *aeruginosa* is estimated at 35%, indicating that the pathogen is proficient at causing these infections
77 (5). The presence of patients in hospitals for more than 30 days increases the risk of acquiring UTIs by
78 almost 100% (16). Infections caused by CAUTI *P. aeruginosa* are usually known to be severe, persistent
79 and antibiotic resistant (17).

80

81 While surveillance of the prevalence antimicrobial resistance of UTI *P. aeruginosa* in the United
82 Kingdom occurs, it is not comprehensive. Ironmonger *et al.* (2015) conducted a comprehensive
83 antimicrobial resistance surveillance in the Midlands region of the United Kingdom to identify
84 resistance patterns of uropathogens, including *P. aeruginosa*. A total of 786 *Pseudomonas* spp isolates
85 (4.08% of all uropathogens) acquired over a four-year period from a population of 5.6 million, 5.7 %

86 carbapenemase producers were identified (18). However, many other phenotypic features are not
87 reported. Furthermore, the similarity of these data to other countries worldwide is unclear. Minimal
88 reporting on UTIs is common. Including in the Gulf Corporation Council (GCC), which is comprised of
89 6 countries: The state of Kuwait, Kingdom of Saudi Arabia, Kingdom of Bahrain, State of Qatar, United
90 Arab Emirates and Sultanate of Oman. Current evidence suggests that *P. aeruginosa* resistance to
91 antibiotics is rapidly evolving in the GCC countries (19,20). The increasing rates of antimicrobial
92 resistance are attributed to several factors such as travel (21,22), high use of antibiotics (23,24)
93 including antibiotics sales from pharmacies without prescription (19,25). Zowawi *et al* conducted a
94 regional study on *P. aeruginosa* clinical isolates and found that high risk clones were widespread, in
95 particular *bla_{VIM}*- was detected in 39% of a total of 95 isolates (20). Consistent surveillance on the
96 spread of *P. aeruginosa* within Kuwaiti hospital is lacking. Multiple studies reveal the existence of
97 multidrug resistance *P. aeruginosa* in nosocomial settings. In 1997, a study reported 10 UTI *P.*
98 *aeruginosa* isolates with aminoglycosides being the most common resisted class of antibiotics. A study
99 conducted over a three-year period (2005-2007) in one of the largest hospitals in Kuwait revealed that
100 9.8 percent of *P. aeruginosa* UTIs were acquired in the hospital, compared to 4.33% isolated from
101 outpatients, 15% and 14% of hospital-acquired isolates were resistant to amikacin and
102 piperacillin/tazobactam, respectively (26). However, these published reports lack detailed genomic
103 analyses on the carriage of AMR genes.

104

105 In this study, we highlight genotypic and phenotypic characteristics of *P. aeruginosa* UTI isolates
106 obtained in the United Kingdom and compare to a small subset of isolates from the State of Kuwait.

107 **Methods**

108 **Bacterial isolates**

109 *P. aeruginosa* isolates were obtained from the Royal Liverpool University Hospital in Liverpool (n=15)
110 and the State of Kuwait (n=8). In the UK panel, the average age of patients on upon bacterial isolation
111 was 70 years old with 47% isolates from woman. All isolates sourced from Kuwait were isolated in
112 2005 with no further information available.

113

114

115

116

117

118

119 **Table 1:** *P. aeruginosa* isolates used in this study.

Isolate Name	Source	Date	Country of origin	Gender	Age	Reference
PAO1	Wound	1954	Australia	N/A	N/A	(27)
PA14	Burn Wound	1977	US	N/A	N/A	(28)
LESB58	CF	1988	UK- Liverpool	N/A	N/A	(29)
133042	Urine	11-Oct-13	UK	M	52	This study
133043	Urine	16-Oct-13	UK	F	80	This study
133044	Urine	16-Oct-13	UK	F	69	This study
133065	Urine	18-Oct-13	UK	F	70	This study
133075	Urine	24-Oct-13	UK	M	76	This study
133082	Urine	25-Oct-13	UK	M	89	This study
133083	Urine	25-Oct-13	UK	F	68	This study
133090	Urine	25-Oct-13	UK	M	83	This study
133098	Urine	31-Oct-13	UK	M	58	This study
133099	Urine	31-Oct-13	UK	F	61	This study
133104	Urine	01-Nov-13	UK	M	72	This study
133105	Urine	01-Nov-13	UK	M	50	This study
133106	Urine	02-Nov-13	UK	M	83	This study
133117	Urine	02-Nov-13	UK	F	61	This study
133126	Urine	07-Nov-13	UK	F	75	This study
758	Urine	4-Jan-05	Kuwait	N/A	N/A	This study
783	Urine	10-Jan-05	Kuwait	N/A	N/A	This study
786	Urine	11-Jan-05	Kuwait	N/A	N/A	This study
864	Urine	18-Apr-05	Kuwait	N/A	N/A	This study
888	Urine	15-May-05	Kuwait	N/A	N/A	This study
902	Urine	22-May-05	Kuwait	N/A	N/A	This study
925	Urine	05-June-05	Kuwait	N/A	N/A	This study
1083	Urine	12-Nov-05	Kuwait	N/A	N/A	This study

120

121

122 **Isolate storage and culture**

123 The isolates were stored at -80 °C in Luria-Bertani (LB) broth (Sigma Aldrich) (W/V) 10% glycerol (Sigma
124 Aldrich). Isolates were streaked onto LB agar (Appleton Woods) and grown overnight at 37 °C. A single
125 colony of each *P. aeruginosa* isolate was utilized to inoculate LB broth
126 (Sigma Aldrich) in universal tubes overnight. Subsequently, the cultures were grown at 37°C and
127 shaking at 180 rpm.

128 **Growth analysis**

129 To establish the rate of bacterial growth. Overnight cultures were diluted 1:100 in polystyrene 96-well
130 plates (Corning® Costar®). The assay was performed with four technical replicates and in
131 quadruplicate biological replicates. The growth of each well was monitored for 24 h at 37°C and the
132 absorbance 600nm was recorded every 30 min by the Fluostar Omega plate reader. Analysis was
133 performed using Growthcurver in R Studio.

134 **Initial biofilm attachment assay**

135 The overnight cultures of the UK based clinical isolates were diluted 1:100 in LB. This was followed by
136 the addition of 200µl of each *P. aeruginosa* containing-LB solution in quadruplicate to a 96-well plate
137 (Corning® Costar®) and grown at 37°C for 24h or 48h. After the incubation period, the broth was
138 removed, followed by the application of 200µl of phosphate buffered saline (PBS) to the wells twice
139 to wash the biofilms. Removal of PBS was conducted followed by drying at 37 C. 200µl of 0.25% crystal
140 violet (CV) w/v in dH2o (Sigma Aldrich) was added into each well for 10 minutes. Stained biofilms were
141 solubilised by adding 200µl of 95% ethanol v/v (Sigma Aldrich) for 10 minutes and transferred to a
142 new 96-well plate (Corning® Costar®). The absorbance was measured at OD600nm on the Fluorostar
143 Omega plate reader to determine the biofilm biomass.

144 **Motility Assays**

145 **Twitching**

146 To measure twitching motility of the isolates, a colony of *P. aeruginosa* was stabbed in the middle of
147 an agar plate to the bottom. The colonies were then grown overnight at 37°C. The agar was then
148 removed, and the plate was subsequently stained with 0.25 % CV for 15 minutes. Twitching zones
149 were measured using a ruler. The cut-off point in which the isolate was considered motile was 5 mm
150 in diameter.

151

152

153 **Swimming motility**

154 The methodology used is based on a swimming motility assay by Ha, *et al*, (2014) (30) . Briefly, media
155 was prepared according to the protocol described. *P. aeruginosa* cultures were grown overnight in LB
156 broth at 37 °C shaking at 180 rpm. Subsequently, a sterile toothpick was used to stab the agar from
157 top to near bottom of the plate. The agar plates were incubated at 37 °C for 18 h. Three biological
158 replicates were performed for each isolate in the study. Millimeter measurements were taken to
159 assess the diameter of swimming bacteria. To determine whether the isolate is motile, comparison
160 with the reference laboratory strain PA14 were conducted.

161 **Swarming motility**

162 The swarming motility test was performed according to the protocol established by Ha, *et al*, (2014)
163 (30). Once the preparations of plate cultures were completed, 2.5 µl of overnight of *P. aeruginosa*
164 cultures were added to the top of the agar. The agar plates were incubated overnight at 37 °C for 18
165 h. 3 biological replicates were conducted for each isolate. Measurements in mm were taken and the
166 isolates were deemed motile/non-motile depending on the diameter of 6mm.

167

168 **Antibiotic resistance and genomic sequencing**

169 **Disc diffusion assay**

170 Antibiotic susceptibility testing was performed based on the European Committee on Antimicrobial
171 Susceptibility Testing (EUCAST) protocol (31). Three biological replicates of each clinical isolate were
172 grown overnight on Mueller-Hinton agar with antibiotics disc (Thermo Fisher Scientific). The
173 measurements in mm were determined and calculated as an average of 3 readings and compared to
174 the published EUCAST breakpoints to determine if the clinical isolate is sensitive, increased exposure
175 or resistant.

176 **Minimum inhibitory concentrations of antimicrobial agents**

177 Minimum inhibitory concentrations (MIC) for 1 clinical UTI *P. aeruginosa* isolate 758 sourced from
178 Kuwait, was determined using the microdilution method as described in the guidelines of EUCAST (32).
179 Briefly, 100µl of overnight culture of the isolate was diluted to OD600 of 0.05 and was mixed with
180 100µl of serially diluted colisitin (512 - 0.5 µg/ml) (Sigma, UK) in triplicate using cation adjusted MH
181 broth. Microtitre plates were incubated for 1 - 2 days at 37 °C without shaking and bacterial growth
182 was determined by measuring absorbance at OD600 with a FLUOstar® Omega microplate reader and
183 the MARS Data Analysis Software test.

184 **Genomic DNA analysis**

185 After extraction with the Wizard® Genomic DNA Purification Kit (Promega), all isolates in this study
186 were sequenced. The DNA was preserved between 2 and 8 degrees Celsius in preparation for
187 sequencing at the University of Liverpool's Centre for Genomic Research (CGR). Specifically, two
188 isolates were sequenced for each panel sample. Using an Illumina HiSeq 2000 sequencer, 100 bp
189 paired reads were produced from the ends of 500 bp fragments. Upon detection of Illumina adapter
190 sequences using Cutadapt version 1.2.1 (33), FastQ files containing sequenced read data were
191 truncated. This was followed by the selection of option -O 3, which resulted in the 3' ends of all reads
192 matching the adapter sequence by at least 3 bp being trimmed. The Sickle version 1.2 was utilized,
193 and a minimum window quality of 20 was selected as the score for additional sequence trimming (34).

194

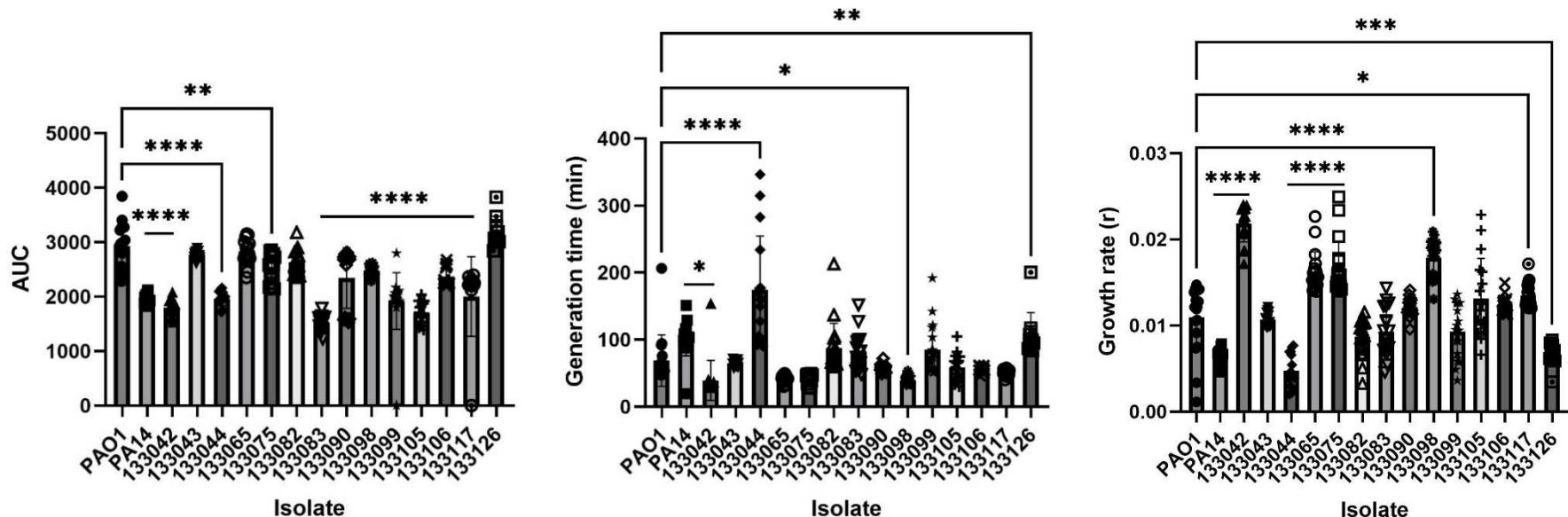
195 **Identification of antibiotic resistance genes**

196 The Comprehensive Antibiotic Resistance Database (CARD; <http://arpcard.mcmaster.ca>) was used to
197 look for resistance genes on the CGR-obtained sequences (35). Prior to analysis, the sequences were
198 entered into the Resistance Gene Identifier (RGI) search tool, and the following options were checked:
199 DNA Sequence, perfect and strict hits only, exclude nudge, and High quality/coverage.

200

201 **Statistical analysis**

202 All statistical analyses (unless otherwise specified) were conducted using Prism 9.5.1 and R Studio. The
203 Shapiro-Wilk test was used to assess the distribution. Biofilm assays and growth curves were analysed
204 with Kruskal-Wallis analysis of variance, Holm-Sidak post hoc test for nonparametric data, and Brown-
205 Forsyth test for pairwise comparison. Kruskal-Wallis analysis of variance and the Brown-Forsythe test
206 were utilized to analyse the MIC data.

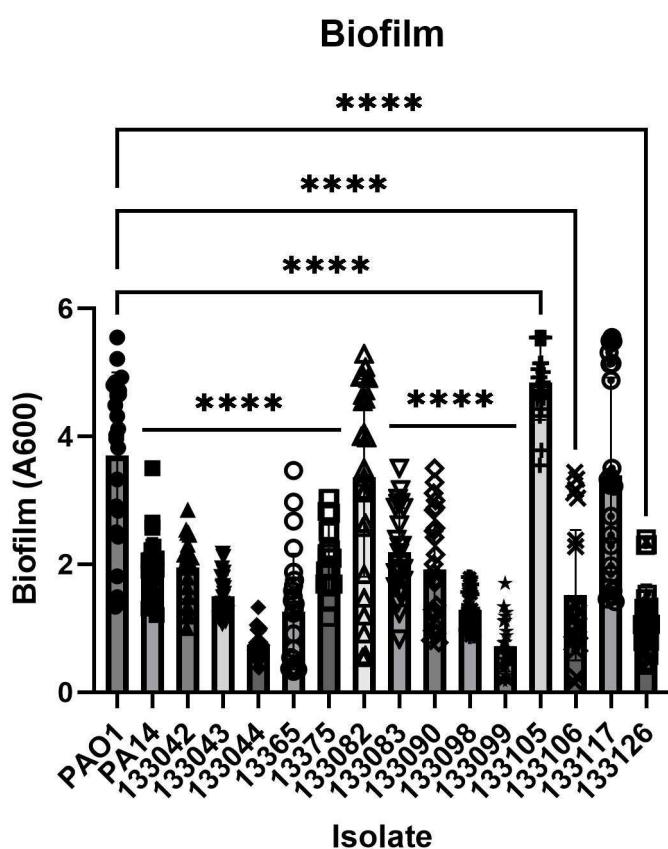

207

208 **Results**

209 **Growth dynamics of *P. aeruginosa* UTI isolates in nutrient rich media.**

210 Growth in LB media was monitored for 24 h for the reference strains and the 14 UK-based UTI isolates.
211 The area under the curve was lower than PAO1 for all isolates and for 10/14 UTI isolates, this was
212 significantly reduced (Figure 1). However, the UTI isolates exhibited a high degree of variability in the
213 generation time and overall growth rate. Two UTI isolates had a significantly slower generation time

214 (133044 and 133126) and two displayed a significantly faster generation time (133042 and 133098).
215 Five UTI isolates had a significantly higher growth rate while two isolates were significantly reduced
216 (Figure 1). This highlights the inter-isolate variation. However, as PAO1 is considered well adapted to
217 the laboratory environment, it was notable that many of the UTI displayed similar or faster growth
218 under these conditions.


219

220 **Figure 1:** Growth of UTI isolates and 2 references strains (PAO1 and PA14) over 24 h (n≥10). Optical density was measured at OD600 and analysed using
 221 Growthcurver to produce A) the area under the curve (AUC), B) generation time and C) growth rate. An ANOVA and Dunnett's multiple comparison tests were
 222 performed between each isolate compared to PAO1. Graphs show individual data points, mean and standard deviation, analysed with a one-way ANOVA and
 223 Dunnett's multiple comparisons test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

224

225 **Biofilm Formation.**

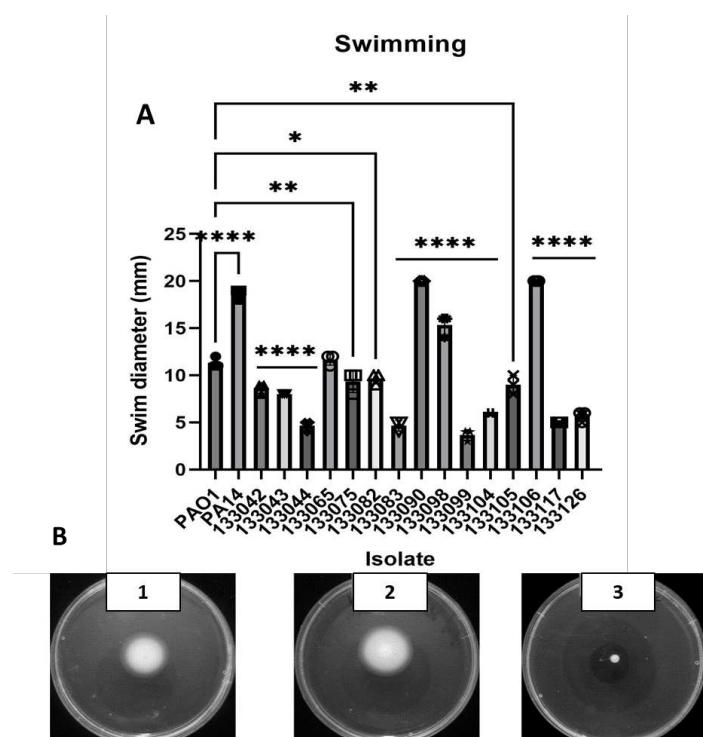
226 In order to compare biofilm capability, initial attachment on polystyrene wells was quantified using
227 crystal violet staining. Twelve of fourteen UTI isolates displayed a significant reduction in biofilm
228 compared to the reference strain PAO1, with isolate 13044 showing the lowest biomass ($P<0.0001$)
229 (Figure 2). The results show that though all isolates showed evidence of biofilm formation, many were
230 significantly reduced compared to PAO1.

231

232 **Figure 2:** Biofilm formation in the UK-based isolates and reference strains. An ANOVA and Dunnett's
233 multiple comparison tests were performed between each isolate compared to PAO1. Individual data
234 points, mean and standard deviation, analysed with a one-way ANOVA and Dunnett's multiple
235 comparisons test are shown. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$.

236

237


238

239

240 **Bacterial motility of UTI isolates**

241 **Swimming motility**

242 Swimming motility is conducted by a rotating polar flagella and flagellae are also considered a
243 virulence factor which promotes biofilm formation (36). A plate-based method was utilised to assess
244 the swimming ability of the 15 UK-based isolates (30). Upon comparison with the reference strain
245 PAO1 and PA14 and using a cut-off value, 80% of the isolates shown the ability swim through aqueous
246 medium (Figure 3). Isolates 133044, 133083 and 13099 were classed as non-motile they were beneath
247 the cut-off value of 6mm and showed a significant reduction in motility compared to PA01.

248

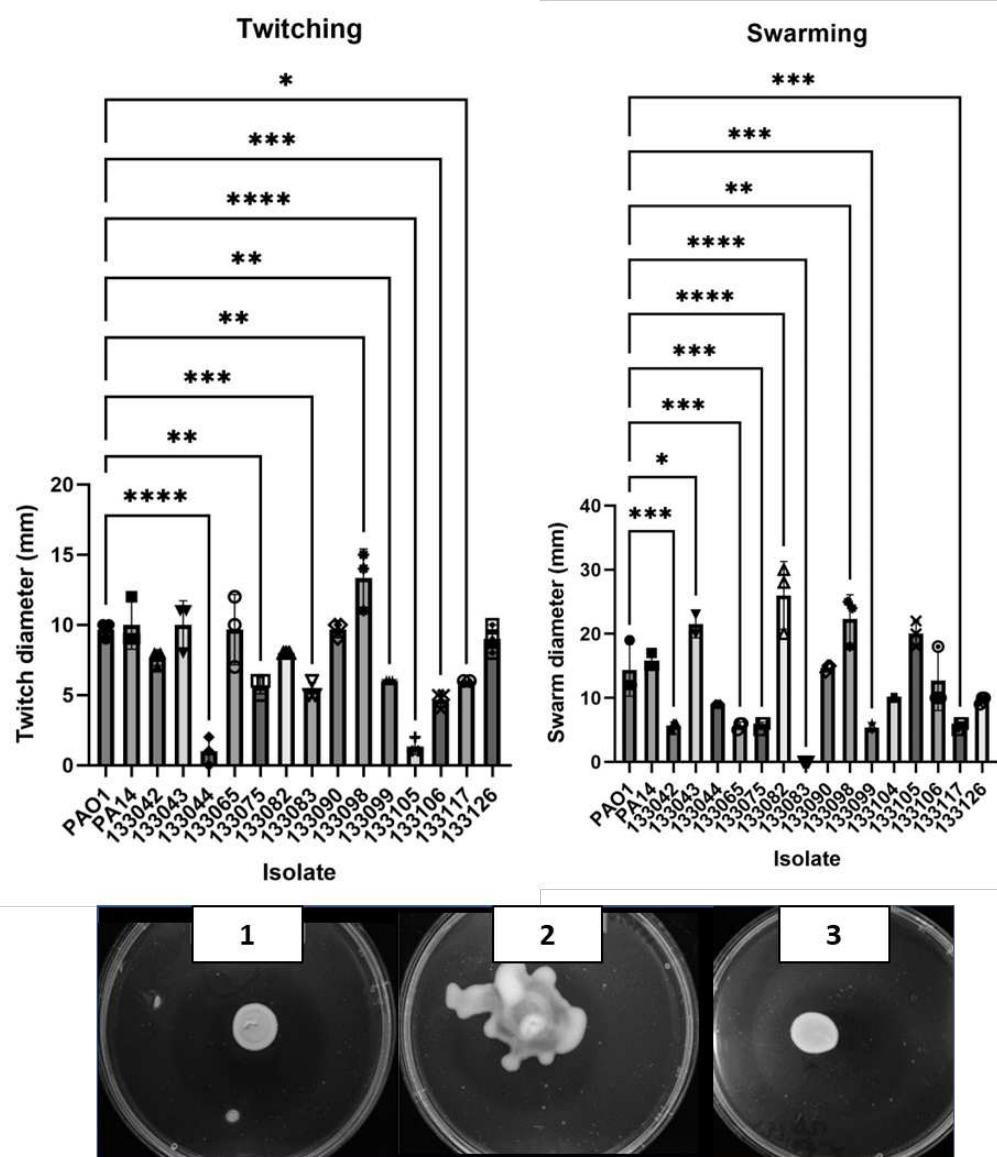
249 **Figure 3.** Swimming of *P. aeruginosa* UTI isolates. A) Distances (mm) travelled by each isolate. An
250 ANOVA and Dunnett's multiple comparison tests were performed between each isolate compared to
251 PAO1. Individual data points, mean and standard deviation, analysed with a one-way ANOVA and
252 Dunnett's multiple comparisons test are shown. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.B)
253 The images depict the swimming motility of PA14(1), isolate 133106 (2) and isolate 133099 (image 3).

254

255

256

257


258 **Twitching motility**

259 In contrast to swimming motility, twitching motility is conducted by type IV pili. The pili facilitates
260 movement of *P. aeruginosa* across surfaces, aids colonisation of the host and biofilm formation (37).
261 The mean distance travelled by all the 15 clinical isolates was 6 mm SD=+/-0.75 mm (Figure 4A). The
262 cut-off (5mm) was exceeded by all the UTI isolates except 133044 and 133105 which were non-motile
263 (1 mm). Therefore, the percentage of the isolates capable of performing twitching motility is 86.6%.

264

265 **Swarming motility**

266 Swarming motility is utilised by *P. aeruginosa* to achieve fast movement across semi-fluid surfaces
267 (38). The cut-off point used to define the motile and the non-motile *P. aeruginosa* was 6 mm (Figure
268 4B and 4C). The mean distance travelled by all isolates was 6 mm. With the exception of two isolates
269 (133083 and 133099), all UK-based UTI isolates were capable of swarming. Three isolates (133043,
270 133082 and 133098) were significantly increased in swarming compared to PAO1.

271

272 **Figure 4:** A) Twitching motility. The cut-off for twitching was 5 mm cut-off motility. B) Swarming motility,
273 the mean average of distance travelled (mm) by swarming motility. The cut-off value was 6 mm. An
274 ANOVA and Dunnett's multiple comparison tests were performed between each isolate compared to
275 PAO1. Individual data points, mean and standard deviation, analysed with a one-way ANOVA and
276 Dunnett's multiple comparisons test are shown . *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. C)
277 Plate images of swarming motility 1: PAO1 2: Isolate 133098 3: Isolate 133082 with moderate
278 swarming ability.

279

280 **Antibiotic susceptibility in clinical UTI isolates**

281 In order to test the susceptibility of *P. aeruginosa* to clinical therapeutics, an extensive panel of
282 antibiotics were utilised to examine all clinical isolates and reference isolates PAO1 and PA14

283 according to clinical breaking points set by EUCAST (39). Table 2 displays the susceptibility testing of
284 the UK isolates. Overall, one isolate (133044) displayed multidrug resistance (defined by resistance to
285 one antibiotic in 3 or more classes). All UK isolates were susceptible with increased exposure to
286 penicillins. For cephalosporins, all isolates were susceptible with increased exposure to the
287 ceftazidime and cefepime, and fully susceptible to ceftazidime/avibactam. One isolate (133044) was
288 resistant to tobramycin, with evidence of resistance to other aminoglycosides but no breakpoints are
289 defined for these. No zones of inhibition were observed when 133044 was exposed to tobramycin,
290 netilmicin or gentamicin. Carbapenems are a key, last resort antibiotic for many *P. aeruginosa*
291 infections. One UK UTI clinical isolates (133044) displayed resistance to imipenem however, the
292 majority of isolates were fully susceptible to meropenem. One isolate (133105) was resistant to
293 aztreonam, with no zone of inhibition (Table 2).

294 The highest prevalence of resistance was to ciprofloxacin, a fluoroquinolone antibiotic utilised to treat
295 *P. aeruginosa* infections. 10/14 isolates were resistance to this antibiotic with the remainder deemed
296 susceptible with increased exposure. For four isolates, there was no zone of inhibition to ciprofloxacin
297 and three of these also showed complete resistance to another fluoroquinolone, levofloxacin.

298 Resistance in the UK isolates was compared to a limited collection of resistant isolates from Kuwait.
299 In contrast to the UK isolates, the isolates from Kuwait displayed very high levels of resistance (Table
300 2), albeit there appear to be bias in the selection of the panel. Seven out of eight isolates studied
301 displayed multidrug resistance. Two isolates (758 and 783) were resistant to all antibiotics for which
302 breakpoints were available. A broth microdilution MIC was performed to determine whether isolate
303 758 and 783 was resistant to the polymyxin colistin. Colistin was effective to both isolates at 2 mg/L,
304 indicating that it might be utilised as a last-resort antibiotic to treat these strains. These isolates must
305 be regarded as having a significant potential for pan resistance, since the obtained value of 2 mg/L
306 indicates the threshold for classification as sensitive (sensitive ≥ 2 , resistant < 2).

307 Isolate 786 was only susceptible (increased exposure) to imipenem and meropenem. The other
308 isolates displayed resistance to many classes on antibiotics. Isolate 1083 was the least resistant with
309 resistance only to cefepime and ciprofloxacin.

310 **Table 2:** Antimicrobial susceptibility of *P. aeruginosa* isolates from UTIs in the UK and Kuwait. The size in mm refers to the zone of inhibition following disk diffusion assays.
311 Clinical breakpoints for resistance (R) are shown in bold, underlined; Susceptible in italics and grey isolates classed as Susceptible, Increased Exposure (I) are shown in black
312 values only.

	Tobramycin	Gentamicin	Amikacin	Netilmicin	Imipenem	Meropenem	Doripenem	Ceftazidime	Cefepime	Ceftazidime/avibactam	Levofloxacin	Ciprofloxacin	Aztreonam	Piperacillin	Piperacillin/ Tazobactam	Ticarcillin	Ticarcillin/Clavulanic acid
UK																	
133042	24	21	26	18	29	34	35	29	28	28	35	26	30	27	26	26	28
133043	24	23	21	17	25	27	35	23	30	22	32	24	20	22	24	25	20
133044	0	0	18	0	18	28	31	27	22	27	29	24	22	18	25	0	26
133065	26	25	29	22	31	31	40	26	28	27	21	12	22	28	27	33	27
133075	28	28	31	22	25	33	32	25	32	25	37	30	19	24	27	23	21
133082	23	24	27	18	27	26	28	25	25	25	35	28	21	20	27	24	21
133083	22	22	22	19	26	37	35	25	29	25	33	23	26	22	24	28	21
133090	25	23	25	19	27	29	31	26	32	28	34	25	27	22	29	25	22
133098	26	26	27	22	27	38	32	26	30	26	33	30	29	28	26	28	24
133099	21	18	20	12	29	28	28	24	24	25	0	0	20	18	26	23	19
133104	21	18	20	12	29	28	28	24	24	25	0	0	24	18	26	23	19
133105	21	18	20	4	27	28	28	22	22	22	32	0	0	19	23	22	26
133106	25	25	21	20	24	34	34	23	30	23	33	23	25	24	27	21	23
133117	20	20	19	10	28	20	30	24	23	21	0	0	25	20	26	22	21
133126	22	19	21	16	27	36	35	24	31	25	26	26	25	24	27	27	25
KUWAIT																	
758	0	11	0	0	9	0	0	0	6	0	0	0	10	0	0	0	0
783	0	10	0	0	10	0	0	0	5	0	0	0	10	0	0	0	0
786	0	0	14	3	24	16	16	10	11	11	0	0	3	9	12	0	0
864	20	20	25	17	11	0	15	15	20	16	25	12	16	14	14	11	8
888	0	0	0	0	0	11	14	23	24	23	0	0	18	7	19	14	7

902	20	20	25	17	25	20	<u>21</u>	<u>10</u>	<u>16</u>	8	<u>22</u>	<u>11</u>	<u>9</u>	<u>0</u>	<u>9</u>	<u>6</u>	<u>0</u>
925	<u>0</u>	17	<u>11</u>	<u>0</u>	<u>10</u>	<u>10</u>	<u>14</u>	<u>0</u>	<u>12</u>	<u>0</u>	24	25	24	<u>0</u>	<u>11</u>	<u>0</u>	<u>0</u>
1083	19	18	20	12	20	29	31	21	22	25	27	20	23	25	27	24	22

313

314

315

316

317

318

319

320

321

322

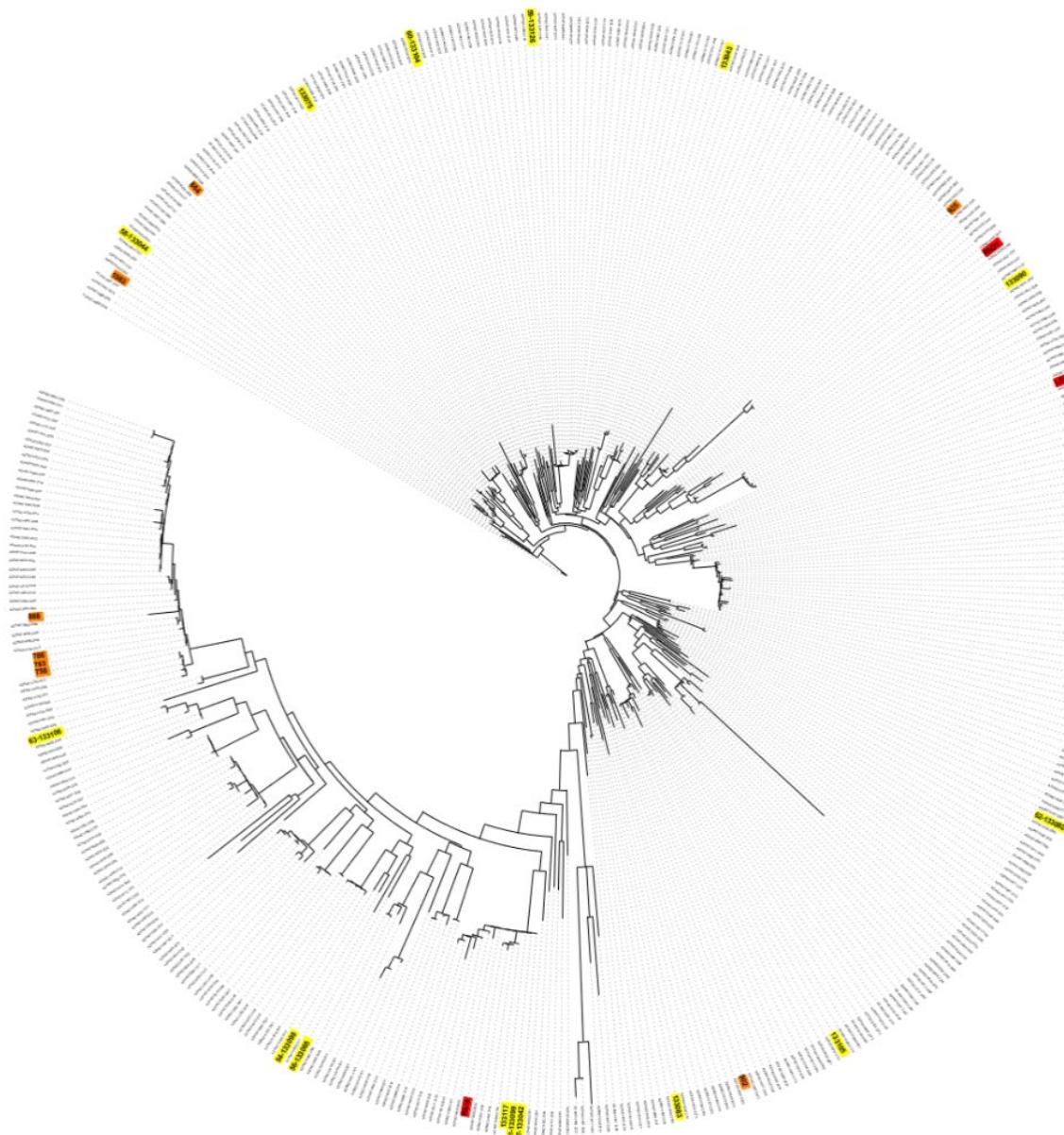
323

324

325

326

327


328

329

330

331 **Genomic DNA analysis**

332 To investigate the genomic context of UTI isolates in this investigation, whole genome sequencing was
333 used to the core SNP phylogeny of isolates from the United Kingdom and Kuwait. Unusually, group 2
334 (PA14-like) isolates were more prevalent in the clinical UTI isolates. This contrasts with the prevalence
335 of group 1 (PAO1-like) isolates within the Pseudomonas.com database (40). However, due to the small
336 size of the panel, the results may not be representative of the wider *P. aeruginosa* clinical UTI
337 population. To demonstrate the distribution of these UTI isolates amongst the wider population, a
338 phylogenetic tree was created using sequenced isolates from KOS *et al.*, (2015) (Figure 5) (41). Three
339 Kuwaiti isolates clustered on the same branch of the phylogenetic tree, indicating that they are closely
340 related.

341

342 **Figure 5:** Phylogenetic tree of isolates from the United Kingdom and Kuwait based on their genomic
343 composition, based on a core SNP phylogenetic tree using sequenced *P. aeruginosa* isolates from
344 Principal strains (41) are color-coded in red; UK isolates in yellow, and Kuwaiti isolates in orange.

345

346 **Carriage of resistance genes in UTI isolates.**

347 CARD was used to identify resistance-associated genes in the UK UTI isolates. AAC(3)-IV was present
348 only in isolate 133044. The gene encodes an aminoglycoside 3-N-acetyltransferase enzyme, which
349 inactivates aminoglycosides including gentamicin and tobramycin, through enzymatic acetylation.
350 Isolate 13044 displayed resistance to aminoglycosides. Further genes associated with aminoglycoside
351 resistance were also identified including APH(3')-Ib, APH(4)-Ia (both plasmid-encoded aminoglycoside
352 phosphotransferase in *E. coli*), APH(6)-Id (a mobile genetic element-encoded aminoglycoside
353 gene)(42) and APH(3')-Iib, a chromosomal-encoded aminoglycoside(43).

354 Three isolates carried the gene crpP(44), which was linked to ciprofloxacin resistance however, this
355 has been questioned and only 1/3 of these isolates were resistant to ciprofloxacin(45). In contrast, a
356 gyrA mutation was identified in two isolates (133117 and 133099) and this corresponded to high-level
357 resistance to both ciprofloxacin and levofloxacin. dfrB1 was identified in one isolate (133065) and
358 encodes a plasmid-associated trimethoprim-resistant dihydrofolate reductase. A PDC variant of
359 extended-spectrum beta-lactamase was identified in all isolates (46).

360 The isolates from Kuwait were highly resistant. AAC(6') family genes of aminoglycoside 6'-N-
361 acetyltransferase enzymes which inactivate gentamicin and tobramycin through enzymatic
362 acetylation, were identified in 50% of the isolates with 2 isolates carrying AAC(6')-Ib7 is a plasmid-
363 encoded aminoglycoside acetyltransferase in *Enterobacter cloacae* and *Citrobacter freundii*.

364

365 Particularly resistant to aminoglycosides were isolates from Kuwait, with XDR isolates 758 and 783
366 being the most resistant in both panels (Table 7). These isolates contained the genes for the
367 aminoglycoside transferase enzyme AAC (6')-ii and the aminoglycoside adenylyltransferase aaA61,
368 which both enzymatically inactivate aminoglycoside antibiotics. In addition, both isolates contained
369 the plasmid-encoded *E. coli* phosphotransferase APH(3')-Ib. This gene was detected in additional
370 Kuwaiti isolates (786, 888, and 925) with similar aminoglycoside resistance. Isolate 888 contained five
371 aminoglycoside resistance genes: AAC (6')-ii, aadA11, ANT(2")-Ia, APH(3')-Ib, and APH(3')-Via. Only
372 isolate 133044 in the UK panel contained the aminoglycoside resistance genes APH(3"), APH(4),
373 APH(3')-Iib, and APH(6)-Id. This result demonstrates a correlation with the resistance patterns

374 uncovered by the disc diffusion assay. Isolates 133042, 133075, 133117, and 925 all contained
375 quinolone resistance genes such as *crpP*. Chávez-Jacobo *et al.* (2018) (44) described the enzyme
376 product CrpP as a novel ciprofloxacin-modifying agent. Only one isolate, 133117 (*crpP*), exhibited
377 ciprofloxacin resistance in disc diffusion testing. Isolates from Kuwait had the highest frequency
378 (62.5%) of mutations in *gyrA* that cause fluoroquinolone resistance.

379 Genes encoding β -lactamases are detected in all UK and Kuwaiti isolates. OXA-50 is encoded
380 chromosomally and is present on all isolates. The other identified OXA type was OXA-10, a resistance
381 gene detected in only one isolate (786). *P. aeruginosa* contains class C AMR genes encoding PDC -
382 lactamases (46). All of the isolates contained at least one PDC enzyme, although the types varied. PDC-
383 1, PDC-2, PDC-3, PDC-4, PDC-5, PDC-7, PDC-8, PDC-9, PDV-10, and PDC-86 were detected. PDC-2 is
384 present in 26% of all tested UTI isolates, followed by PDC-3, which was only detected in isolates
385 758,783,778 and 888 from Kuwait. PDC-5 and PDC-9 were unique to UK isolates, with the former
386 detected in 133044, 133082, and 130083 and the latter in 133042, 133099, and 133117. The remaining
387 isolates contained PDC-1 (133090, 864) as well as PDC-10 (133065, 133098), PDC-7 (133106), and PDC-
388 86. (902).

389 A single Verona integron-encoded metallo- β -lactamase (VIM) type gene was identified in three
390 isolates. The VIM-28 gene was detected in these *P. aeruginosa* isolates. Other identified resistance
391 genes include *sul1*, which is acquired through horizontal gene transfer and incorporated into the
392 bacterial genome (47). The gene was first identified in *E. coli* and confers sulphonamide antibiotic
393 resistance. The gene is detected in 62% of the Kuwaiti isolates and was notably absent in the UK panel
394 of isolates.

395 **Table 3:** Antimicrobial resistance genes identified in *P. aeruginosa* UTI isolates through whole genome sequencing and analysis using the CARD database.
 396 Percentage sequence identity is reported. These genes are involved in promoting resistance to multiple of classes of antibiotics such as aminoglycosides
 397 (Blue), Fluoroquinolones (green), trimethoprim (yellow) and β -lactamases (orange) in UK & Kuwait isolates with resistance induced by C= Chromosome,
 398 I=Integrons=Transposons, IN=Integrative element.

	UK												Kuwait											
	133042	133043	133044	133065	133075	133082	133083	133090	133093	133099	133104	133105	133106	133117	133126	753	783	786	864	888	902	925	1083	
APH(3')-IIb	C	98.5	98.5	0	98.9	98.9	98.9	98.9	98.9	98.5	99.3	99.3	98.9	98.5	98.5	0	0	0	98.9	0	100	0	99.3	
AAC(3')-IV	P	0	0	99.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
AAC(6')-Ib7	P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	98.6	0	0	0	0	0	
AAC(6')-II	P, I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	0	0	100	0	100	0	
aadA6	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	0	0	0	0	0	0
aadA11	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0
aadA13	P, I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0
ANT(2")-Ia	P or I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	99.6	0	100	0	0	0	0
APH(3')-Ib	P, T.C, IN	0	0	99.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
APH(3')-IIb	C	0	0	98.9	0	0	0	0	0	0	0	0	0	0	0	0	98.9	98.9	98.9	0	98.9	0	99.3	0
APH(4')-Ia	P	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
APH(6')-Id	P, IN, C	0	0	99.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
APH(3')-Vla	P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0
CrpP	P	96.9	0	0	0	98.5	0	0	0	0	0	0	0	0	96.9	0	0	0	0	0	0	96.9	0	0
gyrA mut		0	0	0	0	0	0	0	0	99.7	0	0	0	99.7	0	0	99.9	99.9	99.9	0	99.8	0	99.1	0
dfrB1	P	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	0	0	0
PDC-1	-	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0
PDC-2	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	99.8	99.8	99.8	99.8	0	0	100	0
PDC-3	-	0	100	0	0	99.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	99.8	0	0
PDC-5	-	0	0	100	0	0	99.8	99.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PDC-7	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	99.2	0	0	0	0	0	0	0
PDC-8	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	100	0
PDC-9	-	99.5	0	0	0	0	0	0	0	99.5	0	0	0	0	99.5	0	0	0	0	0	0	0	0	0
PDC-10	-	0	0	0	0	0	0	0	0	99.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PDC-86	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VIM-28	C, I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	0	0	0	0	100	0	0
OXA-10	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	100
OXA-50	C	99.2	100	98.9	98.9	100	99.2	99.2	98.9	99.2	99.2	100	98.9	99.2	99.2	99.2	99.2	99.2	100	99.2	99.2	100	100	100

399

400

401 Discussion

402 Understanding UTIs is of paramount importance as UTIs are one of the most common bacterial
403 infections worldwide. These infections can cause severe discomfort and pain to those afflicted, leading
404 to a reduced quality of life and if left untreated, UTIs can progress to serious conditions, such as
405 urosepsis (48). Additionally, the overuse and misuse of antibiotics in UTI treatment contribute to
406 antibiotic resistance, a global health crisis. *P. aeruginosa* is largely understudied in the UTI context but
407 can result in complex and resistant infections. By gaining an insight into phenotypic and genotypic
408 variation, effective treatment strategies, preventive measures, and insights into the broader issue of
409 antibiotic resistance may be gained.

410 *P. aeruginosa* can cause both acute and chronic infections. Chronicity is often associated with
411 decreased growth under laboratory conditions. Here, the behaviour and fitness of UTI isolates was
412 established by studying their growth under laboratory conditions. The majority of UTI isolates (71%)
413 displayed a decreased AUC. Despite this, the generation time was relatively rapid with the majority of
414 isolates showing faster generation than PAO1. Two isolates had a much slower generation time. This
415 may reflect long term adaptation to the urinary environment. However, no information is available
416 regarding the length of infection and therefore this cannot be confirmed. Overall, the capacity of UTI
417 isolates to thrive in the laboratory environment is heterogeneous although many isolates display fast
418 growth dynamics akin to environmental or acute clinical isolates.

419 *P. aeruginosa* displays an excellent capacity to form biofilms on both abiotic and biotic surfaces. All
420 the UTI isolates showed some degree of biofilm ability however 79% displayed significantly decreased
421 biofilm compared to PAO1. Multiple studies have documented the ability of *P. aeruginosa* isolated
422 from multiple infection sites to form biofilms (49,50). *P. aeruginosa* can cause middle ear infections in
423 cholesteatoma patients (51,52). 83% of otitis media *P. aeruginosa* isolates are efficient biofilm
424 producers, with substantially higher levels of biomass produced than PAO1. The capacity to form
425 biofilms may contribute to persistent infections in cholesteatoma patients (53). Similar to the UTI
426 isolates in this study, PAHM4, an isolate from a person with non-CF bronchiectasis, produced
427 substantially less biofilm than PAO1 (54). A study of 101 keratitis isolates revealed that isolates
428 produced between 17% and 242% of the PAO1 control and that the ability to form biofilms was
429 associated with poorer clinical outcomes (55). Schaber *et al.* (2007) compared 5 QS-deficient isolates
430 from respiratory, cutaneous, and UTI infections to PAO1 to evaluate biofilm formation. The UTI isolate
431 CI-5 was obtained from an 82-year-old patient who developed sepsis due to CAUTI. CV staining and
432 comparison of all isolates revealed that, among all QS-deficient isolates, the UTI isolate produced the
433 highest biomass and up to 82% capacity of PAO1 (56). A study comparing the capacity of

434 uropathogenic *P. aeruginosa* serotypes to form biofilms *in vitro* using CV staining revealed variation
435 between various serotypes. In particular, O11 serotypes produced the greatest biofilms and were
436 more likely to be antibiotic-resistant, in contrast, O6 strains produced the weakest biofilms (57). Vipin
437 *et al.* (2019) evaluated the ability of CAUTI *P. aeruginosa* to produce biofilms; all isolates formed
438 biofilms between 0.20 and 1.11 (OD580), indicating the diversity of these clinical isolates (58).
439 Additionally, Tielen *et al.* (2011) conducted CV staining on 12 mid-stream urine isolates and 18 CAUTI
440 isolates and found the latter more proficient at producing biofilms. The majority of isolates were found
441 to be intermediate biofilm producers (59). Our results suggest that mid-stream UTI are not as
442 proficient in forming biofilms as keratitis, otitis media and CAUTI isolates. The ability to form biofilms
443 is heterogenous in the tested panel.

444 *P. aeruginosa* employs motility as a prominent virulence factor to aid infection in multiple niches (60).
445 Tielen *et al.* (2011) reported that 100% of 12 UTI isolates were capable of swimming, in comparison
446 to 16 out 18 CAUTI (88.8%). Loss of swimming function might be related to evolutionary adaptation
447 mechanisms in chronic infections similar to those observed in the lungs of CF patients.(59). More than
448 95% of CAUTI isolates have the functional ability to swim according to Ruzicka, *et al.*(2014) (61).In this
449 study, 80% of the UTI isolates exhibited the ability to swim. Swimming motility can allow bacteria to
450 colonise new niches and initiates attachment and adherence on surfaces, contributing to biofilm
451 formation including on catheter surfaces (62). Type IV pili facilitate twitching motility, which is used
452 to traverse solid and semisolid surfaces (63). 75% of the 139 *P. aeruginosa* UTI isolates examined by
453 Olejnickova *et al.* (2014) for twitching motility were found to be capable of twitching (61). Winstanley
454 *et al.* (2005) examined the twitching motility of 63 keratitis isolates; 90% of the isolates demonstrated
455 the capacity to twitch *in vitro* (64). In addition, mutants lacking twitching motility were incapable of
456 colonizing the cornea (65). In our study, 86.6% of the isolates were able to twitch, indicating that this
457 is a common characteristic of UTIs. Furthermore, 86% of UTI isolates tested in this study, exhibited a
458 high level of swarming motility. Hyper-motile strains that swarm tend to create flat biofilms (66). There
459 have been reports of up to 95% of *P. aeruginosa* CAUTI isolates with swarming motility (61).
460 Interestingly, swarming is a key characteristic of *Proteus mirabilis*, another urinary pathogen (67). This
461 may indicate that swarming is advantageous in the urinary environment.

462 The WHO has identified carbapenem-resistant *P. aeruginosa* as a critical issue requiring intervention
463 [36]. Specific information on AMR of *P. aeruginosa* UTI isolates in both the UK and Kuwait are limited
464 (26,68,69). Phenotypic resistance screening revealed a relatively low level of resistance in isolates
465 from the UK. However, pan resistance was identified in some isolates from Kuwait. This could suggest
466 that Kuwait may be a hotspot for antibiotic resistance however, this small number of isolates were
467 stored based on higher resistance and therefore represents a biased subset. A recent study in a major

468 Kuwaiti hospital revealed that 32.1% of *P. aeruginosa* isolates were MDR, the majority of these were
469 derived from urine culture (70). Extensive prospective studies should be conducted since most of the
470 obtained AMR data in Kuwait are based on retrospective studies . Lack of surveillance programs,
471 inadequate use of antibiotics, travel, and climate change all contribute to the spread of antimicrobial
472 resistance in this region (19). Whole genome sequencing revealed resistance determinants in isolates
473 from both geographical regions however, uncommon resistance genes were identified in the genomes
474 of isolates from Kuwait. The Verone integron-encoded metallo-beta-lactamase (VIM) family are able
475 to inactivate bet-lactam antibiotics and the unusual VIM-28 was identified in 4 isolates. VIM-28 is a
476 metallo-β-lactamase initially reported in Egypt, the structure of the VIM-28 gene contains an
477 uncommon integron configuration, with the gene cassette located downstream of the "intI1" gene.
478 Egyptian nationals constitute one of Kuwait's main ethnic minorities (71,72). Travelling between the
479 two nations may help explain the presence of ^{bla}-VIM-28 in both regions. In addition to the intrinsic
480 OXA-50 Class D β-lactamase, which is present in all isolates, the OXA-10 Class D β-lactamase was also
481 detected in isolate 786 and 1083. To the best of our knowledge, this is the first report of OXA-10 in
482 Kuwaiti bacterial isolates.

483 Multiple isolates exhibited resistance to aminoglycosides. Uncommon genes in *P. aeruginosa* including
484 aadA6, aadA11 and aadA13 were observed. AadA-type genes encode aminoglycoside
485 nucleotidyltransferases and these are often encoded on mobile genetic elements such as plasmids
486 and integrons. Genes for further aminoglycoside-modifying enzymes were also observed including
487 AAC (6')-ii, ANT(2")-Ia and APH(3')-Ib. Fluoroquinolone resistance was also observed. Mutations in
488 *gyrA* and plasmid-associated CrpP enzyme would contribute to ciprofloxacin and levofloxacin
489 resistance in these isolates (44). dfrB1 is a plasmid-associated, trimethoprim-resistant dihydrofolate
490 reductase that was initially identified in *Bordetella bronchispetica* bacteria (73), suggesting that it may
491 have been horizontally transmitted to *P. aeruginosa*. Due to the extended resistance and identified
492 genes, it is possible that these isolates contain MDR plasmids. Recent research on Thai isolates
493 revealed that *P. aeruginosa* carries MDR megaplasmids (74). Additional analysis, particularly using
494 long read sequencing data, would reveal further information on plasmid carriage. The implications of
495 these findings are alarming and suggest extensive AMR surveillance and management programmes
496 would be beneficial.

497 In this study, only two MDR-isolates were detected in isolates originating from the United Kingdom,
498 indicating that they were largely susceptible to antibiotics. In general, the prevalence of AMR *P.*
499 *aeruginosa* uropathogens is regarded as low (18). This could be attributed to stricter antibiotic
500 stewardship policies and increased public awareness of antibiotic misuse (75). According to

501 Ironmonger *et al.*, a 4-year surveillance investigation detected only 45 non-susceptible *P. aeruginosa*
502 uropathogens to carbapenems among 6985 isolates from the Midlands region of England (18).

503 The findings in this study reveal the genomic and phenotypic diversity of *P. aeruginosa* isolates from
504 UTIs. The data indicate that UTIs can be caused by a wide variety of phenotypic and genotypic
505 combinations. The success of a given infection is therefore likely a complex interplay between
506 bacterial characteristics and host factors, such as hospitalisation and long-term catheter use.
507 Sequencing conducted as part of this study detected the presence of antimicrobial resistance genes
508 that could promote resistance to every class of antibiotics. Uncommon resistance genes were highly
509 prevalent in the isolates from Kuwait, and this correlated with extremely high phenotypic resistance.
510 However, the basis on which these isolates were selected is unclear and likely biased. Thus, additional
511 study would need to determine the prevalence of such strains. In addition, a deeper understanding
512 of how *P. aeruginosa* responds to the urinary environment would allow for a more in-depth
513 examination of the bacterial pathogenesis and aid in the identification of novel therapeutic
514 interventions.

515 **Author statements**

516 **Author contributions**

517 HE., funding, investigation, formal analysis, writing – original draft preparation; R.F.,
518 conceptualisation, writing – review and editing, supervision, project administration, analysis; SH.,
519 Bioinformatic analysis; MM., Bioinformatic analysis; AD., Consultation and providing I Kuwait
520 isolates; J.F., conceptualisation, writing – review and editing, supervision, project administration,
521 analysis.

522 **Author Statement**

523 We would like to thank CGR at the University of Liverpool for providing sequencing services.

524 **Conflict of interest**

525 The authors declare that there are no conflicts of interest.

526 **Funding information**

527 JLF and RF would like to acknowledge Kidney Research Northwest for funding.

528

529

530

531

532 **References**

- 533 1. Foxman B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs.
534 Disease-a-Month. 2003.
- 535 2. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology,
536 mechanisms of infection and treatment options. *Nat Rev Microbiol* [Internet]. 2015/04/08.
537 2015 May;13(5):269–84. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/25853778>
- 538 3. NHS Digital. Hospital Admissions Relating to Urinary Tract Infections [Internet]. 2023.
539 Available from: <https://digital.nhs.uk/supplementary-information/2023/hospital-admissions-relating-to-urinary-tract-infections>
- 541 4. Vihta K-D, Stoesser N, Llewelyn MJ, Quan TP, Davies T, Fawcett NJ, et al. Trends over time in
542 *Escherichia coli* bloodstream infections, urinary tract infections, and antibiotic susceptibilities
543 in Oxfordshire, UK, 1998–2016: a study of electronic health records. *Lancet Infect Dis*.
544 2018;18(10):1138–49.
- 545 5. Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. *J Antimicrob Chemother*. 1992;
- 547 6. Gellatly SL, Hancock REW. *Pseudomonas aeruginosa* : new insights into pathogenesis and
548 host defenses . *Pathog Dis* [Internet]. 2013 Apr 1;67(3):159–73. Available from:
549 <https://dx.doi.org/10.1111/2049-632X.12033>
- 550 7. Tacconelli E, Magrini N, Carmeli Y, Harbarth S, Kahlmeter G, Kluytmans J, et al. Global Priority
551 List Of Antibiotic-Resistant Bacteria To Guide Research, Discovery And Development Of New
552 Antibiotics. *World Heal Organ*. 2017;
- 553 8. Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. *Pseudomonas aeruginosa*: All roads
554 lead to resistance. *Trends in Microbiology*. 2011.
- 555 9. Wei Q, Ma LZ. Biofilm matrix and its regulation in *Pseudomonas aeruginosa*. *Int J Mol Sci*
556 [Internet]. 2013 Oct 18;14(10):20983–1005. Available from:
557 <https://www.ncbi.nlm.nih.gov/pubmed/24145749>
- 558 10. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the
559 *Pseudomonas aeruginosa* biofilm matrix. *PLoS Pathog* [Internet]. 2009/03/27. 2009
560 Mar;5(3):e1000354–e1000354. Available from:
561 <https://www.ncbi.nlm.nih.gov/pubmed/19325879>

562 11. Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S, et al. The
563 regulatory repertoire of *Pseudomonas aeruginosa* AmpC β -lactamase regulator AmpR
564 includes virulence genes. PLoS One [Internet]. 2012/03/29. 2012;7(3):e34067–e34067.
565 Available from: <https://www.ncbi.nlm.nih.gov/pubmed/22479525>

566 12. Freschi L, Vincent AT, Jeukens J, Emond-Rheault J-G, Kukavica-Ibrulj I, Dupont M-J, et al. The
567 *Pseudomonas aeruginosa* Pan-Genome Provides New Insights on Its Population Structure,
568 Horizontal Gene Transfer, and Pathogenicity. Genome Biol Evol [Internet]. 2019 Jan
569 1;11(1):109–20. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/30496396>

570 13. Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in
571 *Pseudomonas aeruginosa* pneumonia. Am J Respir Crit Care Med [Internet]. 2005/02/01.
572 2005 Jun 1;171(11):1209–23. Available from:
573 <https://www.ncbi.nlm.nih.gov/pubmed/15695491>

574 14. Mekonnen SA, El Husseini N, Turdiev A, Carter JA, Belew AT, El-Sayed NM, et al. Catheter-
575 associated urinary tract infection by *Pseudomonas aeruginosa* progresses through acute and
576 chronic phases of infection. Proc Natl Acad Sci [Internet]. 2022 Dec 13;119(50):e2209383119.
577 Available from: <https://doi.org/10.1073/pnas.2209383119>

578 15. Penaranda C, Chumbler NM, Hung DT. Dual transcriptional analysis reveals adaptation of host
579 and pathogen to intracellular survival of *Pseudomonas aeruginosa* associated with urinary
580 tract infection. PLOS Pathog [Internet]. 2021 Apr 26;17(4):e1009534. Available from:
581 <https://doi.org/10.1371/journal.ppat.1009534>

582 16. Xu Z-G, Gao Y, He J-G, Xu W-F, Jiang M, Jin H-S. Effects of azithromycin on *Pseudomonas*
583 *aeruginosa* isolates from catheter-associated urinary tract infection. Exp Ther Med [Internet].
584 2014/12/08. 2015 Feb;9(2):569–72. Available from:
585 <https://www.ncbi.nlm.nih.gov/pubmed/25574236>

586 17. Sabharwal N, Dhall S, Chhibber S, Harjai K. Molecular detection of virulence genes as markers
587 in *Pseudomonas aeruginosa* isolated from urinary tract infections. Int J Mol Epidemiol Genet.
588 2014;

589 18. Ironmonger D, Edeghere O, Bains A, Loy R, Woodford N, Hawkey PM. Surveillance of
590 antibiotic susceptibility of urinary tract pathogens for a population of 5.6 million over 4 years.
591 J Antimicrob Chemother [Internet]. 2015 Mar 1;70(6):1744–50. Available from:
592 <https://doi.org/10.1093/jac/dkv043>

593 19. Balkhy HH, Assiri AM, Mousa H Al, Al-Abri SS, Al-Katheeri H, Alansari H, et al. The strategic
594 plan for combating antimicrobial resistance in Gulf Cooperation Council States. *J Infect Public
595 Health* [Internet]. 2016;9(4):375–85. Available from:
596 <http://www.sciencedirect.com/science/article/pii/S1876034116300144>

597 20. Zowawi HM, Syrmis MW, Kidd TJ, Balkhy HH, Walsh TR, Al Johani SM, et al. Identification of
598 carbapenem-resistant *Pseudomonas aeruginosa* in selected hospitals of the gulf cooperation
599 council states: Dominance of high-risk clones in the region. *J Med Microbiol*. 2018;

600 21. Kapiszewski A. Arab versus Asian migrant workers in the GCC countries. In: *South Asian
601 Migration to Gulf Countries: History, Policies, Development*. 2016.

602 22. Östhholm-Balkhed Å, Tärnberg M, Nilsson M, Nilsson LE, Hanberger H, Hällgren A. Travel-
603 associated faecal colonization with esbl-producing enterobacteriaceae: Incidence and risk
604 factors. *J Antimicrob Chemother*. 2013;

605 23. Al-Yamani A, Khamis F, Al-Zakwani I, Al-Noomani H, Al-Noomani J, Al-Abri S. Patterns of
606 antimicrobial prescribing in a tertiary care hospital in Oman. *Oman Med J*. 2016;

607 24. Butt AA, Navasero CS, Thomas B, Marri S Al, Katheeri H Al, Thani A Al, et al. Antibiotic
608 prescription patterns for upper respiratory tract infections in the outpatient Qatari
609 population in the private sector. *Int J Infect Dis*. 2017;

610 25. Aly M, Balkhy HH. The prevalence of antimicrobial resistance in clinical isolates from Gulf
611 Corporation Council countries. *Antimicrob Resist Infect Control*. 2012;

612 26. Al Benwan K, Al Sweih N, Rotimi VO. Etiology and antibiotic susceptibility patterns of
613 community-and hospital-acquired urinary tract infections in a general hospital in Kuwait. *Med
614 Princ Pract*. 2010;

615 27. Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD, et al. Genome
616 diversity of *Pseudomonas aeruginosa* PAO1 laboratory strains. *J Bacteriol*. 2010;

617 28. Schroth MN, Cho JJ, Green SK, Kominos SD. Epidemiology of *Pseudomonas aeruginosa* in
618 agricultural areas. *J Med Microbiol*. 2018;

619 29. Winstanley C, Langille MGI, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, et
620 al. Newly introduced genomic prophage islands are critical determinants of in vivo
621 competitiveness in the Liverpool Epidemic Strain of *Pseudomonas aeruginosa*. *Genome Res*
622 [Internet]. 2009 Jan;19(1):12–23. Available from:
623 <https://www.ncbi.nlm.nih.gov/pubmed/19047519>

624 30. Ha D-G, Kuchma SL, O'Toole GA. Plate-Based Assay for Swimming Motility in *Pseudomonas*
625 *aeruginosa* BT - *Pseudomonas* Methods and Protocols. In: Filloux A, Ramos J-L, editors. New
626 York, NY: Springer New York; 2014. p. 59–65. Available from: https://doi.org/10.1007/978-1-4939-0473-0_7

628 31. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables
629 for interpretation of MICs and zone diameters. [Internet]. 2018. p. Version 8. Available from:
630 http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf

632 32. Andrews JM, Testing for the BWP on S. BSAC standardized disc susceptibility testing method
633 (version 8). J Antimicrob Chemother [Internet]. 2009 Jul 8;64(3):454–89. Available from:
634 <https://doi.org/10.1093/jac/dkp244>

635 33. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
636 EMBnet.journal. 2011;

637 34. NA J, JN F. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files
638 [software] [Internet]. Github. 2011. p. (Version 1.33) [Software]. Available from:
639 <https://github.com/najoshi/sickle>

640 35. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion
641 and model-centric curation of the comprehensive antibiotic resistance database. Nucleic
642 Acids Res [Internet]. 2016/10/26. 2017 Jan 4;45(D1):D566–73. Available from:
643 <https://www.ncbi.nlm.nih.gov/pubmed/27789705>

644 36. Dasgupta N, Arora SK, Ramphal R. The Flagellar System of *Pseudomonas aeruginosa* BT -
645 *Pseudomonas*: Volume 1 Genomics, Life Style and Molecular Architecture. In: Ramos J-L,
646 editor. Boston, MA: Springer US; 2004. p. 675–98. Available from:
647 https://doi.org/10.1007/978-1-4419-9086-0_22

648 37. Leech AJ, Mattick JS. Effect of site-specific mutations in different phosphotransfer domains of
649 the chemosensory protein ChpA on *Pseudomonas aeruginosa* motility. J Bacteriol. 2006;

650 38. Murray TS, Kazmierczak BI. *Pseudomonas aeruginosa* exhibits sliding motility in the absence
651 of type IV pili and flagella. J Bacteriol. 2008;

652 39. EUCAST EC on AST. Antimicrobial susceptibility testing EUCAST disk diffusion method -
653 Version 7.0. Eur Soc Clin Microbiol Infect Diseases. 2019;

654 40. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. Enhanced annotations and

655 features for comparing thousands of *Pseudomonas* genomes in the *Pseudomonas* genome
656 database. *Nucleic Acids Res.* 2016;

657 41. Kos VN, Déraspe M, McLaughlin RE, Whiteaker JD, Roy PH, Alm RA, et al. The resistome of
658 *Pseudomonas aeruginosa* in relationship to phenotypic susceptibility. *Antimicrob Agents
659 Chemother.* 2015;

660 42. Meyer R. Replication and conjugative mobilization of broad host-range IncQ plasmids.
661 *Plasmid.* 2009;62(2):57–70.

662 43. Lin Z, Shouguang J. *aph(3')-IIB*, a Gene Encoding an Aminoglycoside-Modifying Enzyme, Is
663 under the Positive Control of Surrogate Regulator *HpaA*. *Antimicrob Agents Chemother.* 2003
664 Dec;47(12):3867–76.

665 44. Chávez-Jacobo VM, Hernández-Ramírez KC, Romo-Rodríguez P, Pérez-Gallardo RV, Campos-
666 García J, Gutiérrez-Corona JF, et al. *CrpP* Is a Novel Ciprofloxacin-Modifying Enzyme Encoded
667 by the *Pseudomonas aeruginosa* pUM505 Plasmid. *Antimicrob Agents Chemother* [Internet].
668 2018 May 25;62(6):e02629-17. Available from:
669 <https://www.ncbi.nlm.nih.gov/pubmed/29581123>

670 45. Zubyk HL, Wright GD. *CrpP* is not a fluoroquinolone-inactivating enzyme. *Antimicrob Agents
671 Chemother.* 2021;65(8):10–1128.

672 46. Rodríguez-Martínez J-M, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in
673 *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother* [Internet]. 2009/03/02. 2009
674 May;53(5):1766–71. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/19258272>

675 47. Eliopoulos GM, Huovinen P. Resistance to Trimethoprim-Sulfamethoxazole. *Clin Infect Dis.*
676 2001;

677 48. Clinical Presentations and Epidemiology of Urinary Tract Infections. *Microbiol Spectr.* 2016;

678 49. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by *Pseudomonas
679 aeruginosa*: A review of the natural and synthetic compounds interfering with control
680 mechanisms. *BioMed Research International.* 2015.

681 50. Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP, Poole K. Influence of quorum
682 sensing and iron on twitching motility and biofilm formation in *Pseudomonas aeruginosa*. *J
683 Bacteriol.* 2008;

684 51. Suman E, Bhat KG, Hegde BK. Mucoid *Pseudomonas aeruginosa* in urinary tract infection.

685 Tropical Doctor. 1993.

686 52. Odugbemi T, Anandan N, Lina OF. Urinary Tract Pathogens with a Special Reference to
687 Mucoid *Pseudomonas Aeruginosa* at Aflaj General Hospital . Ann Saudi Med. 1992;

688 53. Wang EW, Jung JY, Pashia ME, Nason R, Scholnick S, Chole RA. Otopathogenic *Pseudomonas*
689 *aeruginosa* Strains as Competent Biofilm Formers. JAMA Otolaryngol Neck Surg [Internet].
690 2005 Nov 1;131(11):983–9. Available from: <https://doi.org/10.1001/archotol.131.11.983>

691 54. Varga JJ, Barbier M, Mulet X, Bielecki P, Bartell JA, Owings JP, et al. Genotypic and phenotypic
692 analyses of a *Pseudomonas aeruginosa* chronic bronchiectasis isolate reveal differences from
693 cystic fibrosis and laboratory strains. BMC Genomics [Internet]. 2015 Oct 30;16:883. Available
694 from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607007/>

695 55. Zegans ME, DiGiandomenico A, Ray K, Naimie A, Keller AE, Stover CK, et al. Association of
696 Biofilm Formation, Psl Exopolysaccharide Expression, and Clinical Outcomes in *Pseudomonas*
697 *aeruginosa* Keratitis: Analysis of Isolates in the Steroids for Corneal Ulcers Trial Ability of *P*
698 *aeruginosa* to Form Biofilms and Produce Psl Exopolysaccharide. JAMA Ophthalmol [Internet]. 2016
699 Apr 1;134(4):383–9. Available from: <https://doi.org/10.1001/jamaophthalmol.2015.5956>

700 56. Dhevan V, Griswold JA, Burrowes BH, Colmer-Hamood JA, Williams SC, Carty NL, et al.
701 Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of *Pseudomonas*
702 *aeruginosa*. J Med Microbiol [Internet]. 2007 Jun 1 [cited 2019 Jun 26];56(6):738–48.
703 Available from:
704 <http://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47031-0>

705 57. Mittal R, Sharma S, Chhibber S, Aggarwal S, Gupta V, Harjai K. Correlation between
706 serogroup, in vitro biofilm formation and elaboration of virulence factors by uropathogenic
707 *Pseudomonas aeruginosa*. FEMS Immunol Med Microbiol [Internet]. 2010 Mar 1;58(2):237–
708 43. Available from: <https://doi.org/10.1111/j.1574-695X.2009.00627.x>

709 58. Vipin C, Mujeeburahiman M, Arun AB, Ashwini P, Mangesh S V, Rekha PD. Adaptation and
710 diversification in virulence factors among urinary catheter-associated *Pseudomonas*
711 *aeruginosa* isolates. J Appl Microbiol [Internet]. 2019 Feb 1;126(2):641–50. Available from:
712 <https://doi.org/10.1111/jam.14143>

713 59. Tielen P, Narten M, Rosin N, Biegler I, Haddad I, Hogardt M, et al. Genotypic and phenotypic
714 characterization of *Pseudomonas aeruginosa* isolates from urinary tract infections. Int J Med
715 Microbiol [Internet]. 2011;301(4):282–92. Available from:

716 http://www.sciencedirect.com/science/article/pii/S1438422110001438

717 60. Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, et al. Role of Flagella in
718 Pathogenesis of *Pseudomonas aeruginosa* Pulmonary Infection. *Infect Immun* [Internet].
719 1998 Jan 1;66(1):43 LP – 51. Available from: <http://iai.asm.org/content/66/1/43.abstract>

720 61. Ruzicka F, Olejnickova K, Hola V. Catheter-related infections caused by *Pseudomonas*
721 *aeruginosa*: virulence factors involved and their relationships. *Pathog Dis* [Internet]. 2014
722 Nov 1;72(2):87–94. Available from: <https://doi.org/10.1111/2049-632X.12188>

723 62. O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for *Pseudomonas*
724 *aeruginosa* biofilm development. *Mol Microbiol* [Internet]. 1998 Oct 1;30(2):295–304.
725 Available from: <https://doi.org/10.1046/j.1365-2958.1998.01062.x>

726 63. Burrows LL. *Pseudomonas aeruginosa* Twitching Motility: Type IV Pili in Action. *Annu Rev*
727 *Microbiol*. 2012;

728 64. Winstanley C, Kaye SB, Neal TJ, Chilton HJ, Miksch S, Hart CA. Genotypic and phenotypic
729 characteristics of *Pseudomonas aeruginosa* isolates associated with ulcerative keratitis. *J Med*
730 *Microbiol*. 2005;

731 65. Zolfaghari I, Evans DJ, Fleiszig SMJ. Twitching motility contributes to the role of pili in corneal
732 infection caused by *Pseudomonas aeruginosa*. *Infect Immun*. 2003;

733 66. Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR. The impact of quorum
734 sensing and swarming motility on *Pseudomonas aeruginosa* biofilm formation is nutritionally
735 conditional. *Mol Microbiol*. 2006;

736 67. Jones B V., Young R, Mahenthiralingam E, Stickler DJ. Ultrastructure of *Proteus mirabilis*
737 swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. *Infect*
738 *Immun*. 2004;

739 68. Ironmonger D, Edeghere O, Bains A, Loy R, Woodford N, Hawkey PM. Surveillance of
740 antibiotic susceptibility of urinary tract pathogens for a population of 5.6 million over 4 years.
741 *J Antimicrob Chemother*. 2014;

742 69. Al Sweih N, Jamal W, Rotimi VO. Spectrum and antibiotic resistance of uropathogens isolated
743 from hospital and community patients with urinary tract infections in two large hospitals in
744 Kuwait. *Med Princ Pract*. 2005;

745 70. Alali WQ, Abdo NM, AlFouzan W, Dhar R. Antimicrobial resistance pattern in clinical

746 *Escherichia coli* and *Pseudomonas aeruginosa* isolates obtained from a secondary-care
747 hospital prior to and during the COVID-19 pandemic in Kuwait. *Germs*. 2022;12(3):372–83.

748 71. Dobardzic AM, Dobardzic R. Epidemiological features of complicated UTI in a district hospital
749 of Kuwait. *Eur J Epidemiol*. 1997;

750 72. Alshimmiri MM, Hammoud MS, Al-Saleh EA, Alsaeid KMS. Ethnic variations in birthweight
751 percentiles in Kuwait. *Paediatr Perinat Epidemiol* [Internet]. 2003 Oct 1;17(4):355–62.
752 Available from: <https://doi.org/10.1046/j.1365-3016.2003.00514.x>

753 73. Kadlec K, Kehrenberg C, Schwarz S. Molecular basis of resistance to trimethoprim,
754 chloramphenicol and sulphonamides in *Bordetella bronchiseptica*. *J Antimicrob Chemother*
755 [Internet]. 2005 Jul 26;56(3):485–90. Available from: <https://doi.org/10.1093/jac/dki262>

756 74. Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M, Emond-Rhéault J-G, et al. A
757 megaplasmid family driving dissemination of multidrug resistance in *Pseudomonas*. *Nat
758 Commun* [Internet]. 2020;11(1):1370. Available from: <https://doi.org/10.1038/s41467-020-15081-7>

760 75. Pinder R, Berry D, Sallis A, Chadborn T, RJ Pinder. Behaviour change and antibiotic prescribing
761 in healthcare settings Literature review and behavioural analysis. Public Health England.
762 2015.

763