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ABSTRACT

Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across
the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have
no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of
pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When
infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas
and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than
60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and
immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously
identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17,
associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs
contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate
genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from
lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating
functional scores. The scores were then used to rank candidates for each mapped trait in each locus,
resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgbh5, Fstl1, Zbtb20, Ddr1, ler3, Vegfa, and
Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular
matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide
polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on
protein functions. Multiple methods were used for validation including (i) a statistical method that showed
Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii)
quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6
mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity
Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that

may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
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AUTHOR SUMMARY

We investigated the genetic basis of susceptibility to Mycobacterium tuberculosis using Diversity Outbred
mice, a mouse population suited for studies on complex genotype-phenotype relationships. We identified
multiple new genetic loci as well as two previously identified loci. Interestingly, we found three loci
associated with multiple disease traits, which indicates genes within the loci are likely major regulators of
host inflammatory responses which permit M. tuberculosis growth. These three loci contain at least four
gene candidates with single nucleotide polymorphisms that are predicted to have deleterious effects upon

protein functions.

INTRODUCTION

The number of humans who develop active pulmonary tuberculosis (TB) is small compared to those
who eliminate or control Mycobacterium tuberculosis (5-10% vs 90-95%), yet morbidity and mortality from
TB remain high. Although COVID-19 mortality temporarily surpassed global TB mortality, TB has
remained in the top two leading causes of death due to an infectious disease for decades, killing more
people than HIV/AIDS and malaria. Pulmonary TB is the most common and most contagious form of TB,
with mortality rates >40% if untreated or if caused by antibiotic resistant M. tuberculosis [1-8]. Human
responses to M. tuberculosis infection range from fulminant pulmonary TB that develops within weeks to
lifelong control of latent infection or complete clearance of bacilli [9-11]. Further, a body of evidence
shows an interesting paradox: Immune competence is necessary to restrict M. tuberculosis growth [12],
but is not sufficient to prevent disease [13].

The variable responses to M. tuberculosis and lack of single genetic defects in most patients indicate
a complex genetic basis for pulmonary TB, and this has been investigated by linkage association
mapping, genome-wide association studies, and other methods, recently reviewed [14-17]. These
reviews frequently identify knowledge gaps attributable to the observations that the most used laboratory

mouse strains do not replicate key disease traits (e.g., granuloma necrosis) of human pulmonary TB [18-
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23]. To address these gaps, we and others use the Diversity Outbred mouse population and Collaborative
Cross recombinant inbred strains [24-26], some of which do develop human-like pulmonary TB following
M. tuberculosis infection. These mice provide valuable resources to model complex genotype-phenotype
associations; tools to dissect the genetic basis of disease; and a means to test for effects of candidate
genetic polymorphisms in vivo.

The Diversity Outbred mouse population originated by breeding eight inbred founder strains together,
resulting in an experimental population with balanced allele frequencies of one-eighth across the genome
[27]. This is important for genetic mapping studies because low allele frequencies in natural populations
can diminish power and increase false positive findings [28]. Further, Diversity Outbred mice carry over
40 million variants [29], some of which alter regulatory elements, splice sites, and protein-coding
sequences. This defined genetic architecture allows rigorous investigation of genotype-phenotype
association in context of M. tuberculosis infection.

Here, to find genetic loci associated with pulmonary TB, we used quantitative trait locus (QTL)
mapping. Next we ranked candidates genes within the Diversity Outbred tuberculosis susceptibility (Dots)
loci that were associated with correlated, colocalized traits by using a machine learning algorithm [30,
31] to find genes functionally related to the mapped traits and the fit models scored each candidate [32].
All candidates contain a variety of SNPs as annotated in Mouse Variation Registry (MVAR). Seven of the
eleven candidates contain missense SNPs in protein coding regions, and of those, the SNPs in four
candidates (S7100a8, Itgbh5, Fstl1, and Zfp318) are predicted to have deleterious consequences on protein
functions.

Published studies have shown three candidates (ltgb5, Fstl1, S100a8) involved in bacterial lung
diseases that includes in vitro, or in vivo M. tuberculosis infection [33-39]. The other eight candidates
have no known roles in M. tuberculosis infection but have been shown in other systems to contribute to
cell stress responses, signaling pathways, adhesion and migration; extracellular matrix synthesis, tissue
remodeling and angiogenesis; immune cell metabolism; macrophage inflammatory responses; and viral

hepatitis [40-52]. Overall, ten candidate genes have roles in innate immune responses suggesting that
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genetically controlled responses of epithelial and endothelial cells, neutrophils, and monocytes,
macrophages to M. tuberculosis bacilli are the primary drivers of susceptibility to M. tuberculosis and to
disease progression in pulmonary TB. Only 1 candidate has a direct role in acquired, antigen-specific

immunity.

METHODS

Ethics Statement

Tufts University’s Institutional Animal Care and Use Committee (IACUC) approved this work under
protocols G2012-53; G2015-33; G2018-33; and G2020-121. Tufts University’s Institutional Biosafety

Committee (IBC) approved this work under registrations: GRIA04; GRIA10; GRIA17, and 2020-G61.

Mice

Female Diversity Outbred mice (n=850) from generations 15 16, 21, 22, 34, 35, 37 and 42 and the inbred
founder strains: A/J, C57BL/6J, 129S1/SvimJ), NOD/LtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ
mice (n=15-59 per strain) were purchased from The Jackson Laboratory (Bar Harbor, ME) and group
housed (n=5-7 mice per cage) on Innovive (San Diego, CA) or Allentown Inc (Allentown, NJ) ventilated,
HEPA-filtered racks in the New England Regional Biosafety Laboratory (Tufts University, Cummings
School of Veterinary Medicine, North Grafton, MA) or at The Ohio State University Columbus, OH. The
light cycle was 12 hours of light; 12 hours of dark. Two breeding pairs of female and male C57BL/6 inbred
mice carrying null mutation for S700a8 gene were a kind gift of Dr. Philippe Tessier, Department of
Microbiology and Immunology, Faculty of Medicine, Université Laval. After quarantine, breeders were
used to establish a colony of S100a8 homozygous knock out (KO), heterozygous (HET) and wild-type
(WT) C57BL/6 inbred mice. Mice were housed in disposable sterile caging or re-usable autoclaved caging
containing sterile corn-cob bedding, with sterile paper nestlets (Scotts Pharma Solutions, Marlborough,

MA), and/or sterile enrichment paperboard or plastic “houses”. Cages were changed every other week
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or sooner if soiled. Mice were provided with sterile mouse chow (Envigo, Indianapolis, 1A) and sterile,

acidified water ad libidum.

M. tuberculosis Aerosol Infection

Female Diversity Outbred mice and inbred founder strains were infected with aerosolized M. tuberculosis
strain Erdman bacilli using a custom-built CH Technologies system [24, 39, 53] or a Glas-col (Terre
Haute, ID) system [54, 55] between eight and ten weeks of age. Male and female C57BL/6 S100a8 KO,
HET, and WT mice were infected between eight and sixteen weeks of age. For each aerosol infection,
the retained lung dose was determined by euthanizing a cohort of four to twelve mice 24 hours after
exposure, homogenizing the entire lungs in 5mL sterile phosphate buffered saline, and plating the entire
homogenate onto OADC-supplemented 7H11 agar. After 3-4 weeks at 37°C, M. tuberculosis colony
forming units were counted. Mice were infected with ~100 colony forming units in the first two

experiments, and ~25 colony forming units in the subsequent eight experiments.

Quantification of TB-related Traits (Phenotyping)

Survival. IACUC protocols disallowed natural death as an endpoint. Therefore, as a proxy of survival, we
used the day of euthanasia due to any single criterion: Severe weakness/lethargy; or respiratory distress;
or body condition score < 2 [56]. We confirmed morbidity was due to pulmonary TB by finding: (i) Large
nodular, or severe diffuse lung lesions; (ii) histopathology confirmation of severe granulomatous lung
infiltrates; (iii) growth of viable M. tuberculosis colonies from lung tissue; and (iv) absence of other
diseases. Twenty-one M. tuberculosis infected Diversity Outbred mice were excluded due to co-morbidity

that developed during the experiment.

Weight loss. Mice were weighed 1 to 3 days prior to M. tuberculosis aerosol infection, at least once per
week during infection, and immediately before euthanasia. For each mouse, weight loss was calculated

as the percent loss from peak body weight.
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Lung granuloma necrosis. Immediately after euthanasia, lung lobes were removed and inflated and fixed
in 10% neutral buffered formalin (5-10 mL per lobe), processed, and embedded in paraffin, sectioned at
5um, and stained with hematoxylin and eosin with or without carbol fuschin for acid-fast bacilli at Tufts
University, Cummings School of Veterinary Medicine, Core Histology Laboratory (North Grafton, MA).
Hematoxylin and eosin-stained glass slides were magnified 400 times and digitally scanned by Aperio,
LLC (Sausalito, CA) ScanScope scanners at 0.23 microns per pixel at The Ohio State University’s
Comparative Pathology and Mouse Phenotyping Shared Resources Core resource (Columbus, OH) or
by Aperio, LLC (Sausalito, CA) AT2 scanners at 0.23 microns per pixel at Vanderbilt University Medical
Center’s Digital Histology Shared Resource (Nashville, TN). Lung granuloma necrosis was quantified in
one lung lobe per mouse by our previously validated, deep learning image analysis method [57] and

reported here as a ratio of granuloma necrosis per lung tissue area.

M. tuberculosis lung burden. Immediately after euthanasia, 2 or 3 lung lobes were removed from each
mouse and homogenized in sterile phosphate buffered saline (1mL per lobe), serially diluted, plated onto
OADC-supplemented 7H11 agar, incubated at 37°C for 3-4 weeks, after which colonies were counted,

and M. tuberculosis lung burden in the lungs was calculated as described [58].

Lung cytokines and chemokines. Lung homogenates were stored at -80°C until the experiment ended.
Lung homogenates were then thawed overnight at 4° serially diluted and tested for CXCL5, CXCL2,
CXCLA1, tumor necrosis factor (TNF), matrix metalloproteinase 8 (MMP8), S100A8, interferon-gamma
(IFN-y), interleukin (IL)-12p40, I-L12p70, IL-10, and vascular endothelial growth factor (VEGF) by
sandwich ELISA using antibody pairs and standards from R&D Systems (Minneapolis, MN), Invitrogen
(Carlsbad, CA), eBioscience (San Diego, CA), or BD Biosciences (San Jose, CA, USA), per kit
instructions. Lung homogenate ELISA results from five of the experiments using Diversity Outbred mice

have been published and analyzed for biomarkers previously [39].
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Phenotype Correlation
We took the log of each phenotype after adding one (to ensure that zero was not converted to negative
infinity) and regressed out the effect of the experimental batch. We then standardized the residuals and

estimated the Pearson correlation between all pairs of phenotypes.

Gene Expression

One lung lobe from 98 Diversity Outbred mice was homogenized in TRIzol, stored at -80°C, and RNA
was extracted using Pure Link mini-kits (Life Technologies, Carlsbad, CA). Boston University’s Microarray
and Sequencing Resource Core Facility (Boston, MA) confirmed quality and quantity were sufficient for
microarray analyses. Mouse Gene 2.0 ST CEL files were normalized to produce gene-level expression
values using the implementation of the Robust Multiarray Average (RMA) in the Affy package (version
1.62.0) included in the Bioconductor software suite and an Entrez Gene-specific probeset mapping
(17.0.0) from the Molecular and Behavioral Neuroscience Institute (Brainarray) at the University of
Michigan. Array quality was assessed by computing Relative Log Expression (RLE) and Normalized
Unscaled Standard Error (NUSE) using the affyPLM package (version 1.59.0). The CEL files were also
normalized using Expression Console (build 1.4.1.46) and the default probesets defined by Affymetrix to
assess array quality using an AUC metric computed from sets of negative and positive control probes;
all samples used in this analysis had an AUC > 0.8. Moderated {-tests and ANOVAs were performed
using the limma package (version 3.39.19) (i.e., creating simple linear models with ImFit, followed by
empirical Bayesian adjustment with eBayes). Correction for multiple hypothesis testing was
accomplished using the Benjamini-Hochberg false discovery rate (FDR). To remove microarray probes
that intersected with Diversity Outbred SNPs, we intersected the Diversity Outbred founder strain SNPs
[59] with the vendor-provided probes and removed probes containing SNPs. All microarray analyses

were performed using the R environment for statistical computing (version 3.6.0). A related microarray
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dataset and other secondary analyses have been published elsewhere [39, 60] and deposited in Gene

Expression Omnibus (GEQ), and assigned Series ID GSE179417.

Genotyping

We collected tail tips from each Diversity Outbred mouse and sent them to Neogen (Lincoln, NE) for DNA
isolation and genotyping. Neogen genotyped the mice on the lllumina GigaMUGA platform, which
contains 143,259 markers [61]. Genotypes of S7100a8 KO, HET, and WT C57BL/6 inbred mice were

confirmed by polymerase chain reaction (TransnetYX, Cordova, TN).

Haplotype Reconstruction and SNP Imputation
We used 137,302 GigaMUGA marker positions located on the autosomes and chromosome X found at

https://github.com/kbroman/MUGAarrays/blob/main/UWisc/gm uwisc v1.csv and the R package qt/2 to

reconstruct the Diversity Outbred haplotypes using the founder and Diversity Outbred allele calls, and

used the haplotype reconstructions to impute the founder SNPs onto the Diversity Outbred genomes [62].

Quantitative Trait Locus Mapping

We included Diversity Outbred mice that survived M. tuberculosis infection for 250 days or less because
age-related comorbidities began to appear and complicated interpretation. We used qt/2 [62] to perform
linkage mapping using the founder haplotypes and association mapping using the imputed SNPs. We
calculated the kinship between mice using the leave-one-chromosome-out method, which excludes the
current chromosome in kinship calculations [63]. We standardized each phenotype and mapped with the
Diversity Outbred outbreeding generation as an additive covariate and used the linear mixed-effects
model with one kinship matrix per chromosome. We estimated the genome-wide significance thresholds
by permuting the samples 1,000 times and performed a genome scan with each permutation. We retained
the maximum log4, of the odds ratio (LOD) score from each permutation and estimated the genome-wide

significance threshold of 7.6 from the 95" percentile of the empirical distribution of maximum LOD scores
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under permutation. We estimated the support interval around each peak using the 95% Bayesian
Credible Interval.

For each peak with a LOD score above the genome-wide threshold > 7.6, we then searched for
peaks associated with other traits that had LOD scores > 6 and confidence intervals that overlapped [64].
Our rationale was that the probability that a peak is biologically relevant, given that another trait has a

co-located peak, is higher than the probability that a peak is significant with no prior evidence.

Candidate Gene Selection

Within each QTL interval, we imputed the founder SNPs onto the Diversity Outbred mouse genomes
using qtl2 and performed association mapping. We selected the SNPs that were within a 1 LOD drop of
the peak SNP in the QTL interval and filtered them to retain ones with missense, splice, or stop codon
effects as annotated by the Sanger Mouse Genome Project [59]. We considered the genes in which these

polymorphisms occurred as candidate causal genes for the associated trait(s).

Trait-related Gene Sets

Because causal variants within a QTL may exert their influence through mechanisms other than gene
expression, identifying differentially expressed genes within the QTL may be insufficient for ranking
causal genes. Here we took an alternative approach and ranked candidates in each QTL based on their
predicted association with the mapped traits. To do this, we trained an SVM to classify trait-related genes,
and then used the trained SVM to score each positional candidate gene as trait-related or not-trait-
related. We defined the training set of trait-related genes for the SVM as those genes that were highly
correlated to the measured trait using the gene expression data described above. We calculated the
Pearson correlation between the abundance of each transcript, and each physiological trait using rank Z
normalized gene expression and traits. For each trait, we defined the training set of trait-related genes
as the 500 genes with the largest magnitude Pearson correlation to the trait. We have made these gene

lists available as a set of zipped text files in Supplemental File 1.

10
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Support Vector Machine classifier training

We trained SVMs to classify genes in each gene list as trait-related using features derived from the
Functional Network of Tissues in Mouse [32]. The nodes in this network are genes, and the edges
between them are weights between 0 and 1 that predict the likelihood that each pair of genes is annotated
to the same Gene Ontology (GO) term or KEGG pathway [30]. Values closer to one indicate more
certainty that the genes are more likely to be annotated to the same GO term or KEGG pathway and thus
functionally related. The weights were derived using Bayesian integration of data sets from numerous
sources of data, including gene expression, protein-protein interaction data, and phenotype annotations
[32]. We used the top edges of the mouse lung network downloaded on March 31, 2021, from

http://fntm.princeton.edu.

Application of Support Vector Machine classifiers to identify genes functionally related to traits.
We used SVMs to classify each positional candidate as trait-related or not-trait-related, as described
previously [30, 31]. Briefly, the expression-derived gene sets for each lung trait served as the positive
labeled set of genes. We used the R package e1071 [65] to train SVMs to distinguish this set of genes
from a balanced set of genes drawn randomly from the remaining genes in the lung network. The
randomly selected genes were the unlabeled set. We performed this training 100 times, each time with
a new set of random unlabeled genes. The SVMs were trained to distinguish positive labeled genes from
unlabeled genes using the connection weights to the positive labeled genes. It is expected that positively
labeled genes have relatively strong connections to each other because they are functionally related. It
is further expected that randomly drawn genes will be unrelated to the trait and to the positive labeled set
and will thus have relatively lower connection weights to the positive labeled genes. The SVM learns to
distinguish these two groups of genes, and the resulting model can be used to classify genes that have
not been seen before based on their connection weights to the positively labeled genes. We initialized

each run by tuning the SVM over a series of cost parameters, starting with the sequence 10%° to 102 by

11
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factors of 10, and iteratively narrowing the range until we found a series of eight cost parameters that
maximized accuracy. In running each SVM, we used a linear kernel and 10-fold cross-validation.

We calculated the area under the receiver operating characteristic curves (AUC) for each set of
trait-related genes as follows. We defined labeled positives (LP) as positive labeled genes that were
classified by the SVM as ftrait related. Unlabeled negatives (UN) were unlabeled genes that were
classified by the SVM as not trait related. Unlabeled positives (UP) were unlabeled genes that were
classified as trait-related, and labeled negatives (LN) were positive labeled genes that were classified as
not trait-related. These terms are conceptually like true/false positive and true/false negative scores.
However, because unlabeled genes may not be truly unrelated to the trait, we cannot call them true
negatives. Instead, we call them unlabeled. We generated ROC curves using the Unlabeled Predicted
Positive Rate (UPPR = UP/(UP+UN)), which is akin to the false positive rate, and the labeled positive
rate (LPR = LP/(LP+UN)), which is akin to the false negative rate, along a series of SVM scores from the

minimum to the maximum. We then calculated the average AUC across all 100 SVMs.

Positional Candidate Scoring

After training SVMs for each trait, we scored all positional candidate genes in each QTL, defined as the
minimum to the maximum position across a set of overlapping QTLs. Each candidate gene received one
score for each trait that mapped to that location. To compare scores across traits, we used the UPPR for
each gene at its calculated SVM score. The UPPR varies between 0 and 1, allowing us to compare
scores for candidate genes across models. To visually compare across models, we used the
-log10(UPPR) such that genes with very small UPPR (very high confidence) got large positive values. In
contrast, the SVM scores cannot be used to compare across models because they are unbounded and
vary from model to model. Within each pleiotropic QTL, each gene received a score from each trait that

mapped to the QTL.

Mouse Genome Build and Database Versions
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We used mouse genome build GRCm38 and SNPs and Indels from the Sanger Mouse Genomes Project,
version 7, which uses Ensembl version 97 gene models. We also used and cross-referenced candidates
with the Mouse Phenome Database GenomeMUSter, the Mouse Genome Informatics databases [66],

and Ensembl’s Variant Effect Predictor tool.

RESULTS
Survival and body weight changes

We infected Diversity Outbred mice by aerosol with ~100 M. tuberculosis colony forming units in
the first two experiments (N=167), and ~25 colony forming units in the subsequent eight experiments
(N=683). Infection reduced survival of Diversity Outbred mice compared to identically housed, age-,
gender-, and generation-matched uninfected Diversity Outbred mice and to identically housed age- and
gender-matched infected C57BL/6J inbred mice (Figure 1A). Approximately one-third of infected Diversity
Outbred mice succumbed prior to 60 days (Figure 1A) reflecting early mortality between 20-56 days that
peaked at 30 days (Figure 1B). This supersusceptible fraction of the Diversity Outbred population has
been named Progressors [24, 57, 60, 67]. Morbidity in all Progressors was due to pulmonary TB,
confirmed by histology, recovery of viable M. tuberculosis bacilli from the lungs and absence of other
diseases. After the first mortality wave subsided, cumulative survival declined slowly to nearly 600 days
with no discernable mortality waves (Figure 1A and 1B). This relatively resistant fraction of Diversity
Outbred mice has been named Controllers [24, 57, 60, 67]. The eight founder strains survived at least
40 days of M. tuberculosis infection, without early mortality (Figure 1A).

All mice were weighed prior to infection, during infection, and immediately before euthanasia.
Non-infected Diversity Outbred mice gained weight until they developed other diseases or were
euthanized at the experiment end (Supplemental Figure 1A). Progressors gained weight for 2-3 weeks,
and then quickly lost weight (Supplemental Figures 1B). Controllers and C57BL/6J inbred mice gained
weight for long and variable durations through about 250 days of infection, and then most but not all

slowly lost weight (Supplemental Figures 1C, 1D). We questioned whether pre-infection body weight
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influenced differential susceptibility. Retrospective analysis identified no significant differences in pre-
infection body weights of non-infected Diversity Outbred mice compared to Progressors; and a significant
difference (average of 1.75 gm lower) in mean body weights of non-infected Diversity Outbred mice and
Progressors compared to Controllers (Supplemental Figure 2A). Whether this is spurious or biologically
relevant (i.e., heavier pre-infection body weight partially protects) remains to be determined.
Supplemental Figures 2B, 2C, and 2D show correlations between survival and eight clinical indicators of
disease. Seven indicators positively correlate with survival, including pre-infection body weight which was
weakly positive. Only one indicator, the rate of body weight loss, had negative correlations with survival

and the duration of weight loss.

Lung Histology and Automated Image Analysis of Granuloma Necrosis

By eight weeks of M. tuberculosis infection, Diversity Outbred mice showed a spectrum of lung
lesions visible at low magnification (Figure 2) with variation in severity (minimal to marked); distribution
of cellular infiltrates (focal, multifocal, and diffuse); and granuloma content (e.g., necrotizing, and non-
necrotizing, shown in Supplemental Figure 3 at higher magnification). Additional lesions included fibrin
thrombosis with alveolar septal necrosis; cavities with peripheral fibrosis; foamy and multinucleated
macrophages with cholesterol clefts; formation of secondary lymphoid follicles; alveolar septal fibrosis;
and intra- and extracellular M. tuberculosis bacilli described elsewhere [19, 24, 60, 68-71]. Since
granuloma necrosis is a key feature of pulmonary TB in humans, we focused on this, and used our

automated image analysis method to quantify the ratio of granuloma necrosis in lung tissue sections [57].

Quantification of lung traits: M. tuberculosis burden and immune responses

We quantified M. tuberculosis lung burden by counting colonies from lung tissue homogenates
and used the remainder lung homogenates for quantification of lung cytokines and chemokines by ELISA
[24, 39]. Most lung traits were significantly higher in mice infected with M. tuberculosis compared to non-

infected mice (Figures 3A), including neutrophil and monocyte/macrophage chemokines (CXCLA1,

14


https://doi.org/10.1101/2023.12.21.572738
http://creativecommons.org/licenses/by/4.0/

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.21.572738; this version posted December 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

CXCL2, CXCLS5); mediators of innate immunity (S100A8, Tumor Necrosis Factor (TNF), interleukin (IL)-
10, matrix metalloproteinase-8 (MMP8); mediators of acquired immunity (interferon-gamma (IFN-y)) and
M. tuberculosis burden. Pairwise Pearson correlation of all traits in infected mice showed that all the lung
traits except IL10 and VEGF positively correlated with each other (Figure 3B). Like previous findings in a
small study of Diversity Outbred mice [24], correlations were strongest between M. tuberculosis lung
burden and mediators of acute neutrophilic inflammation, innate immunity, and extracellular matrix

degradation: CXCL1, CXCL2, TNF, and MMP8 with a mean correlation of 0.75.

Overview of genetic mapping and gene prioritization within QTLs.

Figure 5 shows a flow diagram of the types of input data for genetic mapping to identify QTLs,
and the subsequent methods of gene prioritization. Briefly, we performed linkage mapping on each trait
by regressing each on the additive founder allele dosage at each locus using the R package qtl2 [62].
We selected peaks with a permutation-derived significance threshold of 7.62 (pgw < 0.05) and found
seven peaks associated with multiple traits on chromosomes 1, 2, 3, 4, 16, and 17 (Table 1 and Figure
4). We observed that correlated traits colocalized to shared QTLs, and had similar patterns of allele
effects, so we used a two-step procedure in which we recorded the confidence interval for peaks with a
LOD = 7.62 and then looked for peaks of colocalized traits with a LOD = 6.0 (pgw < 0.6). We reasoned
that once we had found the first significant peak for one trait, the threshold for colocalized peaks with the

same pattern of founder allele effects should be lower, allowing refinement of the loci.

Chromosome 1: Diversity Outbred Tuberculosis Susceptibility locus 1 (Dots1)

Dots1is a new QTL on chromosome 1 with a peak LOD >7.6 (pgw < 0.05) at 155.36 M and interval
154.25-156.71 Mb shared by two correlated traits, M. tuberculosis burden and CXCL1 (Table 1). Two
correlated traits (CXCL2 and MMP8) had lower threshold LODs = 6.0 (pew < 0.6) mapped to the same
position (Figure 4). Notably, these four correlated traits shared patterns of founder allele effects

(Supplemental Figure 5), suggesting this QTL contains an important mechanism of genetic regulation for
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neutrophil-mediated activities, extracellular matrix remodeling, and M. tuberculosis growth. To refine the
locus, we calculated the first principal component of those four traits and plotted the LOD curve, which
also peaked between 154-156 Mb (Figure 6A) and plotted the founder allele effects. A/J, C57BL/6J and
WSBV/EIJ alleles contributed to higher values of principal component 1 and CAST/EiJ alleles contributed
to low allele effects (Figure 6B). We next imputed the founder SNPs onto the Diversity Outbred genomes
and performed association mapping in a 10 Mb region around the peak (Figure 6C). Interestingly, the
SNPs with highest LOD scores were outside of the peak, and none of the SNPs with the highest LOD
scores were missense, stop, or splice site SNPs. This suggested the SNPs in the confidence interval
could regulate expression of nearby genes, including some of the 47 protein-coding genes in the interval
(Figure 6D and Supplemental File 1). To find and prioritize trait-related gene candidates within Dots7, we
used the trained SVM model to rank gene candidates based on the strength of their functional relationship
in gene expression network modules (Supplemental File 2). Fam20b and Ncf2 ranked highest by
functional scoring (Figure 6E). Table 2 summarizes the known annotations, allele effects, founder alleles
containing SNPs, and predicted effects of missense SNPs in Fam20b and Ncf2 genes on protein

functions from publicly available databases.

Chromosome 2: Diversity Outbred Tuberculosis Susceptibility locus 2 (Dots2)

Dots2 is a new QTL, not shared by correlated traits (Table 1), and has a peak LOD of 7.69 (pew
< 0.05) at 22.43 Mb that was associated with lung CXCL2 protein levels (Figure 4). Dots2 contains 19
protein coding genes (Supplemental File 1). Because this QTL was associated with only 1 trait, gene

prioritization by functional scoring was not pursued.

Chromosome 3: Diversity Outbred Tuberculosis Susceptibility locus 3 (Dots3)
Dots3is not a new QTL (Table 1) and overlaps with tbs7, a QTL previously identified by crossing
A/Sn and I/St inbred mouse strains [72]. These strains are not founder strains of the Diversity Outbred

population. Dots3 was identified by a single peak with a high LOD of 16.57 at 90.69 Mb and interval
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90.52-92.02 (pew < 108) associated with lung S100A8 (calgranulin A) protein levels (Figure 4 and Figure
7A). CAST/EiJ alleles effects were high and PWK/PhJ allele effects were low (Figure 7B). SNPs with the
highest LOD scores within the peak are shown (Figure 7C). The interval contains 12 protein coding genes
(Supplemental File 1) including the S7100a8 gene (Figure 7D), suggesting that genetic variants which
affect S700a8 transcription regulate S100A8 (calgranulin A) protein levels in M. tuberculosis infection.
Further, based on based on the strength of the functional relationship in gene expression network
modules (Supplemental File 2) the trained SVMs identified S700a8 as the gene with the highest functional
score in Dots3 (Figure 7E). Dots3 also contains the gene S700a9, which encodes S100A9 (calgranulin
B), a protein binding partner of S100A8 (calgranulin A) required to form the heterodimer, calprotectin.
Table 2 summarizes the known annotations, allele effects, founder alleles containing SNPs, and
predicted effects of missense SNPs in S700a8 and S100a9 genes on protein functions from publicly

available databases.

Chromosome 4: Diversity Outbred Tuberculosis Susceptibility locus (Dots4)

Dots4 is new QTL, not shared by correlated traits (Table 1), and has a peak LOD of 7.64 (pew <
0.05) at 22.43 Mb and interval 22.18 23.79 Mb associated with lung S100A8 (calgranulin A) protein
levels (Figure 4). Dots4 contains 2 protein coding genes (Supplemental File 1). Because this QTL was
associated with only one trait and contained few protein coding genes, prioritization by functional scoring

was not pursued.

Chromosome 16: Diversity Outbred Tuberculosis Susceptibility locus (Dots5)

Dots5 is a new QTL on chromosome 16, shared by three correlated traits: lung M. tuberculosis
burden (LOD = 8.45, pgw < 0.01), weight loss, and granuloma necrosis with a peak at 38.3 Mb and
interval 33.28-43.28 Mb (Table 1 and Figure 4). We calculated the first principal component of these traits
and plotted the LOD curve showing its peak (Figure 8A). The founder allele effects indicate that C57BL/6J

alleles contribute to higher values of principal component 1 and that PWK/PhJ and NZO/HILtJ alleles
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contribute to low effects (Figure 8B). We imputed the founder SNPs onto the Diversity Outbred genomes
and performed association mapping around the peak, showing the SNPs with the highest LOD scores
(Figure 8C). The SNPs with high LOD scores (Figure 8D) were not missense, stop, or splice site SNPs
in the 75 protein coding genes within the interval (Supplemental File 1). By prioritizing genes based on
functional relationships in network modules, we identified Fst/1 and ltgb5 as functional candidates
associated with weight loss, and Zbtb20 as a functional candidate associated with M. tuberculosis burden
(Figure 8E, Supplemental File 2). Table 2 summarizes the known annotations, allele effects, founder
alleles containing SNPs, and predicted effects of missense SNPs in Fstl1, Itgh5, and Zbtb20 genes on

protein functions from publicly available databases.

Chromosome 16: Diversity Outbred Tuberculosis Susceptibility locus (Dots6)

Dots6 is new QTL on chromosome 16 and shared by two correlated traits: M. tuberculosis burden
and CXCL5 with a peak at 52.23 Mb and interval 37.97-57.67 Mb (Table 1 and Figure 4). The interval
contains 101 protein coding genes (Supplemental File 1). Because the LOD score was lower than LOD

threshold 7.64 for significance (pew < 0.05), prioritization by functional scoring was not pursued.

Chr 17: Diversity Outbred Tuberculosis Susceptibility locus (Dots7)

Dots7 on chromosome 17 is not new, overlaps with sst5 and sst6, QTLs that were previously
identified by crossing C3HeB/Fed and C57BL/6J inbred mouse strains [73]. These strains are not founder
strains of the Diversity Outbred population. Dots7 is associated with M. tuberculosis burden and the LOD
peaks ~20 Mb (Table 1 and Figure 4). The interval contains 198 protein coding genes (Supplemental File
1). Because the LOD score was lower than LOD threshold 7.64 for significance (pgw < 0.05), prioritization

by functional scoring was not pursued.

Chr 17: Diversity Outbred Tuberculosis Susceptibility locus (Dots8)
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Dots8 is not a new QTL and also overlaps with sst5 and sst6, two QTLs that were previously
identified by crossing C3HeB/FedJ and C57BL/6J inbred mouse strains [73]. Five traits: lung granuloma
necrosis (“Necr Ratio”), weight loss, MMP8, CXCL1, and IL-10 mapped to Dots8. Lung granuloma
necrosis had the highest LOD score (LOD = 8.12, pew < 0.02) at 35.02 Mb and interval 33.94-41.06 Mb
Of those five traits, four positively correlated with each other (Figure 3) and had similar patterns of allele
effects, while one associated trait, IL-10 had weak correlations and different patterns of founder allele
effects.

We calculated the first principal component of the correlated traits and again performed QTL
mapping. Principal component 1 mapped to a wide interval approximately 30-50 Mb with a peak near 38
Mb (Figure 9A). The founder allele effects show PWK/PhJ alleles contribute to high trait values, and
NZO/HILtd and NOD/ShiLtd alleles contribute to lower values (Figure 9B). We expected to find
polymorphisms in the proximal peak of Dots8 at 34-38 Mb because it contains the mouse
histocompatibility-2 (H-2; or Major Histocompatibility Complex-Il MHCII). This locus contains many
immune response genes known to regulate innate and adaptive immunity and is known to be highly
polymorphic. Indeed, the highest SNP association mapping LOD scores were over the mouse H-2 locus,
located approximately 36-38 Mb (Figure 9C), and there were 27 SNPs with protein-coding or splice site
variation which occurred in 15 genes (Supplemental File 3). Among these were several histocompatibility
genes (H2-M1, H2-M5, H2-M9, H2-M11) and several tripartite motif (TRIM) family genes (Trim10, Trim26,
Trim31, Trim40).

The genes within the broad interval of the Dots8 are difficult to summarize and interpret as there
were 361 protein-coding genes within the 30-50 Mb locus (Supplemental File 1). We prioritized these
positional candidate genes again based on their functional relationships in network modules to the
correlated traits (Supplemental File 2). This identified candidates Ddr1, ler3, and Vegfa associated with
CXCL1; and Zfp318 associated with granuloma necrosis (Figure 9E). Table 2 summarizes the
annotations, allele effects, founder alleles containing SNPs, and predicted effects of missense SNPs in

Dadr1, ler3, Vegfa, and Zfp318 genes on protein functions from publicly available databases.
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Selected methodological and gene candidate validation.

We performed three different types of validation shown in Supplementary Figure 6. This included
(i) survival analysis of Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus in Dots8 on
chromosome 17; (ii) quantification of S100A8 protein levels in lungs of M. tuberculosis infected PWK/PhJ
and CAST/EiJ inbred founder strains; and (iii) infection of gene deficient mice. Notably, infected Diversity
Outbred mice carrying at least one copy of the PWK/PhJ allele at the mouse H-2 locus had shorter
survival than mice carrying other alleles at the H-2 locus (Supplemental Figure 6A). The lungs of M.
tuberculosis infected CAST/EiJ inbred mice contained significantly higher levels of S100A8 protein
(calgranulin A) than PWK/PhJ inbred mice (Supplemental Figure 6B), confirming the founder allele effects
on chromosome 3 Dots3 QTL, and the levels of S100A8 (calgranulin A) appeared unrelated to M.
tuberculosis control (Supplemental Figure 6D). Finally, to test in vivo effects of one gene candidate, we
selected the candidate with the highest LOD score (S7100a8 in Dots3 QTL on chromosome 3) and
obtained C57BL/6 breeding pairs to generate knockout, heterozygous, and wild-type mice. Genotype-
tested littermates with null mutation (“knockout”), heterozygous, and wild-type C57BL/6 S700a8 alleles
were infected with M. tuberculosis. The absence of one or both copies of the C57BL/6 S7100a8 allele
(which is the reference genotype) had minimal impact on M. tuberculosis lung burden (Supplemental

Figure 6C) suggesting other mechanisms compensate for its absence on the C57BL/6 background.

Discussion

TB remains a major public health concern in the United States and across the globe, with an
estimated 2 billion people infected with M. tuberculosis; 8-9 million patients diagnosed each year, and 1-
1.5 million deaths annually [2]. Fortunately, most humans (~90%) are highly resistant to M. tuberculosis
and clear or control infection [11, 74]. In susceptible adults, active pulmonary TB develops a few years
following exposure and tends to occur in young to middle-aged adults in the prime years of their lives

[75]. The disease is usually restricted to the lungs and is characterized by granuloma necrosis and
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cavitation, neutrophilic infiltration, and cachexia [76, 77]. The genetic basis of pulmonary TB is complex
and not attributable to single-gene defects that cause severe immune deficiency (i.e., Mendelian
susceptibility to mycobacterial disease does not explain pulmonary TB) [15, 78-83]. Although genome-
wide association studies have identified loci, gene candidates, and SNPs associated with increased or
decreased odds ratios for pulmonary TB, only a few (e.g., Ipr1/SP110b and HLA variants/I-A Major
Histocompatibility genes) have been validated [16, 84-90]. This has led investigators to seek alternative
experimental mouse models such as Diversity Outbred mice and Collaborative Cross recombinant inbred
strains to examine effects of genetics on host responses to M. tuberculosis [24-26, 38].

An advantage of the Diversity Outbred mouse population is that infection with M. tuberculosis induces
phenotypes that are rare in common laboratory inbred strains of mice [15-17]. Further, a growing body of
evidence shows similarities in M. tuberculosis-infected Diversity Outbred mice and humans in
biomarkers, gene expression signatures, and BCG vaccination [38, 39, 67, 68, 91]. The phenotypic
similarities suggest that humans and Diversity Outbred mice may share underlying genetic pathways of
immunity and disease. And, because SNP variants in the Diversity Outbred mouse genomes are dense,
with balanced allele frequencies, any gene that plays a role in disease is theoretically detectable [92].
This eliminates a problem common to human genetic studies where under-represented alleles cannot be
confidently associated with disease phenotypes because they are low-frequency genetic events.

We performed genetic mapping in M. tuberculosis-infected Diversity Outbred mice and used
orthogonal methods to rationally select candidate genes. We first used DOQTL mapping, which relies
entirely on phenotypic and genetic variation, to find eight QTLs on six different chromosomes named
Dots1 through Dots8. To refine loci, we then subjected the QTLs on chromosomes 1, 16, and 17 (Dots1,
Dots5, and Dots 8) by mapping the first principal component of the correlated traits with similar patterns
of allele effects that colocalized to the same interval. Finally, we applied a gene-based machine-learning
SVM to identify and rank gene candidates based on functional scores. The sequential methods narrowed

the candidate gene list to eleven polymorphic, protein coding genes. Finally, the SNPs were critically
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examined using publicly available databases to find four candidates (S700a8, ltgh5, Fstl1, Zfp318) where
missense SNPs are predicted to have deleterious effects on protein function.

All eleven candidates have roles in infection, inflammation, cell migration, extracellular matrix
remodeling, or intracellular signaling. Of those, only one (mouse Ncf2 in Dots1 on chromosome 1) has a
human homologue where a single SNP (G nucleotide in human NCF2 rs10911362) may provide a
protective effect it lowered the odds ratio of pulmonary TB [93]. Absence of Ncf2 on the C57BL/6 inbred
mice this temporarily impairs resistance to M. tuberculosis infection by abrogating superoxide production,
but the defect does not affect overall survival due to compensation by T cell mediated immunity [94].
Experimental validation of mouse Ncf2 and human NCF2 polymorphisms remains to be confirmed.

We identified Fam20b in Dots1 QTL on chromosome 1. The gene encodes a xylosylkinase that
functions in glycosaminoglycan synthesis to produce extracellular matrix components in tissues.
Deficiencies are embryologically lethal or cause cranioskeletal malformations [44, 45, 95, 96]. A
functionally homologous enzyme phosphorylates cadherins [97] which regulate immune cell migration
[98] by interacting with extracellular matrix components, and since cell migration is required to form
mycobacterial granulomas, FamZ20b polymorphisms may alter host susceptibility to M. tuberculosis by
changing extracellular matrix.

We identified S700a8 and S7100a9 in Dots3 QTL on chromosome 3, which encode S100A8
(calgranulin A) and S100A9 (calgranulin B). The proteins form monomers, homodimers, heterodimers,
and multimers in inflammation, host defense, and nociception [99-102]. Some forms activate Toll-Like
receptor 4 signaling; some activate the receptor for advanced glycation end-products; and some
sequester calcium, zinc, and manganese metal ions [99, 103, 104]. In pulmonary TB, S100A9 contributes
to neutrophil localization to granulomas, and both S100A8 and S100A9 are protein biomarkers of TB-
related lung damage [38, 39, 104-107]. Interestingly, 4 polymorphisms in S7100a8 were predicted to have
deleterious effects on function but the lack of S100a8 did not change the ability of C57BL/6 inbred mice
to restrict M. tuberculosis growth. Further investigation would be required to determine the effects on

other host outcomes.
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We identified lfgh5 in Dots5 QTL on chromosome 16 as a gene candidate. lfgb5 encodes the beta
5 (B5) integrin subunit which dimerizes with the alpha v subunit to mediate cell adhesion and signaling
by binding to fibronectin and vitronectin [41]. Notably, the 85 subunit is on the surface of cancer cells,
and normal epithelial cells and activated endothelial cells but not on lymphoid or myeloid cells [41, 108-
114]. To our knowledge, neither the mouse nor human gene, nor subunit 5, nor the av35 integrin
heterodimer have been deeply investigated in pulmonary TB.

We identified Fst/1 in Dots5 QTL on chromosome 16. The primary transcript encodes microRNA
(miR)-198. The product is a secreted glycoprotein, FSTL1 with activities in angiogenesis, cell
proliferation, differentiation, embryogenesis, metastasis, and wound healing; specifically reducing
inflammation and fibrosis in cardiovascular disease [43, 115-118]. Notably, Fst/1 affects survival of M.
tuberculosis-infected macrophages [34, 35, 119]. Given the central role of macrophages, inflammation,
and fibrosis in M. tuberculosis infection, understanding how Fst/1 polymorphisms and FSTL1 function in
vivo may inform TB pathogenesis, and possibly targets for host-directed therapy.

We identified Zbtb20 in Dots5 QTL on chromosome 16. The gene encodes a transcriptional
repressor involved in glucose homeostasis; growth; hematopoiesis; innate immunity; neurogenesis; and
B cell development and long-term survival of plasma cells [46-49, 120-124]. Natural mutations occur in
humans with Primrose Syndrome, although immune deficiencies are not reported [125]. To our
knowledge, there are no studies on Zbtb20 and M. tuberculosis infection or pulmonary TB. However, in
Listeria monocytogenes infection, Zbtb20-deficiency improved CD8 T cell memory functions due to
efficient use of diverse fuel sources [49]. Whether the same is true in pulmonary TB is unknown.

We identified Ddr1 in Dots8 QTL on chromosome 17. Ddr1 encodes for the discoidin domain
receptor 1 (DDR1), which interacts with collagen [42]. Initial studies suggested DDR1 function was
restricted to epithelial cells; however, recent work shows expression on solid tumors, metastatic cells,
and mouse histiocytic cancer cell lines, J774 and Raw264.7 [126-132]. DDR1 has additional roles in

demyelination, fibrosis, vitiligo, and wound healing, and it is also a promising target for anti-fibrotic therapy
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[133-137]. Whether Ddr1 (mouse) or DDR1 (human) gene polymorphisms contribute to pulmonary TB,
or whether it could be a target for anti-fibrotic therapy in TB are areas open for investigation.

We identified the immediate early response gene, ler3 in Dots8 QTL on chromosome 17. ler3
transcription is triggered by cytokines, hormones, DNA damage, and infections. The protein, |IER3,
regulates apoptosis, DNA repair, differentiation, and proliferation by interfering with NF-kB, MAPK/ERK
and PI3K/Akt signaling pathways [50-52, 138-141]. Mice lacking ler3 are more susceptible to Leishmania
[142], an intracellular pathogen that shares some similar immune responses profiles with those induced
by M. tuberculosis but we did not find studies showing that mutated /er3 also increases susceptibility to
M. tuberculosis. One in vitro study of human macrophages, however, had high levels of IER3 mRNA
following infection with a hypervirulent strain of M. tuberculosis [143] indicating the transcriptional
pathway is triggered.

We identified Vegfa in Dots8 QTL on chromosome 17. Mouse Vegfa and human VEGFA, encode
for a heparin-binding protein and essential growth factor that induces proliferation, migration, and
permeability changes in vascular endothelial cells by binding VEGFR1 and VEGFR2 [144-147]. Roles for
VEGEF in pathogenesis and diagnostics for extrapulmonary TB, cavitary TB, and active TB have been
published [148-150]. Myeloid-specific gene deletion of Vegfa extended survival of C57BL/6J inbred mice
infected with M. tuberculosis [151], highly noteworthy because very few gene deletions improve survival.
Whether Vegfa or VEGFA polymorphisms have the same effect is unknown.

Lastly, we identified Zfp318in Dots8 QTL on chromosome 17. The gene encodes the transcription
factor, zinc finger protein 318 and it is expressed in testes, hematopoietic, and lymph nodes [152]. In B
cells, the protein represses transcription required for class switching, helping to maintain B cell anergy
and prevent autoimmunity [153-155]. Database and literature searches identified no publications on
mouse Zpf318 or human ZPF318 in infectious diseases.

When we compared genetic mapping results from Diversity Outbred mice to results from colleagues
using Collaborative Cross inbred strains [26], QTLs and gene candidates did not overlap although we

measured a few of the same traits by standard laboratory methods (e.g., body weight changes, lung M.
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tuberculosis burden, and lung CXCL1 by immunoassays). This suggests that phenotype-genotype
relationships in the Collaborative Cross strains may be fundamentally different than Diversity Outbred
mouse population (despite sharing the same eight inbred founder strains), possibly because of high levels
of heterozygosity in the Diversity Outbred population. Other reasons could be differences in routes of
infection that change the host cell types first encountering M. tuberculosis bacilli which alters antigen
presentation, T-cell, and B-cell priming. Here, we modeled natural aerosol exposure by delivering a low
dose of approximately 20-100 bacilli to the lungs of Diversity Outbred mice in nebulizer-delivered aerosol
mist, and then focused on quantification of lung disease. In contrast, Smith et al [26] took a different
approach by using intravenous infection with 1x108 bacilli to take advantage of their rich library of
transposon mutants, allowing detailed assessment of pathogen-associated QTLs. As the intravenous
route of infection favors rapid induction of acquired immunity by delivering bacilli directly to lymphoid
organs (i.e., spleen, thoracic, and abdominal lymph nodes by portal and systemic circulation), this
approach maximized identification of unique Host-Interacting-with Pathogen QTLs and resulted in a
prioritized list of candidate genes involved in immunity.

Overall, by using a systems genetics approach focused on the lungs, we multiple new and existing
QTLs, and 11 candidate genes. Of those, gene products for five (Ncf2, Fstl1, Zbtb20 Vegfa, Zfp318) have
known roles in recruitment, activation, or regulation of effector functions of immune cells (e.g.,
neutrophils, monocytes, macrophages and CD8 T cells). The gene products for three candidates
(Fam20b, Itgbb, Ddr1) have known roles in epithelial cell, endothelial cell, and (possibly) macrophage
adhesion to extracellular matrix glycoproteins or are involved in remodeling of extracellular matrix. The
gene products for two candidates (S700a8 and S700a9) have complex and context-dependent roles in
innate immune response signaling and in host defenses. Finally, the gene product of one candidate (/er3)
controls early stress responses of cells, including cell survival and death pathways. Ten of the eleven
candidates have annotated polymorphisms; six have missense SNPs in protein coding regions; and the
SNPs in four candidates (S700a8, ltgb5, Fstl1, and Zfp318) are predicted to have deleterious

consequences on protein functions. Together, these results yield a short list of candidates that may be
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major regulators of host necrotizing and inflammatory responses during M. tuberculosis infection and
pulmonary TB disease progression. Future studies will focus on testing effects of these gene candidates

and polymorphisms in vivo and identification of pathogenic molecular and cellular mechanisms.
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Figure 1. Mouse survival following exposure to a low dose of aerosolized M. tuberculosis strain
Erdman. Diversity Outbred (DO) mice (n = 680, brown solid line), and the eight inbred founder strains (n
= 15 to 78, colored lines) were infected with M. tuberculosis strain Erdman bacilli by aerosol. Panel A
shows cumulative survival extending to nearly 600 days post infection. Approximately 30% of the DO
population succumbed to pulmonary TB by 60 days post infection. Of the eight inbred founder strains,
survival studies were completed for the C57BL/6J inbred strain; the other seven inbred founder strains
were euthanized 40 days after M. tuberculosis infection. No inbred founder strain or non-infected (NI) DO
mice (n = 53, dashed line) showed mortality within the same period. Panel B shows the daily mortality for
M. tuberculosis-infected DO mice, highlighting the early wave of mortality that peaked between 25- and
35-days post infection.

Figure 2. Diversity Outbred (DO) mice develop a spectrum of histopathological lung due to M.
tuberculosis infection. Lung lobes were formalin-fixed, paraffin-embedded, sectioned, and stained with
hematoxylin & eosin. Panel A: Lung section from a non-infected DO mouse. Panels B through |: Lung
sections from M. tuberculosis-infected DO mice euthanized eight weeks after infection show a spectrum
of lesions from mild to severe (upper left to bottom right); focal lesions (e.g., Panel B) to diffuse infiltration
(Panel H); and include necrotizing (Panels C, E, F, 1) and non-necrotizing granulomas (Panels B, D, G,
H). Low magnification (15X).

Figure 3. Weight loss, granuloma necrosis, and lung cytokines/chemokines are induced by M.
tuberculosis-infection of Diversity Outbred (DO) mice and correlate with each other. (A) Traits in
M. tuberculosis-infected DO mice are higher, with much wider ranges, compared to uninfected DO mice.
Each panel shows a boxplot for one phenotype, separated by infection status. Boxes represent the inter-
quartile range; center bar is the median and whiskers cover 90% of the data. T-test p-values are shown
in each plot. (B) Many traits measured in M. tuberculosis-infected DO mice are positively correlated with
each other. The lower triangle shows Pearson correlation of pairs of phenotypes. The upper triangle
shows these correlations as ellipses, with narrower ellipses indicating higher correlation. All values are
colored based on the scale to the left of the plot. Traits are hierarchically clustered on both axes.

Figure 4. Heatmap of linkage mapping peaks shows patterns of common genetic regulation. The
mouse genome, from chromosome 1 through X, is shown on the horizontal axis. Phenotypes are shown
on the vertical axis. Each cell shows the LOD score on one chromosome for the phenotype listed on the
left, colored by the color scale. The phenotypes are hierarchically clustered based on the correlation
between LOD curves, i.e., phenotypes with similar LOD curves are clustered next to each other.

Figure 5 Overview of gene prioritization methods. Traits were mapped to identify positional candidate
genes in QTLs. Gene expression data were analyzed for differential gene expression. The top 500
differentially expressed genes (DEG) were used to train SVMs to distinguish these trait-related genes
from other genes in the genome using the FNTM mouse lung network. The fitted models were used to
score positional candidates in each trait QTL. Positional candidates were then ranked as trait-related
based on their functional scores.

Figure 6. Quantitative Trait Locus (QTL) mapping results of first principal component (PC1) of
CXCL1, CXCL2, M. tuberculosis burden, and MMP8 identifies Dots1 on chromosome 1, containing
the gene candidates Fam20b and Ncf2. Panel A shows the LOD curve for PC1 between 150 and 160
Mb on chromosome 1 with peak near 155.36 Mb. Panel B shows the founder allele effects for PC1 in the
same genomic interval. Each colored line is the best linear unbiased predictor for one of the founder
alleles. Founder colors are shown in the upper left. Panel C shows the LOD score of the imputed SNPs
in the same genomic interval. Each point represents the LOD score of one imputed SNP. Panel D shows
the genes in the confidence interval. Panel E shows the functional scores for genes in the chromosome
1 QTL. Each dot represents a single gene. Its position on the x axis is its position within the QTL. Its
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position on the y axis is the functional -log10(UPPR) derived from the SVM. Points are colored based on
which trait the functional score corresponds to - green with CXCL1, orange with MMP8, and blue with M.
tuberculosis burden. Fam20b and Ncf2 genes had the highest functional scores.

Figure 7. Quantitative Trait Locus (QTL) mapping of lung S100A8 identifies Dots3 on chromosome
3, containing the gene candidates S700a8 and S7100a9. Panel A shows the LOD score in the
confidence interval from 90 to 92 Mb on chromosome 3. Panel B shows the founder allele effects within
the confidence interval. Panel C shows the LOD score of the imputed SNPs with the highest SNPs
colored in red. Panel D shows the gene in the same interval. The gene S700a8 is directly under the SNPs
with the highest LOD scores. Panel E shows the functional scores for genes in the chromosome 1 QTL.
Each dot represents a single gene. Its position on the x axis is its position within the QTL. Its position on
the y axis is the functional -log10(UPPR) derived from the SVM. The gene S700a8 had the highest
functional score.

Figure 8. Quantitative Trait Locus (QTL) mapping results of first principal component (PC1) of M.
tuberculosis burden, weight loss, and granuloma necrosis identifies Dots5 on chromosome 16,
containing gene candidates Fst/1, Itgh5, and Zbtb20. M. tuberculosis lung burden, weight loss, and
granuloma necrosis map to a region on chromosome 16 near 38 Mb. Panel A shows the LOD profile for
M. tuberculosis in the confidence interval. Genomic position on chromosome 16 is on the horizontal axis
and the LOD score is on the vertical axis. Panel B shows the founder allele effect in the confidence
interval. The vertical axis shows the estimates effect of gaining one founder allele. Panel C shows the
SNP LOD score for association mapping using imputed SNPs. Panel D shows the genes in the
confidence interval. Panel E shows the functional scores for genes in the chromosome 16 QTL. Each dot
represents a single gene. Its position on the x axis is its position within the QTL. Its position on the y axis
is the functional -log10(UPPR) derived from the SVM. Points are colored based on which trait the
functional score corresponds to - green with weight loss and blue with M. tuberculosis burden. Fst/1 was
the top ranked gene overall followed by ltgb5 and Zbtb20.

Figure 9. Quantitative Trait Locus (QTL) mapping results of first principal component (PC1) of
granuloma necrosis, M. tuberculosis burden, weight loss, CXCL1 and MMP8 identifies Dots7 on
chromosome 17, which contains gene candidates ler3, Ddr1, and Zpf318. Panel A shows the LOD
score for PC1 of lung granuloma necrosis ratio, M. tuberculosis burden, MMP8, CXCL1, and weight loss
in the interval where the phenotypes map. Panel B shows the founder allele effects for the two peaks.
Panel C shows the LOD score of the imputed SNPs in the interval, with the highest scoring SNPs colored
in red. Panel D shows the locations of the genes in the interval. Panel E shows the functional scores for
genes in the chromosome 17 QTL. Each dot represents a single gene. Its position on the x axis is its
position within the QTL. Its position on the y axis is the functional -log10(UPPR) derived from the SVM.
Points are colored based on which trait the functional score corresponds to - blue with CXCL1 and green
with granuloma necrosis. Vegfa was the top ranked gene overall followed by ler3, Ddr1, and Zpf318.

Supplemental Figure 1. Mouse body weight following a low dose of aerosolized M. tuberculosis
strain Erdman. Mice were infected with a low dose of M. tuberculosis strain Erdman by aerosol. Body
weight of identically housed, age-, gender-, and generation-matched non-infected Diversity Outbred (DO)
controls (n = 49) compared to baseline are shown over time (A). Body weight changes of Progressor DO
mice (n = 195); Controller DO mice (n = 145); and C57BL/6J inbred founder strain mice that succumbed
to pulmonary TB (n = 39), are shown over time compared to pre-infection baseline (B, C, D). All mice
were weighed 1 to 3 days prior to M. tuberculosis infection, at least twice per week throughout infection,
and immediately before euthanasia. Each line is the body weight expressed as a percentage of initial
pre-infection body weight.
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Supplemental Figure 2. Clinical correlates of survival due to pulmonary TB in Diversity Outbred
(DO) mice following exposure to a low dose of aerosolized M. tuberculosis strain Erdman. Age-,
gender-, and generation-matched DO mice were assigned to cages at random, and infected (or not
infected) with a low dose of M. tuberculosis strain Erdman by aerosol exposure. All mice were initially
weighed 1-3 days prior to infection, at least twice per week during infection, and immediately before
euthanasia. Panel (A) shows retrospective analysis of initial body weights of Non-infected mice (n = 76)
compared to pre-infection body weights of Progressors (n = 298) and pre-infection body weights of
Controllers (n = 195), shown as box-and-whisker plots with the line at the mean for each group, and
whiskers at the minimum and maximum. Data were analyzed by 1-way ANOVA with Tukey’s multiple
comparisons test ***p<0.001; ****p<0.0001. Panel B shows the rate of weight loss (gm/day) and duration
of body weight (BW) loss in days were negatively correlated. Panel C shows the duration of BW loss was
strongly, positively, and linearly correlated with survival by Spearman correlation analysis (r = 0.848 with
dashed lines indicating the 95% confidence interval, 0.8204 to 0.8717, p<0.0001). Panel D is a correlation
matrix to show how survival and 8 clinical indicators of pulmonary TB in Diversity Outbred mice correlate
with each other. Only correlations with p-values <0.00001 are shown on the matrix. Cells marked by an
“X” were not significantly correlated.

Supplemental Figure 3. Examples of necrotizing and non-necrotizing lesions in M. tuberculosis
infected Diversity Outbred (DO) mice. Lung lobes were formalin-fixed, paraffin-embedded, sectioned,
and stained with carbol fuschin and counterstained with hematoxylin & eosin. Panels A and B: High
magnification images of necrotizing lung lesions. One example contains abundant pyknotic nuclear debris
(A) and one example contains abundant fibrin, eosinophilic cellular debris, and less nuclear debris (B).
Panels C and D: High magnification images of non-necrotizing lung lesions. Both examples contain
predominantly viable cells, including macrophages, foamy macrophages, and foci of lymphocytes (400X).

Supplemental Figure 4. Common founder allele effects for four traits on distal chromosome 1
QTL. Founder allele effects of the four phenotypes with genetic mapping peaks having LOD > 6.0 on
chromosome 1 at 155.36 Mb. All four phenotypes have similar allele effects. Each panel shows the
founder allele effects for the phenotype listed in the title. Founders are on the horizontal axis and the
standardized allele effect are on the horizontal axis.

Supplemental Figure 5. Receiver operator characteristic (ROC) curves for SVM training on traits
used in gene prioritization. Each panel shows the true positive rate of the trained SVM as a function of
the false positive rate for each trait. The area under the curve (AUC) is noted for each panel.

Supplemental Figure 6. Validation of QTL mapping results. Panel A: M. tuberculosis infected
Diversity Outbred (DO) mice with one or more PWK/PhJ alleles at the mouse H-2 locus on chromosome
17 in Dots8 (near 36 Mb) have significantly reduced survival compared to DO mice carrying other alleles
(p = 0.00075, Cox-PH test). Kaplan-Meier curves of survival of M. tuberculosis infected mice carrying
PWK/PhJ allele (red) or any other founder allele (black). Days of survival is shown on the horizontal axis
and the proportion of mice surviving is shown on the vertical axis. Panel B: Lungs from M. tuberculosis
infected CAST/EiJ inbred mice contain significantly more S100A8 protein (calgranulin A) than lungs of
PWK/PhJ inbred mice. PWK/PhJ (red) and CAST/EiJ (green) inbred founder strains with 4-6 mice per
strain time point, analyzed by Mann-Whitney t-tests within each time point, *p<0.05. Panel C: M.
tuberculosis infected S100a8 knockout (KO), heterozygotes (HET), wild-type (WT) C57BL/6 inbred mice
were euthanized at the time points indicated on the X-axes, and M. tuberculosis lung burden assessed
by CFUs with total combined 15-22 mice per genotype per time point from 2 independent experiments,
shown as average and standard error of the mean. No significant (ns) differences were identified within
each time point by mixed effects ANOVA with Tukey’s post-test (p<0.05). Panel D shows M. tuberculosis
burden in the lungs of PWK/PhJ (red) and CAST/EiJ (green) inbred founder strains with 4-6 mice per
strain time point. No significant differences were identified by Mann-Whitney t-tests within each time point,
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although there was a trend for higher bacterial burden at day 20 post infection in lungs from CAST/EiJ
inbred mice as compared to PWK/PhJ.

Supplemental File 1 This file is an Excel workbook containing worksheets that list all protein-coding
genes in each QTL with the functional candidates highlighted.

Supplemental File 2 This is an Excel fie that lists the top 10 functional candidates for each trait in each
QTL.

Supplemental File 3 This is an Excel file that lists genes within chromosome 17 QTL.
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