

1 **Rab3 mediates cyclic AMP-dependent presynaptic plasticity and olfactory
2 learning**

3 Divya Sachidanandan^{1,*}, Aishwarya Aravamudhan^{1,*}, Achmed Mrestani^{2,3}, Jana Nerlich⁴,
4 Marius Lamberty¹, Natalie Hasenauer^{1,5}, Nadine Ehmann¹, Dennis Pauls¹, Teresa Seubert¹,
5 Isabella Maiellaro⁶, Mareike Selcho¹, Manfred Heckmann⁷, Stefan Hallermann^{4,##}, Robert J.
6 Kittel^{1,##}

7
8 ¹Department of Animal Physiology, Faculty of Life Sciences, Leipzig University, Leipzig,
9 Germany; ²Department of Neurology, Leipzig University Medical Center, Leipzig, Germany;
10 ³Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical
11 Faculty, Leipzig University, Leipzig, Germany; ⁴Carl-Ludwig Institute of Physiology, Medical
12 Faculty, Leipzig University, Leipzig, Germany; ⁵Department of Nuclear Medicine, University
13 Hospital Würzburg, Würzburg, Germany; ⁶School of Life Sciences, University of Nottingham
14 Medical School, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom;
15 ⁷Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg,
16 Germany

17 *These authors contributed equally to this work

18 ##Correspondence: kittel@uni-leipzig.de and hallermann@medizin.uni-leipzig.de

19

20 **SUMMARY**

21 Presynaptic forms of plasticity occur throughout the nervous system and play an important role
22 in learning and memory but the underlying molecular mechanisms are insufficiently
23 understood. Here we show that the small GTPase Rab3 is a key mediator of cyclic AMP
24 (cAMP)-induced presynaptic plasticity in *Drosophila*. Pharmacological and optogenetic cAMP
25 production triggered concentration-dependent alterations of synaptic transmission, including
26 potentiation and depression of evoked neurotransmitter release, as well as strongly facilitated
27 spontaneous release. These changes correlated with a nanoscopic rearrangement of the
28 active zone protein Unc13A and required Rab3. To link these results to animal behaviour, we
29 turned to the established role of cAMP signalling in memory formation and demonstrate that
30 Rab3 is necessary for olfactory learning. As Rab3 is dispensable for basal synaptic
31 transmission, these findings highlight a molecular pathway specifically dedicated to tuning
32 neuronal communication and adaptive behaviour.

33 **MAIN TEXT**

34 Various classic examples of synaptic plasticity involve functional changes at the presynapse
35 that depend on cAMP second messenger signalling^{1,2}. It is, however, not well understood
36 which molecular processes are modified by the cAMP pathway during presynaptic plasticity.
37 The GTPase Rab3 is associated with synaptic vesicles^{3,4} and is involved in short- and long-
38 term synaptic plasticity in vertebrates⁵⁻⁷ and invertebrates^{8,9}. Rab3 has been linked to synaptic
39 vesicle mobilisation, priming, and late stages of the exocytic process^{7,10,11}. Moreover,
40 *Drosophila* Rab3 controls the molecular composition of the presynaptic active zone (AZ), the
41 site of neurotransmitter release from synaptic vesicles^{8,9}. However, the role of Rab3 in cAMP-
42 dependent presynaptic plasticity remains elusive. This is at least in part due to experimental
43 difficulties of precisely manipulating cAMP dynamics *in situ* and the complex situation created
44 by four Rab3 paralogs expressed in the mammalian brain (Rab3A-D). Here we focus on the
45 single *Drosophila* ortholog and combine optogenetics with modern imaging techniques. Our
46 results show that Rab3 is required for presynaptic plasticity and memory formation by
47 mediating a cAMP-dependent enhancement of synaptic vesicle release.

48

49 **cAMP-triggered presynaptic plasticity requires Rab3**

50 To study cAMP-induced presynaptic plasticity we exposed the glutamatergic larval
51 neuromuscular junction (NMJ) to the adenylyl cyclase agonist forskolin (FSK) and recorded
52 excitatory postsynaptic currents (EPSCs) evoked at low stimulation frequency (0.2 Hz; **Fig.**
53 **1a**). Bath application of FSK significantly increased EPSC amplitudes over the time course of
54 20 minutes (**Fig. 1b,c**), whereas the frequency of spontaneously occurring single synaptic
55 vesicle fusion events (miniatures) remained constant and their amplitude decreased slightly
56 (**Fig. 1d,e**). Consistent with previous results at the *Drosophila* NMJ¹², it follows that FSK
57 increases the quantal content, i.e. the number of synaptic vesicles released per action potential
58 (0 min: 108 ± 9.4 , 20 min: 170 ± 9.8 SEM, n=13 NMJs, p<0.0001 paired t-test). In *Drosophila*
59 null mutants of *rab3* (*rab3^{rup}*), a decrease in NMJ AZ number is accompanied by an increase

60 in average AZ size and release probability, resulting in normal basal synaptic transmission
61 (**Extended Data Table**)^{8,9}. Upon FSK application, *rab3^{rup}* NMJs displayed a slight drop in
62 miniature amplitude and frequency but, strikingly, no change in EPSC amplitudes (**Fig. 1b-e**)
63 or in quantal content (0 min: 108 ± 13.3 , 20 min: 111 ± 9.6 SEM, n=8 NMJs, p=0.62 paired t-
64 test).

65 In principle, these results may be explained by altered cAMP dynamics in *rab3^{rup}* mutants. We
66 therefore used the FRET-based cAMP sensor Epac1-camps¹³ to directly measure cAMP
67 production (**Fig. 1f**). FSK application produced similar FRET changes in control and *rab3^{rup}*
68 motoneurons, indicating that Rab3 does not influence cAMP levels *per se* (**Fig. 1g,h**).
69

70 **Optogenetic cAMP production increases vesicle fusogenicity through Rab3**

71 To improve the spatial precision of cAMP production we used an optogenetic approach by
72 genetically targeting the photoactivatable adenylyl cyclase from the soil bacterium *Beggiatoa*
73 bPAC^{wt} (ref.¹⁴) to motoneurons (*ok6-GAL4* driver, short: *pre>bPAC^{wt}*). This allowed us to
74 elevate cAMP levels with light exclusively in presynaptic cells (**Fig. 2a**). In control animals,
75 continuous photostimulation of bPAC^{wt} for 20 min led to a rapid and sustained >20-fold
76 increase in miniature frequency (**Fig. 2b,c; Extended Data Table**) and rapid, transient
77 potentiation of evoked EPSC amplitudes followed by strong depression (**Fig. 2d**). In contrast,
78 *rab3^{rup}* NMJs displayed no change in miniature frequency nor evoked release upon bPAC^{wt}
79 activation (*rab3^{rup}, pre>bPAC^{wt}*, **Fig. 2b,c,e; Extended Data Table**).

80 We reasoned that the EPSC depression at control NMJs was caused by high photo-induced
81 cAMP concentrations, which exceed those achieved by pharmacological stimulation of
82 endogenous adenylyl cyclases^{14,15}. To test this, we utilized two recently engineered bPAC
83 variants with low [bPAC^{low} (R278A): 1.6 ± 0.3 molecules cAMP per molecule PAC per min] and
84 medium [bPAC^{medium} (F198Y): $17 \pm 0.8 \text{ min}^{-1}$] light-mediated enzymatic activity compared to
85 the wt-version (bPAC^{wt}: $93 \pm 9 \text{ min}^{-1}$; ref.¹⁵). Consistent with cAMP concentration-dependent
86 presynaptic depression, the light-induced decline of EPSCs correlated with the turnover rate

87 of the cyclases (**Fig. 2d**). In contrast, EPSC amplitudes were unaffected by postsynaptic cAMP
88 production (*g7-GAL4* driver, short: *post>bPAC^{wt}*) confirming the second messenger's
89 presynaptic site of action (**Fig. 2e**).

90 In order to obtain more mechanistic information on the cAMP-induced changes of evoked
91 release we applied trains of high-frequency stimulation in animals expressing bPAC^{wt} in
92 motoneurons (**Fig. 2f**). After 10 min of light stimulation the amplitude of the first EPSC in the
93 train dropped on average to about 25% of the initial value (**Fig. 2g**). This change was
94 accompanied by a significant decrease in the readily-releasable pool (RRP) of synaptic
95 vesicles, estimated by linear extrapolation of cumulative EPSC amplitudes (**Fig. 2h**)¹⁶. In
96 contrast, synaptic vesicle release probability (p_r) appeared unaffected by prolonged cAMP
97 production, as judged by the amplitude of the first EPSC relative to the second EPSC in the
98 train (**Fig. 2i**) and to the total RRP (**Fig. 2j**). This raises the question whether RRP depletion
99 through greatly enhanced miniature neurotransmitter release could explain the gradual
100 depression of evoked release in high cAMP.

101 To quantitatively test this possibility, we analysed a previously established short-term plasticity
102 model (**Fig. 3a**)^{8,17,18}. The model comprises two pools of release-ready vesicles (N_1 and N_2)
103 and a pool of supply vesicles (N_0). N_1 -vesicles have a low p_r and recover rapidly, whereas N_2
104 vesicles have a high p_r and recover slowly¹⁹. The short-term plasticity model successfully
105 reproduced individual (**Extended Data Fig. 1**) and average high frequency trains with recovery
106 both before and after 10 min of bPAC^{wt} activation (**Fig. 3b**). Consistent with our model-
107 independent analysis (**Fig. 2h-j**), the simulations indicate that cAMP decreases vesicle pool
108 size but has little influence on p_r or the rate of vesicle recruitment (**Fig. 3c; Supplementary**
109 **Table**). We then tested whether miniature release at the experimentally observed frequency
110 (100 Hz; cf. **Fig. 2c**) could deplete the pools of release-ready vesicles and cause depression
111 of evoked release. Keeping all parameters fixed to the values before light stimulation but
112 implementing miniature release from N_2 at a frequency of only 11 Hz completely exhausted
113 the N_2 pool and caused a depression comparable to the elevated cAMP condition. The

114 modelling thus demonstrates that even moderate miniature release can cause depression of
115 evoked release when a sub-pool of vesicles possesses a high p_r and recovers slowly¹⁹.
116 However, miniature release from neither N_1 nor from N_2 , nor from both pools accurately
117 reproduced the short-term plasticity observed upon increased cAMP levels (**Extended Data**
118 **Fig. 2**). We therefore simulated the cAMP-dependent changes with free model parameters
119 while allowing for RRP depletion by miniatures. Interestingly, the experimental data could be
120 reproduced reasonably well when N_1 was decreased and the p_r of N_1 -vesicles and k_1 were
121 increased (**Fig. 3d,e; see Methods**). The elevated k_1 is consistent with a previously reported
122 acceleration of vesicle recruitment by cAMP²⁰. Within this framework, the overall p_r appears to
123 remain constant despite an increase in p_r of the N_1 -vesicles because the N_2 -vesicles with high
124 p_r are depleted by miniatures. In summary, the modelling suggests that a cAMP-dependent
125 increase in SV fusogenicity can lead to excessive miniature release and gradual exhaustion of
126 synaptic vesicles available for evoked release with a preferential depletion of high- p_r vesicles.

127

128 **cAMP-induced plasticity correlates with Unc13A repositioning within the active zone**

129 Next, we investigated whether the functional effects of cAMP are accompanied by structural
130 changes in the molecular organisation of AZs. To this end, we employed Stimulated Emission
131 Depletion (STED)²¹ super-resolution microscopy to analyse the nanoscopic arrangement of
132 the scaffolding protein Bruchpilot (Brp)²² and the calcium channel subunit Cacophony (Cac)^{23,24}
133 at individual AZs following 20 min of bPAC^{wt} activation (**Fig. 4a**). Neither the AZ area (defined
134 by Brp)⁸, nor the size or number of individual Brp and Cac spots per AZ were altered by high
135 cAMP levels in controls (**Fig. 4b-f**) or *rab3^{rup}* animals (**Extended Data Fig. 3; Extended Data**
136 **Table**). The normal layout of these core components is in line with an intact AZ architecture
137 for neurotransmitter release upon prolonged cAMP production. Aggregates of the AZ protein
138 Unc13 (Munc-13 in mammals) have been suggested to demarcate synaptic vesicle fusion sites
139 in *Drosophila* and mouse^{25,26}. At the *Drosophila* NMJ, synaptic transmission mainly depends
140 on the Unc13A isoform with its exact positioning within the AZ affecting release properties^{27,28}.

141 We therefore employed *direct* Stochastic Optical Reconstruction Microscopy (*d*STORM) to
142 obtain information on the precise spatial organization of Unc13A proteins via the imaging
143 technique's single-molecule sensitivity^{8,29}. In good agreement with previous *d*STORM
144 experiments²⁸, single-molecule localization events were arranged in subclusters with a mean
145 radius of 13 nm (**Fig. 4g-k**). In controls, neither the number of Unc13A subclusters per AZ, nor
146 the number of localizations per AZ, a correlate of protein numbers⁸, were altered by light
147 stimulation (**Fig. 1,m**). However, cAMP led to a rearrangement of Unc13A, which resulted in a
148 smaller average subcluster size (**Fig. 4n**). This effect was mediated by a drop in the fraction
149 of AZs containing large Unc13A subclusters (>10,000 nm²; **Fig. 4o**). The Unc13 reorganization
150 bears a resemblance to AZ compaction, where an increase in the density of different AZ
151 molecules has been linked to elevated neurotransmitter release^{28,30-32}. In contrast, cAMP did
152 not change the area occupied by Unc13A in *rab^{rup}* mutants (**Fig. 4n,o**). In summary, we found
153 no evidence for major disruptions of the molecular layout of the AZ or a removal of release
154 sites that would account for the cAMP-induced reduction of evoked transmitter release in
155 control animals. Instead, our results can be explained by increased synaptic vesicle
156 fusogenicity triggered by high cAMP levels, correlating with Unc13A repositioning, and
157 mediated by Rab3. This effect initially potentiates EPSCs before pool depletion sets in through
158 insufficiently constrained spontaneous synaptic vesicle fusions.

159

160 **Rab3 is critical for associative learning**

161 Signalling by cAMP plays an important and evolutionarily conserved role in memory formation².
162 In *Drosophila*, odour learning is associated with cAMP-dependent plasticity at presynaptic sites
163 of mushroom body Kenyon Cells (KCs)³³. Based on our findings at neuromuscular synapses,
164 we therefore asked whether Rab3 is required for olfactory short-term memory. Indeed,
165 aversive learning was abolished in both adult and larval *rab3^{rup}* mutants (**Fig. 5a,b; Extended**
166 **Data Fig. 4**). To narrow down a learning-specific function of Rab3 and distinguish this from
167 brain-wide effects of the null mutant, we used cell-targeted mutagenesis by CRISPR/Cas9 to

168 knock out *rab3* exclusively in γ neurons³⁴, a sub-population of KCs important for short-term
169 memories³⁵ (**Fig. 5c,d**). Disrupting Rab3 function specifically in γ KCs (*rab3*^{CRISPR}; *GMR71G10-*
170 *GAL4*, *10xUAS-mCD8::GFP/+; UAS-Cas9.C/U6:3-Rab3.gRNA*) significantly impaired odour
171 learning (**Fig. 5e**), further supporting a direct involvement of Rab3 in memory processes. To
172 next test whether the presence of Rab3 only in KCs is sufficient for olfactory learning we re-
173 expressed *rab3* in the mutant background⁹. Driving *UAS-rab3* with a KC-specific *GAL4*-line
174 (*MB247-GAL4*) did not improve the learning scores of *rab^{rup}* mutants (**Fig. 5f**). Pan-neuronal
175 re-expression of Rab3 (*elav-GAL4*) gave a partial rescue, illustrating that transgenic
176 expression of *rab3* via the *GAL4/UAS* system can at least partially restore olfactory learning
177 (**Fig. 5g; Extended Data Table**). Taken together, we conclude that Rab3 expression in KCs
178 is necessary but not sufficient for normal learning.

179

180 **Discussion**

181 Here we demonstrate that *Drosophila* Rab3 mediates a cAMP-dependent increase in synaptic
182 vesicle fusion. It was previously shown that Rab3A is important for long-term potentiation at
183 rodent hippocampal mossy fiber synapses, which in turn display a cAMP- and protein kinase
184 A (PKA)-dependent form of presynaptic plasticity^{6,36,37}. Unexpectedly, however, Rab3A was
185 found to be dispensable for FSK-induced presynaptic enhancement at this synapse⁶. A
186 possible explanation for this apparent mismatch is that cAMP dynamics during LTP are not
187 mirrored accurately by pharmacological tools like FSK, which may also increase release via
188 Rab3A-independent mechanisms not recruited during mossy fiber LTP^{38,39}. In light of the
189 current results, it may therefore be of interest to revisit this topic with the new optogenetic tools
190 now available for spatially and temporally improved control of cAMP production^{15,40}. In contrast
191 to the rodent data, *Drosophila* Rab3 is necessary for pharmacologically-induced presynaptic
192 plasticity (**Figure 1b,c**). Thus, our findings provide a coherent model, which causally links
193 Rab3 function to cAMP-induced synaptic plasticity and cAMP-dependent learning and
194 memory. While these results may be partially explained by mechanistically distinct forms of

195 presynaptic plasticity at different synapses or evolutionarily differentiated roles of Rab3 in
196 *Drosophila* and rodents, they clearly motivate further exploring the important but insufficiently
197 understood role of all four mammalian Rab3 isoforms⁷.

198 Our results show that cAMP-dependent potentiation, depression, and increased miniature
199 release all require Rab3 at the *Drosophila* NMJ. Action potential-evoked EPSC amplitudes
200 were potentiated by cAMP, but with increasing second messenger production evoked
201 neurotransmitter release gradually depressed (**Fig. 2d**). The modelling approach indicates that
202 synaptic depression can be caused by depletion of the available synaptic vesicles through
203 unconstrained miniature release. Indeed, this effect is reminiscent of Rab3A overexpression
204 in PC12 cells, which abolishes Ca^{2+} -triggered release by depleting secretory vesicles through
205 constitutive exocytosis⁴¹. Notably, our interpretation requires at least partial intermixing of
206 vesicle pools for evoked and spontaneous release, which appear to be segregated in other
207 physiological settings⁴²⁻⁴⁴. Mutants of the SNARE regulator Complexin display a large increase
208 in miniature frequency at the *Drosophila* NMJ without major synaptic vesicle depletion^{45,46}.
209 Possibly because the reported frequencies (~60-80 Hz) are only half as high as those reached
210 through bPAC stimulation or because the N_1 pool with low p_r is primarily affected by
211 spontaneous release in the absence of synaptic vesicle clamping by Complexin.

212 The involvement of cAMP-mediated synaptic plasticity in learning and memory has been well
213 established^{2,47}. In *Drosophila*, associative olfactory conditioning during aversive learning leads
214 to cAMP production in KCs and synaptic depression to output pathways that direct approach,
215 thereby skewing the mushroom body network towards odour-avoidance. Likewise, appetitive
216 learning depresses transmission from KCs to avoidance pathways to drive approach
217 behaviour⁴⁸⁻⁵¹. An intriguing corollary of this model is that increased presynaptic cAMP levels
218 provoke synaptic depression. This aspect has received little attention. The present study
219 demonstrates that high cAMP concentrations can in principle lead to a depression of evoked
220 neurotransmitter release. Future work will have to examine whether e.g. local cAMP signalling
221 domains⁵² trigger a related process at KC AZs during olfactory learning.

222 The precise positioning of Unc13A within the AZ influences the efficiency of neurotransmitter
223 release^{25,27}. Our results show that cAMP triggers nanoscopic reorganizations of Unc13A, with
224 AZs displaying a reduced number of large subclusters while retaining Unc13A protein copies
225 (**Fig. 4I-o**). This effect is reminiscent of AZ compaction during presynaptic homeostatic
226 potentiation (PHP) at the *Drosophila* NMJ, where increased synaptic release is also associated
227 with a decrease in the total Unc13 area per AZ²⁸. The altered nanotopology may facilitate
228 release-promoting molecular interactions, e.g. with Syntaxin²⁶, or alternatively, the
229 repositioning of Unc13A may reflect the formation of such protein complexes. Most Unc13A
230 subclusters contain eight to twelve (25th–75th percentile) fluorophore localizations. Based on
231 previous calculations⁸, it has been estimated that this translates into one or two Unc13
232 molecules per subcluster²⁸. According to the “buttressed-ring hypothesis”, a circular
233 organization of six Munc13 molecules serves as an interaction platform to capture an individual
234 synaptic vesicle and initiate SNARE protein assembly⁵³. Thus, the cAMP-induced loss of large
235 subclusters observed in the present study may in fact not reflect compaction, but instead a
236 spreading out of the individual Unc13A molecules. Indeed, this would be predicted upon
237 dilation of the Unc13A-lined vesicular fusion pore followed by collapse of the synaptic vesicle
238 membrane onto the plasma membrane. Large subclusters may therefore demarcate low-p_r
239 presynaptic sites, which are converted to high-p_r release sites by cAMP and are infrequently
240 observed at the high-p_r AZs of *rab3^{rup}* mutants (**Fig. 4o**)^{8,9}.

241 Whereas Rab3 is not a direct phosphorylation target of the cAMP pathway, its interaction
242 partners RIM and Synapsin are PKA substrates^{3,54,55}. Synaptic vesicle recruitment from the
243 reserve pool is elevated by cAMP and this process is regulated by Synapsin^{20,56}. RIM1
244 phosphorylation, in turn, has been reported to increase synaptic vesicle docking at the AZ⁵⁷
245 and to initiate assembly of the tripartite Unc13/RIM/Rab3 complex⁵⁸, which primes synaptic
246 vesicles for fusion in mammals⁵⁹. Both modes of cAMP-dependent presynaptic enhancement
247 likely depend on Rab3 to pass synaptic vesicles on to the secretory machinery. This process
248 may be assisted by Rab3’s suggested role in superpriming⁷. Rab3 is well positioned to mediate

249 presynaptic plasticity due to its dynamic regulation via the GTPase cycle³ and its control over
250 the AZ protein composition⁹. The involvement of Rab3 in second messenger signalling by
251 cAMP further underscores its function as an important modulator of neuronal communication.

252

253 **REFERENCES**

- 254 1. Monday, H. R., Younts, T. J. & Castillo, P. E. Long-term plasticity of neurotransmitter
255 release: Emerging mechanisms and contributions to brain function and disease. *Annu. Rev. Neurosci.* **41**, 299–322 (2018).
- 256 2. Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of
257 memory. *Cell* **157**, 163–186 (2014).
- 258 3. Südhof, T. C. The synaptic vesicle cycle. *Annu. Rev. Neurosci.* **27**, 509–547 (2004).
- 259 4. Takamori, S. *et al.* Molecular anatomy of a trafficking organelle. *Cell* **127**, 831–846
260 (2006).
- 261 5. Tsetsenis, T. *et al.* Rab3B protein is required for long-term depression of hippocampal
262 inhibitory synapses and for normal reversal learning. *Proc. Natl. Acad. Sci. U. S. A.* **108**,
263 14300–14305 (2011).
- 264 6. Castillo, P. E. *et al.* Rab3A is essential for mossy fibre long-term potentiation in the
265 hippocampus. *Nature* **388**, 590–593 (1997).
- 266 7. Schlüter, O. M., Basu, J., Südhof, T. C. & Rosenmund, C. Rab3 superprimes synaptic
267 vesicles for release: Implications for short-term synaptic plasticity. *J. Neurosci.* **26**,
268 1239–1246 (2006).
- 269 8. Ehmann, N. *et al.* Quantitative super-resolution imaging of Bruchpilot distinguishes
270 active zone states. *Nat. Commun.* **5**, 4650 (2014).
- 271 9. Graf, E. R., Daniels, R. W., Burgess, R. W., Schwarz, T. L. & DiAntonio, A. Rab3
272 dynamically controls protein composition at active zones. *Neuron* **64**, 663–677 (2009).
- 273 10. Leenders, A. G. M., Lopes da Silva, F. H., Ghijsen, W. E. J. M. & Verhage, M. Rab3A is
274 involved in transport of synaptic vesicles to the active zone in mouse brain nerve
275 terminals. *Mol. Biol. Cell* **12**, 3095–3102 (2001).
- 276 11. Nonet, M. L. *et al.* Caenorhabditis elegans rab-3 mutant synapses exhibit impaired
277 function and are partially depleted of vesicles. *J. Neurosci.* **17**, 8061–8073 (1997).
- 278 12. Cheung, U., Atwood, H. L. & Zucker, R. S. Presynaptic effectors contributing to cAMP-
279 induced synaptic potentiation in Drosophila. *J. Neurobiol.* **66**, 273–280 (2006).
- 280 13. Maiellaro, I., Lohse, M. J., Kittel, R. J. & Calebiro, D. cAMP signals in Drosophila motor
281 neurons are confined to single synaptic boutons. *Cell Rep.* **17**, 1238–1246 (2016).
- 282 14. Stierl, M. *et al.* Light modulation of cellular cAMP by a small bacterial photoactivated
283 adenyl cyclase, bPAC, of the soil bacterium *Beggiatoa*. *J. Biol. Chem.* **286**, 1181–1188
284 (2011).
- 285 15. Yang, S. *et al.* PACmn for improved optogenetic control of intracellular cAMP. *BMC Biol.*
286 **19**, 1–17 (2021).
- 287 16. Schneggenburger, R., Meyer, A. C. & Neher, E. Released fraction and total size of a
288 pool of immediately available transmitter quanta at a calyx synapse. *Neuron* **23**, 399–
289

290 409 (1999).

291 17. Hallermann, S., Heckmann, M. & Kittel, R. J. Mechanisms of short-term plasticity at
292 neuromuscular active zones of *Drosophila*. *HFSP J.* **4**, 72–84 (2010).

293 18. Weichard, I. *et al.* Fully-primed slowly-recovering vesicles mediate presynaptic LTP at
294 neocortical neurons. *Proc. Natl. Acad. Sci.* **120**, 2017 (2023).

295 19. Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic
296 vesicles at a calyx-type synapse. *Neuron* **32**, 1119–1131 (2001).

297 20. Kuromi, H. & Kidokoro, Y. Tetanic stimulation recruits vesicles from reserve pool via a
298 cAMP-mediated process in *Drosophila* synapses. *Neuron* **27**, 133–143 (2000).

299 21. Hell, S. W. Far-Field Optical Nanoscopy. *Science* **316**, 1153–1158 (2007).

300 22. Kittel, R. J. *et al.* Bruchpilot promotes active zone assembly, Ca²⁺ channel clustering,
301 and vesicle release. *Science* **312**, 1051–1054 (2006).

302 23. Kawasaki, F., Felling, R. & Ordway, R. W. A temperature-sensitive paralytic mutant
303 defines a primary synaptic calcium channel in *Drosophila*. *J. Neurosci.* **20**, 4885–4889
304 (2000).

305 24. Gratz, S. J. *et al.* Endogenous tagging reveals differential regulation of Ca²⁺ channels
306 at single active zones during presynaptic homeostatic potentiation and depression. *J.
307 Neurosci.* **39**, 2416–2429 (2019).

308 25. Reddy-Alla, S. *et al.* Stable Positioning of Unc13 Restricts Synaptic Vesicle Fusion to
309 Defined Release Sites to Promote Synchronous Neurotransmission. *Neuron* 1350–
310 1364 (2017).

311 26. Sakamoto, H. *et al.* Synaptic weight set by Munc13-1 supramolecular assemblies. *Nat.
312 Neurosci.* **21**, 41–55 (2018).

313 27. Böhme, M. A. *et al.* Active zone scaffolds differentially accumulate Unc13 isoforms to
314 tune Ca(2+) channel-vesicle coupling. *Nat. Neurosci.* **19**, 1311–20 (2016).

315 28. Dannhäuser, S. *et al.* Endogenous tagging of Unc-13 reveals nanoscale reorganization
316 at active zones during presynaptic homeostatic potentiation. *Front. Cell. Neurosci.* **16**,
317 1–15 (2022).

318 29. Heilemann, M. *et al.* Subdiffraction-resolution fluorescence imaging with conventional
319 fluorescent probes. *Angew. Chemie - Int. Ed.* **47**, 6172–6176 (2008).

320 30. Mrestani, A. *et al.* Active zone compaction correlates with presynaptic homeostatic
321 potentiation. *Cell Rep.* **37**, (2021).

322 31. Ghelani, T. *et al.* Interactive nanocluster compaction of the ELKS scaffold and
323 Cacophony Ca²⁺ channels drives sustained active zone potentiation. *Sci. Adv.* **9**,
324 eade7804 (2023).

325 32. Mrestani, A. *et al.* Nanoscaled RIM clustering at presynaptic active zones revealed by
326 endogenous tagging. *Life Sci. alliance* **6**, 1–14 (2023).

327 33. Heisenberg, M. Mushroom body memoir: from maps to models. *Nat. Rev. Neurosci.* **4**,
328 266–275 (2003).

329 34. Meltzer, H. *et al.* Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening
330 in *Drosophila*. *Nat. Commun.* **10**, (2019).

331 35. Zars, T., Fischer, M., Schulz, R. & Heisenberg, M. Localization of a short-term memory
332 in *Drosophila*. *Science* **288**, 672–675 (2000).

333 36. Weisskopf, M. G., Castillo, P. E., Zalutsky, R. A. & Nicoll, R. A. Mediation of
334 hippocampal mossy fiber long-term potentiation by cyclic AMP. *Science* **265**, 1878–

335 1882 (1994).

336 37. Huang, Y. Y., Li, X. C. & Kandel, E. R. cAMP contributes to mossy fiber LTP by initiating
337 both a covalently mediated early phase and macromolecular synthesis-dependent late
338 phase. *Cell* **79**, 69–79 (1994).

339 38. Laurenza, A., Sutkowski, E. M. H. & Seamon, K. B. Forskolin: a specific stimulator of
340 adenylyl cyclase or a diterpene with multiple sites of action? *Trends Pharmacol. Sci.* **10**,
341 442–447 (1989).

342 39. Lonart, G., Janz, R., Johnson, K. M. & Südhof, T. C. Mechanism of action of rab3A in
343 mossy fiber LTP. *Neuron* **21**, 1141–1150 (1998).

344 40. Oldani, S. *et al.* SynaptoPAC, an optogenetic tool for induction of presynaptic plasticity.
345 *J. Neurochem.* **156**, 324–336 (2021).

346 41. Schlüter, O. M., Khvotchev, M., Jahn, R. & Südhof, T. C. Localization versus function of
347 Rab3 proteins: Evidence for a common regulatory role in controlling fusion. *J. Biol.
348 Chem.* **277**, 40919–40929 (2002).

349 42. Crawford, D. C. & Kavalali, E. T. Molecular underpinnings of synaptic vesicle pool
350 heterogeneity. *Traffic* **16**, 338–364 (2015).

351 43. Melom, J. E., Akbergenova, Y., Gavornik, J. P. & Littleton, J. T. Spontaneous and
352 evoked release are independently regulated at individual active zones. *J. Neurosci.* **33**,
353 17253–17263 (2013).

354 44. Peled, E. S., Newman, Z. L. & Isacoff, E. Y. Evoked and spontaneous transmission
355 favored by distinct sets of synapses. *Curr. Biol.* **24**, 484–493 (2014).

356 45. Scholz, N. *et al.* Complexin cooperates with Bruchpilot to tether synaptic vesicles to the
357 active zone cytomatrix. *J. Cell Biol.* **218**, 1011–1026 (2019).

358 46. Huntwork, S. & Littleton, J. T. A complexin fusion clamp regulates spontaneous
359 neurotransmitter release and synaptic growth. *Nat. Neurosci.* **10**, 1235–1237 (2007).

360 47. Tully, T. & Quinn, W. G. Classical conditioning and retention in normal and mutant
361 *Drosophila melanogaster*. *J. Comp. Physiol. A* **157**, 263–277 (1985).

362 48. Owald, D. & Waddell, S. Olfactory learning skews mushroom body output pathways to
363 steer behavioral choice in *Drosophila*. *Curr. Opin. Neurobiol.* **35**, 178–184 (2015).

364 49. Handler, A. *et al.* Distinct dopamine receptor pathways underlie the temporal sensitivity
365 of associative learning. *Cell* **178**, 60–75.e19 (2019).

366 50. Tomchik, S. M. & Davis, R. L. Dynamics of learning-related cAMP signaling
367 and stimulus integration in the *Drosophila* olfactory pathway. *Neuron* **64**, 510–521
368 (2009).

369 51. Hige, T., Aso, Y., Modi, M. N., Rubin, G. M. & Turner, G. C. Heterosynaptic plasticity
370 underlies aversive olfactory learning in *Drosophila*. *Neuron* **88**, 985–998 (2015).

371 52. Anton, S. E. *et al.* Receptor-associated independent cAMP nanodomains mediate
372 spatiotemporal specificity of GPCR signaling. *Cell* **185**, 1130–1142.e11 (2022).

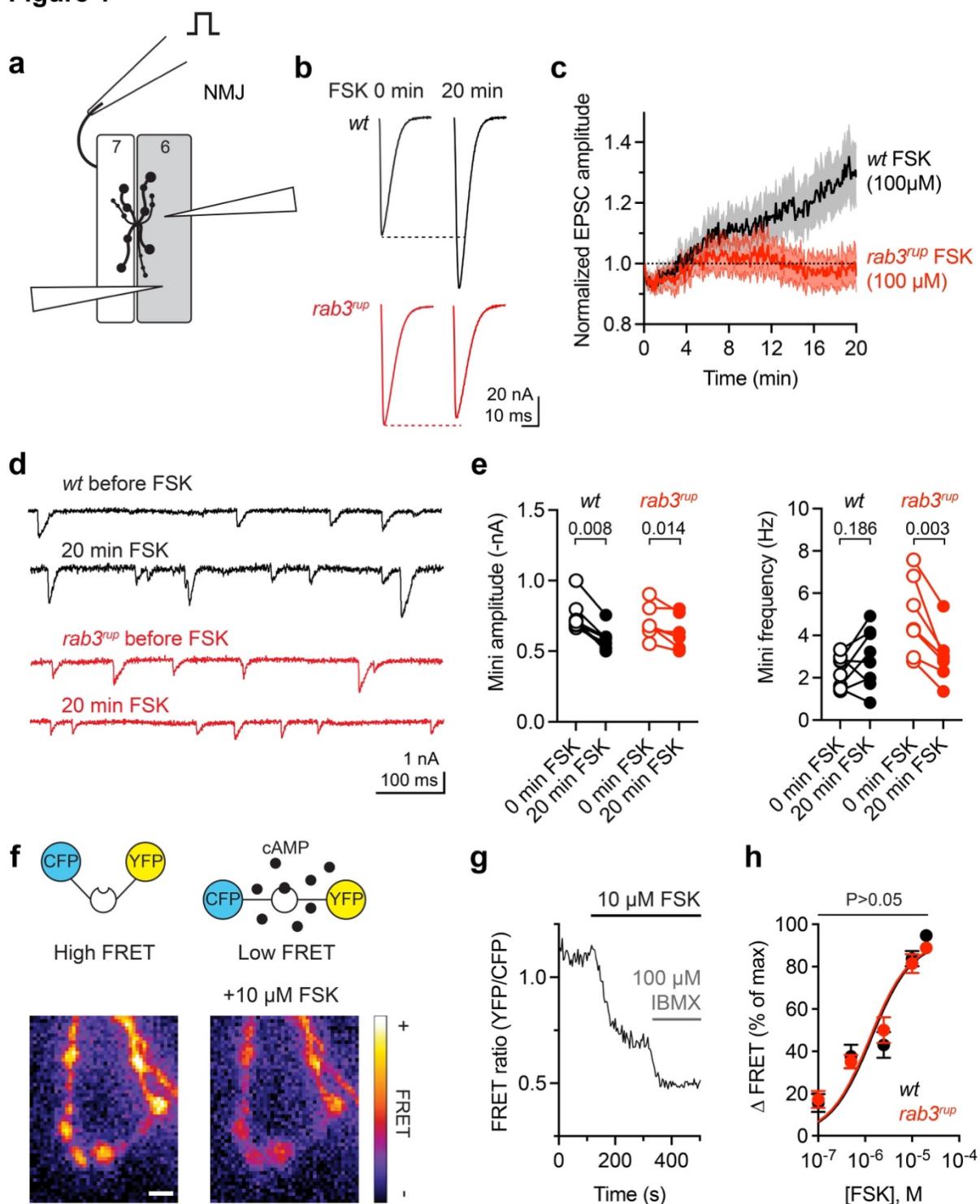
373 53. Rothman, J. E., Krishnakumar, S. S., Grushin, K. & Pincet, F. Hypothesis – buttressed
374 rings assemble, clamp, and release SNAREpins for synaptic transmission. *FEBS Lett.*
375 **591**, 3459–3480 (2017).

376 54. Giovedi, S., Darchen, F., Valtorta, F., Greengard, P. & Benfenati, F. Synapsin is a novel
377 Rab3 effector protein on small synaptic vesicles: II. Functional effects of the Rab3A-
378 synapsin I interaction. *J. Biol. Chem.* **279**, 43769–43779 (2004).

379 55. Lonart, G. *et al.* Phosphorylation of RIM1 α by PKA triggers presynaptic long-term
380 potentiation at cerebellar parallel fiber synapses. *Cell* **115**, 49–60 (2003).

381 56. Chi, P., Greengard, P. & Ryan, T. A. Synaptic vesicle mobilization is regulated by distinct
382 synapsin I phosphorylation pathways at different frequencies. *Neuron* **38**, 69–78 (2003).

383 57. Müller, J. A. *et al.* A presynaptic phosphosignaling hub for lasting homeostatic plasticity.
384 *Cell Rep.* **39**, (2022).


385 58. Wang, X. T. *et al.* Camp-epac-pk ζ -rim1 α signaling regulates presynaptic long-term
386 potentiation and motor learning. *Elife* **12**, 1–29 (2023).

387 59. Dulubova, I. *et al.* A Munc13/RIM/Rab3 tripartite complex: From priming to plasticity?
388 *EMBO J.* **24**, 2839–2850 (2005).

389

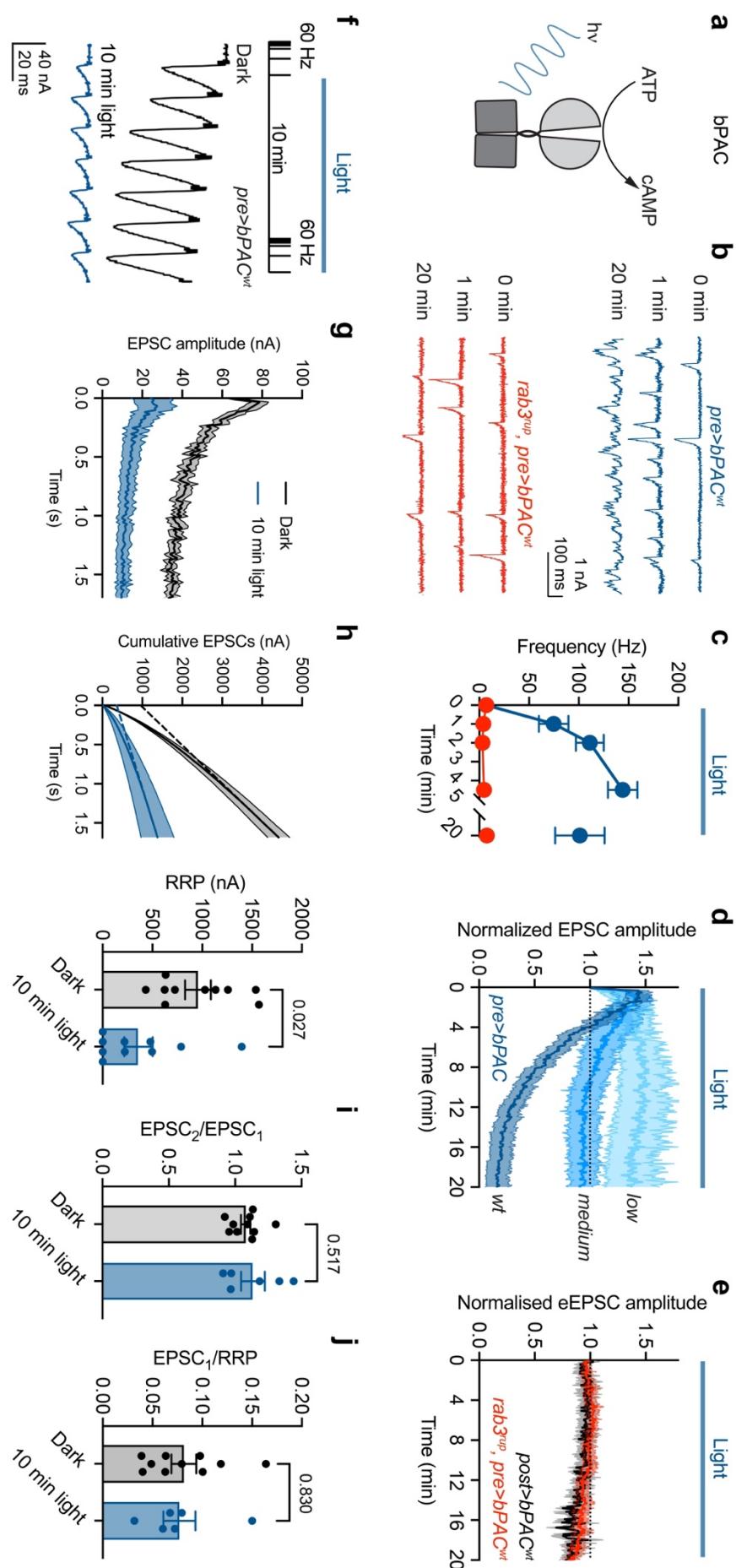

390 **FIGURES**

Figure 1

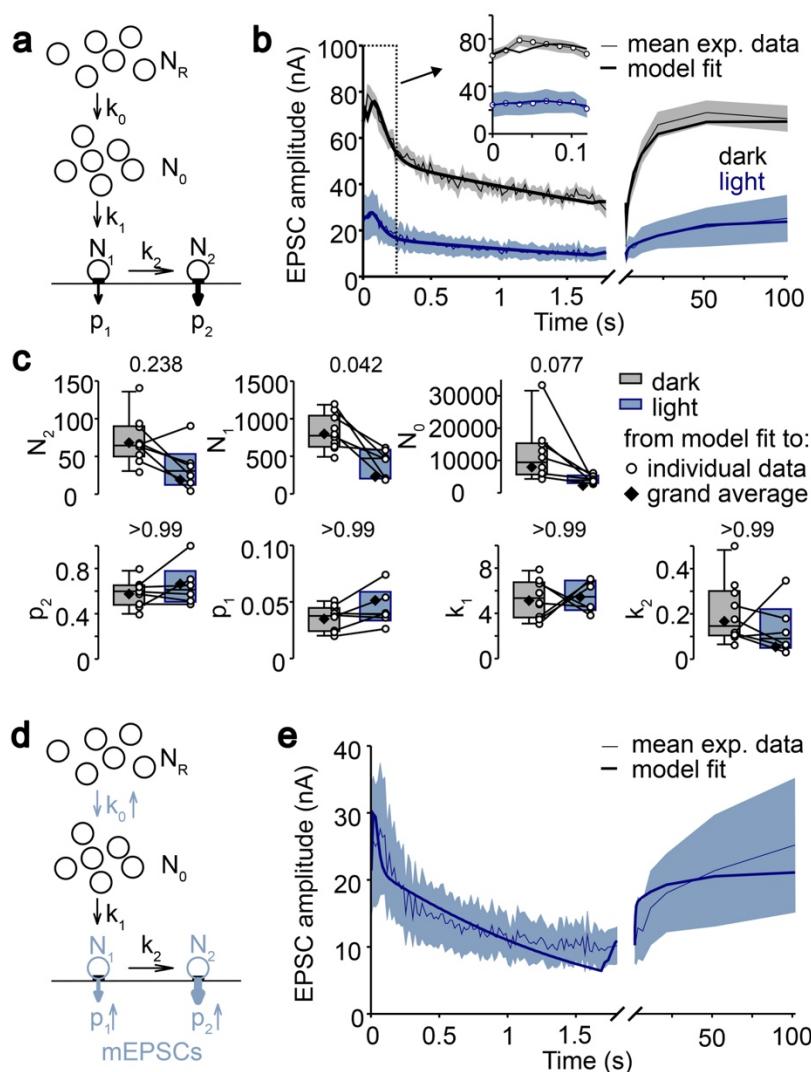

392 **Figure 1. Rab3 is required for cAMP-induced presynaptic potentiation.** **a**, Two-electrode
393 voltage-clamp configuration at the NMJ. **b**, Example EPSCs of *wt* (black) and *rab3^{rup}* (red)
394 before and 20 min after 100 μ M FSK application. **c**, Quantification of EPSC amplitudes. Data
395 (*wt* n=13, *rab3^{rup}* n=8 NMJs) are normalized to the initial amplitude and plotted as mean \pm
396 SEM. **d**, Example miniature traces of *wt* (black) and *rab3^{rup}* (red) before and 20 min after 100
397 μ M FSK application. **e**, Quantification of miniature (mini) amplitudes and frequency (*wt* n=8,
398 *rab3^{rup}* n=7 NMJs). P values: Wilcoxon matched-pairs (*wt* amplitude) or paired t-test (all
399 others). **f**, Epac1-camps scheme and pseudocolour FRET images (YFP/CFP ratios) of
400 motoneuron terminals (*dvglut-GAL4>UAS-Epac1-camps*) with low and high cAMP
401 concentrations (10 μ M FSK). Scale bar 2 μ m. **g**, Absolute FRET values (YFP/CFP ratios)
402 recorded at an example *wt* NMJ upon addition of FSK and subsequently 100 μ M IBMX (3-
403 isobutyl-1-methylxanthine), a non-selective phosphodiesterase inhibitor used to induce a
404 maximal response⁶⁰. **h**, The individual points of the concentration-response curves obtained
405 from traces as in **g** do not differ significantly between *wt* and *rab3^{rup}* NMJs (t-test). Data are
406 presented as mean \pm SEM.

Figure 2

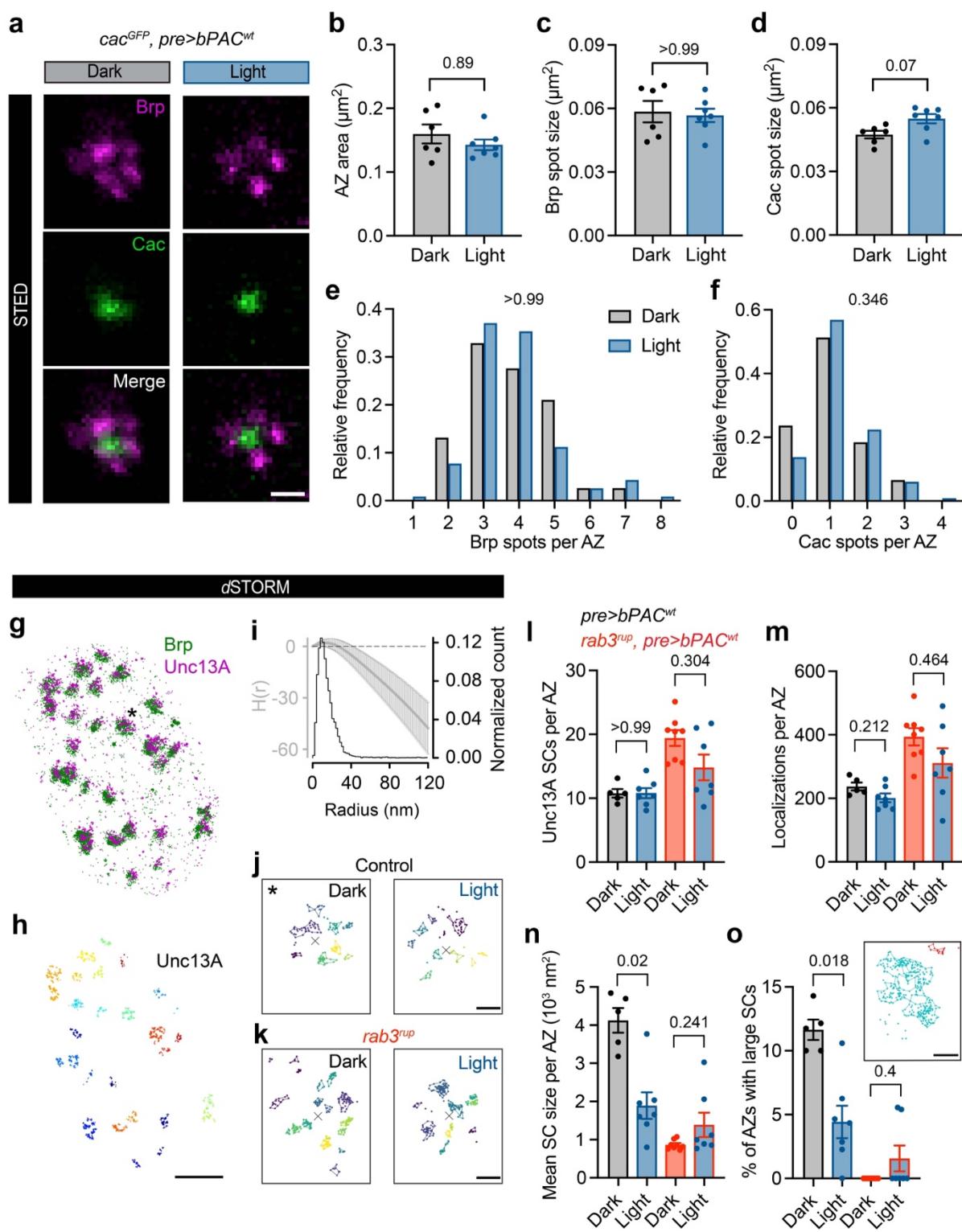

408 **Figure 2. Rab3 mediates a cAMP-dependent enhancement of miniature release and**
409 **depression of evoked release. a,** Photo-induced cAMP production by bPAC. **b,** Example
410 traces and **c,** quantification of miniature frequency upon light-triggered cAMP elevation in *wt*
411 (*blue*) and *rab3^{rup}* (*red*) motoneurons. **d,** EPSCs (0.2 Hz) normalized to the initial amplitude
412 during 20 min light stimulation of bPAC variants in motoneurons of controls (n=9-10 NMJs). **e,**
413 bPAC^{wt} expressed in the postsynapse (*black*, n=8) and *rab3^{rup}* presynapse (*red*, n=10). **f,** Train
414 (100 pulses at 60 Hz) and recovery protocol applied twice, separated by 10 min light
415 stimulation. Example traces of the first seven EPSCs with stimulation artefacts removed for
416 clarity. Scale bars 40 nA, 20 ms. **g,** EPSC amplitudes in train (n=10) and **h,** cumulative plot
417 with back-extrapolation to y-axis for RRP estimates before (grey) and after 10 min illumination
418 (*blue*). **i,** The ratio of the first two EPSCs and **j,** of the first EPSC to the RRP indicate an
419 unaltered p_r after 10 min light-induced cAMP production. Data are presented as mean ± SEM.
420 P values (h): Wilcoxon matched-pairs; (i,j): t-test.

Figure 3

422 **Figure 3. Modelling can explain cAMP-induced synaptic depression. a,** Schematic
423 illustration of a model containing two fusion-competent vesicle pools with normally primed
424 vesicles (N_1) exhibiting a low release probability (p_1) and superprimed vesicles (N_2) with a high
425 release probability (p_2), a supply pool (N_0) and an infinite reserve pool (N_R). Refilling of N_1 and
426 N_2 is determined by the rate constants k_1 and k_2 , respectively. **b,** Model fit to the mean EPSC
427 train (100 pulses at 60 Hz) and recovery-EPSCs before (grey) and after 10 min illumination
428 (blue). **c,** Individual and median best-fit model parameters before and after 10 min light
429 stimulation. P values: Mann-Whitney U test with a Bonferroni correction (factor 7). **d,** Illustration
430 of altered model parameters and light-induced miniature release from both fusion-competent
431 pools. **e,** Model fit to the mean train of EPSCs (100 pulses at 60 Hz) and recovery-EPSCs after
432 10 min illumination including increased miniature release. Data are presented as (b,e): model
433 fit (thick line) and mean (thin line) \pm SEM (shaded area); (c): box plots (median and quartiles)
434 with whiskers (10-90 percentile) and mean.

Figure 4

436 **Figure 4. Super-Resolution Microscopy reveals Unc13A reorganization.** **a**, Example
437 STED images of Brp (magenta) and Cac (green; staining against GFP-tag of endogenously
438 expressed Cac²⁴; *cac*^{GFP}, *pre>bPAC*^{WT}) at AZs viewed *en face* (i.e. with the optical axis
439 perpendicular to the AZ membrane) following 20 min light exposure (blue, right) or left in the
440 dark (grey, left). Quantification of **b**, AZ area, **c**, mean spot size of Brp and **d**, Cac (mean \pm
441 SEM, dark n=6, light n=7 NMJs), and **e**, spot number per AZ for Brp and **f**, Cac (dark n=76,
442 light n=116 AZs). **g**, Two-channel *d*STORM image of a motoneuron bouton stained against
443 Brp (green) and the Unc13A isoform (magenta). Asterisk marks the enlarged region in (j, dark).
444 **h**, Unc13A localizations with subclusters (SCs) extracted by HDBSCAN and assigned to the
445 nearest Brp-defined AZ (different colours). **i**, Averaged H function (grey, mean \pm SD) from n =
446 503 Unc13A first-level clusters [maximum of the curve indicates a mean SC radius of 13 nm,
447 matching previous work²⁸] and histogram (black) of the radius of n = 5805 Unc13A SCs
448 [estimated from SC size assuming a circular area, median (25th-75th percentile): 12.3 (8.1-
449 18.3) nm]. Dashed black line, prediction for a random Poisson distribution. **j**, Individual AZ
450 examples showing HDBSCAN-extracted SCs (coloured lines indicate alpha shapes used to
451 determine areas, x marks the AZ centre of mass) with and without light-stimulation in controls
452 and **k**, *rab3*^{rup} mutants. **l**, Quantification of average SC number per AZ, **m**, Unc13A localization
453 counts per active zone, **n**, mean SC size per AZ, and **o**, percentage of active zones with large
454 Unc13 clusters (mean size >10.000 nm²). Inset: AZ with a small (red) and a large SC
455 (turquoise). Data are presented as mean \pm SEM (control: dark n=5, light n=7 NMJs, *rab3*^{rup}
456 dark n=8, light n=7 NMJs). Scale bars (a): 250 nm; (g,h): 1 μ m; (j,k,o): 100 nm. P values: Mann-
457 Whitney U test with a Bonferroni correction (factor 2).

Figure 5

459 **Figure 5. Rab3 is necessary for short-term olfactory learning.** **a**, Scheme of the protocol
460 and the apparatus for olfactory classical conditioning using electroshock-conditioned (CS⁺)
461 and unconditioned (CS⁻) odours. **b**, Short-term aversive learning is disrupted in *rab3^{rup}* flies
462 (n=9 experiments per genotype). **c**, Illustration of mushroom body (MB) γ neurons (red) and
463 antibody staining against Rab3 with γ -lobe (1), $\alpha'\beta'$ -lobes (2), and superior medial
464 protocerebrum (smp; 3) indicated. **d**, CRISPR/Cas9-mediated knockout of *rab3* specifically in
465 γ neurons (red; *rab3^{CRISPR}*) decreases the antibody signal in the γ -lobe (n=10 brains per
466 genotype) and **e**, significantly reduces learning compared to genetic controls (grey; n=12
467 experiments per genotype). **f**, Whereas *rab3* re-expression in KCs (*MB247-GAL4*) does not
468 rescue learning in *rab3^{rup}*, **g**, panneuronal re-expression (*elav-GAL4*) significantly improves
469 learning scores compared to controls (n=12 experiments per genotype). Scale bars 10 μ m. All
470 data are presented as mean \pm SEM, P values: t-test.

471 **METHODS**

472 **Fly stocks**

473 All flies were raised on standard cornmeal and molasses medium at 25°C except for the RNAi
474 knockdown and CRISPR knockout experiments where all genotypes were raised at 29°C two
475 days prior to the experiments. The following fly strains were used:

476 *w^{*}; ok6-GAL4 w⁺* (ref.⁶¹)

477 *w^{*}; g7-GAL4/CyO act-GFP w⁺*

478 *w¹¹¹⁸; Df(2R)ED2076, ok6-GAL4 w⁺/CyO GFP w⁻*

479 *w¹¹¹⁸; Df(2R)ED2076/CyO GFP w⁻; elav-GAL4*

480 *w^{*}, dVGlut-GAL4 w⁺; Df(2R)ED2076/CyO GFP*

481 *w¹¹¹⁸; UAS-bPAC w⁺/CyO GFP w⁻* (ref.¹⁴)

482 *y¹, w¹¹¹⁸; 20xUAS-bPAC(R278A)::eYFP/CyO (RJK559)¹⁵*

483 *y¹, w¹¹¹⁸; 20xUAS-Venus::bPAC(F198Y)/Sb (RJK1007)¹⁵*

484 *w^{*}; rab3^{rup}/CyO GFP w⁻; UAS-bPAC/Tb*

485 *w¹¹¹⁸; 20xUAS-epac1(camps) w⁺/Sb¹³*

486 *w^{*}; rab3^{rup}/CyO GFP w⁻; 20xUAS-epac1(camps) w⁺/Tb*

487 *w^{*}; mb247-GAL4 w⁺* (ref.⁶²)

488 *w^{*}; rab3^{rup}/Cyo GFP w⁻; UAS-rab3 w⁺* (ref.⁹)

489 *w^{*}; rab3^{rup}/CyO GFP w⁻; MB247-GAL4 w⁺/TM6B, Tb*

490 *w¹¹¹⁸, cac^{sf-GFP-N}; ok6-Gal4 w⁺/CyO GFP²⁴*

491 *w¹¹¹⁸, cac^{sf-GFP-N}; Df(2R)ED2076, ok6-Gal4 w⁺/CyO GFP w⁻*

492 *y, w; GMR71G10-GAL4, 10xUAS-mCD8::GFP/CyO; UAS-Cas9.C/TM6B, Tb³⁴*

493 *BDSC 24635: w^{*}, dVGlut-GAL4 w⁺;;⁶³*

494 *BDSC 78045: w^{*}; rab3^{rup}* (ref.⁹)

495 *BDSC 458: elav-GAL4 w⁺;;*

496 *BDSC 81906: w^{*}; U6:3-Rab3.gRNA w⁺* (ref.⁶⁴)

497 *VDRC 100787: w^{*}; UAS-rab3-RNAi/CyO*

498 **Electrophysiology**

499 Briefly, two electrode voltage clamp (TEVC) recordings were performed on muscle 6 in
500 segments A2 and A3 of wandering third instar male larvae using an Axoclamp 900A amplifier
501 (Molecular devices) with intracellular electrodes of 10-20 MΩ resistance. The measurements
502 were performed at room temperature (RT) in hemolymph-like solution (HL-3)⁶⁵ composed of
503 (in mM): NaCl 70, KCl 5, MgCl₂ 20, NaHCO₃ 10, trehalose 5, sucrose 115, HEPES 5, and
504 CaCl₂ 1.0, pH adjusted to 7.2. Only muscle cells with a membrane potential between -50 and
505 -70 mV and input resistances > 4 MΩ were accepted for analysis. Minis and evoked EPSCs
506 were recorded at -80 mV and -60 mV, respectively. For evoked EPSCs, the innervating nerve
507 was stimulated with 300 µs pulses of 8-15 V (S48/S88 Grass Instruments) via a suction
508 electrode. For cAMP production, bPAC was activated with a blue LED (~92 µW/mm² at 470
509 nm; CoolLED or Minostar LED). Signals were sampled at 10 kHz, low-pass filtered at 1kHz,
510 and analysed in Clampfit 10.7 (Molecular Devices). In the FSK experiments (**Fig. 1d**),
511 miniature release was quantified automatically via “template detection” in Clampfit, whereas in
512 the bPAC experiments (**Fig. 2b,c**), miniatures were detected manually in a 500 ms time
513 window to capture the high frequency. Linear fits to EPSCs 80-100 of the cumulatively plotted
514 amplitudes were back extrapolated to estimate RRP sizes in **Fig. 2h**. For EPSC ratio
515 measurements in **Fig. 2i and j**, the amplitude of the second response in the train was measured
516 from the peak to the point of interception with the extrapolated first response. Measurements
517 exhibiting motoneuron recruitment errors or exceeding a holding current of 10 nA were
518 discarded. One NMJ was recorded per animal.

519

520 **FRET Imaging**

521 Ratiometric FRET imaging was performed using an upright epifluorescence microscope
522 (BX51WI, Olympus) equipped with a water-immersion objective (60 x, numerical aperture 1),
523 a LED light source (pE-4000, CoolLED), a 445LP dichroic mirror, a beam splitter (Optosplit II,
524 Cairn Research) with a 505LP dichroic mirror and emission filters for CFP (480/30) and YFP

525 (535/30), and an electron-multiplied charge-coupled device (EMCCD) camera (iXon DU-897,
526 Andor). CFP and YFP images upon CFP excitation (435 nm) were captured every 4 s with 80
527 ms of illumination time. FRET was monitored in real time with the VisiView Software (Visitron)
528 as the ratio between YFP and CFP emissions. The YFP emission was corrected for the
529 spectral bleedthrough of CFP emission into the YFP channel, as previously described⁶⁶.
530 Larvae expressing Epac1-camps in motoneurons were prepared as described for
531 electrophysiology. NMJs on muscles 6/7 in segments A2 and A3 were imaged at RT in HL-3
532 and stimulated with different FSK concentrations (100 nM, 500 nM, 2.5 μ M, 10 μ M, 20 μ M).
533 Responses to FSK were normalized to the baseline FRET ratio and expressed as percentages
534 of the subsequent response to 100 μ M IBMX (20 data points were averaged per ratio).

535

536 **STED Microscopy**

537 For STED imaging, dissected male larvae were subjected to 20 min optogenetic activation, as
538 for electrophysiology, or left in the dark for 20 min as controls and then fixed for 20 min in
539 Bouin's (Roth, 6482). Following blocking for 30 min in PBT (PBS with 0.05% Triton X-100,
540 Sigma Aldrich, 9002-93-1) containing 5% normal goat serum (Sigma Aldrich, G9023) at RT,
541 the preparations were incubated at 4 °C overnight with primary antibodies to stain against GFP
542 of the endogenously-tagged Cac²⁴ and Brp: mouse- α -Brp (nc82, 1:100, AB_528108)⁶⁷, rabbit-
543 α -GFP (1:250, Life Technologies, AB_2536526). After two brief and six 10 min washing steps
544 in PBT, the preparations were incubated with secondary antibodies for 2 hours at RT: goat- α -
545 HRP-AlexaFluor488 (1:200, JIR/Dianova, AB_2338965), goat-anti- α -mouse-StarRed (1:200,
546 Abberior, AB_3068620), goat- α -rabbitStarOrange (1:200, Abberior, AB_3068622). After
547 another round of washing, the samples were mounted in Vectashield (Vector Laboratories)
548 and stored at 4°C before STED imaging. Images were acquired with an upright STED
549 microscope (Infinity Line, Abberior Instruments) using an 60x/1.42 NA oil immersion objective
550 and a pulsed 775 nm STED laser to deplete the StarRed and StarOrange dyes. The 2D STED
551 images were acquired with the Imspector software and a pixel size of 30 nm x 30 nm, 5 μ s

552 dwell time, and 12 line accumulations. For each set of experiments, all genotypes were stained
553 in the same vial and imaged in one session with identical laser settings to ensure comparability.
554 Image analysis was performed with ImageJ (National Institutes of Health) as previously
555 described⁴⁵ focussing on active zones viewed *en face*.

556

557 **Confocal Microscopy**

558 Brains (5 to 8 day old flies) were dissected on ice and fixed in 4% paraformaldehyde for 1 h at
559 RT. After two brief and six 10 min washing steps in 0.3% PBT (PBS with 0.3% Triton X-100,
560 Sigma Aldrich), the samples were incubated in ROTI blocking buffer (1:10 in PBT, Roth)
561 overnight and then with primary antibodies for 48 h at 4°C: rabbit- α -rab3 (1:250; provided by
562 S.J. Sigrist, unpublished) and chicken- α -GFP (1:150, Sigma Aldrich, AB_90890). After a
563 further round of washing, the samples were incubated with secondary antibodies overnight:
564 goat- α -rabbit-StarRed (1:200, Abberior, AB_2833015), chicken-AlexaFluor488 (1:200, Life
565 Technologies, AB_2534096), and goat- α -HRP-AlexaFluor488 (1:200, JIR/Dianova,
566 AB_2338965); washed again, mounted in Vectashield (Vector Laboratories), and stored at 4
567 °C until imaging. GFP and HRP signals were used to identify the γ -lobes in *rab3*^{CRISPR} and *w*¹¹¹⁸
568 genotypes, respectively. Image stacks of whole-mount brains were acquired with an upright
569 STED microscope in confocal mode (Infinity Line, Abberior Instruments) using an 60x/1.42 NA
570 oil immersion objective. Both genotypes were stained in the same vial and imaged in one
571 session with identical laser settings. Image analysis was carried out with ImageJ (National
572 Institutes of Health). Uniform regions of interest (ROI) were used for signal intensity
573 measurements across all images (maximum projections of 5 optical slices spaced 200 nm).
574 The ratios of mean fluorescence intensity were calculated by dividing the mean intensity of the
575 γ -lobe ROI by the $\alpha'\beta'$ ROI or the superior medial protocerebrum ROI.

576 **dSTORM**

577 Larvae were prepared and stained as for STED using the following antibodies: mouse- α -Brp
578 (nc82, 1:250, AB_528108)⁶⁷, guinea pig- α -Unc13A (1:250, provided by S.J. Sigrist)²⁷, goat- α -
579 mouse-CF568 (1:500, VWR; AB_10559187), and goat- α -guinea pig-AlexaFluor647 (1.500,
580 Life Technologies; AB_141882). The samples were mounted in photoswitching buffer
581 containing 100 mM mercaptoethylamine, oxygen scavenger system [5% (wt/vol) glucose, 5
582 U/ml glucose oxidase and 100 U/ml catalase], pH 8.0⁸, and imaged on an inverted microscope
583 (Elyra, Zeiss) equipped with an 100x/1.46 NA oil immersion objective. All imaging was
584 performed under highly inclined and laminated optical (HILO) illumination, 640 nm and 561 nm
585 lasers were used for excitation, and 15,000 frames were recorded with 12 ms exposure time
586 on an electron-multiplying CCD camera (iXON DU-897D, Andor Technology). Images were
587 processed with Zen software (black edition, Zeiss). For calibration, performed twice per
588 measurement day, a 2 min video of pre-mounted MultiSpec beads (Zeiss, 2076-515) was
589 acquired at 50 ms exposure, with both the 640 nm and 561 nm lasers. The channels were
590 aligned using the “Affine” method to account for distortions in the horizontal plane. Single-
591 molecule detection and localisation was performed using an 8 pixel mask with a signal-to-noise
592 ratio of 9 (for AF647) or 6 (for CF568) in the “Peak finder” settings while applying the “Account
593 for overlap” function to localise molecules within a dense environment. Fluorescence spots
594 were localized by fitting to a 2D Gaussian function and localizations were subjected to model-
595 based cross-correlation drift correction. Post-rendering, the two channels were aligned using
596 the affine table values generated during calibration. All preparations were stained in the same
597 vial and image acquisition alternated between control and light-stimulated samples.

598 Data analysis was performed as previously described^{28,30,32} using custom-written code based
599 on the Python implementation of “Hierarchical Density-Based Spatial Clustering of
600 Applications with Noise” (HDBSCAN)⁶⁸. The “LOCAN” package⁶⁹ was used to load localization
601 tables from Zen software. HDBSCAN parameters “minimum cluster size” and “minimum
602 samples” were 100 and 25 localizations, respectively, for extraction of Brp clusters in the

603 CF568 channel, and 6 and 2 localizations, respectively, for extraction of Unc13A subclusters
604 in the AlexaFluor647 channel. These values were optimized to yield subcluster radii that match
605 the H function (derivative of Ripley's K function) maximum. Focussing on AZs viewed *en face*
606 (indicated by circularity values ≥ 0.6), the Brp signal served as a mask to define individual AZs
607 for Unc13A analysis. Denoising of Unc13A localizations was performed based on the Euclidian
608 distance to Brp (≤ 20 nm)³². 2D alpha shapes were used to quantify subcluster areas using the
609 Python version of CGAL (Computational Geometry Algorithms Library; <https://www.cgal.org>).
610 For alpha shapes of Unc13A subclusters, we chose α -values of 300 nm².

611

612 **Modelling**

613 We used a model with two pools of release-ready vesicles and heterogeneous p_r similar as
614 described in (ref.⁸) and (ref.⁴⁵). The model consisted of two pools of release-ready vesicles (N_1
615 and N_2) with release probabilities p_1 and p_2 , respectively, and a supply pool N_0 (**Fig. 3a**). N_2 is
616 refilled with rate k_2 from N_1 , N_1 is refilled with rate k_1 from N_0 , and N_0 is refilled with rate k_0 from
617 an infinite reserve pool of SVs according to the following differential equations:

$$618 \frac{d}{dt}N_0(t) = k_0(N_{0,tot} - N_0(t)) - k_1 \frac{N_0(t)}{N_{0,tot}}(N_{1,tot} - N_1(t)) \quad (\text{eq. 1})$$

$$619 \frac{d}{dt}N_1(t) = k_1 \frac{N_0(t)}{N_{0,tot}}(N_{1,tot} - N_1(t)) - k_2 \frac{N_1(t)}{N_{1,tot}}(N_{2,tot} - N_2(t)) \quad (\text{eq. 2})$$

$$620 \frac{d}{dt}N_2(t) = k_2 \frac{N_1(t)}{N_{1,tot}}(N_{2,tot} - N_2(t)) \quad (\text{eq. 3})$$

621 The model also contained a phenomenological description of facilitation as described
622 previously⁷⁰, where each action potential increases both p_2 and p_1 by the amount $p_{x,\text{initial}}$ ($1-p_x$),
623 with $x=1$ and 2. p_2 and p_1 then decay mono-exponentially back to $p_{x,\text{initial}}$ with a time constant
624 of τ_f .

625 The best-fit parameters (**Fig. 3c**) were determined with a simplex minimization algorithm to
626 reproduce both individual (**Extended Data Fig. 1**) and average EPSC amplitude data of 10
627 recordings before and 6 recordings after optogenetic cAMP production (**Fig. 3b**). The quality
628 of the fits was calculated by the sum of the squared differences between model fit and the

629 experimental data. Because of the mechanistic importance of the paired-pulse ratio and the
630 time course of recovery from depression, weighting factors were applied when calculating the
631 sum of the squared differences. In particular, the first and the second EPSCs were weighted
632 with the factor of 20 and 5, respectively, and the EPSCs during the recovery from depression
633 were weighted with a factor of 3. The data allowed reliable determination of seven free
634 parameters: N_0 , N_1 , N_2 , k_1 , k_2 , p_1 , and p_2 , i.e., the best-fit parameters were only marginally
635 dependent on the start values. The parameter k_0 was constrained to 0.031 s^{-1} and τ_f to 0.1 s^{45} .
636 For simplicity, the best-fit parameters in **Fig. 3c** for the size of the synaptic vesicle pools ($N_{x,\text{tot}}$)
637 were denoted as N_x , with $x = 1$ to 3.

638 To investigate the impact of miniature EPSCs on evoked release, a constant release rate was
639 added either from only N_2 (**Extended Data Fig. 2a**), from only N_1 (**Extended Data Fig. 2b**), or
640 from both N_1 and N_2 (**Extended Data Fig. 2c**). In these simulations, all other parameters were
641 constrained to the best-fit parameters before light stimulation. Because the miniature release
642 caused the depletion in the initial steady-state condition before evoked release, the initial
643 occupancy was calculated using an analytical solution of the differential equation for the
644 steady-state condition (i.e. setting $\frac{d}{dt}N_x(0) = 0$, for $x = 1$ to 3). We assumed an overall
645 miniature release rate upon elevated cAMP levels of 100 s^{-1} (cf. **Fig. 2c**). In the case of
646 miniature release occurring only from N_2 , the miniature release rate from N_2 was manually
647 adjusted to 11.36 s^{-1} to obtain complete depletion of N_2 (i.e. the analytically calculated steady-
648 state condition $N_2(0)$ was 0). In the case of miniature release only from N_1 , the miniature
649 release rate from N_1 was set to 100 s^{-1} . And in the case of miniature release from both N_1 and
650 N_2 , the miniature release rate from N_1 and N_2 were manually adjusted to 11.39 s^{-1} and $100 -$
651 $11.39 = 88.61 \text{ s}^{-1}$, respectively, to obtain complete depletion of N_2 (i.e. the analytically
652 calculated steady-state condition $N_2(0)$ was 0). Finally, we allowed free optimization of the
653 other parameters of the model to best-fit the average EPSC data after light stimulation (**Fig.**
654 **3d and e**) and allowed miniature release with a rate of all together 100 s^{-1} from both N_1 and
655 N_2 . The corresponding miniature release rates had to be re-adjusted iteratively to 9.5 s^{-1} and

656 $100 - 9.5 = 91.5 \text{ s}^{-1}$, respectively, to obtain complete depletion of N_2 . The resulting best-fit
657 parameters were $N_1 = 107.6$ (compared to the control value without light stimulation 798.3), p_1
658 = 0.211 (compared to 0.035), $k_1 = 74.69 \text{ s}^{-1}$ (compared to 5.13 s^{-1}), and $k_0 = 0.016 \text{ s}^{-1}$
659 (compared to 0.031 s^{-1}).

660 The model was implemented in C++ using the compiler of XCode 15 on macOS 14 (Apple
661 Inc., Cupertino, CA, USA). The required computational time for the minimization of the seven
662 free parameters of the models for the EPSC amplitude before and after light stimulation was
663 less than a minute for all recordings. The results of the minimization were visualized with
664 Mathematica 12 (Wolfram Research, Champaign, IL, USA).

665

666 **Learning experiments**

667 Groups of ~150 flies (5 to 8 days old) were trained for associative olfactory short-term learning
668 essentially as previously described⁴⁷ using a modified learning apparatus to perform four
669 experiments simultaneously. Airflow was adjusted to ~15 L/min, the relative humidity was set
670 at 80%, and all experiments were performed at 25 °C in complete darkness. The odorants
671 ethyl acetate (EA; Sigma, 141-78-6) or iso-amyl acetate (IAA; Sigma, 123-92-2) diluted in
672 paraffin oil (Sigma, 8012-95-1) at a ratio of 1:100 were used as the conditioned stimulus (CS)
673 and 12 electric shocks of 60 V were applied as the unconditioned stimulus (US). The flies were
674 exposed to one of the odours paired with electric shock reinforcement (CS+) for 1 min and 30
675 s later the second odour was presented for another minute without the electric shock (CS-).
676 The flies were then moved through the elevator to the T-maze where they were presented with
677 both odours simultaneously and tested for odour preference after 2 min. Reciprocal training
678 was performed by switching the CS+ and CS-odours. The Preference Index (PI) for each
679 experiment was calculated as the number of flies on the CS+ side minus the number of flies
680 on the CS- side, divided by the total number of flies. $PI = (\#CS+ \text{ flies} - \#CS- \text{ flies}) / (\# \text{ total}$
681 flies). The Learning Index (LI) was calculated by averaging two reciprocal experiments. $LI = (PI$
682 $+ PI_{reciprocal}) / 2$.

683 Aversive larval learning experiments were carried out at RT on petri dishes freshly prepared
684 the day before the experiments with 1.5% pure Agarose (Roth, 9012-36-6) or 1.5% Agarose
685 with 1.5 M NaCl (Roth, 7647-14-5). Odour cups contained amyl acetate (Sigma, 628-63-7)
686 diluted 1:100 in paraffin oil (Sigma, 8012-95-1) and undiluted 3-octanol (Sigma, 589-98-0).
687 Before starting the experiments, balanced odour preference was confirmed. Training
688 comprised three 5 min cycles on pure agarose with one odour and on salt plates with the other
689 odour. The larvae were then placed in the middle of a salt plate with the two odours on either
690 side and their final position was registered after 5 min^{71,72}. Each experiment included thirty
691 larvae, reciprocal training and calculation of PI and LI was performed as for adult learning.
692

693 **Statistics**

694 Data were analysed using Prism 9 (GraphPad) or Sigma Plot 13 (Systat). Group means were
695 compared by a two-tailed or paired t-test, unless the assumption of normal sample distribution
696 was violated according to the Shapiro-Wilk test. In this case, a non-parametric Mann-Whitney
697 U test or Wilcoxon matched-pairs test was employed. For comparison of the 7 best-fit
698 parameters of the model (**Fig. 3c**) and between dark and light-stimulated STED and dSTORM
699 images (**Fig. 4b-f, I-o; Extended Data Fig. 3a-e**) a Mann-Whitney U test with a Bonferroni
700 correction was used with a factor of 7 and 2, respectively. Data and statistics are summarized
701 in the Extended Data Table and Supplementary Table.

702

703 **Methods references**

- 704 60. Scholz, N. et al. Mechano-dependent signaling by Iatrophilin/CIRL quenches cAMP in
705 proprioceptive neurons. *Elife* **6**, 1–21 (2017).
- 706 61. Sanyal, S. Genomic mapping and expression patterns of C380, OK6 and D42 enhancer
707 trap lines in the larval nervous system of Drosophila. *Gene Expr. Patterns* **9**, 371–380
708 (2009).
- 709 62. Schulz, R. A., Chromey, C., Lu, M. F., Zhao, B. & Olson, E. N. Expression of the D-
710 MEF2 transcription in the Drosophila brain suggests a role in neuronal cell
711 differentiation. *Oncogene* **12**, 1827–1831 (1996).
- 712 63. Daniels, R. W., Gelfand, M. V., Collins, C. A. & DiAntonio, A. Visualizing glutamatergic
713 cell bodies and synapses in Drosophila larval and adult CNS. *J. Comp. Neurol.* **508**,
714 131–152 (2008).

715 64. Poe, A. R. *et al.* Robust CRISPR/CAS9-mediated tissue-specific mutagenesis reveals
716 gene redundancy and perdurance in *drosophila*. *Genetics* **211**, 459–472 (2019).

717 65. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J. & Wu, C. F. Improved stability of
718 *Drosophila* larval neuromuscular preparations in haemolymph-like physiological
719 solutions. *J. Comp. Physiol. A* **175**, 179–191 (1994).

720 66. Börner, S. *et al.* FRET measurements of intracellular cAMP concentrations and cAMP
721 analog permeability in intact cells. *Nat. Protoc.* **6**, 427–438 (2011).

722 67. Wagh, D. A. *et al.* Bruchpilot, a protein with homology to ELKS/CAST, is required for
723 structural integrity and function of synaptic active zones in *Drosophila*. *Neuron* **49**, 833–
724 844 (2006).

725 68. McInnes, L., Healy, J. & Astels, S. *hdbscan*: Hierarchical density based clustering. *J.*
726 *Open Source Softw.* **2**, 205 (2017).

727 69. Doose, S. *LOCAN*: A python library for analyzing single-molecule localization
728 microscopy data. *Bioinformatics* **38**, 2670–2672 (2022).

729 70. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of
730 neocortical pyramidal neurons. *Proc. Natl. Acad. Sci. U. S. A.* **95**, 5323–5328 (1998).

731 71. Aceves-Piña, E. O. & Quinn, W. G. Learning in normal and mutant *Drosophila* larvae.
732 *Science (80-.)* **206**, 93–96 (1979).

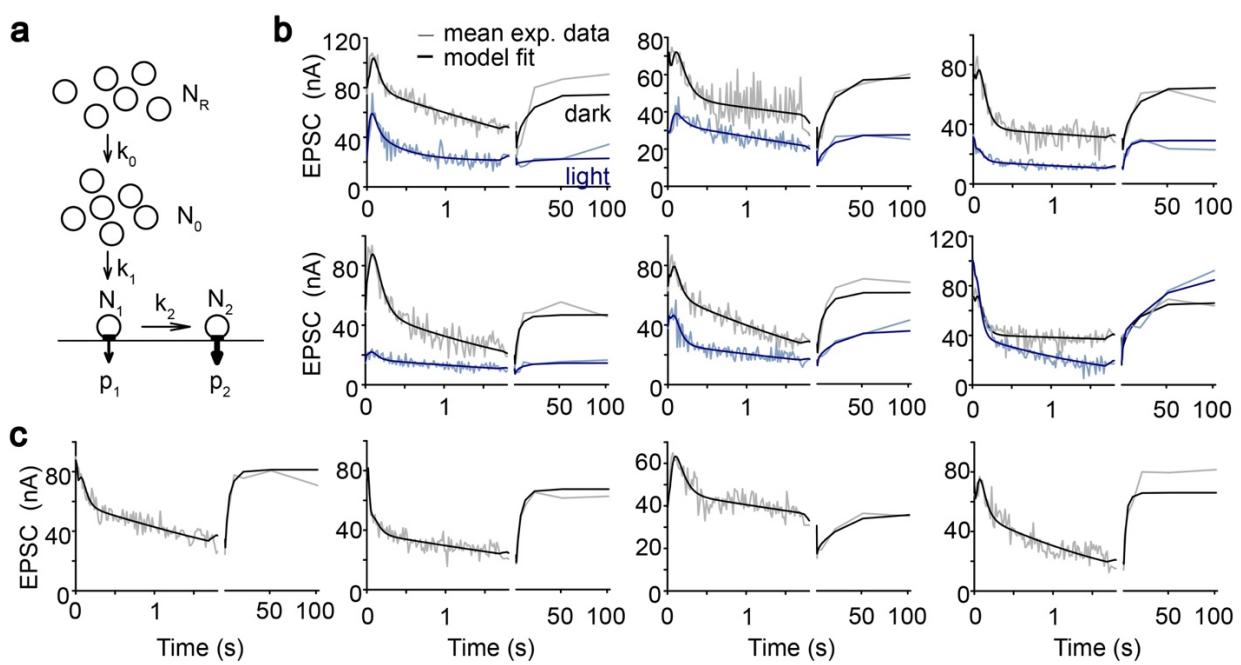
733 72. Widmann, A. *et al.* Genetic Dissection of Aversive Associative Olfactory Learning and
734 Memory in *Drosophila* Larvae. *PLoS Genet.* **12**, 1–32 (2016).

735 **ACKNOWLEDGEMENTS**

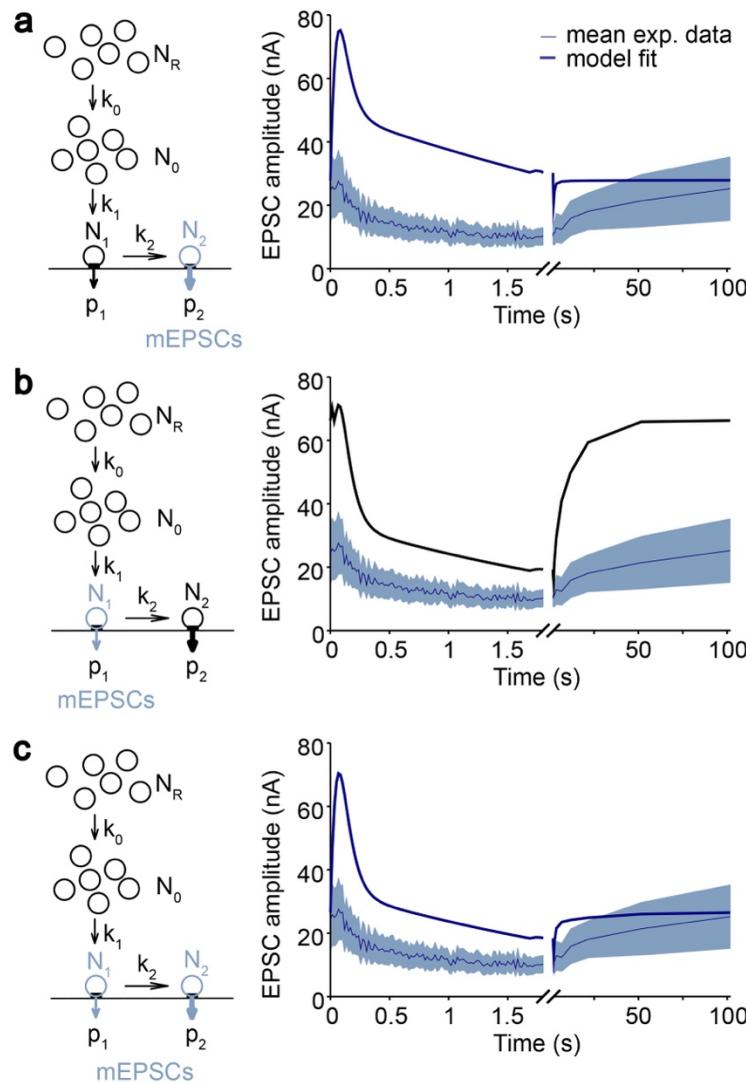
736 We thank N. Naumann and B. Goettgens for technical support, N. Scholz and A.-K. Dahse for
737 genotyping, S.J. Sigrist for antibodies, and the Bloomington Stock Centre, the VDRC, and O.
738 Schuldiner for fly strains. This work was supported by the Deutsche Forschungsgemeinschaft
739 (KI1460/7-1/SPP 2205, KI1460/9-1/KFO 5001, KI1460/5-1, and INST 268/437-1 FUGG to
740 RJK; FOR 3004 SYNAPBS, HA6386/10-2 to SH; PA1979/3-1 and PA1979/5-1 to DP), the
741 Leipzig University Clinician Scientist Program and the Jung Foundation for Science and
742 Research to AM (Jung Career Advancement Prize 2023), the Nottingham Research Anne
743 McLaren fellowship to IM, and by the European Research Council (ERC Consolidator Grant
744 865634 to SH).

745

746 **AUTHOR CONTRIBUTIONS**


747 D.S: writing–review and editing, investigation, formal analysis, and visualization. A.A.: writing–
748 review and editing, investigation, formal analysis, and visualization. A.M.: writing–review and
749 editing, formal analysis, and visualization. J.N.: writing–review and editing, investigation,
750 formal analysis, and visualization. M.L.: writing–review and editing, investigation. N.H.: writing–
751 review and editing, investigation. N.E.: writing–review and editing, formal analysis. D.P.:
752 writing–review and editing, formal analysis. T.S.: writing–review and editing, investigation,
753 formal analysis, and visualization. I.M.: writing–review and editing, formal analysis. M.S.:
754 writing–review and editing, formal analysis. M.H.: writing–review and editing, formal analysis.
755 S.H.: writing–review and editing, conceptualization, investigation, formal analysis,
756 visualization, and supervision. R.J.K.: writing–original draft, writing–review and editing,
757 initiated the project, conceptualization, formal analysis, visualization, and supervision.

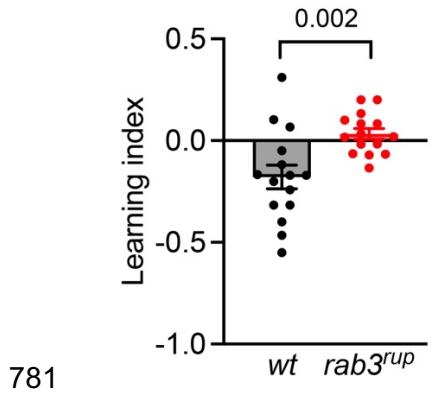
758


759 **COMPETING INTERESTS**

760 The authors declare no competing interests.

761 **EXTENDED DATA**

763 **Extended Data Figure 1. Modelling: individual traces.** **a**, Schematic illustration of the model.
764 **b**, Model fits to individual trains of EPSCs (100 pulses at 60 Hz) and recovery-EPSCs before
765 (grey) and after 10 min illumination (blue). **c**, Same as panel (b) for experiments in which only
766 the data before illumination were available. Note that in these cells evoked synaptic
767 transmission was completely abolished after 10 min light stimulation.


768

769 **Extended Data Figure 2. Modelling of miniature release from fusion-competent synaptic**
770 **vesicle pools. a, Left:** Schematic illustration of the model with miniature release exclusively
771 from the superprimed vesicle pool N_2 . **Right:** Model fit to the mean train of EPSCs (100 pulses
772 at 60 Hz) and recovery-EPSCs after 10 min illumination. **b,** Same as in panel a but for miniature
773 release exclusively from the normally-primed vesicle pool N_1 . **c,** Same as in panel a but for
774 miniature release from both N_1 and N_2 . Data are presented as model fit (thick line) and mean
775 (thin line) \pm SEM (shaded area).

776

777 **Extended Data Figure 3. STED Microscopy of *rab3^{rup}* AZs.** Quantification of **a**, AZ area, **b**,
778 mean spot size of Brp and **c**, Cac (mean \pm SEM, dark n=6, light n=7 NMJs), and **d**, spot number
779 per AZ for Brp and **e**, Cac (dark n=98, light n=121 AZs). Genotype: *rab3^{rup}*, *cac^{GFP}*,
780 *pre>bPAC^{wt}*. P values: Mann-Whitney U test with a Bonferroni correction (factor 2).

781

782 **Extended Data Figure 4. Aversive learning in *Drosophila* larvae.** Salt learning is lost in
783 *rab3^{rup}* mutant larvae. Data are presented as mean \pm SEM, P value: t-test.

784 **Extended Data Table**

Genotype	Condition	Mean \pm SEM	N	P	Test
Figure 1b,c EPSC amplitude (nA)			NMJs		
wild-type (w^{1118})	0 min FSK	80.9 \pm 7.05	13	0.669	Unpaired t-test
$rab3^{rup}$	0 min FSK	75.9 \pm 9.36	8		
Figure 1e Mini amplitude (nA)			NMJs		
wild-type (w^{1118})	0 min FSK	0.746 \pm 0.038	8	0.008	Wilcoxon matched-pairs
	20 min FSK	0.580 \pm 0.028	8		
$rab3^{rup}$	0 min FSK	0.705 \pm 0.043	7	0.014	Paired t-test
	20 min FSK	0.633 \pm 0.043	7		
Figure 1e Mini frequency (Hz)			NMJs		
wild-type (w^{1118})	0 min FSK	2.314 \pm 0.268	8	0.186	Paired t-test
	20 min FSK	2.953 \pm 0.493	8		
$rab3^{rup}$	0 min FSK	4.870 \pm 0.694	7	0.003	Paired t-test
	20 min FSK	3.002 \pm 0.463	7		
Figure 2c Mini frequency (Hz)			NMJs		
$pre>bPAC^{wt}$	0 min	6.875 \pm 1.789	16	0.843 0.0002 0.0002 0.0003 0.0076	Mann-Whitney vs. $rab3^{rup}$, $pre>bPAC^{wt}$
	1 min	74.750 \pm 14.77	8		
	2 min	111 \pm 14.16	8		
	4.5 min	144 \pm 14.92	7		
	20 min	101 \pm 24.84	8		
$rab3^{rup}$, $pre>bPAC^{wt}$	0 min	7.000 \pm 1.461	16	—	—
	1 min	4.000 \pm 0.845	8		
	2 min	3.250 \pm 0.750	8		
	4.5 min	4.750 \pm 1.306	8		
	20 min	7.500 \pm 0.732	8		
Figure 2h RRP			NMJs		
$pre>bPAC^{wt}$	Dark	956.6 \pm 128.8	10	0.027	Wilcoxon matched-pairs
	10 min light	359.9 \pm 143.1	10		
Figure 2i EPSC₁/EPSC₂			NMJs		
$pre>bPAC^{wt}$	Dark	1.079 \pm 0.036	10	0.517	Unpaired t-test
	10 min light	1.134 \pm 0.09	6		
Figure 2j EPSC₁/RRP			NMJs		
$pre>bPAC^{wt}$	Dark	0.081 \pm 0.013	10	0.830	Unpaired t-test
	10 min light	0.077 \pm 0.016	6		
Figure 4b AZ area			NMJs (AZs)		
cac^{GFP} , $pre>bPAC^{wt}$	Dark	0.16 \pm 0.015	6 (76)	0.89	Mann-Whitney with Bonferroni correction factor 2
	20 min light	0.143 \pm 0.008	7 (116)		

Figure 4c Brp spot size			NMJs (AZs)		
<i>cac</i> ^{GFP} , <i>pre>bPAC</i> ^{wt}	Dark 20 min light	0.058 ± 0.005 0.057 ± 0.003	6 (76) 7 (116)	>0.99	Mann-Whitney with Bonferroni correction factor 2
Figure 4d Cac spot size			NMJs (AZs)		
<i>cac</i> ^{GFP} , <i>pre>bPAC</i> ^{wt}	Dark 20 min light	0.047 ± 0.002 0.055 ± 0.002	6 (76) 7 (116)	0.07	Mann-Whitney with Bonferroni correction factor 2
Figure 4e Brp spots per AZ			AZs		
<i>cac</i> ^{GFP} , <i>pre>bPAC</i> ^{wt}	Dark 20 min light	3.75 ± 0.134 3.776 ± 0.112	76 116	>0.99	Mann-Whitney with Bonferroni correction factor 2
Figure 4f Cac spots per AZ			AZs		
<i>cac</i> ^{GFP} , <i>pre>bPAC</i> ^{wt}	Dark 20 min light	1.079 ± 0.095 1.233 ± 0.074	76 116	0.346	Mann-Whitney with Bonferroni correction factor 2
Figure 4l Unc13 SCs per AZ			NMJs (AZs)		
<i>pre>bPAC</i> ^{wt}	Dark 20 min light	10.77 ± 0.669 10.81 ± 0.785	5 (294) 7 (335)	>0.99	Mann-Whitney with Bonferroni correction factor 2
<i>rab3</i> ^{rup} , <i>pre>bPAC</i> ^{wt}	Dark 20 min light	19.42 ± 1.23 14.82 ± 2.01	8 (122) 7 (88)	0.304	Mann-Whitney with Bonferroni correction factor 2
Figure 4m Localizations per AZ			NMJs (AZs)		
<i>pre>bPAC</i> ^{wt}	Dark 20 min light	237 ± 12 201 ± 14	5 (294) 7 (335)	0.212	Mann-Whitney with Bonferroni correction factor 2
<i>rab3</i> ^{rup} , <i>pre>bPAC</i> ^{wt}	Dark 20 min light	394 ± 27 361 ± 46	8 (122) 7 (88)	0.464	Mann-Whitney with Bonferroni correction factor 2
Figure 4n Mean SC size per AZ			NMJs (AZs)		
<i>pre>bPAC</i> ^{wt}	Dark 20 min light	4125 ± 324.7 1891 ± 348.8	5 (294) 7 (335)	0.02	Mann-Whitney with Bonferroni correction factor 2
<i>rab3</i> ^{rup} , <i>pre>bPAC</i> ^{wt}	Dark 20 min light	865 ± 43.1 1389 ± 319.2	8 (122) 7 (88)	0.241	Mann-Whitney with Bonferroni correction factor 2

Figure 4o Percentage of AZs with large SCs			NMJs (AZs)		
<i>pre>bPAC^{wt}</i>	Dark 20 min light	11.64 ± 0.796 4.426 ± 1.274	5 (294) 7 (335)	0.01 8	Mann-Whitney with Bonferroni correction factor 2
<i>rab3^{rup}, pre>bPAC^{wt}</i>	Dark 20 min light	0 1.567 ± 1.012	8 (122) 7 (88)	0.4	Mann-Whitney with Bonferroni correction factor 2
Figure 5b Learning index			animals		
wild-type (<i>w¹¹¹⁸</i>)	–	-0.414 ± 0.036	9	<0.0 001	Unpaired t-test
<i>rab3^{rup}</i>	–	-0.074 ± 0.039	9		
Figure 5d Fluorescence intensity ratio γ-lobe/smp			brains		
wild-type (<i>w¹¹¹⁸</i>)	–	1.097 ± 0.076	10	<0.0 001	Mann-Whitney
<i>rab3^{CRISPR}</i>	–	0.693 ± 0.041	10		
Figure 5d Fluorescence intensity ratio γ/α'β lobes			brains		
wild-type (<i>w¹¹¹⁸</i>)	–	0.891 ± 0.051	10	0.00 04	Unpaired t-test
<i>rab3^{CRISPR}</i>	–	0.614 ± 0.038	10		
Figure 5e Learning index			animals		
Control: <i>rab3-gRNA</i>	–	-0.405 ± 0.046	12	0.02 1	Unpaired t-test vs. <i>rab3^{CRISPR}</i>
Control: <i>GMR710-GAL4; UAS-Cas9.C</i>	–	-0.393 ± 0.028	12	0.00 8	Unpaired t-test vs. <i>rab3^{CRISPR}</i>
<i>rab3^{CRISPR}</i>	–	-0.26 ± 0.036	12	–	–
Figure 5f Learning index			animals		
Control: <i>rab3^{rup}, UAS-rab3</i>	–	-0.042 ± 0.028	12	0.29	Unpaired t-test vs. <i>rab3^{rup}, mb247-GAL4>UAS-rab3</i>
Control: <i>rab3^{rup}, mb247-GAL4</i>	–	-0.146 ± 0.036	12	0.31 3	Unpaired t-test vs. <i>rab3^{rup}, mb247-GAL4>UAS-rab3</i>
<i>rab3^{rup}, mb247-GAL4>UAS-rab3</i>	–	-0.093 ± 0.037	12	–	–
Figure 5g Learning index			animals		
Control: <i>rab3^{rup}, UAS-rab3</i>	–	-0.057 ± 0.027	12	0.00 2	Unpaired t-test vs. <i>rab3^{rup}, elav-GAL4>UAS-rab3</i>
Control: <i>rab3^{rup}, elav-GAL4</i>	–	-0.088 ± 0.047	12	0.04 6	Unpaired t-test vs. <i>rab3^{rup}, elav-GAL4>UAS-rab3</i>

<i>rab3^{rup}, elav- GAL4>UAS-rab3</i>	–	-0.211 ± 0.035	12	–	–
Extended Data Figure 3a AZ area			NMJs (AZs)		
<i>rab3^{rup}, cac^{GFP}, pre>bPAC^{wt}</i>	Dark 20 min light	0.258 ± 0.023 0.273 ± 0.014	6 (98) 7 (121)	0.73 2	Mann-Whitney with Bonferroni correction factor 2
Extended Data Figure 3b Brp spot size			NMJs (AZs)		
<i>rab3^{rup}, cac^{GFP}, pre>bPAC^{wt}</i>	Dark 20 min light	0.054 ± 0.003 0.056 ± 0.002	6 (98) 7 (121)	0.89	Mann-Whitney with Bonferroni correction factor 2
Extended Data Figure 3c Cac spot size			NMJs (AZs)		
<i>rab3^{rup}, cac^{GFP}, pre>bPAC^{wt}</i>	Dark 20 min light	0.074 ± 0.006 0.071 ± 0.006	6 (98) 7 (121)	>0.9 9	Mann-Whitney with Bonferroni correction factor 2
Extended Data Figure 3d Brp spots per AZ			NMJs (AZs)		
<i>rab3^{rup}, cac^{GFP}, pre>bPAC^{wt}</i>	Dark 20 min light	5.571 ± 0.207 5.975 ± 0.214	6 (98) 7 (121)	0.43 8	Mann-Whitney with Bonferroni correction factor 2
Extended Data Figure 3e Cac spots per AZ			NMJs (AZs)		
<i>rab3^{rup}, cac^{GFP}, pre>bPAC^{wt}</i>	Dark 20 min light	1.837 ± 0.104 2.025 ± 0.113	6 (98) 7 (121)	0.64 1	Mann-Whitney with Bonferroni correction factor 2
Extended Data Figure 4 Learning index			animals		
wild-type (<i>w¹¹¹⁸</i>)	–	-0.179 ± 0.058	15	0.00 2	Unpaired t-test
<i>rab3^{rup}</i>		0.033 ± 0.026	15		