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Summary 

Understanding the details of the cell cycle at the level of individual cells is critical for both cellular 

biology and cancer research. While existing methods using specific fluorescent markers have 

advanced our ability to study the cell cycle in cells that adhere to surfaces, there is a clear gap when 

it comes to non-adherent cells. In this study, we combine a specialized surface to improve cell 

attachment, the genetically-encoded FUCCI(CA)2 sensor, an automated image processing and 

analysis pipeline, and a custom machine-learning algorithm. This combined approach allowed us to 

precisely measure the duration of different cell cycle phases in non-adherent, as well as adherent 

cells. 

Our method provided detailed information from hundreds of cells under different experimental 

conditions in a fully automated manner. We validated this approach in two different acute myeloid 

leukemia cell lines, NB4 and Kasumi-1, which have unique and distinct cell cycle characteristics. We 

also measured how drugs that influence cell cycle properties affect the duration of each phase in 

the cell cycles of these cell lines. Importantly, our cell cycle analysis system is freely available and 

has also been validated for use with adherent cells. 

In summary, this article introduces a comprehensive, automated method for studying the cell cycle 

in both non-adherent and adherent cells, offering a valuable tool for cellular biology, cancer 

research and drug development. 

 

Introduction  

Cell cycle dynamics coordinate cellular division and proliferation through regulating the different 

cell cycle phases. Dysregulation in these processes is a hallmark of malignancies such as human 

cancer, where aberrant activities in cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors 

often drive uncontrolled proliferation. Consequently, targeting cell cycle components has emerged 

as a pivotal therapeutic strategy, especially crucial in pre-clinical drug evaluation (Malumbres and 

Barbacid, 2009; Khan and Wang, 2022). 

Traditional methods for assessing cell cycle dynamics have been largely dependent on the 

quantification of DNA content through flow or image cytometry, providing a static snapshot of cell 

populations in various cycle phases (Furia, Pelicci and Faretta, 2013; Ligasová, Frydrych and Koberna, 

2023). Although valuable, these techniques fall short in capturing intra-population variability and 

require additional protein markers for precise phase determination (Ligasová, Frydrych and 

Koberna, 2023; Rieger, 2022). 

Methods utilizing cells expressing fluorescently labelled reporters and time-lapse microscopy can 

discriminate cell cycle phases at the level of individual cells, thereby offering valuable insights into 

the variability of cell cycle and cell cycle phase durations within the overall cell population (Chao et 

al., 2019; Hiratsuka and Komatsu, 2019).  

Advanced imaging methods, such as time-lapse microscopy coupled with fluorescently tagged 

reporters, have shown promise in detailing cell cycle dynamics at the single-cell level. Technologies 

like the Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) have been employed for this, 

effectively demarcating cell cycle phases through color-coding (Sakaue-Sawano et al., 2017). 
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FUCCI(CA)2 express the hCdt1(1/100) fused to mCherry fluorescent protein and hGem(1/110) fused 

to mVenus, generating a clear and distinct tricolor demarcation, separating G1 (red), S (green), and 

G2/M phases (yellow) (Sakaue-Sawano et al., 2017). 

This dynamic insight is particularly crucial in the context of acute myeloid leukemia (AML), where 

chromosomal translocations generate fusion genes that disrupt cellular differentiation programs 

and drive proliferation (Alcalay et al., 2001).  

The described experimental setup utilizes nanostructured titanium oxide-coated multiwell plates 

relying on the technology used in the commercially available Smart BioSurface (SBS) slides (Krol et 

al., 2021). Such technology should hypothetically enable us to immobilize non-adherent cells for 

extended imaging durations. To overcome the limitations of manual data analysis, we introduce an 

automated image analysis pipeline for time-lapse movies of AML cell lines, exploiting a FUCCI-based 

probe for visualization. Our data analysis approach combines custom image processing, TrackMate-

based cell tracking, and machine learning-based track filtering. Thereby automating the entire data 

analysis workflow.  

In summary, we present a comprehensive, experimental protocol for cell cycle analysis in adherent 

and non-adherent cells (summarized in BOX1). The approach leverages routine imaging 

technologies and advanced data analyses, enhancing the precision and efficiency of drug screening 

protocols in oncological research. 

 
Results 
 
Modified conditions enable AML cells to adhere to the substrate feasible for live cell imaging 

Live imaging and tracking of non-adherent cells, when multiple positions should be acquired, is 

challenging due to their high propensity to mechanical perturbations.  

To conduct long time imaging of AML cells, we exploit the combined action of the SBS and the partial 

immobilization effect of methylcellulose (MC). We were able to image and track AML cells up to 72h 

when 20% complete medium was added to 80% MC and applied on AML cells previously adhered 

to the SBS (movie S1).  

Two different AML cell lines, NB4 and Kasumi-1, were equipped with the FUCCI(CA)2 technology 

and chosen as the study models. NB4 cells have relatively faster doubling time in comparison to 

Kasumi-1 cells (Skopek et al., 2023). Hence, NB4 cells were treated with vehicle or CDK inhibitors, 

being compared to the naturally slow-cycling counterparts, Kasumi-1 cells, by time-lapse imaging 

(Fig. 1A and Fig. S1). As a result, we were able to follow single cells and the manual assessment of 

cell cycle phases confirmed the impact of CDK inhibitors. Furthermore, the expected difference in 

cell cycle progression of NB4 vs Kasumi-1 cells was evident. 

 

Image processing facilitates the cell tracking and profiling of cell cycle phases 

The original time-lapse images were composed by Red and Green channels, detecting respectively 

the mCherry and mVenus markers of the FUCCI(CA)2 indicator. During the experiment each cell 

alternatively switches between the expression of these two markers as it goes through the different 
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cell cycle phases, causing the lack of a single fluorescence channel suitable for tracking. 

Furthermore, the automatic profiling of cell cycle phases becomes cumbersome when dealing with 

two distinct channels that in the end give rise to two independent fluorescence time-series. We set 

up an image processing pipeline utilizing the open-source software Fiji (Schindelin et al., 2012) (NIH, 

version 2.14.0/1.54f) to transform the original images into a dataset optimized for the subsequent 

steps of tracking and cell cycle phase assignment. We represented the color changes that occur 

during the cell cycle with the Hue scale, as described in (Fujimoto et al., 2020). To achieve this, as 

represented in Fig. 1B, stacks of Red and Green channels were overlaid and converted into an RGB 

stack and then transformed into an HSB stack (Hue, Saturation and Brightness channels). The Hue 

channel was retained for the assignment of cell cycle phases, while the Brightness channel was used 

as tracking reference. These two were merged to the Red and Green fluorescence channels to form 

the final stack used for the tracking process. 

In the tracking analysis, the Fiji plugin TrackMate (Tinevez et al., 2017) was employed, adapting the 

example script available on the dedicated TrackMate website 

(https://imagej.net/plugins/trackmate/scripting/scripting), to ensure the automation of the 

tracking step. The related parameters were selected and tuned according to each experiment, as 

well as the proper filters to discard uninformative tracks. The output consisted of a table with cells 

associated to selected tracks and their corresponding numerical features in each timeframe. Key 

features included the mean fluorescence intensity in the Red and Green channels, as well as the 

mean intensity of the Hue value.  

The whole image analysis pipeline successfully recovered a unique tracking channel and effectively 

mapped the alternating Red and Green curves (Fig. 1C, left panel) into a single time series, as 

depicted in Figure 1C, right panel. 

 

Incorrect track filtering by the machine learning model efficiently automates data cleaning and 

cell cycle phase assignment steps 

The files generated by the Trackmate pipeline were imported into R (R Core Team, 2021) for the 

demultiplexing, filtering and data analysis. To address missing frames, a data imputation process 

was implemented, aimed at recovering instances with up to 5 consecutive missing values. This data 

imputation was executed using an Exponential Weighted Moving Average (EWMA) technique, 

employing a window size of 3, thereby encompassing 6 observations (3 preceding, 3 succeeding).  

A smoothing spline approach was individually applied to the green, red, and hue channels, utilizing 

a regularization parameter (lambda) of 0.0001. A min-max scaling to transform value into the range 

[0, 1] was applied to make the fluorescence intensity and hue scale comparable among channels 

and samples. For the creation of the random forest model, a training pipeline was set up, as 

described in Fig 2A. In accordance with Fig 2B, feature extraction was carried out on the green and 

red channels to derive temporal descriptors of the data. 

Employing these extracted features, the trained random forest model was applied to discriminate 

between trackable and untraceable cells. Subsequently, only the cells predicted as traceable by the 

model were retained for subsequent analyses. Here are reported the obtained number of cells for 

each condition, merging all the experiments performed: 
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• NB4 DMSO: 410 cells (3 experiments) out of 1862 tracked cells 

• NB4 Palbociclib 50 nM: 328 cells (3 experiments) out of 2881 tracked cells 

• NB4 PF-0606873600 50 nM: 206 cells (1 experiment) out of 1102 tracked cells 

• NB4 Ribociclib 50nM: 119 cells (1 experiment) out of 784 tracked cells 

• Kasumi-1 Untreated: 119 cells (1 experiment) out of 1604 tracked cells 

• MDA-MB-231 Untreated: 1116 (1 experiment) out of 3204 tracked cells 

By using the hue channel each track was partitioned into its cell cycle component using the following 

thresholds: 

• G1: hue >= 0 & hue < 0.65  

• S: hue >= 0.85 

• G2/M: hue >= 0.65 & hue <= 0.85  

 

Additionally, a refinement step involving cell reassignment was conducted to identify instances 

where the G1 to S phase transition was labelled as G2/M in frames preceding the S phase. The 

outcome of the analysis is visually depicted in Fig. 3A and B. 

 

Evaluation of tracks’ selection performances confirms the efficiency of the machine learning 

model 

We carried out a validation of the performances of the whole pipeline in selecting <traceable= tracks. 

Specifically, we extracted from one experiment the ID of the tracks that belonged to the vehicle 

(DMSO) treated condition identified as <traceable= by the ML algorithm. We then validated these 

tracks by visual inspection of the corresponding images, checking for eventual tracker errors. We 

created a scoring metric defined as follows: 

 

 

 

We checked up to 102 tracks that underwent to whole cell cycle profiling by the analysis pipeline 

and we found that, among these, 63 were also consistent with images (Score = 0.62). We then 

decided to select tracks identified as traceable with a probability greater than 0.70, gaining a final 

Score of 0.74 (57 tracks consistent with images over 77 tracks). 
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The method can quantify the cell cycle progression and does not impact the transcriptome over 

long time periods 

We were able to accurately quantify the cell cycle progression of NB4 and Kasumi-1 cell lines over 

72 hours at single-cell resolution (figure 3A). The empirical observation of the superimposition of 

red and green fluorescence signals during the transition between G1 and S makes the classification 

of the cell in one of the two dual states challenging. Thus, we decided to quantify the G1 to S phase 

transition in the cell cycle profiling, as a separate cell cycle stage. 

As represented in figure 3A-B, cell cycle differences of NB4 and Kasumi-1 cells were quantified. 

Moreover, the method was able to discriminate cell cycle differences of leukemic cells in presence 

of various sub-optimal doses of different CDK inhibitors. These CDK inhibitors are potent inhibitors 

of CDKs2/4/6, which mainly regulate the G1 to S transition (Fassl, Geng and Sicinski, 2022). Hence, 

we expected the administration of nanomolar concentrations of these agents to lengthen mainly 

the G1 phase with less impact on the other phases. Our live cell imaging of the relatively fast-cycling 

NB4 cells in presence of these drugs at such spectrum of concentrations affirmed the significant G1-

prolongation in these cells (Fig. 3B and movies S2-4). The total average duration of one full cell cycle 

was quantified as 21.5 h ± 6.5 h (mean ± standard deviation) for NB4 cells and 24.0 h ± 7.8 h for 

Kasumi-1 cells. For instance, administration of 50nM Palbociclib extended mainly the G1 phase of 

the NB4 cells by about 5 hours (from 9.1 h ± 5.1 h to 14.2 h ± 5.7 h in vehicle treated and Palbociclib 

treated NB4 cells, respectively).  

It was demonstrated that the nanostructured surfaces can promote changes in the cellular protein 

expression profile (Schulte et al., 2016). We thus questioned the possible impact of the SBS on gene 

expression profile of the AML cells. We made a comparison of transcriptome of the cells pre- and 

post-imaging by performing RNA-seq investigations. As represented in the supplementary Fig. S2, 

we did not observe any meaningful transcriptomic alterations throughout the process. Hence, we 

conclude that the protocol is feasible for biological investigations without a significant effect on the 

transcriptomic profile of the cells. 

 

Discussion 

In the last few years, efforts have been made to simplify the cell cycle assessment relying on FUCCI 

technology, resulting in the development and public availability of software tools and ImageJ plug-

ins (Roccio et al., 2013; Koh et al., 2017; Ghannoum et al., 2021; Taïeb et al., 2022). However, all 

these methods require human intervention at different points in the analysis workflow, such as the 

initial selection of cells for analysis (Taïeb et al., 2022) or the manual correction of inaccurate tracks 

during the analysis (Roccio et al., 2013; Koh et al., 2017; Ghannoum et al., 2021; Taïeb et al., 2022). 

In this report we describe a complete protocol for the cell cycle analysis of adherent and non-

adherent cells expressing the FUCCI(CA)2 technology in a fully automated manner. The complete 

experimental workflow is explained in BOX1 and illustrated in Fig.4. It was applied to the analysis of 

the cell cycle phases of two different AML cell lines, NB4 and Kasumi-1, which have different 

durations. Hence, detecting this difference was a reliable initial verification strategy for the 

protocol9s efficiency. As a second quality check step, we decided to treat the fast-cycling NB4 cells 

with suboptimal concentrations of three different CDK inhibitors (Palbociclib, PF-06873600 and 

Ribociclib). These CDK inhibitors have different inhibitory impact on various CDKs (Freeman-Cook et 
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al., 2021; Fassl, Geng and Sicinski, 2022). The effect of the three CDK inhibitors on the cell cycle 

duration of NB4 cells was evaluated. Up to about 400 cells in one single experimental condition were 

quantified, for up to 12 different conditions in a single experiment. This entire analysis process took 

approximately 2 hours of human involvement, for a total execution time that ranges from 12 to 48 

hours, depending on dataset size, that is commissioned to a machine (Fig. 4). It should be taken into 

consideration that the manual correction of incorrect tracks takes approximately 2h per field of view 

(FOV). Hence, in the reported experiments of this study, the analysis of a single well would take 

about 40 to 50 hours of manual work. This amount of time would make such analysis unfeasible. 

Not only the suggested protocol makes these experiments doable, but also the experimental set-up 

can be scaled up according to the experimental needs. We successfully emphasized alterations of 

few hours in the duration of cell cycle phases when NB4 cells were subjected to exceedingly low 

concentrations of inhibitors. Moreover, the set-up pipeline makes accessible the quantification of 

potentially thousands of cells in an automated fashion relying on the crucial contribution of a 

machine learning algorithm. 

Various approaches have been documented for imaging non-adherent cells.  These range from 

creating custom supports to confine cell movement within a restricted region enabling extended 

imaging periods of up to 40 hours (Day et al., 2009), to partially immobilizing cells using substances 

like gelatine (Ritter et al., 2020) or low-melting-point agarose (Strong and Daniels, 2017). 

The capability to track non-adherent cells for up to 72 hours (almost equivalent to three complete 

cell cycles in rapidly dividing NB4 cells) was achieved by employing SBS-coated glass in combination 

with the addition of MC to the culture medium. MC was necessary to limit the movement of single 

cells or cell clusters after more than 24h of observation (movies S1 and S5). We deduce that this 

seeding protocol has the potential to be effectively employed with various non-adherent cell types. 

This is based on the principle that cell adhesion on SBS is facilitated by the nanostructure9s ability to 

engage with integrins (Schulte et al., 2016), which are widely expressed in diverse cell types 

(Johansen et al., 2018; Floren et al., 2020; Kim et al., 2020; Ogana et al., 2023). The seeding protocol 

could also certainly be extended to other types of live cell imaging experiments, especially when the 

fluorescence intensity can be monitored for shorter durations, thereby circumventing the need for 

the addition of MC. Moreover, the image and data analysis pipelines can be easily applied to 

adherent cells, as we showed in Fig S4. 

The presented image and data analysis workflows rely on 2 different software, Fiji and R, widely 

used by the imaging and data analysis community. The scripts were made publicly available, 

enabling customization to tailor the workflow according to specific requirements. This not only 

streamlines the cell cycle analysis of cells expressing the FUCCI probe, but also makes it accessible 

to researchers with basic programming knowledge. 

In conclusion we confirm the efficiency of the optimized conditions in immobilizing the non-

adherent cells for long time periods, without affecting their predicted response upon different 

environmental circumstances. The described work allows researchers in the field to analyse 

thousands of (non-)adherent cells per each experimental condition, by using the image and data 

analysis pipelines to automatically perform image processing, cell tracking, filtering of incorrect 

tracks and cell cycle phases identification and characterization.  
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BOX 1 – experimental and analysis workflow 

 

Sample Preparation (in-suspension cells): 

The cells of interest should be at optimum viability and physiological conditions prior to the 

mounting process on the SBS-multiwell plates. This step requires 1-2 hours of manual handling and 

is divided into seven steps as follows: 

(I) Consider 250 thousand cells for one well of a standard 12-well SBS-multiwell. Wash the cells 

3 times in sterile phosphate-buffered saline (PBS). 

 Note 1: PBS should be at room temperature (RT). 

 Note 2: The media and PBS should not be vacuumed during the process. It is crucial to make 

sure the cells won9t get dried at any point of the process. 
Note 3: The mentioned number of cells are for cells with an average size of 10 to 20 

micrometers in diameter and a doubling time of 20-30 hours. The number of cells with 

different properties, should be optimized accordingly. 

(II) Resuspend the cells in 1000 µl PBS and gently mix, achieving a homogenous cell suspension. 

(III) Load the suspension slowly from one side of each well, covering all the surface. 

(IV) Let the cells mount for 20-30 mins at RT, followed by 20-30 mins at 37°C. 

Note 4: Avoid moving or shaking the plate or the surface underneath. 

(V) Remove the PBS with pipette (we suggest not to use the vacuum and not to tilt the well). 

(VI) Wash the wells 2 times with enough volume of media without fetal bovine serum (FBS) (we 

suggest not to use the vacuum and not to tilt the well). 

Note 5: Any protein contamination, including FBS can easily perturb adhesion of the cells on 

the titanium-oxide particles. 

Note 6: Load and aspirate slowly from the side of the wells, keeping the pipette at 45° angle. 

(VII) Load enough methylcellulose gently from one side of the well and proceed to the next step. 

Note 7: In case any treatments are needed during the time-lapse experiment, the desired 

agents to can be added to the methylcellulose compartment prior to loading on the wells. 

Sample Preparation (adherent and semi-adherent cells): 

In case the cells of interest are (semi-)adherent cells, plate the cells at optimum confluency (based 

on the planned time-lapse duration and cell properties) on glass-bottom dishes and proceed to the 

next step. 

 

Live-Cell Imaging 

(I) Pre-heat the microscope incubator at 37 °C and 5 % of CO2 for standard cell culture. 

Otherwise tune the temperature and humidity controller according to the ideal cell viability 

conditions. 

(II) Mount the sample on the microscope stage and choose the imaging parameters depending 

on the cell type. 

Note 8: we suggest setting the objective and image binning to represent each cell with at least 15 

pixels in diameter. 
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            Note 9: we suggest adjusting the excitation intensity and exposure time for the detection of 

mCherry and mVenus signal to have a difference between maximum and minimum gray value of at 

least 1000 units (for 16-bit camera). 

(III) Select the desired total duration of the experiment and the time-frame parameter, 

considering the cell type viability upon illumination and the speed of cells movement. 

Note 10: for tracking purposes it is convenient to start with a minimum time interval of 30 min and 

evaluate the outcome of the time-lapse, adjusting eventually the described parameter in the 

following experiments 

 

Image processing 

(I) Open the pre-processing macro (Image_processing_HSB_v1.ijm) in your Fiji 

Note 11: the execution of the macro requires the prior installation of the Basic plugin 

(https://github.com/marrlab/BaSiC) for flat-field correction 

(II) Set the proper image filters and background subtraction processing for red and green 

channels at lines 58-78 and 85-94 

(III) Choose the maximum values of the Brightness and Contrast for both red and green channels 

and set the found values at lines 116 (red) and 118 (green) 

(IV) Set the proper value of the Top Hat filter on the Brightness channel (HSB stack) at line 127 

(V)  Set the correct position of red and green channels, depending on the experiment, at lines 

173-174. 

(VI) Run the macro from the Fiji script editor 

(VII) Set in the dialog window the input directory (where original data are stored), the 

output directory (where you want to store processed images) and the original file format 

 

Tracking Analysis 

(I) Open the TrackMate script in the Fiji macro editor 

(II) Adjust the parameters settings (from line 39 to 58) according to the experiment 

(III) Run the script from the Fiji script editor 

(IV) Set in the dialog window the input directory (where the images processed with the previous 

pipeline are stored) and the output directory (where you want to store the results table) 

 

Data Analysis 

Sample/condition demultiplexing  

(I) Read the list of files containing tracking information for each cell. This can be done by looping 

through the files and reading into R using the function read.delim(). 

(II) Merge all the tables into a single table using the filename to create a column for the 

demultiplexing of the condition.  

 

Missing frame imputation  

(I) Use the na_ma() function to perform imputation. This function let the user choose among 

different weighting strategies, we suggest trying the <exponential= or the <simple=, as well 
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as trying different values for k (dimension of the moving average window) and maxgap 

(maximum number of successive NA values).  

 

Data smoothing 

(I) Use the function smooth.spline() to remove noise from the timeseries and enhance the 

trend. We suggest trying different values for lambda value starting with a very low one such 

as [1e-05, 1e-04, 1e-03]. 

 

Data normalization 

(I) Use the function normalize_vector() to make the curves comparable to each other. 

 

Feature extraction 

(I) Use the function tk_tsfeatures () to extract features from the channel intensity, different 

features can be specified to be extracted such as: 

a. The number of times the time series crosses its median. 

b. Autocorrelation of the time series. 

c. Autocorrelation of the first/second-differentiated time series. 

d. Spectral entropy. 

e. Stability and lumpiness on a tilled version of the timeseries. 

 

Traceability assessment  

(I) Use the function predict() passing the table and the pre-trained model to predict whether a 

track is traceable or not. The output is a table containing the predicted class as well as the 

predicted probability of being part of a specific class.  

(II) The predicted probability can be used to further filter the predicted traceable cells. 

 

Cell phase assignment  

(I) The cell cycle phase quantification is performed on the cells predicted as traceable; this is 

done by setting two thresholds on the Hue intensities. We suggest trying different values 

according to the original Hue intensity reached by the fluorescence observed.  

(II) The first round of phase assignment divides the tracks into: 

a. G1 

b. S 

c. G2/M 

(III) By looping through each track, a second round of phase assignment is performed to re-assign 

frames classified as G2/M that occur before S. Three different strategies can be followed: 

a. Re-assign the G2/M frames to G1 

b. Re-assign the G2/M frames to S 

c. Re-assign the G2/M frames to a new G1/S phase 

 

Cell phase quantification  

(I) Group your data using the group_by() function using the Track_ID and Condition columns as 

grouping variables then use the function add_count() to count the number of frames in each 

condition for each track. 

(II) Divide the number obtained by the number of frames acquired in an hour to obtain the time 

spent in each phase (in hours units).  

(III) Sum the time spent in each phase to obtain the total cell cycle duration.  
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Materials and Methods 

Key resource table 

Reagent 

type 

(species) or 

resource 

Designation Source or 

reference 

Identifiers Additional 

informatio

n 

Cell line 

(Homo 

sapiens) 

NB4 Cellosaurus CVCL_0005  

Cell line 

(Homo 

sapiens) 

Kasumi-1 ATCC CRL-2724™  

Cell line 

(Homo 

sapiens) 

MDA-MB-231 ATCC CRM-HTB-

26™ 

 

Chemical 

compound 

and drug 

Palbociclib Selleckche

m 

S4482  

Chemical 

compound 

and drug 

Ribociclib Selleckche

m 

S7440  

Chemical 

compound 

and drug 

PF-06873600 Selleckche

m 

S8816  

Plasmid tFUCCI(CA)2/pCSII-EF RIKEN 

BRC 

through the 

National 

BioResourc

e Project of 

the MEXT, 

Japan (cat. 

RDB15446

); 

Sakaue-

Sawano, et 

al., Mol. 

Cell 68 (3): 

626-640.e5. 

2017. 

RDB15446  

Software LAS X Leica 

Microsyste

ms Inc 

https://ww

w.leica-

microsyste

ms.com/pr

oducts/mic
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roscope-

software/ 

Software FIJI Schindelin 

et al., 2012 

https://fiji.s

c/ 

 

Software TrackMate https://doi.

org/10.101

6/j.ymeth.2

016.09.016 

https://ima

gej.net/plu

gins/track

mate/ 

 

Software R R Core 

Team,2023 

https://ww

w.r-

project.org

/about.htm

l 

 

 

 

Software Tidyverse 

 

Wickham 

et al, 2019 

  

Software Tidymodels Khun et al, 

2020 

  

Software tsfeatures 

 

Hyndamn 

et al, 2023 

https://pkg

.robjhyndm

an.com/tsf

eatures/ 

 

 

Software timetk Dancho et 

al, 2023 

https://busi

ness-

science.gith

ub.io/timet

k/ 

 

 

Widefield 

Microscope 

Leica Thunder Imager Leica https://ww

w.leica-

microsyste

ms.com/pr

oducts/thu

nder-

imaging-

systems/ 

 

Camera DFC9000 GTC Leica https://ww

w.leica-

microsyste

ms.com/pr

oducts/mic

roscope-

cameras/p/

leica-

dfc9000/ 
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Multi-color 

illuminatio

n 

Lumencor Spectra X Lumencor https://lum

encor.com/

products/s

pectra-x-

light-

engine 

 

Other Glass bottom multiwell plate MatTek 

Corporatio

n 

P12G-1.5-

14-F 

 

 

 

Cell lines and growing conditions 

NB4 and Kasumi-1 cells were grown in 3ml of a mix of 80ml MethoCult™ H4230 RPMI-1640 plus 

20ml Roswell Park Memorial Institute (RPMI) 1640 medium with final concentrations of 10% fetal 

bovine serum (FBS), 2mM glutamine and 1% Penicillin/Streptomycin. MDA-MB-231 cells were 

grown in Dulbecco9s Modified Eagle Medium (DMEM) with 10% FBS+2mM L-Glutamine and 1% 

Penicillin/Streptomycin. All cells were grown according to ATCC recommendations in a humidified 

tissue culture incubator at 37 °C with 5% CO2 environment. 

 

Generation of FUCCI(CA)2-equipped cell lines 

Cells were put in 24 well-plates and plated at a density of 500,000 cells in 500 ¼l of medium per well. 
The Lentiviral vector carrying the tFUCCI(CA)2/pCSII-EF (Sakaue-Sawano et al., 2017) plasmid was 

diluted in RPMI 10% serum pen/strep in order to add 500 ¼l to the cells. Three rounds of infection 
were carried out in the presence of 5ug/mL of polybrene (Sigma). Cells were infected simply by 

adding the 100X concentrated virus supernatant (20-35¼L/well) onto the cells; the plate was 
centrifuged for 1 hour at RT at 2500rpm. The medium is added 2 hours post-infection up to 1ml 

final. Then incubated at 37˚C overnight. Infected cells expressed FUCCI(CA)2 probes, emitting 

mCherry and mVenus. Therefore, the selection of the cells expressing the FUCCI(CA)2 was done by 

sorting the fluorescence markers, mCherry and mVenus on fluorescence-activated cell sorting 

(FACS) instrument (FACSAria cell sorter,BD Biosciences, Oxford, UK). 

 

SBS coated bottom-glass multiwell plates production 

Glass bottom multiwell plates are coated by Tethis using the Supersonic Cluster Beam Deposition 

(SCBD) technology (a detailed description of SCBD and its principle of operation can be found in 

Refs.(Piseri, Tafreshi and Milani, 2004; Wegner et al., 2006). A supersonic seeded beam of titania 

nano-clusters is produced, under high vacuum, by a pulsed microplasma cluster source (PMCS) 

(Piseri, Tafreshi and Milani, 2004; Wegner et al., 2006) and deposited on glass bottom multiwell 

plates. The process is tuned to produce nanostructured TiO2 films (thickness from 50 to 200 nm) 

with a controlled nanoscale morphology. The titania nanostructured coating of the plates is 

transparent and biocompatible and has a surface topography that promotes the spontaneous 

adhesion and immobilization of living cells (Carbone et al., 2006). 
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Sample preparation 

Approximately 250,000 of Kasumi-1 and NB4 cells and 100,000 of MDA-MB-231 cells were plated 

either in each well of the Tethis SBS 12-well multi-wells or 8-well ibidi plates, in triplicates in the 

presence of the aforementioned compounds at day 0 (T0). Cells were treated with final 2nM, 10nM, 

50nM, 250nM, and 1250nM of Palbociclib, 50nM, 75nM, 100nM, 125nM and 150nM of Ribociclib, 

and 25nM, 50 nM, 75nM, 100nM and 125nM of PF-06873600, diluted in advance and directly in the 

relevant culture medium for each cell line. Only the 50nM treatments are shown for Ribociclib and 

PF-06873600. 

Three cell suspension samples were prepared for triplicate independent counting and the average 

of three readings used as the cell count. Cell suspension was diluted with Trypan Blue dye (Sigma) 

at 1:1 ratio to identify cell viability using Biorad TC20TM automated cell counter. 

 

RNA extraction and RNA-seq protocol 

Total RNA was extracted from dry pallets of cells collected prior- and post-acquisitions and purified 

using the Zymo Research Quick-RNA Miniprep (W/O directzol). Reverse transcription was performed 

with the SuperScript II Kit (Invitrogen), according to the manufacturer9s protocol. RNA-seq was 

performed according to the True-seq Low sample protocol selecting only polyadenylated 

transcripts. In brief, before starting mRNA isolation and library preparations the integrity of the total 

RNA was evaluated by running samples on a Bioanalyzer instrument by picoRNA Chip (Agilent), then 

converted into libraries of double stranded cDNA appropriate for next generation sequencing on 

the Illumina platform. The Illumina TruSeq v.2 RNA Sample Preparation Kit was used following 

manufacturer9s recommendations. Briefly, 0.1-1 ¼g of total RNA were subjected to two rounds of 
mRNA purification by denaturing and letting the RNA bind to Poly‐T oligo-attached magnetic beads. 

Then fragmentation was performed exploiting divalent cations contained in the Illumina 

fragmentation buffer and high temperature. First and second strand cDNA is reverse transcribed 

from fragmented RNA using random hexamers. First strand cDNA was synthesized by SuperScript II 

(Invitrogen) reverse transcriptase transcriptase and random primers and second strand cDNA 

synthesized by DNA polymerase I and Rnase H. The subsequent isolation of the cDNA was achieved 

by using AMPure XP beads (depending on the concentration used, these beads can efficiently 

recover PCR products of different sizes). The product recovered contained overhanging strands of 

various lengths due to the fragmentation procedure. The 59 and 39 ends of cDNA are repaired by the 
39-59 exonuclease activity and the polymerase activity and adenylated at 39 extremities before 
ligating specific Illumina oligonucleotides adapters followed by 15 cycles of PCR reaction using 

proprietary Illumina primers mix to enrich the DNA fragments. Prepared libraries were quality 

checked and quantified using Agilent high sensitivity DNA assay on a Bioanalizer 2100 instrument 

(Agilent Technologies). 

 

RNA sequencing data analysis 

Raw reads 51bp PE for NB4 and Kasumi cells were quality-filtered and aligned to the hg18 reference 

genome using nf-core/rnaseq v3.9 pipeline using STAR as aligner and Salmon for quantification with 

default parameters. Gene counts for each sample were log1p transformed, mean value among the 
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two replicates was taken to compute Pearson correlation among gene expression pre- and post- 

time-lapse acquisition.   

 

Image Acquisition 

Images were acquired with a Leica Thunder Imager (Leica Microsystems, Wetzlar, Germany), 

equipped with a Lumencor Spectra X Light Engine (Lumencor, Beaverton, USA) for fluorescence 

excitation, a motorized stage and a Leica DFC9000 GTC camera. For non-adherent cells, images were 

acquired with LAS X software (Leica Microsystems, Wetzlar, Germany, version 3.7.5.24914) using a 

20X/0.75NA air objective and a binning 2x2 was applied to increase the SNR. The mCherry and 

mVenus signal were detected respectively with 540-580 nm and 460-500 nm excitation filters, 585 

and 505 nm dichroic mirrors and 592-668 nm and 512-542 nm emission filters. The brightfield 

channel was also acquired for representation purposes. We imaged 20 to 25 fields of views per well 

and focal points were manually set in each position before starting the acquisition and kept constant 

during the whole time-lapse thanks to the Adaptive Focus Control (AFC, Leica Microsystems). The 

total duration of the time-lapse on non-adherent cells was 72 hours, and the time interval was set 

to 1 hour to prevent cell phototoxicity. 

Regarding the experiment on adherent cells, a 10X/0.32 NA PH1 dry objective was used and the 

time-lapse duration was set to 120 hours, with 30 min as timestep. In this case 10 fields of view per 

well were acquired. 

 

Image Analysis 

The image pre-processing step was performed using a custom-made Fiji macro. Briefly, the pipeline 

executed a flat-field correction on the fluorescence channels with the plugin Basic (Peng et al., 

2017), then applied a gaussian blur (sigma=1 px), a top hat filter (radius=20 px) and a background 

subtraction to enhance the cells9 signal; duplicated images of Red and Green channels were merged 

in a multichannel stack and brightness and contrast values were adjusted, according to each 

experiment, within the range of 0 to the maximum gray value of the stack9s histogram; the 

multichannel images were then converted into RGBs for each frame, and finally into a HSB stack 

from which the Brightness channel and the Hue channel were kept respectively for tracking and cell-

phase profiling purposes; the final processed image was saved for further analysis and was 

composed of 4 channels: the Red and Green channels, the Brightness channel and the Hue channel. 

The tracking analysis was realized through TrackMate (version 7.10.2). We automatized the 

execution of TrackMate over all the fields of view acquired in the experiment by adapting a Jython 

script, freely available on the website (https://imagej.net/plugins/trackmate/scripting/scripting). As 

the shape of our cells was approximately round, the Laplacian of Gaussian (LoG) detector was 

selected as the cell identifier on the Brightness channel, and the Linear Assignment Problem (LAP) 

Tracker algorithm was utilized for linking phase, adjusting the Max Linking distance parameter for 

each experiment. Gap closing was enabled for up to 3 frames, considering the significant decrease 

in fluorescence intensity during mitosis and the transition between G1 and S phase, that can 

eventually affect the detection of a cell, due to the rapid decrease of the Red signal and the relatively 

slow increase of the Green one (Sakaue-Sawano et al., 2017). Identified tracks were filtered for total 
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duration, track displacement, and starting frame of the track. Specifically, the duration filter 

maximized the chances to follow at least one cell cycle (Track Duration > 25 hours), while the cutoff 

on total displacement assures the deletion of dead cells that are usually motionless (Track 

displacement > 10 px). Tracks that start after the first 10 hours were discarded to avoid tracker 

errors that may give rise to unreliable cell cycle quantification as the cells tend to form clusters 

above 24-30 hours of experiment (movie S1). The specific values of parameters of the LoG cells9 
detector (i.e., spot radius, quality threshold) were preliminarily checked on images via the 

TrackMate GUI, as well as the linking and gap closing max distances and the final filters on tracks9 
duration, displacement and starting frame. The parameters selected manually were then inserted 

in the script for the batch execution. As an output, we automatically saved a table of spots for each 

field of view, corresponding to cells in identified tracks, with the selected TrackMate features (See 

Suppl. Table I). 

 

Model Creation  

To assess the traceability of each track in a fast, efficient and scalable manner, we employed a 

machine-learning approach. A dataset consisting of 2319 manually annotated tracks, with 1,939 

tracks classified as untraceable and 380 tracks marked as traceable (~1/5) was used. The dataset 

was divided into training and test sets, with 1855 tracks (~ 80%) allocated for training and 464 tracks 

(~20%) reserved for testing while also stratifying for the outcome variable. To address the problem 

of the unbalanced outcome a downsampling procedure is employed in the training set. 

Time-series-like features associated with each track are extracted (Wang, Smith and Hyndman, 

2006; Hyndman et al., 2023), as illustrated in Figure S3A, displaying the distribution of the 70 

features utilized for distinguishing between traceable and untraceable cells. 

To optimize model performance and address potential biases of the random forest model 

employed, we applied stratified 10-fold cross-validation on the training set, creating resampling 

folds. Leveraging these folds, we conducted hyperparameter tuning. Specifically, we explored 

different values for Randomly Selected Predictors (mtry), number of trees (trees), and Minimal Node 

Size (min_n) to identify the combination that maximized the Area under the receiver operator curve 

(AUC) (Sacks et al., 1989). Subsequently, an additional round of training was conducted using the 

selected hyperparameters, this time employing the entire training set. The trained model was then 

evaluated on an independent test set to assess its performance. The results, as depicted in Figure 

S3B, revealed an AUC value of 0.971 as well as a sensitivity of 0.897, a specificity of 0.974 and an 

accuracy of 0.905 confirming the validity of the training procedure. These values were comparable 

to those obtained from the resampling folds, indicating the absence of overfitting. 

Given the relatively small size of the manually annotated training set, we performed an additional 

and final round of training using the pseudo-labelling framework (Lee, 2013). The original model 

was used to predict unlabelled data, any predicted probability exceeding 0.5 was considered 

indicative of confidence in the prediction. A new semi-supervised random forest model was trained 

on this augmented dataset, employing the same hyperparameters as determined previously. This 

final model achieved an improved AUC of 0.975 on the test set, indicating enhanced track 

trackability assessment. The schematics of the pipeline, implemented in R (v. 4.3.0) (R Core Team, 
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2021) using Tidymodels (v. 1.1.0) (Kuhn and Wickham, 2020), and Tidyverse (v.2.0.0) (Wickham et 

al., 2019) can be seen in Figure 3 (panels A). 

 

Time series analysis 

To generate time-series-like information, we utilized the above-mentioned Fiji pipeline, which 

provided a table containing intensity values for the red, green, and hue channels. To address missing 

frames resulting from tracking gaps, an Exponential Weighted Moving Average (EWMA) was fitted 

to impute these frames. 

To further refine the track curves, we applied a two-step smoothing process. Initially, a Simple 

Moving Average (SMA) was applied, followed by fitting a fixed lambda Smoothing Spline with »= 
0.0001. Finally, min-max scaling is used to normalize the tracks within the range of [0, 1] to make 

the red and green intensity comparable. 

To tackle tracking errors introduced by the Fiji pipeline, we applied the aforementioned random 

forest model to assess the traceability of each cell (Fig. 2B). 

On the tracks classified as trackable, a manual threshold on the hue intensity is employed to 

determine the cell cycle phases (G1, S, and G2/M). Furthermore, to quantify the cell cycle at the 

single-cell level, track splitting to isolate individual cell components and perform phase 

reassignment into G1, G1/S, S, and G2/M is performed using a custom R function. 

The resulting single-cell tracks enabled the quantification of individual phase durations for each cell. 

As an example, the cell phase quantification for five different conditions can be observed in Figure 

3. 

 

Model Deployment 

The resulting model was saved as a .rds file to facilitate practical implementation. Moreover, we 

encapsulated the model as an API in a Docker container using Vetiver (v. 0.2.1) (Silge, 2023), 

enabling easy deployment and usage. 

 

Code availability 

The source code and user manual for the Fiji pipeline is available at 

https://github.com/ieoresearch/cellcycle-image-analysis. 

The source code and user manual for the R pipeline is available at GitHub repository.  
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Figure legends 

 

Figure 1: Cell Tracking. A) Examples from Kasumi-1 cell and NB4 cell lines (upon the different 

conditions: DMSO, Palbociclib 50 nM, PF-0606873600 50 nM, Ribociclib 50 nM, Untreated), showing 

a tracked cell that explores the different cell-cycle phases (Scale bar is 5 µm).  B) Fluorescence 

images with R and G channels were processed in Fiji to create a HSB stack, from which the Brightness 

and Hue channel were extracted to be used respectively as tracking channel and cell phase 

identification channel (Scale bar is 50 µm). C) Plot curves generated using the data extracted from 

the TrackMate script execution. The variations over time of mCherry (red curve) and mVenus (green 

curve) fluorescence intensities (left plot) and of the Hue scale (right plot) of a single NB4 cell in 

DMSO condition are shown. 

 

Figure 2: Training and inference pipelines. A) The Machine Learning pipeline followed to create the 

quality model. Using timetk time-series associated features are extracted from the list of manually 

annotated tracks. A random forest model is then trained to predict whether a track is cycling or not. 

B) An unannotated track can be fed to the model to predict whether it is cycling or not. 

 

Figure 3: Cell Cycle Phase Assignment.  A) Waterfall plot of the =sorted= and <splitted= cells. Each 
row corresponds to a cell. B) Boxplot of the cell phase duration of the first cell cycle. The asterisks 

are the adjusted significance level given by Wilcox test of the sample for each over the NB4 DMSO 

for each phase according to the color (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: 

p <= 0.0001). 

 

Figure 4: Experimental and analysis workflow. Summary of the entire experimental workflow, from 

cell seeding to the calculation of cell cycle phases. Asterisks in the Live Cell Imaging section mean 

optional settings. Image created on Biorender.com. 
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Supplementary Figure legends 

 

Figure S1: Cell Cycle Phase Assignment. A) Examples from NB4 cell line upon different Palbociclib 

treatment concentrations showing a cell that explores the cell cycle phases (Scale bar is 5 µm). For 

Palbociclib 250 nM and Palbociclib 1250 nM conditions, the cell was manually tracked for 

presentation purposes. 

Movie S1: Representative movie of NB4 cells seeded on SBS + MC. 

Movies S2-S4: Representative movies of 3 cells tracked with TrackMate expressing the FUCCI(CA)2 

probe, showing the sequence of color changes (1 frame/hour). 

Movie S5: Representative movie of NB4 cells seeded on SBS without MC. 

 

Figure S2: A) Pearson correlation among pre and post time-lapse acquisition of Kasumi-1 (left) and 

NB4 (right) cell lines. In the x axis is reported the log1p counts mean between the two replicates 

before the acquisition, while on the y axis the log1p counts mean between the two replicates after 

the acquisition. 

 

Figure S3: A) Boxplot showing the distribution of the feature extracted from the training set using 

timetk. B) ROC curve of the random forest model computed in the test set.  

 

Figure S4: A) Waterfall plot of the =sorted= and <splitted= cells. Each row corresponds to a cell. B) 

Boxplot of the cell phase duration of the first cell cycle. A total of 1116 cells were analysed, obtaining 

a mean (± SD) cell cycle duration of 24.5 ± 8.5 h. C) Example of an adherent cell in control condition 

tracked with the described pipeline (Scale bar is 5 µm). 
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