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Summary  

Neural oscillations reflect fluctuations in the relative excitation/inhibition of neural systems1–5 
and are theorised to play a critical role in several canonical neural computations6–9 and 
cognitive processes10–14.  These theories have been supported by findings that detection of 
visual stimuli fluctuates with the phase of oscillations at the time of stimulus onset15–23. 
However, null results have emerged in studies seeking to demonstrate these effects in visual 
discrimination tasks24–27, raising questions about the generalisability of these phenomena to 
wider neural processes. Recently, we suggested that methodological limitations may mask 
effects of oscillation phase in higher-level sensory processing28. Thus, to test the generality 
of phasic influences requires a task that requires stimulus discrimination but depends on 
early sensory processing. Here, we examined the influence of oscillation phase in the visual 
tilt illusion, in which an oriented centre grating is perceived titled away from the orientation of 
a surround grating29. This illusion is produced by lateral inhibitory interactions in early visual 
processing30–32. We presented centre gratings at participants’ titrated subjective vertical 
angle and had participants report whether the grating appeared tilted leftward or rightward of 
vertical on each trial while measuring their brain activity with EEG. We observed a robust 
fluctuation in orientation perception across different phases of posterior alpha and theta 
oscillations, consistent with fluctuating illusion magnitude across the oscillatory cycle. These 
results confirm that oscillation phase affects complex processing involved in stimulus 
discrimination, consistent with their purported role in canonical computations that underpin 
cognition. 
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Results 

To probe early visual processing for potential influences of neural oscillation phase in tasks 
more complex than simple detection, we exploited an orientation-contingent visual illusion 
called the direct tilt illusion29,33,34 (hereafter, the tilt illusion; Figure 1A). The tilt illusion is a 
well-studied phenomenon in which a central test stimulus has its perceived orientation 
biased away from the orientation of a surround stimulus (i.e., a repulsive effect) when the 
angular difference of the surround relative to the centre is in the range of 10-40°. The tilt 
illusion is produced by suppressive lateral interactions in early visual cortex, whereby neural 
responses to a central test grating are suppressed in an orientation-specific manner by the 
presence of an oriented surround30–32. The orientation-specific nature of this effect 
suppresses population neural responses representing angles similar to that of the surround, 
producing a population response to the test stimulus that has its overall orientation 
distribution biased away from the angle of the surround34. The tilt illusion is an ideal 
candidate for probing modulation by neural oscillations because it is robust over short 
presentation times35, allowing for presentation during discrete portions of the oscillatory 
cycle.  

 

Figure 1. Task design and behavioural results. A. A demonstration of the illusion. The centre 
grating is oriented vertically but is perceived as tilted leftward due to the influence of the oriented 
surround. B. Participants judged the orientation of a central grating, titrated to their subjective 
perception of vertical under the tilt illusion. Surround gratings were presented at ±30°. Following each 
response, a mask was presented to prevent the buildup of orientation aftereffects across trials. C. 
Density plots showing illusion magnitudes in each surround condition. D. The percentage of illusion-
consistent responses in each surround condition. As the tilt illusion is a repulsive illusion, illusion-
consistent responses were coded as responses in the opposite direction to the surround. In C and D, 
coloured dots and thin black lines represent individual participants. White dots represent medians, 
thick grey bars represent the interquartile range, and thin grey bars represent 2.5x the interquartile 
range. CCW: counterclockwise. CW: clockwise. 

Figure 1B shows a schematic of the trial design. Gratings oriented ±30° were presented 
surrounding central gratings that had their orientation titrated to the threshold angle for a 
vertical percept (the angle at which the central grating was seen as rotated counter-
clockwise [CCW] and clockwise [CW] equally often for a given surround). Stimuli were 
presented briefly (8.33ms) at 60% contrast and were clearly visible. Participants responded 
to the perceived orientation of the central grating on each trial (CCW or CW relative to 
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vertical). For all analyses, responses from the two surround conditions were combined by 
recoding them relative to the repulsive nature of the illusion. Responses were coded as 
either ‘illusion consistent’ (i.e., CW responses when the surround was CCW, and vice versa) 
or ‘illusion inconsistent’ (i.e., CW when the surround was CW, and vice versa).  

Behavioural confirmation of the tilt illusion 

We first quantified the magnitude of the illusion for each individual. Figure 1C shows the 
bias-corrected illusion magnitudes for each participant from the CCW- and CW-surround 
conditions. Both surround conditions produced an illusion in the expected direction, and the 
effect was comparable to the magnitude of tilt effects reported in past research research35 
(CCW surround: M (SD) = 6.05° (1.86°), t(35) = 19.51, p < .001, 95% CI [5.42°, 6.68°]; CW 
surround: -4.90° (2.11°), t(35) = -13.93, p < .001, [-5.61°, -4.18°]). Uncorrected thresholds for 
each participant and for each condition are shown in Table S1. Change in threshold across 
the experiment was examined to assess the stability of the illusion across time. Thresholds 
reduced across the course of the experiment (CCW surround: Mreduction (SD) = 0.61° (1.33°), 
t(35) = -2.74, p = .010, [-1.06°, -0.16°]; CW surround: 0.39° (1.44°), t(35) = 1.98, p = .056, [-
0.01°, 1.02°]), suggesting a degree of habituation over time. The proportion of illusion-
consistent responses in each condition departed slightly from 50% overall (Figure 1D; CCW 
surround: 0.46 (.08), t(35) = -2.70, p = .011, [.44, .49]; CW surround: .47 (.09), t(35) = -2.16, 
p = .037, [.44, .50]), but produced comparable numbers of illusion consistent and illusion 
inconsistent responses in each condition, allowing us to conduct a well-powered analysis of 
the influence of phase on behaviour36.  

Influence of trial-wise excitation and inhibition 

Previous work has established that individuals with greater suppression of V1 Blood-Oxygen 
Level Dependent (BOLD) responses to orthogonal orientations relative to aligned 
orientations show a larger tilt illusion37, possibly due to the role of neural inhibition in 
modulating the precision of orientation tuning in early visual cortex38–41. Here we extend 
these findings by demonstrating that the magnitude of the tilt illusion changes with trial-by-
trial fluctuations in the relative level of neural excitation and inhibition. We examined three 
correlates of excitation/inhibition, namely, alpha power, and the slope and offset of the 
power-law function of the EEG power spectrum. 

The amplitude of pre-stimulus alpha oscillations is a well-established correlate of neural 
inhibition13,42–44. For example, higher alpha power is associated with reduced perceptual 
indices of excitability45, reduced neural firing1, and reduced BOLD response46. Alpha power 
in area V1 also correlates with the strength of surround suppression evoked by stimuli of 
different orientations47. The parameters of the power-law function of the electrophysiological 
power spectrum, which is associated with aperiodic brain activity, also reflect the relative 
excitation/inhibition of neural systems3,48. These parameters correlate with several indices of 
neural excitation and inhibition3 including neural firing rates49,50 and BOLD signals51, and 
have recently emerged as robust correlates of processing in a number of cognitive 
domains52–60.  

Here, we used the specparam toolbox48 to measure, on each trial, alpha amplitude, 
aperiodic slope, and offset in the 500ms prior to stimulus onset, averaged across a central-
posterior region of interest (ROI; see Method and Figure S1). We used logistic mixed-effects 
modelling to estimate whether each of these parameters predicted participants’ perception of 
the central grating on single trials. We constructed a model with fixed effects of alpha power, 
aperiodic slope and aperiodic offset and a random effect of participants, with the goal of 
predicting single-trial perceptual reports (illusion-consistent or illusion-inconsistent perceived 
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tilt). We observed significant prediction of trialwise responses from both alpha power (β = 
.05, p < .001) and aperiodic slope (β = .07, p = .046), both of which suggest that trials with 
higher levels of inhibition were more likely to result in illusion-consistent responses, 
consistent with an increased illusion magnitude on those trials. Aperiodic offset was not a 
significant predictor of participants’ tilt judgements (β = -.04, p = .244). An exploratory logistic 
mixed effects analysis performed at each electrode and corrected for inflation of the false 
discovery rate61 showed similar results: Aperiodic slope was a significant positive predictor of 
illusion-consistent responses at 3 posterior channels. Offset was a significant negative 
predictor at one posterior channel, and alpha power was a significant positive predictor of 
illusion-consistent responses over most of the scalp (58 out of 64 channels; Figure S2).  

Tilt illusion strength fluctuates with prestimulus phase 

Having established that the magnitude of the tilt illusion varies with levels of relative 
excitation/inhibition from trial to trial, we next asked whether the effect also varies with 
changes in the relative level of excitation and inhibition within a trial, due to fluctuations in 
neural oscillations in the visual system. We employed the phase opposition sum36,62, a well 
validated and sensitive metric of oscillatory phase effects. The POS quantifies, at each time 
and frequency in the prestimulus window, the degree to which two different response 
categories (here, illusion-consistent and illusion-inconsistent responses), cluster at different 
phases of an oscillatory cycle. This metric showed that the likelihood of participants making 
an illusion-consistent or illusion-inconsistent response fluctuated with the phase of 
prestimulus alpha and delta-theta oscillations at our posterior ROI (Figure 2A). After 
correcting for multiple comparisons, we observed significant phase dependence for signals 
between 11 and 15 Hz from -520ms until -477ms, at 6 Hz from -391ms until -359ms, and at 
3 Hz from -367ms until -324ms. Exploratory POS analyses across all electrodes yielded 
similar results (Figure S3).  

 

Figure 2. Phase opposition analysis shows tilt illusion magnitude depends on oscillation 
phase. A. Results of the phase opposition sum (POS) analysis in the pre-stimulus window (stimulus 
onset was at 0ms). Significant POS (indicated by white outlines) was observed in the alpha, theta, 
and delta range, after FDR correction for multiple comparisons61. B. Results of the unbiased phase 
alignment procedure, demonstrating the effects of phase on orientation perception in the tilt illusion. 
For each significant time and frequency, each individual’s responses were quantified for each of 7 
phase bins of equal width. The phase bin with the fewest illusion-consistent responses was aligned to 
0 radians and excluded from analysis. The remaining phase bins show significant modulation of tilt 
judgements by phase. Error bars represent within-participants standard error63,64. 

We performed an unbiased alignment procedure to quantify the POS effects15,17,20. When 
results were aligned to the phase bin with the lowest proportion of illusion-consistent 
responses, all significant clusters showed the expected monotonic increase in illusion-
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consistent responses as phase deviated further from the aligned bin (Figure 2B). Comparing 
the bins nearest to the aligned bin with the most distant bins provided further evidence for 
modulation by phase in each case (alpha: t(35) = 2.63, p = .006; theta: t(35) = 1.81, p = 
.040; delta: t(35) = 1.83, p = .038). 

Influence of oscillatory power on detectability of phasic sampling 

The analysis of phase effects in the prestimulus period is performed as a proxy for the effect 
of phase at the time the stimulus is processed. This approach allows us to avoid the 
confounding influence that stimulus-evoked responses have on phase estimates. An 
assumption of this method is that the neural oscillations relating to behaviour continue until 
the time the stimulus is processed. The effect of phase observed was relatively distant in 
time from stimulus onset (~0.5 seconds), but we did not see a continuation of this effect until 
the time of stimulus onset. As such, we considered whether changes in oscillatory power 
may be masking the presence of phasic influences on behaviour in the intervening period. At 
very low power, oscillatory phase values become meaningless because the oscillation is 
effectively absent. However, even before this point is reached, when a low-power oscillation 
is present and may still be having physiologically relevant effects, phase values can become 
difficult to estimate as they are corrupted by the low signal-to-noise ratio of the data65–67. 
Consistent with this proposal, we observed a significant decrease in the power of alpha 
oscillations over the prestimulus period, t(35) = 6.10, p < .001 (Figure 3), potentially 
explaining why phase effects were not observed throughout the prestimulus period. 

 

Figure 3. Change in power across the prestimulus window. Relative to the average of the 
prestimulus period, power in the alpha band (8-14 Hz) was higher at the start of the window relative to 
times closer to stimulus onset at 0ms.  

 

Discussion 

We set out to test whether the phase of neural oscillations influences the inhibitory 
interactions in early visual cortex that give rise to the tilt illusion. We observed robust 
fluctuations in the likelihood that participants reported the central target as being tilted in a 
direction consistent with the illusion across the alpha, theta, and delta cycles. Our logistic 
regression results indicated the direction of these effects, with increased increased alpha 
power and increased aperiodic slope, both correlates of increased inhibition, corresponding 
to increased magnitude of the tilt illusion. The role of inhibition in producing orientation tuning 
in early visual areas is well established, although at least two different mechanisms for doing 
so seem to exist between, and potentially within, different mammalian species31,38,41,68. The 
current experimental design does not allow us to disentangle the mechanisms underlying 
fluctuations in tilt illusion magnitude. These fluctuations may be caused by fluctuations in the 
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strength of the suppressive component of surround suppression across the oscillatory cycle. 
Alternatively, illusion magnitude may fluctuate if oscillation phase is influencing the precision 
of orientation tuning, modulating the degree of overlap in the population neural responses to 
different orientations. These possibilities are not mutually exclusive69. 

Critically, our purpose in examining phasic influences on the tilt illusion was to test the 
involvement of neural oscillations in perceptual discrimination. We asked this question in 
response to recent null results in studies of phasic influences on perception24,26,70,71 that are 
difficult to explain given accounts of neural oscillations subserving canonical neural 
processes6–8. If phasic fluctuations in processing are fundamental to cortical computation, 
why are we not always able to observe their influence on behaviour? We have recently 
suggested that stimulus evoked brain responses, particularly the stimulus evoked phase 
reset, may place a fundamental limit on our ability to observe phase-behaviour relationships 
for anything but the most hierarchically early neural processes28 (see also72). To test this 
possibility we required a task in which the relevant neural processes occur early in the 
processing hierarchy but involve a level of complexity beyond the simple first-order detection 
processes linked to phase previously15–17,20. The tilt illusion is known to be caused by neural 
interactions in early visual processing30–32, making it an ideal candidate. Using this illusion, 
we were able to demonstrate that effects of phase on visual perception occur for high 
contrast, highly visible stimuli in a discrimination paradigm.  

The influence of oscillation phase in discrimination performance is consistent with 
suggestions that neural oscillations play a role in processing throughout the cortical 
hierarchy6. Prior demonstrations of phasic influences on perception have primarily been in 
detection paradigms15–17,20. Detection paradigms test the simplest elements of sensory 
processing, requiring only that a threshold be placed on the activation of a neural population, 
which, if crossed, signals the presence of a stimulus. Whether the threshold is crossed due 
to a modulation of stimulus information or noise, or whether it contains any feature-specific 
content at all, is not tested by examining the effect of phase on hit rates73. Discrimination 
tasks, by contrast, are more complex, requiring comparison of feature-specific signal 
representations to multiple target categories, and evidence for the different categories to be 
accumulated. Demonstration of phasic influences on discrimination judgements shows an 
influence of neural oscillations beyond modulating general levels of activation in visual 
cortex. Our results demonstrate an influence of oscillation phase on interactions between 
disparate neural populations, consistent with suggestions of neural oscillation phase being 
involved in coordinating neural processing and communication10–12,74,75. 

Recent null results in phasic sampling studies have also posed a challenge for oscillatory 
theories of neural processing and cognition. The power of alpha and theta oscillations has 
been linked to attention and perception in a wide range of different task contexts 18,73,76–86. 
Based on results such as these, and others showing neural oscillations influence neural 
signal transmission10,11,87–90, several theories have proposed that neural oscillations, and in 
particular, phase, play a key role in organising the neural processing that underpins 
cognition11,12,14,42,74,91–94. It is difficult for theories of rhythmic influences on cognitively-
relevant neural processing to reconcile why such influences might not be observable in the 
outcomes of studies that probe those cognitive and perceptual functions. However, null 
results do not unequivocally contradict theory if those nulls may be due to methodological 
limitations. Our results point towards some key methodological limitations to be considered 
in studies of phasic influences on perception and cognition.  

There are several ways in which an existing phasic influence may be invisible to prestimulus 
analyses. As noted above, we previously identified that an intervening phase reset causes 
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problems for relating pre-stimulus phase to neural processing occurring after the reset 
occurs28, as is likely the case for all but the lowest levels of visual processing. This problem 
arises because prestimulus phase analyses assume a statistical correspondence between 
phase in the prestimulus period and phase at the time of task-related neural processing, and 
a phase reset breaks this correspondence. It has also been shown that the onset of an 
event-related potential can corrupt phase estimates at nearby times, producing blind-spots in 
phase-behaviour analyses72.  

Another limitation on the ability for phase studies to provide meaningful information about the 
role of phase in cognitive processing is suggested by the fact that our significant phase 
effects occurred roughly 500ms prior to stimulus onset. How could the phase of oscillations 
have an influence on processing before the stimulus appeared, but not during the 
intervening period until target onset? Correspondence between prestimulus phase and 
behavioural outcomes, as shown by our significant POS analysis, implies that the 
oscillations continued from the time of our effects until the stimulus was processed. We did 
not observe a relationship between the oscillation and behaviour at these times, despite the 
result at earlier times telling us the relationship was present. Our analysis of oscillatory 
power over this same period suggests this was most likely due to low oscillatory power 
reducing our ability to reliably estimate phase over this period65–67. When amplitude is zero, 
phase values become random. Well before amplitude approaches zero, however, in the 
presence of aperiodic noise, low signal-to-noise ratio of the data reduces the accuracy of 
phase estimates 65,67. Low signal-to-noise ratio may be particularly problematic for studies of 
oscillation phase in areas of cognition such as spatial attention and temporal expectation, as 
these phenomena are known to produce suppression of alpha oscillations 79–81,86,95,96, and 
thus are likely to produce less reliable phase estimates.  

In summary, our results provide a clear indication that neural oscillation phase influences 
interactions between distinct neural populations in visual areas. These results provide a 
significant advance on prior detection studies, showing an influence of neural oscillations on 
feature-specific decision processes, as would be expected to exist if neural oscillations play 
a fundamental role in mediating neural communication and computation.  
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Methods 

Participant Details 

Forty healthy adults (26 self-identified females, 14 self-identified males, mean age = 23.69 
years, SD = 3.86 years, all right-handed) participated in this study. The age data of four 
participants were lost due to a technical error. One participant was excluded from analysis 
due to problems with the EEG recording resulting in large artefacts that could not be 
corrected using standard procedures. Three additional participants were excluded because 
the behavioural titration procedure failed to converge. No experimental data was collected 
for these participants. There were 36 participants (24 self-identified females) in the final 
analysed dataset. Sex differences were not examined in this study as there are no sex 
differences in the perception of the tilt illusion98, and our study would not have been 
sufficiently powered for such a comparison. Participants were recruited through The 
University of Queensland’s research participation platform, gave written informed consent 
before participating, and were compensated at a rate of $20 per hour for their time. All 
experimental procedures were approved by the Human Research Ethics Committee at The 
University of Queensland (2021/HE002284).  

Method Details 

Stimuli and Apparatus 

All stimuli were generated using MATLAB (MathWorks, R2020B) with the Psychophysics 
Toolbox99,100 (version 3.0.17) and presented on a gamma-corrected LCD monitor (VIEWPixx 
3D, VPixx Technologies; 1920 x 1080 pixels, 22.5-inch, 120 Hz). A viewing distance of 57 cm 
was maintained using a chin- and forehead-rest. A black cardboard annulus with a central 
hole of approximately 26° was placed in front of the monitor, such that the stimuli were 
visible through the annulus, but the participants were not able to view any portion of the 
monitor frame. A black cloth was draped over surrounding equipment to remove all external 
cues to vertical. Central fixation was controlled using a video-based infra-red eye tracker 
(EyeLink 1000 Plus; SR Research). The eye tracker was calibrated before each task block 
using the standard five-point calibration. Participants responded to the stimulus using a USB 
keyboard. 

On each trial, a fixation target comprising an inner black dot (0.17°; RGB: 0, 0, 0) and outer 
white ring (0.3°; RGB: 255, 255, 255) appeared for 1500–2000ms on a grey background 
(RGB: 160, 160, 160; Figure 1). Next, a circular central test grating (5° diameter) and a 
surrounding annular grating (20° diameter; absent in the ‘surround-absent’ titration condition, 
see below) were presented simultaneously for 8.33ms. Extremely brief presentations were 
employed because longer stimuli would overlap many different oscillatory phase angles. 
Past research has shown that the tilt illusion is robust when stimuli are presented briefly35. 
Both central and surround gratings had a spatial frequency of 1cpd and Michelson contrast 
of 0.6. Prior to the main task, we titrated the central grating to each participant’s subjective 
vertical angle for our two main conditions (surround ±30°) and also included a surround-
absent condition to quantify participants’ bias in the perception of vertical when the illusion 
was absent (further titration details below). During the main task, the surround grating was 
oriented at ±30°, and the central grating was presented at each individual’s titrated vertical 
angle for the given surround orientation. A thin grey ring (0.3° width) between the central 
grating and the surrounding annulus was presented to reduce perceptual interference at the 
point where the centre and surround gratings met. Participants had an untimed response 
period in which to indicate whether they perceived the central grating to be tilted leftward or 
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rightward relative to vertical, using their right hand on the left and right arrows of the 
keyboard. They did not receive feedback on their responses. 

After the response was made for a given trial, a 200ms circular masking stimulus was 
presented to prevent visual aftereffects from one trial influencing perception on the next. The 
masking stimulus comprised a combination of six gratings, angled every 30° from 30° to 
180°, with each grating at a different random phase on every trial. It is important to note, this 
was not a visual mask in the classical sense, in that it did not serve to reduce the visibility of 
the target. Stimuli in this task were clearly visible, the response period was untimed, and the 
mask was presented after the response was made.  

Titration 

Participants completed the experiment in a dark, electro-magnetically shielded room. 
Following EEG setup (see EEG Acquisition), participants received written and oral 
instructions. They then completed two stages of titration to determine the threshold angle at 
which they were equally likely to report the central grating as rotated left and right of vertical 
(their ‘subjective vertical’) for each of three conditions: +30° surround (right-surround 
condition), -30° surround (left-surround condition), and a central grating with no surround 
grating (no-surround condition).  

In the first stage of titration, each stimulus was titrated separately in two 1-up-1-down 
staircases. This provided a total of six staircases which were interleaved in their 
presentation. For each condition, both staircases began with a central orientation of ±15° 
which was adjusted in 1° increments after each response. All staircases ended after 10 
reversals. The threshold for each staircase was calculated as the average orientation of the 
final 6 reversals. This value was averaged for the two staircases of each condition.  

To ensure accurate estimates of participants’ subjective vertical thresholds (as phase-
opposition analyses [see below] require a similar number of trials in each condition36, with 
the conditions of interest here being leftward versus rightward responses), a second stage of 
titration was conducted. This titration again used two staircases for each condition, with each 
staircase beginning at the threshold orientation derived from the first titration ±0.5°, then 
adjusted in 0.125° increments after each response. These staircases continued for 15 
reversals and the final threshold estimate for each staircase was again the average 
orientation of the final 6 reversals. The final threshold estimate for each condition was the 
average threshold of its two staircases. The final thresholds in the left- and right-surround 
conditions were used as the central orientations in the main task (Figure 1B and Table S1). 

Main Task 

The main task proceeded in identical fashion to the titration task, with EEG recorded during 
each trial. To account for changes in illusion magnitude due to fatigue or habituation, if 
participants made the same response to one condition five times in a row, the angle of the 
central stimulus was adjusted 0.125° in the opposite direction. This adjustment was 
performed to ensure that similar numbers of leftward and rightward responses were made in 
each condition, as required for phase opposition analysis. The main task consisted of 10 
experimental blocks of 80 trials each, for a total of 800 trials (excluding titration trials). Self-
paced break periods were provided after each block.  

Quantification and Statistical Analysis 

Behavioural Analyses 
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Magnitude of the tilt illusion was quantified by subtracting the threshold central orientation for 
the surround-absent condition from the left- and right-surround conditions. This allowed us to 
compare the illusion magnitudes between the two conditions, correcting for any bias in 
participants’ perceptions of vertical. When quantifying change in illusion magnitude over the 
course of the experiment, we compared the raw, unadjusted thresholds for the left- and right-
surround conditions to those achieved at the end of the experiment, because there was no 
surround-absent condition presented in the main experiment to allow for subtraction. For all 
EEG analyses, leftward and rightward response data from the two surround conditions were 
combined by recoding responses in each condition as illusion-consistent (away from the 
flanker direction, i.e., rightward responses on left-surround trials, and leftward responses on 
right-surround trials) or illusion-inconsistent (rightward responses on right-surround trials, 
and leftward responses on left-surround trials). The justification for this is that the tilt illusion 
is a repulsive illusion29, and thus a neural state that produced an increase in the magnitude 
of the illusion would be expected to result in more responses away from the surround 
direction for a given central stimulus, whereas a state that reduced the magnitude of the 
illusion would result in more responses toward the surround direction. 

EEG Recording 

An Active Two system (BioSemi) recorded continuous EEG data, digitised at 1024 Hz with 
24-bit A/D conversion. Sixty-four active Ag/AgCl electrodes covered the scalp, placed 
according to the standard international 10-10 system101 using a nylon cap. The Common 
Mode Sense and Driven Right Leg electrodes served as the reference and ground during 
recording. Eye muscle activity was recorded using bipolar horizontal electro-oculographic 
(EOG) electrodes at the outer canthi of each eye and bipolar vertical EOG electrodes above 
and below the left eye. Bilateral mastoid electrodes served as import references. 

EEG Preprocessing 

EEG pre-processing was performed offline using the EEGLAB Toolbox102 for MATLAB, and 
analyses were performed using custom MATLAB scripts, the specparam toolbox48, and code 
from VanRullen36. Data were down-sampled to 256 Hz, high-pass filtered with EEGLAB’s 
default FIR filter at 0.1 Hz and re-referenced to the average of all electrodes. Bad electrodes 
were detected by EEGLAB’s default kurtosis-based detection algorithm (threshold: 5 SDs) 
and removed for later interpolation. Eye blinks which overlapped stimulus presentation were 
identified as any trial containing >100 µV deviation on any ocular electrode during -200 to 
+200ms relative to stimulus onset. These trials were removed from subsequent analyses (M 
= 25.02 trials, SD = 35.85, range = 0–159). Data were re-referenced to the average of all 
electrodes and epoched from -2000 to +1000ms relative to stimulus onset. The data were 
baseline corrected by subtracting the mean voltage from -100 to 0ms from all timepoints. 
Using infomax ICA, data were then examined for artefacts of non-neural origin, including eye 
blinks, eye movements, muscle activity, line noise, etc. Components were evaluated by 
visual inspection with the assistance of the SASICA plugin for EEGLAB103, which 
incorporates the ADJUST104 and FASTER105 plugins. On average, 15.75 components were 
removed per participant (SD = 5.06, range = 5–32). Following ICA cleaning, channels which 
had previously been removed from the data were interpolated with spherical spline 
interpolation from surrounding channels. An average of 4.08 electrodes were interpolated 
per participant (SD = 1.79, range = 1–8). 

ROI Selection 

The tilt illusion is well understood to result from local inhibitory interactions in early visual 
processing30–32. As such, for all EEG analyses we focussed on a region of interest (ROI) 
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concentrated on posterior central electrodes (electrodes Iz, Oz, O1, O2, and POz). The ROI 
was chosen apriori but conformed well to the topography of the early stimulus evoked 
response (Figure S1.) For analyses at the ROI, signals from the ROI channels were 
averaged prior to spectral decomposition. To allow for the possibility of effects outside our 
ROI location, we also report the results of analyses performed at each individual electrode, 
corrected for multiple comparisons by controlling the False Discovery Rate61 (FDR).  

Power Spectrum Parameterisation 

EEG data were separated into periodic and aperiodic components using the specparam 
toolbox version 1.0.048. Specparam iteratively fits the EEG power spectrum with a 1/fx 
function, representing the aperiodic component of the data, and some number of gaussians 
above that function, which capture the oscillatory bumps above the aperiodic spectrum. To 
extract single-trial and trial-averaged power spectra, we applied the Welch method to Hann 
tapered data from the pre-stimulus period (-600 to 0ms) to decompose single-trial data into 
frequencies between 0 and 40 Hz in increments of 0.25 Hz. The specparam procedure was 
run on frequency data from 3-40 Hz with the following settings: peak width limits: 0.5–12 Hz; 
maximum number of peaks: 3; minimum peak height: 0 (which sets a peak height threshold 
relative to the scale of the data); peak threshold: 2; aperiodic mode: ‘fixed’. Fits were quite 
good, with average R2 values of 0.94 (SD = .03). For alpha power analyses, power was 
determined by taking the magnitude parameter for peaks in the alpha range (8–14 Hz). Trials 
in which no peak in the alpha range was detected were assigned an alpha power of 0. To 
avoid including participants with little-to-no alpha in the alpha power analyses, we also 
calculated the trial-averaged spectra for every channel for every participant. Participants for 
whom no alpha was detected at more than half of their channels (3 participants), or who had 
no alpha detected at any ROI channel (1 participant), were excluded from alpha power 
analyses. 

Logistic Mixed Effects of Alpha Power and Aperiodic Parameters 

Alpha power, spectral slope and offset measures from single trials were standardised within 
participants by converting to z-scores and were entered as predictors into a logistic mixed 
effects analysis with a random effect of participants, predicting responses (illusion-consistent 
vs illusion-inconsistent) on single trials.   

Phase Analysis 

For the phase analyses, trial data from -2000 to +1000ms relative to stimulus onset were 
decomposed into 38 integer frequencies from 3 to 40 Hz. This decomposition was performed 
via convolution in the frequency domain with complex Morlet wavelets with a width of 3 
cycles at 3 Hz, increasing linearly to 7 cycles at 40 Hz. Data were then re-epoched to the 
pre-stimulus period from -600 to 0ms. Phase at each frequency and timepoint was 
calculated as the angle of the complex frequency representation resulting from wavelet 
analysis. Phase opposition analysis (see below) was performed at all times (-600 to 0 ms) 
and frequencies for signals from the ROI (averaged, then wavelet decomposed). An 
exploratory analysis was also performed at all frequencies, times, and electrodes, corrected 
for multiple comparisons with FDR (Figure S3).   

Phase analyses were performed using the phase opposition sum (POS) metric36. This metric 
compares the sum of the inter-trial phase consistency (ITPC) for two separate trial groups—
here, illusion-consistent versus illusion-inconsistent responses— against the ITPC for both 
groups collapsed together, using the following formula: 
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Where ITPCcon is the ITPC of illusion-consistent trials, ITPCincon is ITPC of illusion-
inconsistent trials, and ITPCall is ITPC of all trials combined. ITPC is calculated as: 

������	 �  �

� � ������
�

	
�

� 
Where eik indicates the complex polar representation of phase values from each time, t, 
frequency, f, and trial, r. This formula computes the absolute value of the vector-average of a 
series of unit-length vectors of differing phase angles, k.  

When trial groups cluster at different phases of an oscillation (e.g., at a peak vs. a trough), 
POS yields a positive score. If phase angles are random or are clustered at the same angle 
in both conditions, POS will approach zero. POS values were converted to p-values using a 
non-parametric permutation test with 1000 permutations. The mean and standard deviation 
of the permuted null distribution were characterised to calculate a z-score for the true POS 
value and this z-score was converted to a p-value by reference to the cumulative normal 
distribution. Individual participant p-values were combined to produce a group-level p-value 
at each frequency and timepoint using Stouffer’s method106. The group-level p-values were 
adjusted for multiple comparisons using FDR correction61.  

To quantify the effects of phase on behaviour we employed an unbiased phase alignment 
procedure15,17,20. The phase values from each time and frequency within significant POS 
clusters were divided into seven bins of equal width from -π to π radians, and the proportion 
of illusion-consistent responses was calculated for the trials in each bin. Next, the bin 
containing the lowest proportion of illusion consistent responses was assigned to the central 
bin at 0 radians. The remaining phase bins were then rotated to maintain their position 
relative to the bin assigned to 0 radians. The central bin that had been used for phase 
alignment was then excluded from statistical analysis, as it was selected based on its 
proportion of illusion-consistent responses and was therefore biased. The remaining bins, 
which were aligned only by virtue of their relationship to the central bin, contain no bias. If a 
phase effect is present, then a monotonic increase in illusion-consistent responses should 
emerge across bins with increasing distance from the central bin. If a phase effect is absent, 
however, then the bin selected for alignment should have had the lowest proportion of 
illusion-consistent responses by chance, and there should be no systematic pattern of 
responses across the remaining bins after alignment.  

After excluding the central bin, six bins remained. We averaged the behavioural data of the 
two bins closest to the central bin to produce a single value for the ‘near-central’ phases. We 
also averaged the data from the most distant bins to produce a single value for the ‘far-from-
central’ phases. A one-tailed repeated measures t-test was used to compare the proportion 
of illusion-consistent responses between the near-central and far-from-central phases, 
averaged across each significant time and frequency identified in the POS analysis. This test 
was one-tailed because the expected direction of phase effects is determined by the phase-
alignment procedure. Note: the significance of any phase effects is already determined by 
the POS analysis prior to any alignment analysis. The purpose of the alignment is to 
visualise the relationship between phase and behaviour, rather than to provide an 
independent test. 
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