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ABSTRACT 1 

Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon that 2 

differentiates into two genomospecies termed division I and II. We leverage a comprehensive collection of 694 B. 3 

fragilis whole genome sequences and report differential gene abundance to further support the recent proposal 4 

that divisions I and II represent separate species. In division I strains, we identify an increased abundance of 5 

genes related to complex carbohydrate degradation, colonization, and host niche occupancy, confirming the role 6 

of division I strains as gut commensals. In contrast, division II strains display an increased prevalence of plant 7 

cell wall degradation genes and exhibit a distinct geographic distribution, primarily originating from Asian 8 

countries, suggesting dietary influences. Notably, division II strains have an increased abundance of genes 9 

linked to virulence, survival in toxic conditions, and antimicrobial resistance, consistent with a higher incidence 10 

of these strains in bloodstream infections. This study provides new evidence supporting a recent proposal for 11 

classifying divisions I and II B. fragilis strains as distinct species, and our comparative genomic analysis reveals 12 

their niche-specific roles.  13 

 14 

IMPORTANCE  15 

Understanding the distinct functions of microbial species in the gut microbiome is crucial for deciphering their 16 

impact on human health. This study reinforces the recent proposal that division II strains constitute a separate 17 

species from division I B. fragilis strains. Our study provides new evidence that divisions I and II exhibit differential 18 

gene abundance related to nutrient utilization, niche occupancy, and virulence. Further, we propose that division 19 

I strains are more equipped to colonize the gut and act as commensals, whereas division II strains possess a 20 

genetic repertoire for extra-intestinal survival and virulence. Classifying division II strains as B. fragilis permits 21 

erroneous associations where experimentalists may attribute their findings in division II strains as functions of 22 

the better studied B. fragilis division I strains. Delineating these divisions as separate species is critical for 23 

distinguishing their distinct functions. 24 

 25 

OBSERVATION  26 

Bacteroides fragilis is a persistent colonizer of the human gut and has been linked to both health and disease 27 

(Wexler, 2007). Multiple studies have reported two distinct, monophyletic groups within B. fragilis, referred to as 28 

division I and division II, which share 87% average nucleotide identity, while the typical species cutoff is 96% 29 

(Johnson, 1978; Podglajen et al., 1995; Ruimy et al., 1996; Gutacker et al., 2000; Nagy et al., 2011; Wallace et 30 

al., 2022; English et al., 2023). Here, we use comparative genomics to identify the genetic differences between 31 

division I and II strains, to provide further evidence for the classification of these divisions as two distinct species 32 

( Wallace et al., 2022; English et al., 2023). We examined genes conserved within each division, but not between 33 

divisions, which likely play a fundamental role in their biology and function within their respective niches. This 34 

comprehensive analysis not only enhances our understanding of B. fragilis but also provides valuable insights 35 

into the properties and functions of division I and II strains and their contribution to host-microbe interactions. 36 
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We analyzed a total of 694 whole genome sequences, 139 from our own collection, which we isolated and 37 

sequenced for the first time (Sanders et al., 2019), and the remaining from public sources (Table 1 and 2). To 38 

compare the genetic relatedness between divisions, we employed MASH, a whole genome k-mer-based 39 

approach (Ondov et al., 2016) to determine the genetic distance between each strain (Figure 1A). Metric 40 

multidimensional scaling (mMDS), which visualizes the pairwise dissimilarities or distances between a set of 41 

objects in a lower-dimensional space, automatically revealed a clear separation of strains into two distinct 42 

divisions (Figure 1A). To further support this distinction, we found a significant difference in GC content (p=8.1e-43 

5) (Figure 1B), though no differences in genome size (p = 0.22) (Figure 1C). Based on the phylogeny of the 44 

core genome alignment by maximum likelihood, midpoint-rooted, divisions I and II also separate into discrete 45 

clades (Figure 1F). Collectively, these analyses reinforce the recent proposal to classify B. fragilis division II 46 

strains as a novel species (Wallace et al., 2022; English et al., 2023).  47 

We next investigated whether divisions I and II associate with different disease states, isolation sites, or other 48 

metadata categories. In our survey of 694 strains, we found division I strains comprised 80% of the total (554 of 49 

694). Among the 409 strains isolated from abscesses, fecal samples, or blood, 74% of division I strains originated 50 

from fecal samples, compared with 56% of division II (p=0.0011) (Figure 1D). Additionally, 16% and 10% of 51 

division I strains were isolated from abscesses or blood, respectively, compared to 23% and 21% of division II 52 

strains (blood, p=0.0049; abscess, p=0.18) (Figure 1D). Notably, division I and II strains exhibited variations in 53 

the continent of isolation. 80% of division I strains originated from North America, compared with only 40% of 54 

division II strains (p=2.2e-16) (Figure 1E, H). In contrast, only 8% of division I strains originated from Asia, 55 

compared to 41% of division II strains (p=2.2e-16) (Figure 1E, G). To further explore the geographical distribution 56 

of these divisions, we examined 502 species-genome bins (SGBs) classified as B. fragilis, which were 57 

reconstructed from 9,428 metagenomic samples worldwide (Pasolli et al., 2019). The results revealed that 437 58 

strains belonged to division I, whereas 65 were division II. No sample contained both divisions, in line with reports 59 

from other studies (Rashidan et al., 2018). Most of the division I strains (75%) originated from Europe or North 60 

America, whereas most division II strains (60%) were from Asia. This aligns with previous reports indicating a 61 

higher rate of cfiA+ isolates (division II) in Japan, Hong Kong, and India (Cao et al., 2022). Altogether, division II 62 

strains are more prevalent in Asian countries compared to Western populations, and the under-representation 63 

of division II strains in public strain repositories may be a result of under-representation of specific populations 64 

(Abdill et al., 2022). 65 

 66 

Our data further support the idea that divisions I and II represent distinct genomospecies. Therefore, we next 67 

tested whether these divisions exhibit differing metabolic requirements, ecological niches, or lifestyles. We 68 

compared the pangenomes of the B. fragilis divisions using panpiper (rolesucsd/Panpiper, n.d.), and identified 69 

794 differentially prevalent genes (log-fold change g 2) (Figures 2A-B and Table 3). Each of the B. fragilis 70 

divisions exclusively harbored either the cfiA (division II) or cepA (division I) gene (Figure 2E and Table 3), as 71 

previously described (Parker & Smith, 1993; Rasmussen et al., 1990). We then assessed the differential 72 

abundance of carbohydrate-active enzymes, along with reference metabolic (EC) and reference KEGG orthology 73 
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pathways (KEGG KO) (Figures 2C-E). Within division II strains, all upregulated glycosyl hydrolase (GH) 74 

categories (GH5, GH9, GH51, and GH95) are associated with the degradation of plant cell walls (Figure 2C). 75 

Specifically, BFAG_03498 (ko:K01179, GH9) is predicted to mediate the breakdown of cellulose (Béguin, 1990), 76 

BFAG_02344 (GH51) is involved in the breakdown of arabinose-containing polysaccharides, and  BFAG_0465 77 

(GH95), an alpha-L-fucosidase,  cleaves internal beta-1,4-glycosidic bonds which are common in seaweed and 78 

mushrooms (Wu et al., 2023) (Table 3). One possible explanation for an increased abundance in plant cell wall 79 

degradation genes in division II strains is differences in diet between hosts harboring division I versus II strains, 80 

which could correlate with their differential geographic abundance (De Angelis et al., 2020). In contrast, in division 81 

I strains, we identified several genes and pathways associated with the degradation of complex carbohydrates, 82 

a hallmark feature of gut-resident commensal Bacteroides (Wexler, 2007) (Pudlo et al., 2022). Specifically, we 83 

identified two predicted alpha-L-rhamnosidases (GH78; BF9343_0522, BF9343_0310), which are core genes 84 

exclusive to division I (Figures 2C and Table 3). Because humans cannot cleave terminal rhamnose units, 85 

rhamnosidases play an important symbiotic role, releasing rhamnose in the human gut, which can then be 86 

converted into the short-chain fatty acid propionate (Mueller et al., 2018).  87 

 88 

Division I strains also exhibit an enrichment of GH33 sialidases, which catalyze the cleavage of terminal sialic 89 

acid residues (Figure 2C). While sialidases have been linked to virulence (Godoy et al., 1993), our previous 90 

work established a role for B. fragilis GH33/NanH sialidase in intestinal colonization and persistence during early 91 

life (Buzun et al., 2023). Furthermore, as sialic acid is identified in capsular polysaccharides and 92 

lipooligosaccharides (Ghosh, 2020), its presence may influence colonization and interactions within the host. 93 

Additionally, the type VI secretion system GA3 (T6SSiii) is more abundant in division I strains (86%) compared 94 

to division II (39%). This system, exclusive to B. fragilis, is recognized for mediating intra-strain competition and 95 

influencing colonization dynamics (Sheahan et al., 2023). Thus, the differential abundance of GH33 sialidases 96 

and T6SSiii GA3 suggests distinct colonization strategies within the gut.  97 

 98 

Division II strains may play a different role in niche occupancy, with several differentially prevalent genes 99 

correlated with pathogenicity. Notably, division II strains exhibit an increased abundance in genes related to 100 

proline degradation and glutamate synthesis pathways (Figure 2D and Table 3), known for their association 101 

with virulence in several bacterial species (Krishnan et al., 2008; Nakada et al., 2002; Zheng et al., 2018). Prolyl 102 

oligopeptidase (EC 3.4.21.26; BFAG_03703) initiates proline cleavage from short peptides, leading to 103 

subsequent degradation of free proline by PutA (EC 1.5.5.2; BFAG_03859), which oxidizes proline to glutamate 104 

and serves as a transcriptional regulator for essential virulence factors (Moxley et al., 2011; Ye et al., 2022). 105 

Proline catabolism, linked to colonization, persistence, and protection from stress, including oxidative and 106 

osmotic stress, has been associated with the virulence of several bacterial species (Nakada et al., 2002; Zheng 107 

et al., 2018). The higher abundance of multiple genes linked to proline degradation in division II strains suggests 108 

their potential to effectively respond to oxidative stress and adapt to extra-intestinal niches, supporting their 109 

association with bloodstream infections (Jeverica et al., 2019). Moreover, division II strains have an increased 110 

abundance DNA-formamidopyrimidine glycosylase (EC 3.2.2.23; BFAG_03121), which plays a crucial role in 111 
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processes leading to recovery from mutagenesis and/or cell death caused by alkylating agents (Figure 2D, 112 

Table 3). These adaptive mechanisms may confer a survival advantage to division II strains in specific 113 

environments.    114 

 115 

Finally, we observed differential prevalence in genes and pathways related to multidrug resistance. Within 116 

division I, we identified an increased prevalence of gamma-carboxymuconolactone decarboxylase (EC 4.1.1.44) 117 

(Figure 2D), implicated in the degradation of aromatic compounds and associated with antimicrobial resistance 118 

(AMR) (Rana et al., 2023). We identified a putative erythromycin esterase that detoxifies macrolides also more 119 

abundant in division I (Zieliński et al., 2021). In contrast, division II strains have a higher abundance of efflux 120 

proteins (K09771, K11741) (Figure 2E and Table 3). Additionally, virginiamycin A acetyltransferase (vat, 121 

K18234), providing resistance to streptogramins, is more prevalent in division II (Figure 2E and Table 3). 122 

Division II strains harbor a higher number of known antimicrobial resistance genes per isolate compared with 123 

division I (p = 0.004) (Figures 2F and 2G). Collectively, these findings suggest that division II may have a higher 124 

potential for virulence compared to division I strains. Further characterization of the functional impact of the 125 

genes unique to each division is essential for understanding their roles and interactions within the intestinal 126 

ecosystem and host.  127 

 128 

Altogether, our comprehensive analysis revealed distinct genetic profiles and functional pathways that 129 

differentiate B. fragilis divisions. The pangenome of division I strains aligns with their recognized role as 130 

commensals and proficient gut colonizers in the mammalian host. Conversely, division II strains harbor a unique 131 

collection of genes associated with plant cell wall degradation, suggesting a correlation with their higher 132 

abundance in Asian countries or dietary preferences. The presence of genes mediating survival in toxic 133 

environments highlights the adaptive capabilities of division II strains. Importantly, these genetic distinctions may 134 

underlie the higher prevalence of division II strains in bloodstream infections. Collectively, our comparative 135 

genomics study unveils distinct genetic signatures within B. fragilis divisions, offering insights into their intricate 136 

interactions with the host and respective ecological niches. 137 

  138 
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 265 

Figure 1: B. fragilis is composed of two monophyletic divisions 266 

A) Metric multidimensional scaling (mMDS) of the k-mer based MASH distances of 694 strains, colored by 267 

division I (green, n=554) and II (purple, n=140). 268 

B) GC content (%) of isolate assemblies in division I and II isolates. Average for division I = 43.35% and 269 

division II = 43.42% (p = 8.1e-5, Welch’s t-test with unequal variance; n=694).  270 

C) Genome size (bp) of isolate assemblies in division I and II isolates. Average for division I=5.26 x 106 bp 271 

and division II=5.22 x 106 bp (p = 0.22, Welch’s t-test with unequal variance; n=694). 272 

D) The proportion of isolates originating from abscess (p=0.18), blood (p=0.0049), and fecal (p=0.0011) 273 

samples in division I (green) compared with division II (purple), p-values from Fisher’s Exact Test. Division 274 

I: n=309, fecal=228, blood=30, abscess=51; Division II: n=100, fecal=56, blood=21, abscess=23. 275 

E) The proportion of isolates originating from Africa (p=0.18), Asia (p= 2.2e-16), Europe (p=0.00019), or North 276 

America (p= 2.2e-16) in division I (green) compared with division II (purple), p-values from Fisher’s Exact 277 

Test. Division I: n=554, Africa=33, Asia=46, Europe=11, North America=459; Division II: n=140, Africa=13, 278 

Asia=58, Europe=13, North America=56. 279 

F) Phylogenetic tree of the core genome alignment of 638 strains through maximum likelihood, midpoint 280 

rooted, colored by division I (green) and II (purple).  281 

G) The phylogenetic tree of the core genome alignment of division I strains through maximum likelihood, 282 

midpoint rooted, annotated with the inner ring, Group: healthy, infection, IBD, non-human animal, unknown; 283 

and outer ring, Continent: Asia, Africa, Europe, Oceania, North America, South America (n=554). 284 

H) The phylogenetic tree of the core genome alignment of division II strains through maximum likelihood, 285 

midpoint rooted, annotated with the inner ring, Group: healthy, infection, IBD, non-human animal, unknown; 286 

and outer ring, Continent: Asia, Africa, Europe, Oceania, North America, South America (n=140). 287 
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 289 

Figure 2: B. fragilis Divisions I and II segregate by multiple differentially abundant genes and gene 290 

categories 291 

A) Relative log gene abundance heatmap summarized by division, where genes are clustered by R pheatmap 292 

complete method, annotated by regions of gene clusters core to both divisions, core only to division I, or 293 

core only to division II.  294 

B) Histogram of log2-fold change of prevalence between all genes in division I versus II.  295 

C-E) Log2 average number of genes per isolate in categories C) Carbohydrate-Active Enzymes (CAZy) (log-296 

fold change g 0.5), D) EC category (log-fold change g 1), and E) KEGG KO (log-fold change g 0.5) between 297 

divisions I and II, displaying categories significant by Kruskal-Wallis test (corrected p f 0.01). Legend is 298 

log2 average number of genes per isolate in each category. 299 

F) Total number of antimicrobial resistance (AMR) genes per isolate for each division divisions, p = 0.004, 300 

Welch’s t-test.  301 

G) The percentage of isolates per division with each antimicrobial resistance gene.  302 
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