

Pangenome comparison of *Bacteroides fragilis* genospecies unveil genetic diversity and ecological insights

Renee E. Oles^{1,2}, Marvic Carrillo Terrazas¹, Luke R. Loomis¹, Chia-Yun Hsu¹, Caitlin Tribelhorn², Pedro Belda Ferre², Allison Ea¹, MacKenzie Bryant², Jocelyn Young^{2,3}, Hannah C. Carrow¹, William J. Sandborn^{4,5}, Parambir Dulai^{4,6}, Mamata Sivagnanam^{2,3}, David Pride^{1,5,7,8}, Rob Knight^{2,5,9,10,11}, Hiutung Chu^{1,5,12}

¹Department of Pathology, University of California, San Diego, La Jolla, CA.

²Department of Pediatrics, School of Medicine, University of California, La Jolla, CA.

³Rady Children's Hospital, San Diego, CA, United States.

⁴Division of Gastroenterology, University of California, San Diego, La Jolla, CA.

⁵Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA.

⁶Division of Gastroenterology, Northwestern University, Chicago, Illinois.

⁷Center for Innovative Phage Applications and Therapeutics (IPATH), University of California, San Diego, La Jolla, CA.

⁸Center of Advanced Laboratory Medicine (CALM), University of California, San Diego, La Jolla, CA.

⁹Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA.

¹⁰Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA.

¹¹Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA.

¹²Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, La Jolla, CA.

1 ABSTRACT

2 *Bacteroides fragilis* is a Gram-negative commensal bacterium commonly found in the human colon that
3 differentiates into two genomospecies termed division I and II. We leverage a comprehensive collection of 694 *B.*
4 *fragilis* whole genome sequences and report differential gene abundance to further support the recent proposal
5 that divisions I and II represent separate species. In division I strains, we identify an increased abundance of
6 genes related to complex carbohydrate degradation, colonization, and host niche occupancy, confirming the role
7 of division I strains as gut commensals. In contrast, division II strains display an increased prevalence of plant
8 cell wall degradation genes and exhibit a distinct geographic distribution, primarily originating from Asian
9 countries, suggesting dietary influences. Notably, division II strains have an increased abundance of genes
10 linked to virulence, survival in toxic conditions, and antimicrobial resistance, consistent with a higher incidence
11 of these strains in bloodstream infections. This study provides new evidence supporting a recent proposal for
12 classifying divisions I and II *B. fragilis* strains as distinct species, and our comparative genomic analysis reveals
13 their niche-specific roles.

14

15 IMPORTANCE

16 Understanding the distinct functions of microbial species in the gut microbiome is crucial for deciphering their
17 impact on human health. This study reinforces the recent proposal that division II strains constitute a separate
18 species from division I *B. fragilis* strains. Our study provides new evidence that divisions I and II exhibit differential
19 gene abundance related to nutrient utilization, niche occupancy, and virulence. Further, we propose that division
20 I strains are more equipped to colonize the gut and act as commensals, whereas division II strains possess a
21 genetic repertoire for extra-intestinal survival and virulence. Classifying division II strains as *B. fragilis* permits
22 erroneous associations where experimentalists may attribute their findings in division II strains as functions of
23 the better studied *B. fragilis* division I strains. Delineating these divisions as separate species is critical for
24 distinguishing their distinct functions.

25

26 OBSERVATION

27 *Bacteroides fragilis* is a persistent colonizer of the human gut and has been linked to both health and disease
28 (Wexler, 2007). Multiple studies have reported two distinct, monophyletic groups within *B. fragilis*, referred to as
29 division I and division II, which share 87% average nucleotide identity, while the typical species cutoff is 96%
30 (Johnson, 1978; Podglajen et al., 1995; Ruimy et al., 1996; Gutacker et al., 2000; Nagy et al., 2011; Wallace et
31 al., 2022; English et al., 2023). Here, we use comparative genomics to identify the genetic differences between
32 division I and II strains, to provide further evidence for the classification of these divisions as two distinct species
33 (Wallace et al., 2022; English et al., 2023). We examined genes conserved within each division, but not between
34 divisions, which likely play a fundamental role in their biology and function within their respective niches. This
35 comprehensive analysis not only enhances our understanding of *B. fragilis* but also provides valuable insights
36 into the properties and functions of division I and II strains and their contribution to host-microbe interactions.

37 We analyzed a total of 694 whole genome sequences, 139 from our own collection, which we isolated and
38 sequenced for the first time (Sanders et al., 2019), and the remaining from public sources (**Table 1 and 2**). To
39 compare the genetic relatedness between divisions, we employed MASH, a whole genome k-mer-based
40 approach (Ondov et al., 2016) to determine the genetic distance between each strain (**Figure 1A**). Metric
41 multidimensional scaling (mMDS), which visualizes the pairwise dissimilarities or distances between a set of
42 objects in a lower-dimensional space, automatically revealed a clear separation of strains into two distinct
43 divisions (**Figure 1A**). To further support this distinction, we found a significant difference in GC content ($p=8.1e-5$)
44 (**Figure 1B**), though no differences in genome size ($p = 0.22$) (**Figure 1C**). Based on the phylogeny of the
45 core genome alignment by maximum likelihood, midpoint-rooted, divisions I and II also separate into discrete
46 clades (**Figure 1F**). Collectively, these analyses reinforce the recent proposal to classify *B. fragilis* division II
47 strains as a novel species (Wallace et al., 2022; English et al., 2023).

48 We next investigated whether divisions I and II associate with different disease states, isolation sites, or other
49 metadata categories. In our survey of 694 strains, we found division I strains comprised 80% of the total (554 of
50 694). Among the 409 strains isolated from abscesses, fecal samples, or blood, 74% of division I strains originated
51 from fecal samples, compared with 56% of division II ($p=0.0011$) (**Figure 1D**). Additionally, 16% and 10% of
52 division I strains were isolated from abscesses or blood, respectively, compared to 23% and 21% of division II
53 strains (blood, $p=0.0049$; abscess, $p=0.18$) (**Figure 1D**). Notably, division I and II strains exhibited variations in
54 the continent of isolation. 80% of division I strains originated from North America, compared with only 40% of
55 division II strains ($p=2.2e-16$) (**Figure 1E, H**). In contrast, only 8% of division I strains originated from Asia,
56 compared to 41% of division II strains ($p=2.2e-16$) (**Figure 1E, G**). To further explore the geographical distribution
57 of these divisions, we examined 502 species-genome bins (SGBs) classified as *B. fragilis*, which were
58 reconstructed from 9,428 metagenomic samples worldwide (Pasolli et al., 2019). The results revealed that 437
59 strains belonged to division I, whereas 65 were division II. No sample contained both divisions, in line with reports
60 from other studies (Rashidan et al., 2018). Most of the division I strains (75%) originated from Europe or North
61 America, whereas most division II strains (60%) were from Asia. This aligns with previous reports indicating a
62 higher rate of *cfaA*+ isolates (division II) in Japan, Hong Kong, and India (Cao et al., 2022). Altogether, division II
63 strains are more prevalent in Asian countries compared to Western populations, and the under-representation
64 of division II strains in public strain repositories may be a result of under-representation of specific populations
65 (Abdill et al., 2022).

66
67 Our data further support the idea that divisions I and II represent distinct genomospecies. Therefore, we next
68 tested whether these divisions exhibit differing metabolic requirements, ecological niches, or lifestyles. We
69 compared the pangenomes of the *B. fragilis* divisions using panpiper (*rolesucsd/Panpiper*, n.d.), and identified
70 794 differentially prevalent genes (log-fold change ≥ 2) (**Figures 2A-B and Table 3**). Each of the *B. fragilis*
71 divisions exclusively harbored either the *cfa* (division II) or *cepA* (division I) gene (**Figure 2E and Table 3**), as
72 previously described (Parker & Smith, 1993; Rasmussen et al., 1990). We then assessed the differential
73 abundance of carbohydrate-active enzymes, along with reference metabolic (EC) and reference KEGG orthology

74 pathways (KEGG KO) (**Figures 2C-E**). Within division II strains, all upregulated glycosyl hydrolase (GH)
75 categories (GH5, GH9, GH51, and GH95) are associated with the degradation of plant cell walls (**Figure 2C**).
76 Specifically, BFAG_03498 (ko:K01179, GH9) is predicted to mediate the breakdown of cellulose (Béguin, 1990),
77 BFAG_02344 (GH51) is involved in the breakdown of arabinose-containing polysaccharides, and BFAG_0465
78 (GH95), an alpha-L-fucosidase, cleaves internal beta-1,4-glycosidic bonds which are common in seaweed and
79 mushrooms (Wu et al., 2023) (**Table 3**). One possible explanation for an increased abundance in plant cell wall
80 degradation genes in division II strains is differences in diet between hosts harboring division I versus II strains,
81 which could correlate with their differential geographic abundance (De Angelis et al., 2020). In contrast, in division
82 I strains, we identified several genes and pathways associated with the degradation of complex carbohydrates,
83 a hallmark feature of gut-resident commensal *Bacteroides* (Wexler, 2007) (Pudlo et al., 2022). Specifically, we
84 identified two predicted alpha-L-rhamnosidases (GH78; BF9343_0522, BF9343_0310), which are core genes
85 exclusive to division I (**Figures 2C and Table 3**). Because humans cannot cleave terminal rhamnose units,
86 rhamnosidases play an important symbiotic role, releasing rhamnose in the human gut, which can then be
87 converted into the short-chain fatty acid propionate (Mueller et al., 2018).

88
89 Division I strains also exhibit an enrichment of GH33 sialidases, which catalyze the cleavage of terminal sialic
90 acid residues (**Figure 2C**). While sialidases have been linked to virulence (Godoy et al., 1993), our previous
91 work established a role for *B. fragilis* GH33/NanH sialidase in intestinal colonization and persistence during early
92 life (Buzun et al., 2023). Furthermore, as sialic acid is identified in capsular polysaccharides and
93 lipooligosaccharides (Ghosh, 2020), its presence may influence colonization and interactions within the host.
94 Additionally, the type VI secretion system GA3 (T6SSiii) is more abundant in division I strains (86%) compared
95 to division II (39%). This system, exclusive to *B. fragilis*, is recognized for mediating intra-strain competition and
96 influencing colonization dynamics (Sheahan et al., 2023). Thus, the differential abundance of GH33 sialidases
97 and T6SSiii GA3 suggests distinct colonization strategies within the gut.

98
99 Division II strains may play a different role in niche occupancy, with several differentially prevalent genes
100 correlated with pathogenicity. Notably, division II strains exhibit an increased abundance in genes related to
101 proline degradation and glutamate synthesis pathways (**Figure 2D and Table 3**), known for their association
102 with virulence in several bacterial species (Krishnan et al., 2008; Nakada et al., 2002; Zheng et al., 2018). Prolyl
103 oligopeptidase (EC 3.4.21.26; BFAG_03703) initiates proline cleavage from short peptides, leading to
104 subsequent degradation of free proline by PutA (EC 1.5.5.2; BFAG_03859), which oxidizes proline to glutamate
105 and serves as a transcriptional regulator for essential virulence factors (Moxley et al., 2011; Ye et al., 2022).
106 Proline catabolism, linked to colonization, persistence, and protection from stress, including oxidative and
107 osmotic stress, has been associated with the virulence of several bacterial species (Nakada et al., 2002; Zheng
108 et al., 2018). The higher abundance of multiple genes linked to proline degradation in division II strains suggests
109 their potential to effectively respond to oxidative stress and adapt to extra-intestinal niches, supporting their
110 association with bloodstream infections (Jeverica et al., 2019). Moreover, division II strains have an increased
111 abundance DNA-formamidopyrimidine glycosylase (EC 3.2.2.23; BFAG_03121), which plays a crucial role in

112 processes leading to recovery from mutagenesis and/or cell death caused by alkylating agents (**Figure 2D**,
113 **Table 3**). These adaptive mechanisms may confer a survival advantage to division II strains in specific
114 environments.

115

116 Finally, we observed differential prevalence in genes and pathways related to multidrug resistance. Within
117 division I, we identified an increased prevalence of gamma-carboxymuconolactone decarboxylase (EC 4.1.1.44)
118 (**Figure 2D**), implicated in the degradation of aromatic compounds and associated with antimicrobial resistance
119 (AMR) (Rana et al., 2023). We identified a putative erythromycin esterase that detoxifies macrolides also more
120 abundant in division I (Zieliński et al., 2021). In contrast, division II strains have a higher abundance of efflux
121 proteins (K09771, K11741) (**Figure 2E and Table 3**). Additionally, virginiamycin A acetyltransferase (*vat*,
122 K18234), providing resistance to streptogramins, is more prevalent in division II (**Figure 2E and Table 3**).
123 Division II strains harbor a higher number of known antimicrobial resistance genes per isolate compared with
124 division I ($p = 0.004$) (**Figures 2F and 2G**). Collectively, these findings suggest that division II may have a higher
125 potential for virulence compared to division I strains. Further characterization of the functional impact of the
126 genes unique to each division is essential for understanding their roles and interactions within the intestinal
127 ecosystem and host.

128

129 Altogether, our comprehensive analysis revealed distinct genetic profiles and functional pathways that
130 differentiate *B. fragilis* divisions. The pangenome of division I strains aligns with their recognized role as
131 commensals and proficient gut colonizers in the mammalian host. Conversely, division II strains harbor a unique
132 collection of genes associated with plant cell wall degradation, suggesting a correlation with their higher
133 abundance in Asian countries or dietary preferences. The presence of genes mediating survival in toxic
134 environments highlights the adaptive capabilities of division II strains. Importantly, these genetic distinctions may
135 underlie the higher prevalence of division II strains in bloodstream infections. Collectively, our comparative
136 genomics study unveils distinct genetic signatures within *B. fragilis* divisions, offering insights into their intricate
137 interactions with the host and respective ecological niches.

138

139 **Acknowledgements**

140 We thank members of the Chu lab for technical support and helpful discussions. This work was supported by
141 grants from the National Institute of Health (NIH) R01 AI167860 and P30 DK120515. Additional support was
142 provided to H.C. by the Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines
143 (cMAV), CIFAR Humans and the Microbiome Program, and The Hartwell Foundation. Support to R.E.O. was
144 provided by T32 AR064194 (NIAMS). Support to M.C.T was provided by T32 DK007202 (NIDDK), the National
145 Academies of Sciences, Engineering and Medicine through the Predoctoral Fellowship of the Ford Foundation,
146 and the Howard Hughes Medical Institute (HHMI) Graduate Fellowships grant (GT15123). This publication
147 includes data generated at the UC San Diego IGM Genomics Center utilizing an Illumina NovaSeq 6000 that
148 was purchased with funding from a National Institutes of Health SIG grant (S10 OD026929).

149

150 **Conflict of Interest**

151 Rob Knight's current conflicts of interest are: Gencirq (stock and SAB member), DayTwo (consultant and SAB
152 member), Cybele (stock and consultant), Biomesense (stock, consultant, SAB member), Micronoma (stock, SAB
153 member, co-founder), and Biota (stock, co-founder).

154 **References**

155 Abdill, R. J., Adamowicz, E. M., & Blekhman, R. (2022). Public human microbiome data are dominated by highly
156 developed countries. *PLoS Biology*, 20(2), e3001536. <https://doi.org/10.1371/journal.pbio.3001536>

157 Béguin, P. (1990). Molecular Biology of Cellulose Degradation. *Annual Review of Microbiology*, 44(1), 219–248.
158 <https://doi.org/10.1146/annurev.mi.44.100190.001251>

159 Buzun, E., Hsu, C.-Y., Sejane, K., Oles, R. E., Ayala, A. V., Loomis, L. R., Zhao, J., Rossitto, L.-A., McGrosso,
160 D., Gonzalez, D. J., Bode, L., & Chu, H. (2023). *A bacterial sialidase mediates early life colonization by*
161 *a pioneering gut commensal* (p. 2023.08.08.552477). bioRxiv.
162 <https://doi.org/10.1101/2023.08.08.552477>

163 Cao, H., Liu, M. C.-J., Tong, M.-K., Jiang, S., Lau, A., Chow, K.-H., Tse, C. W.-S., & Ho, P.-L. (2022). Diversity
164 of genomic clusters and CfiA/cfiA alleles in *Bacteroides fragilis* isolates from human and animals.
165 *Anaerobe*, 75, 102567. <https://doi.org/10.1016/j.anaerobe.2022.102567>

166 De Angelis, M., Ferrocino, I., Calabrese, F. M., De Filippis, F., Cavallo, N., Siragusa, S., Rampelli, S., Di Cagno,
167 Rantsiou, K., Vannini, L., Pellegrini, N., Lazzi, C., Turroni, S., Lorusso, N., Ventura, M., Chieppa, M.,
168 Neviani, E., Brigidi, P., O'Toole, P. W., ... Cocolin, L. (2020). Diet influences the functions of the human
169 intestinal microbiome. *Scientific Reports*, 10(1), Article 1. <https://doi.org/10.1038/s41598-020-61192-y>

170 English, J., Newberry, F., Hoyles, L., Patrick, S., & Stewart, L. (2023). Genomic analyses of *Bacteroides fragilis*:
171 Subdivisions I and II represent distinct species. *Journal of Medical Microbiology*, 72(11).
172 <https://doi.org/10.1099/jmm.0.001768>

173 Ghosh, S. (2020). Sialic acid and biology of life: An introduction. *Sialic Acids and Sialoglycoconjugates in the*
174 *Biology of Life, Health and Disease*, 1–61. <https://doi.org/10.1016/B978-0-12-816126-5.00001-9>

175 Godoy, V. G., Dallas, M. M., Russo, T. A., & Malamy, M. H. (1993). A role for *Bacteroides fragilis* neuraminidase
176 in bacterial growth in two model systems. *Infection and Immunity*, 61(10), 4415–4426.
177 <https://doi.org/10.1128/iai.61.10.4415-4426.1993>

178 Gutacker, M., Valsangiacomo, C., & Piffaretti, J.-C. (2000). Identification of two genetic groups in *Bacteroides*
179 *fragilis* by multilocus enzyme electrophoresis: Distribution of antibiotic resistance (cfiA, cepA) and
180 enterotoxin (bft) encoding genesThe GenBank accession numbers for the sequences determined in this
181 work are AF197508–AF197534. *Microbiology*, 146(5), 1241–1254. <https://doi.org/10.1099/00221287-146-5-1241>

183 Jeverica, S., Sóki, J., Premru, M. M., Nagy, E., & Papst, L. (2019). High prevalence of division II (cfaA positive)
184 isolates among blood stream *Bacteroides fragilis* in Slovenia as determined by MALDI-TOF MS.
185 *Anaerobe*, 58, 30–34. <https://doi.org/10.1016/j.anaerobe.2019.01.011>

186 JOHNSON, J. L. (1978). Taxonomy of the *Bacteroides*. *International Journal of Systematic and Evolutionary*
187 *Microbiology*, 28(2), 245–256. <https://doi.org/10.1099/00207713-28-2-245>

188 Krishnan, N., Doster, A. R., Duhamel, G. E., & Becker, D. F. (2008). Characterization of a *Helicobacter hepaticus*
189 putA Mutant Strain in Host Colonization and Oxidative Stress. *Infection and Immunity*, 76(7), 3037–3044.
190 <https://doi.org/10.1128/iai.01737-07>

191 Moxley, M. A., Tanner, J. J., & Becker, D. F. (2011). Steady-state kinetic mechanism of the proline:ubiquinone
192 oxidoreductase activity of proline utilization A (PutA) from *Escherichia coli*. *Archives of Biochemistry and*
193 *Biophysics*, 516(2), 113–120. <https://doi.org/10.1016/j.abb.2011.10.011>

194 Mueller, M., Zartl, B., Schleritzko, A., Stenzl, M., Viernstein, H., & Unger, F. M. (2018). Rhamnosidase activity of
195 selected probiotics and their ability to hydrolyse flavonoid rhamnoglycosides. *Bioprocess and Biosystems*
196 *Engineering*, 41(2), 221–228. <https://doi.org/10.1007/s00449-017-1860-5>

197 Nagy, E., Becker, S., Sóki, J., Urbán, E., & Kostrzewska, M. (2011). Differentiation of division I (cfaA-negative) and
198 division II (cfaA-positive) *Bacteroides fragilis* strains by matrix-assisted laser desorption/ionization time-
199 of-flight mass spectrometry. *Journal of Medical Microbiology*, 60(11), 1584–1590.
200 <https://doi.org/10.1099/jmm.0.031336-0>

201 Nakada, Y., Nishijyo, T., & Itoh, Y. (2002). Divergent Structure and Regulatory Mechanism of Proline Catabolic
202 Systems: Characterization of the putAP Proline Catabolic Operon of *Pseudomonas aeruginosa* PAO1
203 and Its Regulation by PruR, an AraC/XylS Family Protein. *Journal of Bacteriology*, 184(20), 5633–5640.
204 <https://doi.org/10.1128/jb.184.20.5633-5640.2002>

205 Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., & Phillippy, A. M. (2016).
206 Mash: Fast genome and metagenome distance estimation using MinHash. *Genome Biology*, 17(1), 132.
207 <https://doi.org/10.1186/s13059-016-0997-x>

208 Parker, A. C., & Smith, C. J. (1993). Genetic and biochemical analysis of a novel Ambler class A beta-lactamase
209 responsible for cefoxitin resistance in *Bacteroides* species. *Antimicrobial Agents and Chemotherapy*,
210 37(5), 1028–1036. <https://doi.org/10.1128/aac.37.5.1028>

211 Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Beghini, F., Manghi, P., Tett, A., Ghensi,
212 P., Collado, M. C., Rice, B. L., DuLong, C., Morgan, X. C., Golden, C. D., Quince, C., Huttenhower, C.,
213 & Segata, N. (2019). Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000
214 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. *Cell*, 176(3), 649-662.e20.
215 <https://doi.org/10.1016/j.cell.2019.01.001>

216 Podglajen, I., Breuil, J., Casin, I., & Collatz, E. (1995). Genotypic identification of two groups within the species
217 *Bacteroides fragilis* by ribotyping and by analysis of PCR-generated fragment patterns and insertion
218 sequence content. *Journal of Bacteriology*, 177(18), 5270–5275. <https://doi.org/10.1128/jb.177.18.5270-5275.1995>

219

220 Pudlo, N. A., Urs, K., Crawford, R., Pirani, A., Atherly, T., Jimenez, R., Terrapon, N., Henrissat, B., Peterson, D.,
221 Ziemer, C., Snitkin, E., & Martens, E. C. (2022). Phenotypic and Genomic Diversification in Complex
222 Carbohydrate-Degrading Human Gut Bacteria. *MSystems*, 7(1), e0094721.
223 <https://doi.org/10.1128/msystems.00947-21>

224 Rana, S., Skariyachan, S., Uttarkar, A., & Niranjan, V. (2023). Carboxymuconolactone decarboxylase is a
225 prospective molecular target for multi-drug resistant *Acinetobacter baumannii*-computational modeling,
226 molecular docking and dynamic simulation studies. *Computers in Biology and Medicine*, 157, 106793.
227 <https://doi.org/10.1016/j.combiomed.2023.106793>

228 Rashidan, M., Azimirad, M., Alebouyeh, M., Ghobakhloou, M., Asadzadeh Aghdaei, H., & Zali, M. R. (2018).
229 Detection of *B. fragilis* group and diversity of bft enterotoxin and antibiotic resistance markers cepA, cfiA
230 and nim among intestinal *Bacteroides fragilis* strains in patients with inflammatory bowel disease.
231 *Anaerobe*, 50, 93–100. <https://doi.org/10.1016/j.anaerobe.2018.02.005>

232 Rasmussen, B. A., Gluzman, Y., & Tally, F. P. (1990). Cloning and sequencing of the class B beta-lactamase
233 gene (ccrA) from *Bacteroides fragilis* TAL3636. *Antimicrobial Agents and Chemotherapy*, 34(8), 1590–
234 1592. <https://doi.org/10.1128/aac.34.8.1590>

235 Rolesucsd/Panpiper. (n.d.). Retrieved November 28, 2023, from
236 <https://github.com/rolesucsd/Panpiper/tree/main>

237 Ruimy, R., Podglajen, I., Breuil, J., Christen, R., & Collatz, E. (1996). A recent fixation of *cfa* genes in a
238 monophyletic cluster of *Bacteroides fragilis* is correlated with the presence of multiple insertion elements.
239 *Journal of Bacteriology*, 178(7), 1914–1918.

240 Sanders, J. G., Nurk, S., Salido, R. A., Minich, J., Xu, Z. Z., Zhu, Q., Martino, C., Fedarko, M., Arthur, T. D.,
241 Chen, F., Boland, B. S., Humphrey, G. C., Brennan, C., Sanders, K., Gaffney, J., Jepsen, K.,
242 Khosroheidari, M., Green, C., Liyanage, M., ... Knight, R. (2019). Optimizing sequencing protocols for
243 leaderboard metagenomics by combining long and short reads. *Genome Biology*, 20(1), 226.
244 <https://doi.org/10.1186/s13059-019-1834-9>

245 Sheahan, M. L., Coyne, M. J., Flores, K., Garcia-Bayona, L., Chatzidaki-Livanis, M., Sundararajan, A., Holst, A.
246 Q., Barquera, B., & Comstock, L. E. (2023). *A ubiquitous mobile genetic element disarms a bacterial
247 antagonist of the gut microbiota* (p. 2023.08.25.553775). bioRxiv.
248 <https://doi.org/10.1101/2023.08.25.553775>

249 Wallace, M. J., Jean, S., Wallace, M. A., Burnham, C.-A. D., & Dantas, G. (2022). Comparative Genomics of
250 *Bacteroides fragilis* Group Isolates Reveals Species-Dependent Resistance Mechanisms and Validates
251 Clinical Tools for Resistance Prediction. *MBio*, 13(1), e03603-21. <https://doi.org/10.1128/mbio.03603-21>

252 Wexler, H. M. (2007). *Bacteroides: The good, the bad, and the nitty-gritty*. *Clinical Microbiology Reviews*, 20(4),
253 593–621. <https://doi.org/10.1128/CMR.00008-07>

254 Wu, H., Owen, C. D., & Juge, N. (2023). Structure and function of microbial α -l-fucosidases: A mini review.
255 *Essays in Biochemistry*, 67(3), 397–412. <https://doi.org/10.1042/EBC20220158>

256 Ye, P., Li, X., Cui, B., Song, S., Shen, F., Chen, X., Wang, G., Zhou, X., & Deng, Y. (2022). Proline utilization A
257 controls bacterial pathogenicity by sensing its substrate and cofactors. *Communications Biology*, 5(1),
258 Article 1. <https://doi.org/10.1038/s42003-022-03451-4>

259 Zheng, R., Feng, X., Wei, X., Pan, X., Liu, C., Song, R., Jin, Y., Bai, F., Jin, S., Wu, W., & Cheng, Z. (2018).
260 PutA Is Required for Virulence and Regulated by PruR in *Pseudomonas aeruginosa*. *Frontiers in
261 Microbiology*, 9. <https://www.frontiersin.org/articles/10.3389/fmicb.2018.00548>

262 Zieliński, M., Park, J., Sleno, B., & Berghuis, A. M. (2021). Structural and functional insights into esterase-
263 mediated macrolide resistance. *Nature Communications*, 12(1), Article 1. [https://doi.org/10.1038/s41467-021-22016-3](https://doi.org/10.1038/s41467-
264 021-22016-3)

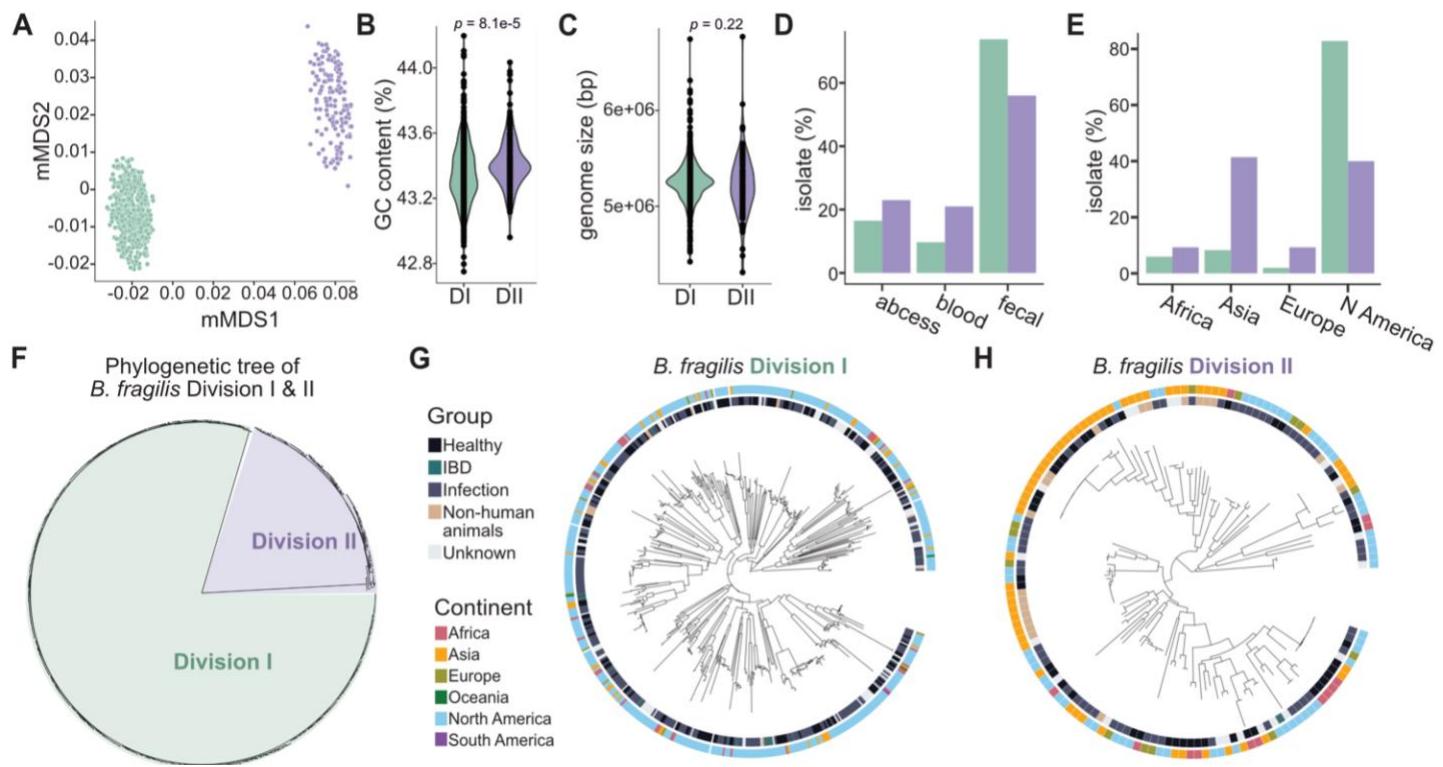
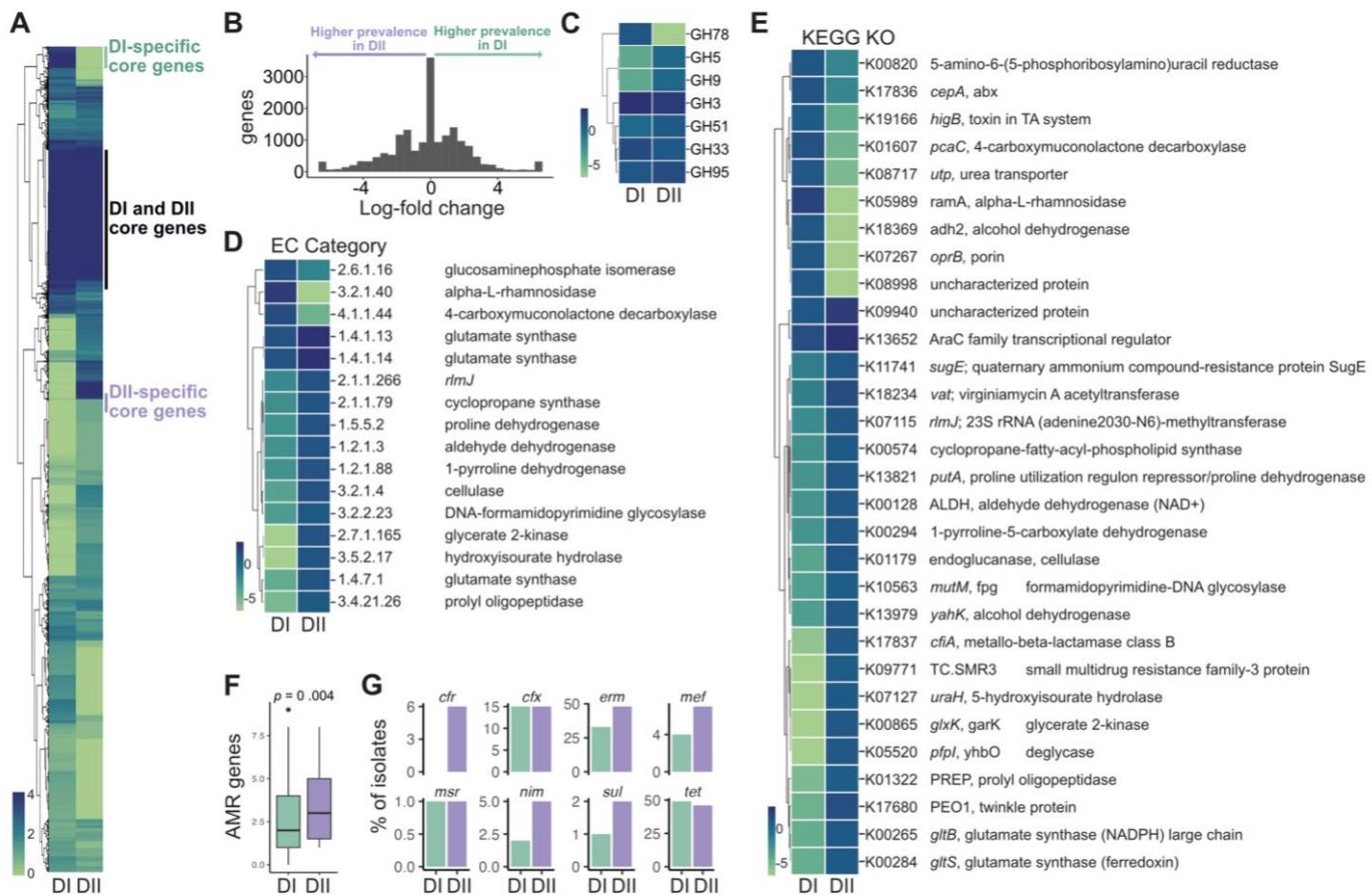


Figure 1: *B. fragilis* is composed of two monophyletic divisions

A) Metric multidimensional scaling (mMDS) of the k-mer based MASH distances of 694 strains, colored by division I (green, n=554) and II (purple, n=140).

B) GC content (%) of isolate assemblies in division I and II isolates. Average for division I = 43.35% and division II = 43.42% ($p = 8.1e-5$, Welch's t-test with unequal variance; n=694).

C) Genome size (bp) of isolate assemblies in division I and II isolates. Average for division I = 5.26×10^6 bp and division II = 5.22×10^6 bp ($p = 0.22$, Welch's t-test with unequal variance; n=694).


D) The proportion of isolates originating from abscess ($p=0.18$), blood ($p=0.0049$), and fecal ($p=0.0011$) samples in division I (green) compared with division II (purple), p-values from Fisher's Exact Test. Division I: n=309, fecal=228, blood=30, abscess=51; Division II: n=100, fecal=56, blood=21, abscess=23.

E) The proportion of isolates originating from Africa ($p=0.18$), Asia ($p= 2.2e-16$), Europe ($p=0.00019$), or North America ($p= 2.2e-16$) in division I (green) compared with division II (purple), p-values from Fisher's Exact Test. Division I: n=554, Africa=33, Asia=46, Europe=11, North America=459; Division II: n=140, Africa=13, Asia=58, Europe=13, North America=56.

F) Phylogenetic tree of the core genome alignment of 638 strains through maximum likelihood, midpoint rooted, colored by division I (green) and II (purple).

G) The phylogenetic tree of the core genome alignment of division I strains through maximum likelihood, midpoint rooted, annotated with the inner ring, Group: healthy, infection, IBD, non-human animal, unknown; and outer ring, Continent: Asia, Africa, Europe, Oceania, North America, South America (n=554).

H) The phylogenetic tree of the core genome alignment of division II strains through maximum likelihood, midpoint rooted, annotated with the inner ring, Group: healthy, infection, IBD, non-human animal, unknown; and outer ring, Continent: Asia, Africa, Europe, Oceania, North America, South America (n=140).

289
290 **Figure 2: *B. fragilis* Divisions I and II segregate by multiple differentially abundant genes and gene
291 categories**

292 A) Relative log gene abundance heatmap summarized by division, where genes are clustered by R pheatmap
293 complete method, annotated by regions of gene clusters core to both divisions, core only to division I, or
294 core only to division II.

295 B) Histogram of log₂-fold change of prevalence between all genes in division I versus II.

296 C-E) Log₂ average number of genes per isolate in categories C) Carbohydrate-Active Enzymes (CAZy) (log-
297 fold change ≥ 0.5), D) EC category (log-fold change ≥ 1), and E) KEGG KO (log-fold change ≥ 0.5) between
298 divisions I and II, displaying categories significant by Kruskal-Wallis test (corrected $p \leq 0.01$). Legend is
299 log₂ average number of genes per isolate in each category.

300 F) Total number of antimicrobial resistance (AMR) genes per isolate for each division divisions, $p = 0.004$,
301 Welch's t-test.

302 G) The percentage of isolates per division with each antimicrobial resistance gene.