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Summary

Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a
3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and
lack of adequate immune responses have been excluded. We now present virologic findings that
provide a clue to the cause of viral rebound, which occurs in ~20% of the treated cases. The
persistence of an intermediary form of infectious SARS-CoV-2 was experimentally documented
in vitro after treatment with nirmatrelvir or another 3CL protease inhibitor, but not with a
polymerase inhibitor, remdesivir. This infectious intermediate decayed slowly with a half-life of
~1 day, suggesting that its persistence could outlive the treatment course to re-ignited SARS-
CoV-2 infection as the drug is eliminated. Additional studies are needed to define the nature of
this viral intermediate, but our findings point to a particular direction for future investigation and

offer a specific treatment recommendation that should be tested clinically.
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Paxlovid, an FDA approved drug to treat symptomatic SARS-CoV-2 infection in elderly
and high-risk individuals', is an oral combination of nirmatrelvir, an inhibitor of the main protease
(3CL) of SARS-CoV-2, and ritonavir, a CY3PA inhibitor that boosts the plasma concentration of
nirmatrelvir?2. Another protease inhibitor approved for clinical use in Japan is ensitrelvir (also

known as S-217622)3.

A number of COVID-19 patients receiving the recommended 5-day course of Paxlovid
(300mg nirmatrelvir/100mg ritonavir every 12h) became symptomatically better and virus
negative only to have a rebound of detectable SARS-CoV-2 again 2-8 days later*. Many of these
cases also had a recurrence of symptoms, albeit mild. The Centers for Disease Control and
Prevention issued a health advisory because of concerns for forward transmission of the virus
during its recrudescence®, as another case series was reported®. Several retrospective studies
suggested the prevalence of “Paxlovid rebound” was low at ~1-2%"°, but a recent,
comprehensive, and prospective study of 72 patients treated with Paxlovid found that 20.8%
(n=15) developed sustained viral rebound', as many medical practitioners have noted
anecdotally. This report also showed the low prevalence found in prior retrospective studies was
largely due to inadequate post-treatment sampling to detect the virus. In addition, some studies
suggested viral relapse was common in untreated patients'"-'2, but these were descriptions of
viral “blips” that were not sustained. Moreover, the infrequency (0.7%) of SARS-CoV-2 rebound
in the absence of therapy is well documented in a large study (n=999) of infected individuals who
were closely monitored’. An explanation for the viral relapse remained elusive', although viral
resistance to nirmatrelvir, inadequate adaptive immunity, and re-infection were ruled out as
possible explanations*610.15.16_|n this study, we probed the underlying cause of the viral rebound
by assessing the persistence of infectious SARS-CoV-2 in several permissive cell lines after

treatment with high doses of nirmatrelvir or ensitrelvir in vitro.
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To ensure maximum inhibition of SARS-CoV-2, we first determined the inhibitory potency
of the two protease inhibitors (nirmatrelvir, ensitrelvir) and a polymerase inhibitor (remdesivir, as
control) in three different permissive cell lines — Huh7-ACE2, A549-ACE2 and Vero-TMPRSS2.
All the drugs showed robust virus inhibition in all the cell lines (Figure S1), as indicated by their
50% and 99% inhibitory concentrations (ICso and ICgg) (Figure S1). These results enabled the
follow-up in vitro experiments to assess serially the persistence of replication-competent forms of

SARS-CoV-2 post exposure to drug concentrations >10-fold higher than the 1Cgq.

In the pilot experiment, we examined the persistence of infectious virus in Huh7-ACE2 for
three consecutive days after treatment with each drug (nirmatrelvir, ensitrelvir, or remdesivir) at
10x 1Cg9 6h prior to inoculation with SARS-CoV-2 /USA/WA1 bearing the mNeonGreen reporter
gene (SCoV-2/mNG)'" at 0.5 multiplicity of infection (MOI). At 24h, 48h, and 72h post infection,
batches of cells were washed, counted, and then subjected to a serial 3-fold titration for infectious
virus starting with 12,500 cells per well into Vero-TMPRSS2 indicator cells free of drug. End-point
titers of infectious forms of SARS-CoV-2 showed an expected time-dependent decline post
nirmatrelvir or ensitrelvir treatment (Figure 1A). However, infectious virus was detectable at all
time points, at least in some of the wells. Using linear regression analysis of data, the decay half-
lives of the infectivity were calculated to be 23.9h for nirmatrelvir and 26.7h for ensitrelvir. In
distinct contrast, remdesivir-treated cells had no measurable infectivity at all time points assessed
(Figure 1A). This initial finding suggested that while nirmatrelvir or ensitrelvir could block the
main viral protease?'®, a replication-competent form of the virus can persist intracellularly long

enough to re-initiate infection once the drug is removed.

Next, we repeated a similar experiment but with more timepoints assessed as well as
higher concentrations of protease inhibitors applied. Huh7-ACE2 cells were again infected with
SCoV-2/mNG at 0.5 MOI and concurrently treated with nirmatrelvir, ensitrelvir, or remdesivir at

concentrations of 10x ICg or higher. As above, batches of cells were serially washed and
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harvested to measure the number of cells required to yield infectious virus. Cells treated with
either nirmatrelvir or ensitrelvir retained an infectious form of SARS-CoV-2 at the first three time
points (10h, 24h and 48h) (Figure 1B). By 72h, only 10-30% of replicates yielded detectable
infectious virus from cells treated with either of the protease inhibitors. Even at 96h post
nirmatrelvir treatment, a minor proportion of replicates (1/9) yielded infectious virus. Again, the
rates of infectivity decay were calculated to be 26.8h and 24.6-t0-28.9h for nirmatrelvir and
ensitrelvir, respectively (Figure 1B). Once again, the infectivity decay in cells treated with

remdesivir was substantially faster, with no infectious virus detected by 24h.

To exclude cell-type-specific effects, we performed a similar experiment using the same
virus (SCoV-2/mNG) but a different cell line, human lung carcinoma-derived alveolar epithelial
cells (A549-ACE2). Both nirmatrelvir and ensitrelvir were more potent in A549-ACE2 cells than
in Huh7-ACE2 cells (Figure S1); however, the infectivity decay results obtained in A549-ACE2
cells (Figure 1C) were comparable to those in Huh7-ACE2 cells. The calculated infectivity decay
half-lives were 27.3h to 27.4h for nirmatrelvir, 23.1h to 26.9h for ensitrelvir, and <5.3h for

remdesivir.

“Paxlovid rebound” was first reported* when the Omicron variant of SARS-CoV-2 was
most prevalent. We therefore conducted another similar experiment using Omicron BA.1.1 in yet
another cell line, Vero-TMPRSS2. Cells were concurrently inoculated with the virus (0.5 MOI)
and treated with 10x ICqg Or higher concentrations of nirmatrelvir, ensitrelvir, or remdesivir. Similar
patterns of infectivity decay were observed once more (Figure 1D). Calculated decay rates were
slightly faster in this experiment, with half-lives of 17.7h to 21.4h for nirmatrelvir and 16.2h to
20.6h for ensitrelvir. The infectivity decay for remdesivir was again substantially faster, with half-

life of <3.3h and no detectable infectious virus after 24h of treatment.

We then tested a third protease inhibitor, GC-376, that was reported to inhibit SARS-CoV-

2 in vitro'®. Dose titration on this investigational compound was again assessed (Figure S2) in
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Huh7-ACE2 and Vero-TMPRSS2 cells. Both cell lines were inoculated with the virus and treated
with nirmatrelvir or ensitrelvir at concentrations of ~10x 1Cg, as previously described. The
infectivity decay in both cell lines resembled those of nirmatrelvir and ensitrelvir shown in Figure
1, with calculated half-lives of 28.1h for WA1 strain in Huh7-ACE2 cells and 20.3h for the Omicron
BA.1.1 strain in Vero-TMPRSS cells (Figure S2). Therefore, treatment with all three protease
inhibitors in vitro led to similar persistence of an infectious form of SARS-CoV-2 that decays slowly
with a half-life of approximately 1 day for the WA1 strain and slightly shorter for Omicron BA.1 or
BA.1.1. In contrast, treatment with a polymerase inhibitor resulted in a rapid loss of infectious

SARS-CoV-2 in vitro.

We further probed this persistence phenomenon by examining levels of SARS-CoV-2
genomic RNA (gRNA) and nucleocapsid protein (NP) in infected cells treated with nirmatrelvir or
remdesivir. Since nirmatrelvir treatment in the clinical setting starts post infection, we modified
the in vitro experiment to mimic this scenario. Huh7-ACE2 cells were infected with SCoV-2/mNG
at 0.5 MOl for 6 h before the cells were washed and supplemented with nirmatrelvir or remdesivir
at concentrations of 10x 1Cge. At 24h, 48h, and 72h post, samples of cells were washed and
subjected to endpoint infectivity titration, as well as fixed for simultaneous imaging of viral gRNA

by single-molecule RNA FISH (smFISH)?° and NP by immunofluorescence.

Cells harboring infectious virions were again detected at all time points from 24h to 72h
post nirmatrelvir treatment (Figure 2A). Not surprisingly, the observed infectious titers were
higher than when an equivalent dose of nirmatrelvir was administered within 10 min of virus
inoculation (Figure 1B), but the infectivity decay half-lives were similar (24.6h versus 26.8h). The
number of cells harboring infectious virus after remdesivir treatment was significantly lower at all
time points (Figure 2A) by about two orders of magnitude. In the imaging studies, viral gRNA
and NP were visibly more abundant at all time points in cells treated with nirmatrelvir than those

treated with remdesivir (Figure 2B and Figure S3). This subjective observation was confirmed
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when the fluorescence signal intensities were quantified. Viral gRNA levels were indeed
significantly higher at 48h and 72h post nirmatrelvir treatment compared to levels post remdesivir
treatment (Figure 2C). Likewise, significantly higher levels of NP were detected in nirmatrelvir-
treated cells at 48h and 72h (Figure 2D). While these imaging results seemingly tracked nicely

with the infectivity decay data, their causal relationship is unknown.

In conclusion, our studies on SARS-CoV-2-infected cells in vitro suggest that there is an
intermediary form of the virus that is blocked at the stage of polypeptide cleavage by nirmatrelvir
or ensitrelvir. The nature of this viral intermediate is yet unclear, but it decays slowly with a half-
life of approximately one day. When its persistence outlives the 5 days of treatment, SARS-CoV-
2 infection could be re-ignited as the drug is eliminated. This virologic hypothesis alone could
explain “Paxlovid rebound” without implicating drug resistance, re-infection, or the immune
system. This proposed explanation is also consistent with the observation that the viral rebound
is more frequent in patients who were treated early'® when the viral load is highest'®. However,
additional molecular and cellular studies are clearly needed to define, more precisely, the nature
of the viral intermediate blocked at polypeptide cleavage by inhibitors of 3CL protease.
Nevertheless, if our in vitro findings are reflective of the in vivo situation in patients, extending the
course of nirmatrelvir treatment by 3-to-5 days should lower the probability of a viral rebound by

8-to-32-fold. This treatment recommendation should be evaluated by clinical studies.
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Figure 1. SARS-CoV-2 persistence in cells pre-treated or concurrently treated with

protease or polymerase inhibitor at doses 10x IC,, or higher. Minimum number of cells

retaining infectious virus present post removal of drug treatment at indicated time points are
shown in each panel. (A) Infectivity decay in Huh7-ACE2 when treated 6h prior to infection, (B)
Infectivity decay in Huh7-ACE2 when treated concurrently (within 10 min of infection), (C)

Infectivity decay in A549-ACE2 cells with concurrent treatment, and (D) Infectivity decay of
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Omicron BA.1.1 in Vero-TMPRSS2 cells with concurrent treatment. The dotted line indicates the
upper limit of input cells (maximum cell number from which endpoint titration was performed at 3-
fold dilutions) for the assay. Inset text shows the drug names and half-life of the decay of
infectious form of the virus after treatment with the drug at specified concentrations. Results for

nirmatrelvir are shown in blue, ensitrelvir in green, and remdesivir in red.

See also Figure S1 and Figure S2.
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Figure 2. Persistence of infectious SARS-CoV-2 as well as gRNA and NP in Huh7-ACE2

cells after drug treatment. Huh7-ACE2 were infected with SARS-CoV-2 at 0.5 MOI for 6h after

which the virus was removed and replaced with growth media supplemented with either 20 uM

nirmatrelvir or 1 yM remdesivir. (A) Infectivity decay post removal of nirmatrelvir or remdesivir.
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(B) Representative images to demonstrate the persistence of gRNA (green) and viral NP (red) at
24h, 48h and 72h post nirmatrelvir or remdesivir treatment. Cell nuclei were stained with DAPI.
Scale bar = 10 ym. Violin plots of the signal intensities for intracellular viral gRNA (C) and NP (D)
in infected cells (collected from Figure $3). The exact p values for significant diferences observed
between nirmatrelvir and remdesivir are shown.

See also Figure S3.
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