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Abstract 

Closed-loop control of deep brain stimulation (DBS) is crucial for effective and automatic 

treatments of various neurological disorders like Parkinson’s disease (PD) and essential tremor (ET). 

Manual (open-loop) DBS programming solely based on clinical observations relies on neurologists’ 

expertise and patients’ experience. The continuous stimulation in open-loop DBS may decrease 

battery life and cause side effects. On the contrary, a closed-loop DBS system utilizes a feedback 

biomarker/signal to track worsening (or improving) patient’s symptoms and offers several 

advantages compared to open-loop DBS. Existing closed-loop DBS control systems do not 

incorporate physiological mechanisms underlying the DBS or symptoms, for example how DBS 

modulates dynamics of synaptic plasticity. In this work, we proposed a computational framework 

for development of a model-based DBS controller where a biophysically-reasonable model can 

describe the relationship between DBS and neural activity, and a polynomial-based approximation 

can estimate the relationship between the neural and behavioral activity. A controller is utilized in 

our model in a quasi-real-time manner to find DBS patterns that significantly reduce the worsening 

of symptoms. These DBS patterns can be tested clinically by predicting the effect of DBS before 

delivering it to the patient. We applied this framework to the problem of finding optimal DBS 

frequencies for essential tremor given EMG recordings solely. Building on our recent network 

model of ventral intermediate nuclei (Vim), the main surgical target of the tremor, in response to 

DBS, we developed a biophysically-reasonable simulation in which physiological mechanisms 

underlying Vim-DBS are linked to symptomatic changes in EMG signals. By utilizing a PID 

controller, we showed that a closed-loop system can track EMG signals and adjusts the stimulation 

frequency of Vim-DBS so that the power of EMG in [2, 200] Hz reaches a desired target. We 

demonstrated that our model-based closed-loop control system of Vim-DBS finds an appropriate 

DBS frequency that aligns well with clinical studies. Our model-based closed-loop system is 

adaptable to different control targets, highlighting its potential usability for different diseases and 

personalized systems. 

 

Introduction 

   Deep brain stimulation (DBS) is a standard therapy for various movement disorders, including 
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Parkinson’s disease (PD) [1], essential tremor (ET) [2], and dystonia [3]. The thalamic ventral 

intermediate nucleus (Vim) is the primary surgical target of DBS for ET treatments. The stimulation 

frequency of clinical Vim-DBS for treating ET is usually chosen to be ≥  130 Hz [4][5][6]. 

Currently in clinics, DBS parameters – typically, frequency, amplitude and pulse width – are usually 

manually tuned with a trial-and-error process, based on immediate clinical observations by 

neurologists [7][8][9]. Such manual DBS programming may be biased towards the neurologists’ 

expertise and patients’ experience, while requiring multiple clinical visits to test a large number of 

possible parameters, which costs time and induces stress in both patients and clinicians [7][8][9]. 

Additionally, manually programmed DBS delivers continuous DBS (cDBS) to the patient, which 

can cause side effects and exacerbate stimulation habituation [10][11][12]. Continuous stimulation 

can also decrease battery life, thus increasing patients’ burden caused by battery replacement 

surgeries or battery recharging process [13][14]. Hence, there is a need for a control system that can 

automatically adjust DBS parameters in a closed-loop fashion. Such closed-loop DBS needs to be 

based on a biomarker which characterizes the patient’s clinical states. 

   A closed-loop DBS control system consists of three essential components: (i) the input DBS 

pulses; (ii) the output feedback, i.e., the biomarker observed during DBS; and (iii) the feedback 

control, which adjusts the DBS parameters based on the feedback biomarker [15][16][9]. The 

closed-loop DBS systems offer automatic ways to adapt stimulation parameters moment-to-moment 

with respect to the patient’s clinical states [15]. Compared with the manually programmed (open-

loop) cDBS, the closed-loop DBS can significantly reduce the stimulation time and enhances 

clinical efficacy (less side effects) [15][17][10].  

   Most common closed-loop DBS systems use local field potential (LFP), recorded from 

stimulated nuclei, to find an effective feedback biomarker [17][18][19], for example the power of 

the beta oscillation (12-32 Hz) of LFP recorded in the subthalamic nucleus (STN) for reducing PD 

symptoms [9][15][17]. Velisar et al. (2019) [19] developed a closed-loop DBS control system in 

which the beta power of the STN-LFP was chosen as the biomarker, and the DBS amplitude was 

updated by a dual-threshold control method that maintains the STN-LFP beta power to be within a 

certain range. Other signals like muscle activities in electromyography (EMG) or inertial 

measurement unit (IMU) have been also used as the biomarker in closed-loop DBS treatment of 

tremors [10][20][21][22]. For example, in the treatment of ET, Herron et al. (2017) [21] developed 
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a closed-loop DBS system that controls the EMG power to be below a specified threshold. There 

are also other types of feedback biomarkers used in closed-loop DBS, e.g., single-unit recordings 

[23] and the coherence among electroencephalogram (EEG) recordings [24]. 

   Regardless of the type of the feedback biomarker, DBS setting is determined based on neural 

(e.g., LFP) or behavioral (e.g., EMG) signals in the most existing closed-loop DBS controllers 

[19][17][21][25][26][27]. However, these methods suffer from the lack of mechanistic 

understanding of the physiological mechanisms underlying the DBS and disease-related neuronal 

circuits. An effective approach to overcome this problem is to embed a computational model of the 

underlying mechanisms into the control system [9]. For example, to control Parkinson’s disease, 

closed-loop DBS systems were developed based on physiological models of the related cortico-

basal ganglia-thalamic network, e.g., in Liu et al. (2021) [28] and Fleming et al. (2020) [29]. Liu et 

al. (2021) [28] used the control system to suppress the beta oscillations in cortex, and Fleming et al. 

(2020) [29] tried to suppress the beta power of LFP in STN. Although these computational studies 

included computational models for adjusting DBS in a closed-loop manner [29][9][28], the models 

were not validated for replicating/tracking experimental data nor they incorporated DBS 

mechanisms of actions, e.g., DBS-induced short-term synaptic plasticity [30][31][32]. 

   In this work, we develop a closed-loop control system to adjust the stimulation frequency of 

Vim-DBS automatically. Our control system is based on a computational model that predicts the 

EMG activities in response to different frequencies of Vim-DBS. In this computational model, the 

firing rate of the Vim neurons in response to Vim-DBS is predicted by our previous rate network 

model that reproduced the human clinical data recorded in Vim neurons receiving DBS of different 

stimulation frequencies (10 – 200 Hz) [33]. Our rate network model incorporated the DBS effect on 

dynamics of short-term synaptic plasticity [33]. We use a biophysically-reasonable simulation study 

including models of DBS, Vim, motor cortex, motor neurons in the spinal cord, and muscle fibers 

to generate muscle activities (represented by EMG). To link Vim-DBS to EMG signals in our model-

based control framework, model-predicted EMG signals, generated by our simulation study, are 

used to calculate the feedback biomarker by a polynomial fit, which is processed and implemented 

in a proportional-integral-derivative (PID) controller [34][35][36] that automatically updates the 

appropriate DBS frequency. Our model-predicted EMG can replicate the essential tremor symptoms 

during DBS-OFF, and is consistent with clinical observations of tremor during different frequencies 
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of Vim-DBS. In a closed-loop DBS control system, the ability of predicting the biomarker decreases 

the probability of delivering inappropriate DBS frequencies to the patient, and thus increases 

therapeutic efficacy and reduces side effects.  

We anticipate that our computational framework can facilitate the development of model-based 

control systems which can be potentially implemented in and out of the clinic to automatically 

update the appropriate DBS frequency for individual patients suffering from different diseases. 

 

Materials and Methods 

We developed a computational framework for incorporating physiological mechanisms of deep 

brain stimulation into controlling disease symptoms. This framework consists of two main parts: (1) 

A computational model characterizing the physiological mechanism of the stimulated neuronal 

network and (structurally/functionally) connected neurons; and (2) A feedback control reflecting the 

disease state. In this study, we use computer simulations and apply our framework to control DBS 

frequency to reduce ET symptoms observed from EMG signals. 

 

Computational Model 

   The computational model consists of four components: (i) neural activities, spikes, generated by 

the Vim network model in response to different DBS frequencies; (ii) motor cortex neural activities 

influenced by propagated Vim-DBS effects to motor cortex; (iii) spinal motor neurons activities 

impacted by neurons in the motor cortex; (iv) motor unit action potentials in the muscle fibers 

innervated by the spinal motor neurons. 

 

(i) Vim-network model impacted by Vim-DBS 

   The firing rate dynamics of the Vim neurons in response to Vim-DBS were simulated by our 

previous model of the Vim-network based on clinical DBS data recorded during surgery on human 

patients with essential tremor (ET) [33]. Our previous model could accurately reproduce the 

clinically recorded instantaneous firing rate of the Vim neurons receiving DBS of different 

stimulation frequencies (10 – 200 Hz) [33].  
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(ii) Propagation to the primary motor cortex 

   In our model, the Vim-DBS effects are propagated to the primary motor cortex (M1). We 

modeled the propagation to an M1 neuron of an ET patient using the dynamics induced by two 

sources: (a) the effects of Vim-DBS; and (b) the background neuronal activities that induce the 

tremor symptom. The Vim-DBS effects are from the direct DBS activation of the axons projected 

to the M1 neuron and the firings of the Vim neurons during Vim-DBS. 

These effects consist of the direct axon activation and DBS-induced Vim firings. DBS activates 

the axons connecting to the synapses projecting to the M1 neuron, and these synapses are 

characterized by the Tsodyks & Markram (TM) model [37] (Supplementary Method). Besides the 

direct axon activation, the M1 neuron is also affected by the DBS-induced firings of the Vim neurons. 

With our previous Vim-network model [33], we simulated the instantaneous firing rate of the Vim 

neurons receiving DBS of different stimulation frequencies (10 – 200 Hz). The Vim firing rate signal 

is the time-varying Poisson rate for generating Poisson spike trains, which were passed to the TM-

modeled synapses to produce the post-synaptic current in the M1 neuron (Supplementary Method). 

   In addition to the DBS effects, we also modeled the background neuronal activities inducing the 

tremor symptom. The tremor activities observed in the EMG from ET patients are often in the 

frequency band 4 – 8 Hz [38][39][21]. The tremor-inducing background firing rate was taken as a 

waveform consisting of 6-Hz bursts with a baseline shift (Supplementary Figure 2). To be 

consistent with the EMG recordings from ET patients [38][40][39][41], each burst consists of 3 

consecutive sinusoidal waves and the period of each wave is 20ms (Supplementary Figure 2). We 

then generated Poisson spike trains from the background firing rate waveform; these spikes were 

then passed to the M1 synapses characterized by the TM model [37], which produced the post-

synaptic current into the M1 neuron (Supplementary Method). 

The membrane potential of the M1 neuron was characterized by a leaky integrate-and-fire (LIF) 

model as follows: 

𝑑𝑉

𝑑𝑡
=

−(𝑉−𝐸𝐿)+𝑅×𝐼𝑠𝑦𝑛

𝜏𝑉
                          (1) 

𝐼𝑠𝑦𝑛 =  𝐼𝐷𝐵𝑆 + 𝐼𝑏  

where 𝐸𝐿= −65 mV is the equilibrium potential, R (resistance parameter) = 1 MΩ, and 𝜏𝑉 = 10 

ms is the membrane time constant; spikes occur when 𝑉 ≥ 𝑉𝑡ℎ, where 𝑉𝑡ℎ = −35 mV. The reset 
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voltage is −90 mV and the absolute refractory period is 1ms. 𝐼𝑠𝑦𝑛 is the total post-synaptic input 

current, consisting of the inputs induced by Vim-DBS (𝐼𝐷𝐵𝑆) and the background inputs generating 

the tremor (𝐼𝑏), and was obtained by the Tsodyks & Markram model [37] that incorporates all the 

input spikes (see Supplementary Method). 

 

(iii) Projection from primary motor cortex to spinal motor neurons 

   We modeled the Vim-DBS effects as being propagated to a population of 150 M1 neurons (𝑁𝑐 

= 150), which project to 120 motor neurons (𝑁𝑚 = 120) in the spinal cord [42][43]. We assumed 

that each motor neuron randomly connects to 70 M1 neurons, and receives monosynaptic inputs 

from each M1 neuron [42][44]. Following a spike from an M1 neuron, we modeled the post-synaptic 

current into a motor neuron by the rule of spike time dependent plasticity (STDP) from Izhikevich 

(2006) [45]: 

𝑖(𝑡) =  𝐶 ∗ exp (−
𝑡−𝑡𝑑,𝑐𝑚−𝑘

 20
)                     (2) 

where 𝑘  is a spike timing of an M1 neuron, 𝑡𝑑,𝑐𝑚  = 10 ms is the M1-to-spinal-motor-neuron 

transmission delay [46], 𝑡 ≥ 𝑘 + 𝑡𝑑,𝑐𝑚 is a time point following the M1 spike timing 𝑘, and 𝐶 = 

0.1 is the scaling factor [45]. The membrane potential of the motor neuron is given by an LIF model 

equivalent to that of Herrmann and Gerstner (2002) [47][42]: 

𝑉𝑗(𝑡) = 𝑉0𝑒
−

𝑡−𝑡
𝑗
𝑠𝑝

𝜏𝑝 ℎ(𝑡 − 𝑡𝑗
𝑠𝑝

) +
𝑅𝑚

𝜏𝑚
(1 − 𝑒

−
𝑡−𝑡

𝑗
𝑠𝑝

𝜏𝑟 ) ∫ 𝑒
− 

𝑠

𝜏𝑚
𝑡−𝑡𝑗

𝑠𝑝

0
 𝐼𝑗(𝑡 − 𝑠)𝑑𝑠        (3) 

 

where 𝑡𝑗
𝑠𝑝

 is the last spike timing of the jth motor neuron. h( ) is the Heaviside step function, which 

is zero when its argument is negative and one otherwise. 𝐼𝑗(𝑡) is the post-synaptic current from M1 

neurons into the jth motor neuron, and is a summation of the STDP (Equation 2) from each of the 

70 M1 neurons projecting to the motor neuron. 𝑉0 = −22 mV is the reset membrane potential [42]. 

When the membrane potential reaches a firing threshold 𝑉𝑡ℎ, it is instantaneously reset to 𝑉0, and 

the integration process restarts. For each motor neuron, the firing threshold 𝑉𝑡ℎ ∈ [5, 15] mV is 

chosen randomly [42]. 𝑅𝑚= 36 MΩ is the input resistance [42]. 𝜏𝑝 = 2 ms is the refractory time 

constant, 𝜏𝑚  = 4 ms is the passive membrane time constant, 𝜏𝑟  = 100 ms is the recovery time 

constant [48][42]. The firing rate of a human motor neuron is normally between 5 and 50 Hz [49], 

although it can be over 100 Hz for a brief period during fast contractions [50]. 
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(iv) Generation of EMG activities from spinal motor neuron spikes 

   The spikes from the spinal motor neurons generate action potentials in the motor units of muscle 

fibers [42][43]. These motor unit action potentials (MUAP) were modeled as follows [43][42][51]:  

𝑀𝑗(𝑡) = 𝐴𝑗(𝑡 − 𝜏𝑗
𝑠𝑝

)𝑒−(
𝑡−𝜏

𝑗
𝑠𝑝

𝜆
)2

ℎ(𝑡 − 𝜏𝑗
𝑠𝑝

); 𝜏𝑗
𝑠𝑝

=  𝑡𝑗
𝑠𝑝

+ 𝑡𝑑,𝑚𝑚             (4) 

 

where 𝑀𝑗 is the MUAP of the jth motor unit, corresponding to the jth motor neuron, 𝜆 = 2 ms is 

the time factor [42], 𝑡𝑗
𝑠𝑝

  is the spike timing, 𝑡𝑑,𝑚𝑚  = 10 ms is the motor-neuron-to-muscle 

conduction delay in human [52], and h( ) is the Heaviside step function. 𝐴𝑗 is the scale factor of 

the amplitude of activities of the jth motor unit [53][42], and was modeled as following the 

exponential distribution 𝐴𝑗  ~ exp (
1

𝜇
), where 𝜇 is the mean of distribution [53][42]; we chose 𝜇 = 

7 × 10-3 to be consistent with the EMG simulation during transcranial magnetic stimulation (TMS) 

in Moezzi et al. (2018) [42]. Finally, the surface EMG was modeled as the summation of MUAPs 

with a low-level Gaussian white noise [43][42]. 

 

Feedback Control for DBS Frequency 

Our computational model simulates the EMG signal in response to different DBS frequencies. 

Simulated EMG signals are used to calculate the feedback biomarker which controls the DBS 

frequency. The feedback control consists of three main parts: (1) biomarker identification, (2) 

computation of a system output from the biomarker, and (3) a closed-loop controller that implements 

the system output to update the DBS frequency. 

 

Biomarker identification 

The EMG simulation with our computational model is slow to implement: it takes more than 

30 minutes using MATLAB R2022b with a personal computer to simulate 10 s of EMG signal. Thus, 

to facilitate the implementation speed of the model in a closed-loop control system, we need a fast 

EMG estimation to replace the direct EMG simulation. We implemented a polynomial method to 

estimate the EMG from the Vim firing rate, and the direct model simulated EMG is used as the 

reference (i.e., reference EMG) for estimation. We implemented the MATLAB custom function 
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polyfit for the polynomial estimation, which gives a least-square fit of the polynomial coefficients. 

The estimated EMG is formulated as follows: 

                        𝑦̂(𝑡) = 𝜓(ζ(𝑥(𝑡))) + 𝜑0 + 𝜀(𝑡)                          (5) 

 𝜓(ζ(𝑥(𝑡))) = ∑ 𝜑𝑛
𝑁
𝑛=1 [ζ(𝑥(𝑡))]𝑛 and ζ(𝑥(𝑡)) =

𝑥(𝑡) − 𝑥̅(𝑡)

𝑠𝑑[𝑥(𝑡)]
      

where 𝑥(𝑡) is the Vim firing rate simulated from our previous Vim-network model [33], and 𝑦̂(𝑡) 

is the estimated EMG. ζ(𝑥(𝑡)) is the standardization of 𝑥(𝑡); 𝑥̅(𝑡) and 𝑠𝑑[𝑥(𝑡)] are the mean 

and standard deviation of 𝑥(𝑡), respectively. The polynomial order is 25 and {𝜑0, 𝜑1, … , 𝜑𝑁, 𝑁 =

25}  are the polynomial coefficients. The 𝑅2  statistic [54] of the fit generally increases as the 

polynomial order increases (Supplementary Figure 4), and 25 is a minimal order when 𝑅2 

converges. 𝜀(𝑡)  is the Gaussian white noise with standard deviation = 0.038. We fitted the 

consistent polynomial coefficients (Supplementary Table 2) across data from different DBS 

frequencies, including {10, 50, 80, 100, 120, 130, 140, 160, and 200 Hz}. Our previous work 

showed that the consistent model parameters fitted based on concatenated DBS frequencies in a 

certain range – in this case, [10, 200] Hz – can be consistently applied to unobserved frequencies 

(e.g., 25 Hz and 180 Hz) in the same range [31]. Thus, we implement the polynomial estimated 

EMG as the biomarker to control the DBS frequencies in the range [10, 200] Hz. 

 

Computation of system output from the estimated EMG 

The power spectral density (PSD) of the estimated EMG 𝑦̂(𝑡) (Equation 5) is the system 

output for updating the frequency of the input DBS (10 – 200 Hz). In the system output, we consider 

PSD in the frequency band [2, 200] Hz, which includes the frequencies of both DBS and EMG 

activities [38][39][21][30]. The power density is calculated by the following equation [55][28], with 

sampling frequency 0.5 kHz:  

                 𝑝(𝑓, 𝑡, 𝑢) =  |
1

√𝑤
∫ 𝑦̂𝑢(𝑡 + 𝑠)𝐻(𝑠)

𝑤

2

−
𝑤

2

𝑒𝑖2𝜋𝑓𝑠𝑑𝑠|
2

, where 𝐻(𝑠) =  
1

2
(1 + cos (

2𝜋𝑠

𝑤
))    (6) 

where 𝑓 represents the frequency of the EMG activities. 𝐻(𝑠) is the Hann windowing function 

[55][56], and 𝑤 is the width of the window chosen to be w = 1 s to ensure stability [28][55]. 𝑦̂𝑢(𝑡) 

represents the estimated EMG in response to DBS with stimulation frequency 𝑢. The total power of 

EMG activities over the initial period 𝑇 of the estimated EMG signal is then given as: 

𝑃(𝑓, 𝑇, 𝑢) =  ∫ 𝑝(𝑓, 𝑡, 𝑢)𝑑𝑡
𝑇

0
                         (7) 
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The EMG power thus computed can be used to analyze the EMG activities in the frequency domain 

in response to different frequencies of DBS. 

In response to DBS frequency 𝑢, the PSD within the frequency band [2, 200] Hz of EMG 

activities is: 

𝑝𝑡𝑜𝑡(𝑡, 𝑢) = ∑ 𝑝(𝑓, 𝑡, 𝑢)200
𝑓=2                             (8) 

The system output 𝑧(𝑢) is calculated as the mean PSD in the initial T = 5 s of the estimated EMG: 

𝑧(𝑢) =
1

𝑇
∫ 𝑝𝑡𝑜𝑡(𝑠, 𝑢)

𝑇

0
𝑑𝑠                          (9) 

Finally, a closed-loop controller updates the DBS frequency 𝑢 so that 𝑧(𝑢) is close to a specified 

target value 𝛽𝑧 (see the next section). 

 

The PID controller that updates the DBS frequency 

   We implemented the proportional-integral-derivative (PID) controller [34][35][36] to update the 

DBS frequency based on the system output, z (Equation 9). The updated DBS frequency 𝑢(𝑡) is 

computed as follows, 

              {
𝑢(𝑡𝑚+1) = 𝐾𝑝𝑒(𝑡𝑚) + 𝐾𝑖 ∑ 𝑒(𝑡𝑗)∆𝑡𝑚

𝑗=1 + 𝐾𝑑
𝑒(𝑡𝑚)−𝑒(𝑡𝑚−1)

∆𝑡

𝑒(𝑡𝑚) = 𝑧(𝑢(𝑡𝑚)) − 𝛽𝑧

      (10) 

and is evaluated at the time points {𝑡1, 𝑡2, … , 𝑡𝑀}, with 𝑡1 = 0, 𝑡𝑀 = 10 min, and ∆𝑡 = 𝑡𝑚 - 

𝑡𝑚−1 = 1/3 min. The simulation of the PID controller was performed with MATLAB R2022b. 𝐾𝑝, 

𝐾𝑖, and 𝐾𝑑 denote the proportional, integral, and derivative gains, respectively. The error signal 

𝑒(𝑡) is the difference between the system output z and its target value 𝛽𝑧.  

 

Results 

   Our proposed computational framework for model-based closed-loop DBS control is shown in 

Figure 1. In Figure 1 (A), we utilize a biophysically-realistic encoding model to replicate (predict) 

neuronal activities in response to DBS (arbitrary) patterns. In this encoding model, the dynamics of 

synaptic plasticity and other biophysical details can be preserved and model parameters are 

estimated by fitting the model output to experimental data [33][31]. Additionally, to map neural 

activities to behavioral signals, we use data-driven approaches in our framework. A controller, e.g., 

a PID controller, is developed to adjust DBS patterns given behavioral signals solely. It is to be 
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noted that, unlike encoding model, using biophysically-realistic models to identify neural-

behavioral relationship requires building a network of several neuronal circuits (see our simulation 

study in Figure 2), which in turn increases the complexity of this type of models for mapping neural 

features to behavioral activities. However, we show that data-driven approaches are strong 

alternatives. We summarized the proposed computational framework in Figure 1 (B) to highlight 

contributions of encoding (biophysical) and decoding (data-driven) models.  

 

Figure 1. Computational Framework for Proposed Model-based Closed-Loop DBS Control 

System. (A) Biophysical details, e.g., dynamics of synaptic plasticity, are preserved in the encoding 

model to identify how different patterns of DBS change neural activities of stimulated neurons. A 

data-driven decoding model was used to map neural activity to behavioral signals like EMG. A 

controller is utilized to adjust DBS in a closed-loop manner. (B) A summary diagram of proposed 

computational framework.  

 

In next sections, we present details of the model-based closed-loop DBS system which can 

effectively control the DBS frequency based on EMG signals generated by a biophysically-

reasonable simulation (Figure 2) of the underlying neuronal network (from DBS/Vim neural 

activity to muscle activity).  

 

Schematics of biophysically-reasonable simulation study for Vim-DBS Control   

   The simulation study for Vim-DBS control system is schematized in Figure 2. The effects of 
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Vim-DBS consisted of the direct axon activation and the DBS-induced Vim firings, which were 

simulated from our previous Vim-network model established based on clinical Vim-DBS data [33]. 

The Vim-DBS effects are propagated to the M1 neuron, which projects to the motor neuron in the 

spinal cord. The firings of the spinal motor neurons innervate the corresponding motor units in the 

muscle fibers, and induce motor unit action potentials (MUAP). The simulated EMG consists of a 

linear summation of MUAPs and a low-level Gaussian white noise. In the feedback control, in order 

to facilitate the implementation speed, we estimated the simulated EMG by a polynomial fit. Then 

we computed the mean power spectral density (PSD) of such polynomial-estimated EMG as the 

system output. Finally, a proportional-integral-derivative (PID) controller updated the DBS 

frequency that brought the system output close to a specified target value. 

 

 

Figure 2. Schematics of biophysically-reasonable simulation study for Vim-DBS Control 

DBS pulses are delivered to the neurons in the thalamic ventral intermediate nucleus (Vim), and 

also activate the axons projecting to neurons in the primary motor cortex (M1). The firing rate of 

the Vim neurons impacted by DBS was obtained from our previous Vim-network model that 

reproduced experimental DBS data [33]. The modeled Vim firing rate (𝑥(𝑡)) is also the Poisson 

rates for generating spike trains, which are propagated to the M1 neurons. The spikes from the M1 

neurons are then propagated to the motor neurons in the spinal cord. The spikes from these motor 
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neurons innervate the corresponding motor units in the muscle fibers, and induce motor unit action 

potentials (MUAP). The simulated EMG (𝑦(𝑡)) is a linear summation of MUAPs with additive low-

level Gaussian white noise. In the feedback control, we estimate the simulated EMG by fitting a 

polynomial function 𝜓  (Equation 5), and this estimated EMG (𝑦̂(𝑡) ) is the biomarker used in 

control. 𝜑0  is a constant term of 𝜓 , 𝜀(𝑡)  is Gaussian white noise and ζ(𝑥(𝑡))  is the 

standardization of the modeled Vim firing rate 𝑥(𝑡)  (Equation 5). The system output 𝑧(𝑢)  is 

calculated as the mean power spectral density (PSD) over the initial T of the biomarker 𝑦̂(𝑡) 

(Equation 9). Finally, a proportional-integral-derivative (PID) controller (Equation 10) updates 

the DBS frequency u that reduces the error (𝑒) between the system output 𝑧(𝑢) and a specified 

target value 𝛽𝑧. 

 

The Vim-Cortex Propagation 

   Our model of the propagation of the Vim-DBS effects to the cortical M1 neurons was validated 

by using a 10-s block of neural spike data from non-human primate single-unit recordings in M1 

during 130-Hz VPLo-DBS, reported in Agnesi et al. (2015) [57]. Thalamic VPLo nucleus (ventralis 

posterior lateralis pars oralis, in the Olszewski atlas) in non-human primate is homologous to the 

Vim human [58][59]. For quantifying the effect of 130-Hz DBS on spike activity, a peristimulus 

time histogram was derived based on the timing of spike events occurring between 0 to 7.7 ms after 

each DBS pulse event, and visualized by convolving the spikes with a Gaussian kernel (Figure 3), 

both for empirical and simulated data. The standard deviation of the Gaussian kernel was 0.2 ms, 

which was obtained from a method that optimized the Gaussian kernel to best characterize the spikes 

using a Poisson process [60][61][33]. Our Vim-M1 propagation model’s generated M1 spike activity 

behaved similarly to that of the empirically-recorded non-human primate M1, as indicated by spike-

raster and PSTH firing rate analysis (Figure 3). Thus, our Vim-M1 propagation model could reflect 

the M1 dynamics during 130-Hz Vim-DBS. 
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Figure 3. Raster Plot and PSTH of Model Simulation and Non-human primate Recording 

(A – B) The spikes times occurring within each inter-pulse-interval during 10 seconds of 130-Hz 

DBS are visualized as a raster plot. We obtain an estimate of the instantaneous firing rate induced 

around these each DBS event by computing a peristimulus time histograms (PSTH), convolving the 

spikes with a 0.2 ms Gaussian kernel.  

(A) The raster plot and PSTH of the non-human primate single-unit recording in the primary motor 

cortex (M1) during 130-Hz VPLo-DBS [57].  

(B) The raster plot and PSTH of our model simulation of M1 spikes during 130-Hz Vim-DBS. 

 

EMG Simulation from the Computational Model 

   We simulated EMG from our model, both during DBS-OFF and in response to Vim-DBS of 

different stimulation frequencies in [10, 200] Hz (Figure 4).  
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Figure 4. Model Simulated EMG in Response to Different Frequencies of DBS 

Simulated EMG with our model, in response to different frequencies of Vim-DBS. Each signal is 

given relative to its mean. 

 

   The EMG simulation with DBS-OFF presented the typical tremor band (~ 6 Hz) in the clinical 

EMG signals recorded from ET patients [38][39][21] (Figure 4). During low frequency (≤ 50 Hz) 

of DBS, the amplitude of the simulated EMG is similar to (or slightly higher than) the DBS-OFF 

situation (Figure 4). Such simulation is consistent with the clinical observations that low-frequency 

Vim-DBS (≤ 50 Hz) is often ineffective and can exacerbate the tremor [62][63][64]. The simulated 

EMG amplitude is lower than the DBS-OFF situation when DBS frequency is ≥ 80 Hz (Figure 4). 

During high frequency (≥ 100 Hz) of DBS, the simulated EMG amplitude is clearly depressed 

compared with the DBS-OFF situation (Figure 4). Such simulation is consistent with the clinical 

observations that high frequency (≥ 100 Hz) Vim-DBS can decrease the tremor [64][63][40]. The 

simulated EMG is mostly suppressed when DBS frequency is ≥  130 Hz (Figure 4). This is 

consistent with the fact that the stimulation frequency of clinical Vim-DBS is usually chosen to be 

≥ 130 Hz [4][5][6]. We observed a short transient with large amplitude in the simulated EMG during 

Vim-DBS, and the tremor intensity might be higher in the initial ~ 200 ms after Vim-DBS onset 

[65][20]. 

   We compared the model simulations with clinical data, which were raw EMG samples recorded 

from the extensor of an essential tremor patient during DBS-OFF and 135-Hz Vim-DBS (data from 
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Cernera et al. (2021) [10]) (Figure 5). The model simulations were presented in steady state (beyond 

2 s), and were similar to these clinical data in terms of the EMG amplitudes (Figure 5). We observed 

a 4 – 6 Hz tremor in the clinical EMG sample with DBS-OFF; this is consistent with the 

corresponding model simulation (Figure 5). During 135-Hz Vim-DBS, in both clinical data and 

model simulation, we observed that the tremor activities are mostly suppressed (Figure 5). The 

tremor is suppressed to a higher extent during 135-Hz Vim-DBS in clinical data compared with the 

model simulation (Figure 5). However, there is high variability in EMG activities across different 

individuals, and thus the clinical Vim-DBS frequency need to be optimized specifically for 

individual ET patients [21][10][40]. 

 

Figure 5. Compare clinical raw EMG samples and model simulations 

The clinical raw EMG samples were recorded from the extensor of an essential tremor patient 

during DBS-OFF and 135-Hz Vim-DBS (data from Cernera et al. (2021) [10]). We compare these 

clinical data with the steady state EMG simulations from our model. 

 

Estimation of the Model-Simulated EMG 

The EMG simulation from the model is slow for practical implementation. Thus, we estimated 

the model-simulated EMG with a polynomial fit, to facilitate the computation speed in a closed-

loop control system. The model-simulated EMG and polynomial-estimated EMG are denoted as 

“reference EMG” and “estimated EMG”, respectively (Figure 6). We compared the reference EMG 

and estimated EMG in response to different frequencies of DBS (Figures 6 and 7).  
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Figure 6. Compare Reference and Estimated EMG (Time Domain) in Response to Different 

Frequencies of DBS 

“Reference EMG” is the EMG simulated by our model (𝑦(𝑡) in Figure 2). “Estimated EMG” is 

the estimation of reference EMG with the polynomial fit (𝑦̂(𝑡) in Figure 2).  

(A) Compare the reference EMG and estimated EMG in the time domain, in response to different 

frequencies of DBS. Each signal is subtracted by its mean. 

(B) Compare the standard deviation (SD) between the reference EMG and estimated EMG. SD is 

computed based on the initial 5 s of data. 

(C) Compare the mean power spectral density (PSD) between the reference EMG and estimated 

EMG. Mean PSD is computed based on the initial 5 s of data. 

 

   In the time domain, the estimated EMG is similar to the reference EMG across different DBS 

frequencies (10 – 200Hz), in terms of both amplitude and variation (Figure 6). In particular, in terms 
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of the standard deviation of the initial 5 s of data, the estimated EMG fit the reference EMG well in 

response to clinical Vim-DBS frequencies (≥ 130 Hz) (Figure 6B). Besides the comparison in time 

domain, we also compared the reference and estimated EMG in frequency domain (Figure 7). At 

each frequency in the band [2, 200] Hz of the EMG activities, we computed the corresponding 

frequency power with Equation 7 in the initial T = 5 s of the EMG (Figure 7). The estimated EMG 

(by a 25-order polynomial (Equation 5)) is well fitted to the reference EMG in frequency domain, 

with R2 = 0.745 (Supplementary Figure 3), computed based on the signals across different DBS 

frequencies. Additionally, we observed other similarities between the estimated and reference EMG, 

in terms of the amplitude and pattern of different frequency power of EMG activities (Figure 7). 

The EMG power is high with DBS-OFF and during low frequency (< 100 Hz) DBS, and is mostly 

suppressed during ≥  130 Hz DBS (Figure 7). During 10 – 80 Hz DBS, in both estimated and 

reference EMG, we observed that the power is high at the harmonics of the DBS frequency (Figure 

7). This might indicate that DBS could induce synchronized activities during low frequency of DBS 

[66][62]. The similarities between the reference and estimated EMG – in both time domain and 

frequency domain – indicate that the estimated EMG is a proper substitute of the reference EMG 

for controlling the frequencies of Vim-DBS for treating essential tremor. 

 

 

Figure 7. Compare Reference and Estimated EMG (Frequency Domain) in Response to 

Different Frequencies of DBS 

“Reference EMG” is the EMG simulated by our model (𝑦(𝑡) in Figure 2). “Estimated EMG” is 
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the estimation of reference EMG with the polynomial fit (𝑦̂(𝑡) in Figure 2). We compare reference 

EMG and estimated EMG in the frequency domain, which is the frequency band [2, 200] Hz of the 

EMG activities. For each DBS frequency, at each frequency of the EMG activities, we compute the 

corresponding frequency power with Equation 7 in the initial T = 5 s of the EMG. The frequency 

power of EMG activities is plotted on a log scale. 

 

The System Output Based on EMG Power Spectral Density 

   We computed the system output to be implemented in a closed-loop controller updating the DBS 

frequency. The system output during Vim-DBS was computed with the estimated EMG (Equation 

5) that facilitates the implementation speed. For DBS frequency 𝑢, we defined the system output 

𝑧(𝑢) as the mean power spectral density (PSD) in the initial interval 𝑇 = 5 s of the estimated EMG 

in response to DBS with stimulation frequency 𝑢 (Equation 9). PSD represents the full band [2, 

200] Hz of EMG activities (Equation 8). The system output in response to different frequencies 

([10, 200] Hz) of DBS was presented in Figure 8: 

 

 

Figure 8. System Output in Response to Different Frequencies of DBS 

The system output z(u) is the mean power spectral density (PSD) in the initial interval T = 5 s of the 

estimated EMG (𝑦̂(𝑡) in Figure 2) in response to DBS with stimulation frequency u (Equation 9).  
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   In general, the system output decreases as DBS frequency increases (Figure 8, Supplementary 

Table 3). During low frequency (≤ 50 Hz) DBS, the system output is not much reduced compared 

with DBS-OFF (𝑢  = 0) situation (Figure 8). The system output is clearly reduced during high 

frequency (≥ 100 Hz) DBS, and is close to minimum during ≥ 130 Hz DBS (Figure 8). These 

responses of the system output to different DBS frequencies are consistent with clinical observations 

of the effectiveness of different frequencies of Vim-DBS [62][64][40][4]. 

 

Closed-Loop Control of the DBS Frequency with PID Controller 

   A PID controller (Equation 10) was implemented to update the DBS frequency in closed-loop, 

based on the system output z (Equation 9). The parameters (𝐾𝑝, 𝐾𝑖, 𝐾𝑑) of the PID controller were 

chosen to be (103, 105, 5 × 103); parameter tuning was performed to increase the efficiency and 

robustness of the control (Supplementary Figure 3 and Supplementary Note).  

 

 

Figure 9. Closed-Loop Control of the DBS Frequency with PID Controller 

The DBS frequency is controlled in closed-loop with the proportional-integral-derivative (PID) 

controller (Equation 10 and Figure 2). The simulation of the PID controller is performed with 

MATLAB R2022b. 

(A) The PID control of DBS frequency with target as 130Hz. 𝛽𝑧,130𝐻𝑧 is the value of the system 

output z (Equation 9) corresponding to a clinical-DBS frequency = 130 Hz. 

(B) The PID control of DBS frequency with different targets. 𝛽𝑧,1, 𝛽𝑧,2, … , 𝛽𝑧,5 represent 5 target 

values of the system output z (Equation 9 and Supplementary Table 4). 𝛽𝑧,2, 𝛽𝑧,3  and 𝛽𝑧,4 

correspond to the target DBS frequency 140 Hz, 130 Hz and 120 Hz, respectively. 𝛽𝑧,1 and 𝛽𝑧,5 
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correspond to unobserved DBS frequencies. 

   As a test of the controller, when the target DBS frequency is 130 Hz, the PID controller can 

accurately find the correct DBS frequency in 10 minutes (Figure 9A and Supplementary Table 4). 

This shows that our control system is potentially effective and efficient for clinical implementations.  

Note that during the PID control, only the steady-state DBS frequency (reached after ~ 10 minutes) 

is delivered to the patient. As we change the target value of the system output, the result of the PID 

control is also robustly and flexibly changed (Figure 9B). In Figure 9B, the five target values of 

the system output correspond to both trained and untrained (unobserved) DBS frequencies 

(Supplementary Table 4). The trained DBS frequencies ({10, 50, 80, 100, 120, 130, 140, 160, and 

200 Hz}) were used in fitting the polynomial coefficients (Equation 5), and the untrained 

(unobserved) DBS frequencies are arbitrary. Our control system is flexible to different targets, and 

this implies that the control system is potentially flexible to different patients and diseases.  

 

Discussion 

We developed a model-based closed-loop control system of the stimulation frequency of Vim-

DBS. The DBS control system was based on our previously verified computational model, which 

represents the neuronal network characterizing the physiological mechanisms that connect the input 

(DBS pulses) and the output (model-predicted EMG activities). In order to facilitate the 

implementation speed, we estimated the model-predicted EMG with a polynomial fit, which was 

used as the feedback biomarker for the controller. The power spectrum of the biomarker was the 

system output implemented in a PID controller that automatically updates the appropriate DBS 

frequency. Thus, the closed-loop system controls the EMG power by adjusting DBS frequency. Our 

closed-loop system can flexibly control the DBS frequency corresponding to different target values 

of the EMG power, which implies that the control system can potentially be implementable for 

different diseases and individual patients.  

 

Clinical Relevance of the System Output 

The system output used in our closed-loop system is related to the power of the model-

predicted EMG signals and the optimal DBS frequency is obtained by bringing the system output 
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to a specified target value. In clinical studies, the power of EMG is a commonly observed indicator 

for different movement disorders, e.g., PD [41], ET [38] and akinesia [67]. Tremor symptoms, 

characterized by the tremor amplitude and frequency, can be identified using the power of EMG 

[39]. Tremor amplitude is the primary indicator of the severity of tremor [39]. Tremor frequency 

can be used to partially differentiate disease types; for example, the peak tremor frequency observed 

in EMG of PD patients is often 3 ~ 6 Hz [41][39], and in EMG of ET patients is often 4 ~ 8 Hz 

[38][21]. Thus, using the power of EMG as a biomarker for ET in a closed-loop DBS is clinically 

relevant [20][21]. During the DBS control, the target value of the EMG power should be appropriate: 

a high EMG power indicates the insufficiency of tremor suppression, and a low EMG power can be 

related to akinesia [67] and myasthenia gravis [68]. 

 

Importance of Predictability in a Control System 

   The ability to predict how different patterns (e.g., frequency) of DBS change neural- and 

behavioral- activities is the main advantage of the model-based closed-loop DBS. A controller (e.g., 

PID) selects appropriate DBS patterns which are biophysically relevant and clinically effective. 

Although the model parameters (for both encoding- and decoding- models (see Figure 2)) are 

obtained based on sparse DBS frequencies, {5, 10, 20, 30, 50, 100, 130, 200} Hz (human Vim data 

[33] and non-human primate cortical data [57]), the biophysically-realistic encoding model can 

robustly predict the effect of an arbitrary DBS frequency in the continuous spectrum of {5 – 200} 

Hz DBS (see Figure 4 for some examples; see Table 1 in Tian et al. (2023) [31] for a test of 

robustness of the firing rate model). Model-based controlling of DBS was addressed in previous 

computational studies [29][9][28]. Despite the usability of these control systems for in silico 

explorations, underlying models were not fitted to experimental data. More importantly, these 

models do not consider physiological mechanisms of the DBS effects. In this work, our (encoding) 

model not only incorporates biophysically-realistic dynamics of DBS-induced short-term synaptic 

dynamics but also provides an accurate fit to Vim-DBS experimental data [33]. Additionally, our 

data-driven decoding model provides a reasonable fit (see Figures 6 and 7) to simulated EMG data 

in which physiological mechanisms of tremor symptoms were preserved (see Figure 2 for details 

of simulation study). Our control system predicts the effect of DBS frequency on the power of EMG 

and delivers optimal DBS frequency. 
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The Use of Machine Learning Methods in Closed-Loop DBS 

In recent closed-loop DBS control systems, machine learning methods have been developed to 

map biomarker features (input) to patients’ observed states (output) and could further deliver an 

appropriate DBS setting [25][69][70]. Therefore, it is imperative to identify key biomarkers that 

need to be extracted from the LFP and EMG as they will serve as input features for a judiciously 

selected machine learning model. Castaño-Candamil et al. (2020) [26] used a regression method to 

estimate tremor severity from electrocorticographic (ECoG) power in ET patients, and adjusted 

DBS intensity according to tremor severity. Golshan et al. (2018) [71] utilized the wavelet 

coefficients of STN-LFP beta frequency range as features and further developed a support vector 

machine (SVM) classifier for the behaviors of PD patients. Numerous prior studies have established 

high performance using SVM classifiers with input features such as phase amplitude coupling [25], 

Hjorth parameters [72], beta band power [25], and burst duration [70]. Using power densities within 

the beta [69] and gamma [73] bands as features, Hidden Markov Models [70][74][73], SVM [71], 

convolutional neural networks (CNN) [70][75][72], linear discriminant analysis (LDA) [70], and 

logistic regression [76] were performed. It was also recommended in a couple studies that deep 

learning methods such as CNNs are worth investigating as they capture nonlinear temporal 

dynamics and waveform shape [70][72]. For example, Haddock et al. (2019) [27] developed a deep 

learning method that classified the behaviors of ET patients based on the PSD of ECoG and used 

the classification results to turn DBS ON/OFF. 

A key improvement to existing machine learning methods is to incorporate physiological 

characterizations of the input-output mapping. In this work, we developed a physiological model to 

map the input (DBS frequency) to the output (model-predicted EMG). We then used a polynomial-

based approximation to estimate the input-output map to facilitate the implementation speed of the 

control system. However, a polynomial method is prone to be less robust to unseen inputs, due to 

its high-order terms [77][78]. Thus, an important line of future works is to use state-of-the-art 

machine learning methods, particularly deep learning methods, to replace the simple polynomial-

based input-output mapping. Consequently, it is important to understand key EMG features for 

muscle activation in Parkinson's disease. Literature highlights sample kurtosis, recurrence rate, and 

correlation dimension as three specific EMG features that are responsive to changes in DBS-
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treatment parameters [79]. These features have been fed as input into LDA, CNN, and SVM, where 

SVM performed the best [80]. In a few investigations, EMG features, encompassing frequency, 

amplitude, and regularity, were scrutinized [81][82]. The signal mean and power of the peak 

frequency performed well as features when using a random forest model and a deep learning 

network for adaptive DBS [81]. It is important to note that while simpler models like LDA are 

valued [83][84] for their interpretability in the context of DBS for PD, the limited availability of 

labeled datasets resulted in ambiguous success for complex models, particularly deep neural 

networks [72].  

Our closed-loop DBS control is based on a physiological model that can generate an arbitrary 

amount of synthetic data, which can be implemented in fully training deep learning methods. The 

arbitrary amount of data in the training set will increase the accuracy and robustness of our future 

closed-loop DBS control based on physiological models and deep learning methods. Therefore, it 

is recommended to evaluate the efficacy of SVM, logistic regression, LDA, hidden Markov Model 

(HMM), random forests, and deep neural network models like CNNs in greater detail using the 

abundance of synthetic data. Watts et al. (2020) [84] performed a thorough retroactive study of 

various machine learning classifiers used to identify optimal DBS parameters for PD, and it was 

recommended to pursue machine learning in the context of adaptive closed-loop DBS for PD. 

 

Limitations and Future Work 

   Our model-based closed-loop system included the clinical Vim-DBS data recorded in Vim 

neurons across different stimulation frequencies (10 – 200 Hz) [33]. However, experimental data 

were not sufficiently included in other components of the closed-loop system. We incorporated non-

human primate single-unit recordings in M1 during 130-Hz VPLo-DBS reported in Agnesi et al. 

(2015) [57], but M1 activities in response to other DBS frequencies were not recorded. The EMG 

model simulation is consistent with some clinical observations, but was not further developed and 

validated by fitting clinical EMG data. In fact, in current experimental works of DBS, EMG signal 

is usually recorded with DBS-OFF or high DBS frequencies (> 100 Hz) [21][40][85], and there 

lacks EMG recordings in response to a wide spectrum of DBS frequencies (e.g., 10 – 200 Hz). In 

the future, we plan to incorporate more experimental data into the further development of the model-

based closed loop DBS control, and these experimental data – in particular, cortical and EMG data 
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– need to be recorded with different DBS frequencies from each individual subjects.  

Worth mentioning is that the synaptic connections between the Vim (VPLo in primate) are 

reciprocal and excitatory, though the projections that the M1 sends to the Vim are in different M1 

laminae than the ones it receives from Vim [86]. Our model simplified this excitatory feedback 

relationship by considering the excitatory propagation effect as uni-directional, from the Vim to the 

M1. We will develop more detailed Vim-M1 model in the future. Our future closed-loop DBS 

systems will be constructed based on both improved models and deep learning methods.  
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