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Abstract 
Background  
Attention Deficit Hyperactivity Disorder (ADHD) is the most common neurodevelopmental 
disorder in children and adolescents that has been linked to poorer higher-order cognitive 
functioning abilities. However, little is known about the neural mechanisms underlying the 
development of executive functioning in children and adolescents with ADHD. 
Methods  
The neural mechanisms associated with higher-order cognitive functioning (e.g., executive 
functioning) was studied in a large cohort of 479 participants. The cohort was split between 
neurotypical children and adolescents (n=106), and children and adolescents with ADHD 
(n=373) between the ages of 6 and 16. fMRI data was collected while participants watched a 
short movie-clip. We applied machine learning models to functional connectivity profiles 
generated from the fMRI data to identify patterns of network connectivity that differentially 
predict cognitive abilities in our cohort.  
Results  
We found models using functional connectivity profiles in response to movie-watching 
successfully predicted IQ, visual spatial, verbal comprehension, and fluid reasoning in children 
ages 6 to 11, but not in adolescents with ADHD. The models identified connections with the 
default mode, memory retrieval, and dorsal attention networks as driving prediction during 
early and middle childhood, but connections with the somatomotor, cingulo-opercular, and 
frontoparietal networks were more important in middle childhood. 
Conclusions  
Computational models applied to neuroimaging data in response to naturalistic stimuli can 
identify distinct neural mechanisms associated with predicting cognitive abilities at different 
developmental stages in children and adolescents with ADHD. 
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Introduction  
Attention Deficit Hyperactivity Disorder (ADHD) is the most common neurodevelopment 

disorder among children and adolescents, affecting an estimated 4.8% of all Canadian children 

up to 19 years of age 1. One reason ADHD is commonly diagnosed in school-aged children is 

because the symptoms linked to ADHD are most salient in the classroom 2. For instance, ADHD 

is best characterized by a persistent pattern of inattention (inability to maintain focus), 

impulsivity (acting on instinct without thinking), and/or hyperactivity (excessive restlessness and 

movement) that can interfere with not only completing school-based tasks, but extends to daily 

functioning 3–6 

One of the most common aspects of ADHD is a deficit in processing speed 7–12, and 

executive functioning, which is comprised of three components: inhibitory control, cognitive 

flexibility, and working memory 11,13,14. Indeed, recent studies have found converging evidence 

that the brain-based associations of ADHD include reduced activity in prefrontal cortex, basal 

ganglia, cerebellum, and parieto-temporal regions, all of which have been shown to support 

multiple cognitive processes such as cognitive control, working memory, and attention 15–17. 

Although there is a large literature examining the cognitive abilities in individuals with 

ADHD, many of those studies have focused on adults or single-age cohorts of children, without 

considering development. Consequently, less is known about the neural mechanisms associated 

with cognitive development from childhood to adolescence in individuals with ADHD.  

Advancements in applying machine learning to large neuroimaging datasets has proven 

to be a valuable tool to understand the relationship between cognition and the underlying 

neural mechanisms18–24. For example, machine learning (i.e., Ridge regression) has been 

successfully applied to resting-state functional connectivity networks to predict fluid and 

crystalized intelligence in healthy young adults 25. A similar approach was also used to predict 

links between neural activity in the default mode network and three task control networks 

(frontoparietal, salience, and dorsal attention) and higher-order cognitive functions, such as, 

general ability, speed/flexibility, and learning/memory in younger participants26. Although much 

of this work on applying machine learning to link neural activity with cognitive ability has relied 

on resting-state data, movie-watching fMRI has been shown to improve functional connectivity-

based prediction of behavior compared to resting-state27–29.  The few studies that have used 
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movie-watching data were able to successfully predict cognitive abilities in neurotypical adult29 

and child populations30. The advantage of using movie-watching data is likely due to reduced 

motion, increased engagement, but perhaps most importantly, movie-watching requires the 

integration of various cognitive systems to follow the complexities of the plot. Moreover, 

individuals often have a unique interpretation of the movie, resulting in enhanced individual 

signals and therefore richer brain dynamics can be captured by predictive models31–33.   

In the current study, we combined movie-watching fMRI and machine learning to 

identify different patterns of functional network connectivity that best predict cognitive ability 

in a large cohort of children and adolescents with ADHD. We predicted that not only are there 

specific neural mechanisms associated with different aspects of higher-level cognition in 

children and adolescents with ADHD, but those mechanisms change developmentally and are 

unique to different age groups. To explore changes in the neural mechanisms associated with 

cognitive functioning across time, participants were divided into three age bins and neural 

activity was modeled (in response to a movie) to predict the same set of cognitive abilities for 

each age bin. By splitting participants into three age bins, the models would either 1) predict the 

same set of cognitive abilities for all three age bins, suggesting a similar functional connectivity 

profile across development or 2) predict a different set of cognitive abilities for each age bin, 

suggesting the model captured a functional connectivity profile unique to age cohorts. We 

compared models using out-of-sample cross-validation (model trained on one age bin to predict 

the same cognitive ability in a different age bin) to determine the degree to which similar neural 

properties were associated with cognition across age bins. We analyzed shared functional 

connectivity profiles by calculating a difference score between the models (feature weights) 

trained on each age bin, revealing connections that changed the most or the least across age 

bins. 

 

Methods and Materials 

Participants  

We obtained data from the Healthy Brain Network (HBN) biobank (releases 1 to 8) as 

part of the Child Mind Institute34. The Chesapeake Institutional Review Board approved the 
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study, and details on the HBN biobank can be found at: 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/  

We included a sample of 479 data sets from children and adolescents between the ages 6 to 16 

in the final analysis. The data sets consisted of a T1-weighted, and functional MRI scan, along 

with phenotypic data. We excluded participants with lower-quality data, based on visual 

inspection of the T1 images and functional connectivity matrices, along with those who full-

scale intelligent quotient scores under 70 (Supplement).  

 Phenotypic data included age, sex, clinical diagnosis, and six cognitive measures from 

the Wechsler Intelligence Scale (Table 1). Clinical diagnoses were provided by up to ten licensed 

clinicians after interviews with the parents and child34 which we used to group participants into 

the ADHD (at least one diagnosis of “ADHD”) or NT (no clinical diagnoses) group. In addition to a 

single ADHD group (n=373), we divided participants with ADHD into three age bins: early 

childhood (Bin 1: ages 6-8, n=114), middle childhood (Bin 2: ages 9-11, n=147), and adolescence 

(Bin 3: ages 12-16, n=112). Due to the smaller sample size (n=106), we did not divide the 

Neurotypical (NT) group into discrete age bins.  

 
Group 

 
ADHD TD 

Measure All Bin 1 Bin 2 Bin 3 All 

N 373 114 147 112 106 

Age 10.57 (2.53) 

6.03 to 15.98 

7.73 (0.76) 

6.03 to 8.98 

10.34 (0.88) 

9.04 to 11.96 

13.75 (1.13) 

12.03 to 15.98 

10.12 (2.78) 

6.05 to 16.50 

Sex (M/F) 274/99 77/37 118/29 79/33 62/44 

WISC FSIQ 100.13 (16.31) 

70.00 to 

147.00 

104.13 (15.47) 

73.00 to 

138.00 

98.56 (15.90) 

70.00 to 

141.00 

98.11 (16.94) 

71.00 to 

147.00 

108.58 (14.20) 

76.00 to 

145.00 

WISC VSI 102.32 (17.12) 

57.00 to 

155.00 

106.38 (16.64) 

67.00 to 

147.00 

100.73 (16.69) 

64.00 to 

144.00 

100.28 (17.46) 

57.00 to 

155.00 

105.21 (15.01) 

64.00 to 

141.00 

WISC VCI 105.04 (15.87) 

70.00 to 

155.00 

108.53 (16.06) 

70.00 to 

146.00 

104.44 (15.34) 

70.00 to 

155.00 

102.29 (15.71) 

70.00 to 

142.00 

110.58 (13.93) 

78.00 to 

155.00 

WISC FRI 101.33 (16.19) 

67.00 to 

144.00 

104.58 (15.40) 

67.00 to 

140.00 

99.14 (15.75) 

67.00 to 

134.00 

100.90 (16.98) 

67.00 to 

144.00 

107.42 (15.11) 

69.00 to 

155.00 

WISC WMI 98.54 (15.18) 
62.00 to 

138.00 

99.53 (14.83) 
67.00 to 

138.00 

97.21 (14.04) 
65.00 to 

138.00 

99.29 (16.77) 
62.00 to 

135.00 

103.92 (14.29) 
72.00 to 

135.00 

WISC PSI 93.65 (15.35) 97.33 (15.29) 93.12 (13.94) 90.59 (16.38) 106.55 (15.80) 
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53.00 to 

148.00 

56.00 to 

148.00 

56.00 to 

123.00 

53.00 to 

132.00 

66.00 to 

155.00 

 
Table 1: Participant demographics.  
For each group and measure, the mean, standard deviation (in brackets), and range are provided. 
 

(f)MRI acquisition and preprocessing  

T1-weighted anatomical and functional MR images were acquired while participants 

watched a ten-minute clip from the movie ‘Despicable Me’34. Neuroimaging data were 

preprocessed and analyzed using the Automatic Analysis (AA) toolbox35, SPM 8, and in-house 

MATLAB scripts (see Supplement for additional details).  

We generated functional connectivity matrices for each participant using 264 regions-of-

interest (ROI) as defined in the Power et al. (2011) atlas36. Individual ROIs comprised of spheres 

of 5 mm in radius with spatial smoothing full-width half maximum of 6 mm and z-score 

standardization. We correlated activity in each sphere to every other sphere, resulting in a 264 x 

264 functional connectivity matrix.  

 
Cognitive ability 

Cognitive ability was measured using the Wechsler Intelligence Scale for Children Fifth 

Edition37. The WISC-V measures a child’s intellectual ability based on five primary indices: Visual 

Spatial Index (VSI), Verbal Comprehension Index (VCI), Fluid Reasoning Index (FRI), Working 

Memory Index (WMI), and Processing Speed Index (PSI). In addition, the WISC-V also provides a 

Full-Scale IQ (FSIQ) score, which is derived from the five primary indices, and normalized by age 

(description of the cognitive measures can be found in the Supplement).  

 

Computational Modeling 

We used two computational models to examine the relationship between functional 

connectivity and cognitive ability: partial least squares (PLS) (Randy citation) and Ridge 

regression (add citation). Ridge and PLS models are ideal for high-dimensional multicollinear 

data and have built-in anti-overfitting (regularization) parameters (details about optimal 

components and alpha values in Supplement).  
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We first fit standard scaler models to rescale features such that they have the properties 

of a standard normal distribution with a mean of zero and a variance of one. This is essential 

because regularized linear models assume features are centered around zero and have variance 

in the same scale to avoid certain features dominating because of differences in variance. To 

avoid data leakage between the training and testing set, we fit the standard scaler only on the 

training set, and it was applied to both the training and testing set. 

Model Feature Weight Analysis  

After we trained the models, we analyzed the model’s feature weights using two 

methods. First, we assessed feature weight reliability between different computational models 

using the intraclass correlation coefficient25 (ICC). In the second method, we used feature 

weights trained on one subset of the dataset and applied them to predict cognition on a 

different subset. We based prediction accuracy on Pearson correlations representing the degree 

of similarity between the model’s predicted values of cognitive ability and the true values. We 

calculated statistical significance by comparing the observed Pearson r score relative to a null 

distribution of Pearson r scores generated from 500 random permutations of the dataset. We 

performed this out-of-sample cross-validation—referred to as cross-prediction—only on the 

ADHD group and evaluated it using permutation statistics (Supplement). 

Model feature weights represent the weight (importance) associated with specific 

aspects of the functional connectivity matrix. We multiplied the feature weights by a 

participant’s functional connectivity matrix and used this to calculate the predicted score across 

all cognitive measures. We then compared this score against the participant’s actual cognitive 

score to update the feature weights. Thus, the feature weights represent a heat map of 

important functional connections for predicting cognitive ability. 

To explore how cognition develops, we subtracted feature weights of models trained on 

early childhood (Bin 1) from models trained on middle childhood (Bin 2), with respect to 

cognitive ability. We used absolute values to highlight the magnitude of change between Bin 1 

and Bin 2 feature weights. The absolute-value-feature-weight-differences matrix represents the 

network connections that change in importance between Bins 1 and 2. Large differences (top 

ten most dissimilar feature weight) represent “distinct" functional connections, while small 
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feature-weight differences (top ten most similar) represent “shared” network profiles. Both the 

distinct and shared network profiles are important when considering cognitive development as 

connections that change are equally important as connections that do not change between 

early and middle childhood.

 

Figure 1: Processing stages for the neuroimaging data.  
There are three overall stages to the data pipeline: preprocessing, modeling, and analysis. Preprocessing involved correcting the 
raw MRI and fMRI data for motion, coregistering the structural and functional images, normalizing to a standard template, 
generating a functional connectivity matrix, and splitting the participants by age or diagnosis. Next is modelling and it starts with 
searching for the optimal parameters for the model, then training and validating the model using the functional connectivity 
matrices, randomly permutating the data, and ends with extracting the model’s feature weights. Lastly, the feature weights 
were analyzed by calculating the intraclass correlation coefficient, using the weights to cross-predict cognition in a different age 
bin, and visualizing the feature weights. 

 

Results  

Predicting age and sex in ADHD and NT  

Using Ridge regression, we predicted the age (r2=0.45, p=.01) and sex of individuals in 

the ADHD group (n=373) with an accuracy of 74% (p<.001). Age (r2=0.13, p=.01) and sex (60% 

accuracy, p=.01) were also predicted in the NT group (n=106). We class-balanced the sex 

prediction to ensure that the model was not constantly predicting the most prevalent sex.  
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Predicting cognitive ability in ADHD and NT  

Using Ridge regression, we found the model could predict FSIQ (r=0.38, p=.002), VSI 

(r=0.31, p=.002), VCI (r=0.39, p=.002), FRI (r=0.30, p=.002), and WMI (r=0.21, p=.004), but failed 

to predict PSI (r=0.05, p=.26) in the group of participants diagnosed with ADHD (n=373). 

Conversely, we could not predict FSIQ (r=0.04, p=.42), VSI (r=0.16, p=.11), VCI (r=0.20, p=.05), 

FRI (r=-0.07, p=.73), WMI (r=0.12, p=.21), and PSI (r=-0.06, p=.70) in the NT group (n=106). 

These p-values were corrected for multiple comparisons using the max-statistic method. To 

determine whether these results were driven by model choice (Table 2), the analysis was 

replicated using a partial least squares (PLS) model. We found no difference in performance 

between the two models, except that VCI (r=0.23, p=.04) could be predicted in the NT group 

using the PLS model. The similarity between the two models was further supported by the ICC 

analysis which showed the weights produced by the Ridge and PLS model were strongly 

correlated (> 0.90; Supplement for additional details). Based on these results, we excluded the 

NT group, and used Ridge Regression for all subsequent analyses.  

 ADHD (n=373) TD (n=106) 

 PLS Ridge PLS Ridge 

WISC Primary Index Pearson r P-value Pearson r P-value Pearson r P-value Pearson r P-value 

Intelligence Quotient (FSIQ) 0.37 .002* 0.38 .002* 0.04 .388 0.04 .417 

Visual Spatial (VSI) 0.28 .002* 0.31 .002* 0.14 .129 0.16 .107 

Verbal Comprehension (VCI) 0.37 .002* 0.39 .002* 0.23* .035* 0.20 .051 

Fluid Reasoning (FRI) 0.30 .002* 0.30 .002* -0.07 .737 -0.07 .734 

Working Memory (WMI) 0.17 .011* 0.21 .004* 0.08 .259 0.12 .213 

Processing Speed (PSI) 0.06 .227 0.05 .257 -0.10 .791 -0.06 .698 

 

Table 2: Scores for predicting six cognitive abilities in ADHD and TD using partial least squares and Ridge regression.  
The Pearson r correlations test score represents the linear correlation between the model’s predicted values of the cognitive 
ability and the true values. The p-value was calculated by comparing the observed Pearson r score to a null distribution of 
Pearson r scores generated from 500 random permutations of the dataset. Both the PLS and Ridge models predicted FSIQ, VSI, 
VCI, FRI, and WMI in the ADHD group at significance (p<.011) but failed to predict PSI (p=.23). For the TD group, only VCI was 
predicted at significance (p=.04) using PLS. PLS and Ridge achieved similar Pearson r correlation scores on both the ADHD and 
TD groups. *values indicate statistically significant at p<.05 max-statistic corrected.  
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Across all cognitive measures, models consistently assigned the largest positive weights 

to connections within two networks: memory retrieval and sensory/somatomotor (mouth), 

while inter-network connections with the largest positive weights were between memory 

retrieval and dorsal attention, and between memory retrieval and cerebellar. The largest 

negative weights were commonly assigned to connections between frontoparietal task control 

and visual, between dorsal and ventral attention, and to networks connected with subcortical 

areas.  

Developmental changes linking functional connectivity and cognitive abilities in ADHD  

To examine developmental changes in the relationship between neural connectivity 

profiles and cognitive ability, we divided the ADHD group into three age bins (Table 3). The 

model successfully predicted FSIQ (r = 0.27, p = 0.02), VSI (r = 0.24, p =0.02), and VCI (r = 0.22, p = 

0.03), but not FRI and WMI (p > 0.05) for Bin 1 (ages 6-8); and FSIQ (r = 0.35, p = 0.002), VSI (r = 

0.21, p=.02), VCI (r = 0.35, p = 0.002), FRI (r = 0.31, p =  0.004), and WMI (r = 0.29, p = 0.004) for Bin 

2 (ages 9-11). The model did not predict any WISC-V measure (p > 0.17) for individuals in Bin 3 (ages 

12-16). We found similar results using a smaller sample of Bin 2 (n=113) that matched the 

sample sizes of Bins 1 and 3; the model could predict FSIQ (r = 0.37, p = 0.002), VSI (r = 0.27, p = 

0.01), VCI (r = 0.37, p = 0.002), FRI (r = 0.30, p = 0.006), WMI (r = 0.35, p = 0.002), but not PSI (r 

= 0.04, p = 0.38). The feature weights are shown in Figure 2.  

 Age Bins 

 Bin 1 (n=114) Bin 2 (n=147) Bin 3 (n=112) 

WISC Primary Index Pearson r P-value Pearson r P-value Pearson r P-value 

Intelligence Quotient (FSIQ) 0.27 .019* 0.35 .002* 0.11 .177 

Visual Spatial (VSI) 0.24 .017* 0.21 .021* 0.09 .229 

Verbal Comprehension (VCI) 0.22 .027* 0.35 .002* 0.04 .403 

Fluid Reasoning (FRI) 0.05 .347 0.31 .004* -0.01 .518 

Working Memory (WMI) 0.05 .357 0.29 .004* 0.10 .183 

Processing Speed (PSI) -0.09 .792 0.06 .263 0.09 .257 

 
Table 3: Scores for predicting six cognitive abilities in ADHD across three age bins using Ridge.  
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Bin 1 represents early childhood (ages 6-8), Bin 2 represents middle childhood (ages 9-11), and Bin 3 represents adolescence 
(ages 12-16). The Ridge model successfully predicted FSIQ, VSI, and VCI in Bin 1 (p<.03); FSIQ, VSI, VCI, FRI, and WMI in Bin 2 
(p<.02); and no cognitive ability in Bin 3 (p>.17). *values indicate statistically significant at p<.05 max-statistic corrected.  

 

The feature weights for FSIQ, VSI, and VCI had positive weights for network connections 

between memory retrieval and dorsal attention, cingulo-opercular and sensory/somatomotor 

(mouth) networks, and within memory retrieval, sensory/somatomotor (mouth) networks. 

Negative weights were learned for connections between dorsal and ventral attention, memory 

retrieval and sensory/somatomotor (mouth), and between cerebellar and 

sensory/somatomotor (mouth) networks. For the Bin 2 feature weights, we found a general 

pattern of less-extreme feature weights (fewer darker-colored cells) across all cognitive 

measures (Figure 2, right column) relative to the entire ADHD group and Bin 1. This suggests 

that the model is not relying on specific network connections, but instead is using a distributed 

approach to predict cognitive ability. However, the model identified strong negative weights for 

connections within the sensory/somatomotor (mouth) network associated with predicting VCI 

scores, implying this network is deemphasized for predicting VCI performance. Interestingly, this 

connection was assigned a large positive in Bin 1, which shows that the models switched from a 

positive to a negative weight from Bin 1 to Bin 2 when predicting VCI (see Supplement for 

additional details).  
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Figure 2: Feature weights used to predict five cognitive abilities in the entire ADHD group, Bin 1, and Bin 2.  
Each row represents one of five WISC measures: FSIQ, VSI, VCI, FRI, and WMI. Each column represents one of three ADHD 
groups: All (ages 6-16), Bin 1 (ages 6-8), and Bin 2 (ages 9-11). Each scale applies to the feature weight matrices in the row. A 
feature weight matrix represents the average feature weight for all connections between two networks shown for all networks. 
Darker cells in the feature weight matrix represent more extreme values, while lighter cells represent values closer to zero. Red 
cells represent positive values (increases in value for that network connection increased the predicted cognitive score), while 
blue cells represent negative values (increases in value for that network connection decreased the predicted cognitive score). 
Diagonal cells represent intranetwork connections, while off-diagonal cells represent internetwork connections. The networks 
are visual (VIS), frontoparietal task control (FPN), default mode (DMN), sensory/somatomotor (hand; SMH), 
sensory/somatomotor (mouth; SMM), cingulo-opercular task control (CON), auditory (AUD), salience (SAL), memory retrieval 
(MEM), ventral attention (VAN), cerebellar (CER), subcortical (SUB), and dorsal attention (DAN).  
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Cross-prediction across age bins in ADHD 

Using cross-prediction (out-of-sample cross-validation), we found that models trained on 

Bin 1 and tested on Bin 2 successfully predicted FSIQ (r=0.33, p=.002), VSI (r=0.36, p=.002), VCI 

(r = 0.32, p = 0.002), and FRI (r = 0.15, p = 0.02) (Figure 3). We also found the reverse; a model 

trained on Bin 2 and tested on Bin 1 successfully predicted FSIQ (r = 0.36, p = 0.002), VSI (r = 

0.40, p = 0.002), VCI (r = 0.30, p = 0.002), and FRI (r = 0.20, p = 0.01). However, models failed to 

cross-predict WMI (r = 0.03, p = 0.35) and PSI (r = 0.07, p = 0.18) when trained on Bin 1 and 

tested on Bin 2, and when trained on Bin 2 and tested on Bin 1; WMI (r = 0.03, p = 0.37) and PSI 

(r = 0.03, p = 0.40). These results suggest connectivity patterns associated with FSIQ, VSI, VCI, 

and FRI, but not WMI and PSI, generalize from early to middle to childhood. 

 
Figure 3: Scores for cross-predicting six cognitive ability between Bin 1 and Bin 2.  
For each matrix, rows represent the age bin (Bin 1 or Bin 2) the model was trained on, while columns represent the age bin (Bin 
1 or Bin 2) the model was tested on. The top-left to bottom-right diagonal represents training and testing the model within the 
same age bin (same scores as in Table 3), while the bottom-left to top-right diagonal represents the training the model on Bin 2 
and testing on Bin 1 and training the model on Bin 1 and testing on Bin 2 respectively. Values within each cell are the Pearson r 
correlation test score and represent the linear correlation between the model’s predicted values of the cognitive ability and the 
true values. Purple cells indicate statistically significant at p<.05 after being corrected for multiple comparisons using the max-
statistic method, while grey cells indicate not statistically significant.  
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To identify the most similar and dissimilar feature weights that were trained on Bin 1 and 

Bin 2, we subtracted (using absolute values) the Bin 2 feature weights from the Bin 1 feature 

weights for each cognitive measure (e.g., for FSIQ, VSI, VCI, FRI, and WMI). We found the 

feature weight profiles with the (top ten) most similar networks between early childhood (Bin 1) 

and middle childhood (Bin 2) across all cognitive measures comprised of four intra-network 

connections: the frontoparietal, default mode, subcortical, and dorsal attention networks. The 

feature weights associated with inter-network connections that were most similar between the 

two age groups primarily included the frontoparietal, default mode, subcortical, and salience 

structures, although other networks were also found (but to a lesser degree) to be shared 

between age groups.  

Conversely, relatively more intra-network connections were dissimilar between the two 

age groups across the cognitive measures, such as the sensory/somatomotor (mouth), cingulo-

opercular, and memory retrieval networks, but also included cerebellar and ventral attention 

networks. Most dissimilar (top ten) inter-network connections included the memory retrieval, 

dorsal attention, sensory/somatomotor networks (mouth and hand) networks. Moreover, 

connections between cingulo-opercular network and other parts of the brain were more often 

shared than not between the age groups across the different cognitive measures. Note, the 

model was not able to predict FRI and WMI in Bin 1 but was able to predict FRI and WMI in Bin 

2, which does not reflect direct comparisons of specific cognitive abilities between the age 

groups (Figure 4).  
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Figure 4: Difference in feature weights between Bin 1 and Bin 2 for five cognitive abilities.  
Each row represents one of five WISC measures: FSIQ, VSI, VCI, FRI, and WMI. The left column (grey) represents all feature 
weight differences between Bin 1 and 2, the center column (pink) represents network connections with the most dissimilar 
values for Bin 1 and 2 (“distinct” networks), and the right column (green) represents network connections with the most similar 
values between Bin 1 and 2 (“shared” networks). The distinct network profiles were obtained by thresholding all feature weight 
differences between Bins 1 and 2 by the ten largest differences. The shared network profiles were obtained by thresholding all 
feature weight differences between Bins 1 and 2 by the ten smallest differences. For the left and center columns, darker cells 
represent a larger difference between the feature weights assigned to Bin 1 and 2 when predicting cognition, while lighter cells 
represent a smaller difference. Diagonal cells represent intra-network connections, while off-diagonal cells represent 
internetwork connections.  
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Discussion  

We demonstrated that applying machine learning to movie-watching fMRI data is a viable 

tool for predicting demographic and higher-level cognitive abilities in children and adolescents 

diagnosed with ADHD. In a large cohort of early childhood, middle childhood, and adolescent 

participants, we built models that successfully predicted age and sex, and we identified shared 

and distinct neural mechanisms associated with different aspects of higher-level cognition 

across development in ADHD and NT groups.  

Establishing models that can predict age and sex is important because it demonstrates 

that a dimensional data-driven approach (i.e., machine learning) can be used to extract 

information from the neural connectivity profile to predict aspects of development. The distinct 

feature-weight profile used by the model likely reflects that male and female (sex was limited to 

these two categories) children and adolescents have distinct functional patterns of brain activity 

and are relying on different neural mechanisms to process the movie. This result replicates and 

expands on previous work that generated models to predict age and sex25,38–40 providing further 

evidence that biological properties, such as age and sex, could be reliably localized to specific 

important connections in the brain. Does the same apply to cognition? 

Emerging from our results was predicting higher-level cognitive abilities followed an 

inverted-U pattern. This suggests that the link between intra brain functional connectivity in 

response to movie watching and cognitive ability is strongest and most consistent during middle 

childhood, weaker and more variable during early childhood and not detectable during 

adolescence. Although successfully predicting cognitive abilities based on neuroimaging data is 

consistent with previous studies (in neurotypical children41), we were surprised that the same 

cognitive systems could not be predicted in adolescence with ADHD. One reason for this pattern 

of results is that the link between functional connectivity and cognitive ability in adolescence 

may be too weakly represented in the data. This could reflect more variable cognitive 

development in this group that was not equally elicited by the movie. Another interesting 

possibility is that the nature of the relationship between cognition and connectivity profiles do 

not follow a linear trajectory and linear models are insufficient to capture the link.  
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Although we could generate models that predicted different cognitive abilities in early 

and middle childhood, not all cognitive systems were reliably predicted between the cohorts. 

Beyond that, the models that best predicted cognitive abilities were different for participants in 

early versus middle childhood. For example, the model could predict fluid reasoning and 

working memory in middle childhood but not in early childhood. Although previous work has 

suggested that verbal and visuospatial working memory remain relatively distinct in children 

ages 4 to 1142, our results suggest this may not be the case. One potential reason why we could 

predict working memory in middle, but not early childhood, is because the link between these 

cognitive abilities and the underlying neural mechanisms are either weaker or follow distinct 

developmental trajectories during this period in children with ADHD7,43. Indeed, maturing 

working memory and fluid reasoning are associated with the development of the frontoparietal 

network44,45, and atypical development of this network is associated with difficulties in fluid 

reasoning and working memory in children between the ages of 6 and 12 with ADHD46–48.  

One similarity across the three developmental stages was that processing speed could 

not be predicted well in children and adolescents with ADHD. This is likely due to children with 

ADHD showing the most pronounced deficits in processing speed7,43. Delayed or more variable 

development of this cognitive ability may suggest that there is a weakened relationship 

between neural activity associated processing speed ability, or the representation of processing 

speed in brain activity may have greater variability, resulting in poorer prediction scores. 

Similarly, previous work found the lowest prediction scores on measures of speed/flexibility out 

of three higher-order cognitive functions (General Ability, Speed/Flexibility, and 

Learning/Memory) using resting-state fMRI data in 9- to 10-year-old children41. These results 

suggest that neither movie-watching or resting-state fMRI is ideal for capturing the neural 

mechanisms related to processing speed in neurotypical children49 or children with ADHD.  

We hypothesized models identifying unique network patterns associated with cognitive 

ability in one age cohort would not generalize to other cohorts. However, this was not the case. 

Instead, connectivity patterns associated with IQ, visual spatial, verbal comprehension, and fluid 

reasoning generalize from early to middle to childhood. The shared networks for predicting 

cognition between early and middle childhood were divided into two types: intra-network 
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(within) connections and inter-network (between) connections. Shared intra-network 

connections were predominately made up of the frontoparietal, default mode, subcortical, and 

dorsal attention, but also included sensory (e.g., visual and auditory) networks. The shared 

inter-network connections were comprised primarily of the frontoparietal, default mode, 

memory retrieval, dorsal attention, and salience networks.  This is not to say these network 

connections remain stable during this period; some developmental changes may not be tied to 

cognitive ability. What the shared network connections do imply is that the models did not 

change their importance for these network connections when predicting cognition for early and 

middle childhood. Why would the models highlight these networks? One possibility is that 

many of the shared networks, which have been linked to higher-level cognitive processing—

such as the frontoparietal, memory retrieval, dorsal attention, and salience networks—bridge 

cognitive maturity and the degree to which they are recruited during movie watching is similar 

between the two age groups. That is, young children with greater scores on cognitive abilities 

are recruiting (or not recruiting) these networks during movie watching to the same degree as 

older children, while the same relationship is true for early and middle childhood participants 

with lower scores on cognitive abilities.  

Although we found many important shared network connections between the two age 

groups, relatively low explained variance suggests that the shared networks do not capture all, 

or even most, of the developmental neural mechanisms supporting higher-level cognition in 

early and middle childhood. The distinct networks for predicting cognition between early and 

middle childhood were found primarily within the sensory/somatomotor (mouth), cingulo-

opercular, and memory retrieval networks, but also included subcortical, cerebellar, and ventral 

attention networks, and between the sensory/somatomotor networks (mouth and hand), dorsal 

attention, and memory retrieval networks. In line with our results, the sensory/somatomotor 

(hand) and memory retrieval networks connections were important when predicting general 

cognitive ability in a cohort of middle childhood participants41. This suggests the network 

connectivity profile of the sensory/somatomotor (hand), and memory retrieval networks are 

strongly linked to cognitive development from early to middle childhood. Contrary to our 

hypothesized outcomes, the connectivity profile in frontoparietal network was not distinctly 
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associated with cognition in early versus middle childhood. Although the frontoparietal network 

is strongly linked to the development of executive function and intelligence50,51, it’s possible 

that Despicable Me did not trigger the cognitive systems mediated by the frontoparietal 

network in the youngest two cohorts in our study. Another possibility is that movie-watching in 

general may not be a context that is sensitive enough to extract neural features associated with 

executive functioning in young children. Related to both points, previous studies found that the 

frontoparietal network is not a flexible hub during movie watching27 to the same degree it has 

been reported to be when participants complete a set of demanding tasks52,53. Therefore, the 

bridge between frontoparietal activity associated with executive functioning during movie-

watching and the WISC scales may not be sufficiently strong to find patterns of activity 

associated with executive functioning development.   

Importantly, we were able to replicate all findings using a different model: partial least 

squares. In fact, we found a very high correspondence between the feature weights generated 

by Ridge and partial least squares as measured by the high intraclass correlations. This suggests 

that the models’ ability to predict cognition is likely not driven by model choice as both the 

model output (its correlation score) and the model internals (its feature weights) are extremely 

similar between Ridge and partial least squares. In line with our results, previous studies also 

reported finding little difference between a Lasso model and Ridge’s correlation score when 

predicting fluid and crystalized intelligence25. Thus, perhaps in the space of regularized linear 

models, the choice of model does not lead to significant performance differences.  

 

Limitations and Future Directions  

One limitation of the current study is that we were unable to predict cognition in age-

matched neurotypical children, despite previous studies demonstrating that cognition can be 

predicted in this populations25,29,41. One potential reason is the NT group was smaller than the 

ADHD group. However, this likely does not account for our results because we were able to 

predict some cognitive measures in the ADHD group with a comparable sample. Another factor 

might be data quality; perhaps the noisier data for the NT group was leading to poor predictive 

performance. This is also an unlikely to account for our results because we could predict age 
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and sex in the NT group. However, the explained variance and accuracy was lower in the NT 

group compared to the ADHD group, and lower than estimates from other studies 

(approximately 42% explained variance but using a different task40). To determine whether our 

findings are specific to ADHD or generalize to other groups of children, future studies examining 

distinct neural mechanisms associated with cognitive development in neurotypical populations 

should replicate our findings using larger samples. Furthermore, different models would be 

valuable, such as those incorporating non-linear relationships between connectivity profiles and 

cognition, and lesion-modeling54 that examine changes in the direction of the relationship 

between neural mechanisms and cognition across development.  

 
Conclusion  

Different higher-order cognitive abilities in a large group of children and adolescents 

diagnosed with ADHD could be predicted using functional neural activity during movie 

watching. Prediction scores do not remain constant across development but instead follows an 

inverted-U developmental trajectory from early childhood to adolescence, and that certain 

neural mechanisms linked to higher-level cognition were shared we also found several distinct 

sets of neural mechanisms for predicting cognition between early and middle childhood.  
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