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Abstract

All non-mimosoid nodulated genera in the legume subfamily Caesalpinioideae
confine their rhizobial symbionts within cell wall-bound “fixation threads” (FTs).
The exception is the large genus Chamaecrista in which shrubs and subshrubs
house their rhizobial bacteroids more intimately within symbiosomes, whereas
large trees have FTs. This study aimed to unravel the evolutionary relationships
between Chamaecrista growth habit, habitat, nodule bacteroid type, and rhizobial
genotype. The growth habit, bacteroid anatomy, and rhizobial symbionts of 30
nodulated Chamaecrista species native to different biomes in the Brazilian state of
Bahia, a major centre of diversity for the genus, was plotted onto an ITS-TrnL-F-
derived phylogeny of Chamaecrista. The bacteroids from most of the Chamaecrista
species examined were enclosed in symbiosomes (SYM-type nodules), but those
in arborescent species in the section Apoucouita, at the base of the genus, were
enclosed in cell wall material containing homogalacturonan (HG) and cellulose (FT-
type nodules). Most symbionts were Bradyrhizobium genotypes grouped
according to the growth habits of their hosts, but the tree, C. eitenorum, was
nodulated by Paraburkholderia. Chamaecrista has a range of growth habits that
allow it to occupy several different biomes and to co-evolve with a wide range of
(mainly) bradyrhizobial symbionts. FTs represent a less intimate symbiosis linked
with nodulation losses, so the evolution of SYM-type nodules by most
Chamaecrista species may have (a) aided the genus-wide retention of nodulation,
and (b) assisted in its rapid speciation and radiation out of the rainforest into more
diverse and challenging habitats.

Keywords: Chamaecrista, nodulation, homogalacturonan (HG), cellulose, fixation thread
(FT), Caesalpinioideae, Bradyrhizobium, Paraburkholderia, nodC, nifH.
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Introduction

The monophyletic legume genus Chamaecrista (L.) Moench (Leguminosae -
Caesalpinioideae) has its centre of diversification in South America (Conceicao et al.,
2009). Most species occur in Brazil, where 268 of approximately 366 recognized species
are distributed in various biomes and vegetation types. About 223 species are considered
as Brazilian endemics (LPWG 2020; Rando et al., 2020) particularly in the states of Bahia
(BA) and Minas Gerais (MG) which harbour 94 species distributed in such diverse
environments as savannah (Cerrado), Campo rupestre (upland rocky fields), semiarid
ecosystems (Caatinga), and tropical rain forest (Coutinho et al., 2016; Rando et al., 2016,
2020).

Chamaecrista is the ninth largest genus in the Leguminosae (Fabaceae) and the
third largest in the Caesalpinioideae subfamily (after Acacia and Mimosa); it contains a
wide variety of plant growth habits and sizes, ranging from trees through to shrubs, and
subshrubs/woody herbaceous perennials (Lewis, 2005; Coutinho et al., 2016; Mendes et
al. 2017; LPWG 2021). Furthermore, the distribution of Chamaecrista is unique in being
the only nodulated caesalpinioid genus which has species that have colonized temperate
regions (Sprent et al., 2013). All Chamaecrista species so far examined form symbiotic
root nodules with nitrogen-fixing bacteria collectively known as rhizobia (Gyaneshwar et
al., 2011; Peix et al., 2015; Sprent et al., 2017), while related genera comprising the
Cassia clade (LPWG 2017), p. ex. Cassia L. and Senna Mill. do not nodulate (Sprent,
2001, 2009). The independent rise of nodulation and its variation in Chamaecrista
(Delaux et al., 2015; Naisbitt et al., 1992) suggests that the genus has a pivotal position
in the evolution of nodulation (Sprent et al., 2013), and could be used as a model for
detailed studies of interactions between plants and nitrogen-fixing bacteria (Singer et al.,
2009). Indeed, it is for this reason that Sprent et al. (2013) suggested studying the
nitrogen-fixing nodules across Chamaecrista species in more depth with a focus on their
structure and rhizobial symbionts.

There is a paucity of information about nodule anatomy and development in the
paraphyletic grade comprising the Caesalpinioideae (i.e., excluding the Mimosoid clade),
which includes Chamaecrista. What we do know is that all nodules so far studied from
the nine known nodulating non-Mimosoid Caesalpinioideae genera (Campsiandra,
Chamaecrista, Dimorphandra, Dinizia, Erythrophleum, Jacqueshuberia, Melanoxylon,
Moldenhawera and Tachigali) are indeterminate, retaining meristematic activity (Sprent,
2009; Fonseca et al., 2012; Sprent et al., 2013, 2017; Faria et al. 2022). Moreover, while
the nodules in most papilionoid and all mimosoid species so far examined, have their
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symbiotic rhizobia (bacteroids) released into membrane-bound vesicles called
symbiosomes (Sprent, 2009; Sprent et al., 2013, 2017), some papilionoid, and all
nodulated (non-mimosoid) caesalpinioid trees so far studied have their bacteroids
confined within cell wall-bound modified infection threads termed “persistent infection
threads” (PITs) or “fixation threads” (FTs) (Faria et al., 1987, 2022; Naisbitt et al., 1992;
Sprent, 2009; Fonseca et al., 2012; Sprent et al., 2013, 2017). In Chamaecrista, however,
nodules are anatomically diverse with their ultrastructure being apparently related to plant
growth habit i.e. the rhizobial bacteroids are enclosed in FTs in tree species, but within
membrane-bound symbiosomes in subshrub/woody herbaceous species (henceforth
collectively termed “subshrubs”), while larger shrub/treelet species have nodules with
intermediate structures between FTs and symbiosomes (Naisbitt et al., 1992).

The nodule anatomy of most species of Chamaecrista is so far undescribed, as
is the nodulation status of the majority of the genus. In addition, there have been
significant advances in microscopy techniques since Naisbitt et al., (1992), particularly in
methods to determine the composition of membranes and cell walls that could be
associated with the FTs and symbiosomes (Faria et al. 2022). Therefore, the first aim of
this study was to record the nodulation status of a wide variety of Chamaecrista species
covering their whole range of growth habits, from 20 m-high tree species to small
subshrubs at only 20-30 centimeters in height. Plant size variation in Chamaecrista is
also related to the biomes within which they occur: large trees are distributed in tropical
rainforests where soils are nitrogen (N) rich, while shrubs and subshrubs are distributed
in tropical savannas and in xeric formations with N-poor soils. Moreover, the phylogenetic
relations within the genus Chamaecrista also shows that monophyletic groups share
similar types of habitats and growth habit. The few arborescent species in the genus, all
native to tropical rainforests, are grouped in the basal monophyletic section Apoucouita
(Coutinho et al., 2016; Souza et al. 2021), while the considerably more numerous species
from open areas are shrubs and subshrubs that are scattered widely across the taxonomy
of the genus (Conceigéo et al., 2009, Souza et al., 2021). A second aim was to evaluate
the anatomy and ultrastructure of root nodules from Chamaecrista species of all growth
habits, focusing on the chemical composition of structures (symbiosomes, FTs, and
intermediates) enclosing the bacteroids within the infected tissue of the nodules.

The third aim was to explore the identity of the rhizobial symbionts of a wide
variety of Chamaecrista species covering the whole range of growth habits from trees
through to shrubs and subshrubs, and from nodules with FTs to those with symbiosomes.

Current data suggest that non-mimosoid Caesalpinioideae are preferentially nodulated
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by Bradyrhizobium strains (Fonseca et al., 2012; Yao et al., 2014, 2015; Parker 2015;
Sprent et al., 2017; Rathi et al., 2018; Cabral Michel et al., 2021). Indeed, in the specific
case of the largest nodulating genus in this group, Chamaecrista, several studies have
shown that the North American subshrub C. fasciculata (Michx.) Greene (partridge pea)
has nodules that are associated with Bradyrhizobium (Parker 2012, Parker & Rousteau
2014; Urquiaga et al., 2019; Klepa et al., 2019), and a recent molecular analysis of 47
strains from nine shrub and subshrub Chamaecrista species in Brazil described all the
symbiotic strains as belonging to genotypes of Bradyrhizobium (Santos et al., 2017).
Outside the New World, reports on native shrubby Chamaecrista species in India and
Africa suggest that they are also mainly nodulated by bradyrhizobia (de Lajudie et al.,
1998; Beukes et al., 2016; Rathi et al., 2018). Although evidence to date suggests that a
strong association between Chamaecrista and bradyrhizobia is consistent, nothing is
known about the diversity of rhizobial symbionts in nodules of tree species which have
their bacteroids enclosed in FTs as opposed to those with symbiosomes, nor whether
there is a link between rhizobial genotypes and the different biomes within which their
hosts occur.

Using these data plus unpublished anatomical data obtained from Chamaecrista
nodules sampled during the expedition of Sprent et al. (1996), combined with data from
the literature (Naisbitt et al. 1992; Santos et al. 2017; Faria et al. 2022), we then test the
hypothesis that the distribution of FTs and symbiosomes in the genus is not random and
may be the result of co-evolution between groups (sections) of Chamaecrista that are
native to particular environments (biomes), and the rhizobial microsymbionts that live
within them. This was done by constructing a phylogeny with ITS-TrnL-F sequences from
119 separate Chamaecrista taxa, and then plotting onto it plant growth habit, nodule
ultrastructure (occurrence of FTs or symbiosomes, if known), and the nodC genotypes of

the rhizobial microsymbionts.

Materials and methods

Botanical material

To sample root nodules in the field, we first located the 17 Chamaecrista species studied
here in different biomes of Bahia State, Brazil (Fig. S1). Samples of the root system
bearing nodules were collected from each individual plant, mainly during the rainy
season, when nodules are most active (dos Reis Junior et al., 2010). Aerial parts of each
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species were collected, dried, and deposited in the Herbarium of the Universidade
Estadual de Santa Cruz (UESC) (Table S1) for confirmation of their identities.

On average, 12 nodules were collected from each of the 17 Chamaecrista species,
totaling 204 nodules. These samples were used to characterize the infected tissues and
to verify the presence of FTs using scanning electron microscopy (SEM), transmission

electron microscopy (TEM), light and fluorescence microscopy (see details below).

Anatomy, histochemistry, ultrastructure and immunocytochemistry of nodules

The nodules were separated from the root system and cut into 1-2 mm? pieces with a
razor blade, before being fixed in a solution of 2.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer (pH 7.2). Sample processing followed Santos et al. (2017) for
anatomical and ultrastructural characterization.

Histochemistry using the fluorescent compound calcofluor white, which binds to
beta 1-3 and beta 1-4 polysaccharides, such as those found in cellulose (Wood et al.,
1983), was used to provide evidence for the presence of invasive infection threads (ITs)
and FTs within the infected tissue of Chamaecrista nodules. Briefly, sections of nodules
were incubated with calcofluor white (1 g L") in Evans blue as a background stain (0.5 g
L") (Sigma-Aldrich) according to Wood et al. (1983), and the sections were then observed
under a Leica DM2500 equipped with ebq100-04 fluorescence coupled to a Leica
DFC310 Fx digital camera.

For transmission electron microscopy (TEM), serial ultrathin sections were collected
on nickel grids for immunogold tests using the monoclonal antibody JIM5 to verify the
presence of a homogalacturonan (HG) epitope in FTs inside the nodule infected cells;
this HG epitope is an essential component of pectin in cell walls (VandenBosch et al.,
1989; Fonseca et al., 2012). For species from which Paraburkholderia were isolated as
potential symbionts, nodules were also tested for the in-situ presence of symbiotic strains
using a polyclonal antibody against P. phymatum STM815T according to dos Reis Junior
et al. (2010).

For scanning electron microscopy (SEM), fixed samples were dehydrated in a
graded acetone series to absolute, and completely dried using a Bal-Tec CPD 030 critical
point drier. Dried samples were mounted on stubs, coated with gold in a Bal-Tec SCD
050 sputter coater and viewed with a FEI Quanta 250 at the Centro de Microscopia
Eletrénica (CME) at UESC.
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Rhizobia isolation, cultivation and characterization

Potential rhizobia were isolated from root nodules of seven of the 17 Chamaecrista
species sampled in the field from native undisturbed environments. An intensive effort
was made to isolate rhizobia from tree species of Chamaecrista because they often have
woody and lignified nodules, and hence the symbiotic bacteria are more difficult to isolate.
Accordingly, approximately 230 nodules were used for rhizobial isolation from C.
ensiformis var. plurifoliolata, C. duartei, C. eitenorum and C. bahiae. Rhizobia were
isolated, cultivated and characterized following the procedures of Rhem et al. (2021).

Bacterial DNA extraction, amplification, sequencing and phylogenetic analysis

For samples from each plant, bacterial isolates were grouped and selected according to
similarities in their phenotypical (colony) characteristics. Genomic DNA from selected
isolates was extracted according to Santos et al. (2017). The DNA was resuspended in
ultrapure water and stored at -20 °C. The yield and purity of the extracted DNA was
measured in a spectrophotometer (Shimadzu, SPD-M6A) by the ratio of absorbance at
260 and 280 nm. For Bradyrhizobium strains, the 16S rRNA gene and ITS region were
amplified. A multilocus sequence analysis (MLSA) was performed following Rhem et al.
(2021) to identify the phylogenetic positions of symbiont strains from different
Chamaecrista species. For MLSA, DNA sequences of four housekeeping genes were
used, i.e., recA encoding recombinase A, dnaK encoding the Hsp70 chaperone, rpoB
encoding RNA polymerase beta subunit, and gln// encoding glutamine synthetase isoform
Il. We also amplified two symbiotic genes, i.e. approximately 930 bp of the nodC
(nodulation N-acetylglucosaminyliransferase) and 780 bp of the nifH (nitrogenase
reductase) genes. Thermal cycler programs and primers used are described in Rhem et
al. (2021). For Paraburkholderia strains, the 16S rRNA, recA, nifH and nodC genes were
amplified with the same primers and PCR conditions cited by Silva et al. (2018). Amplified
DNA was verified by horizontal electrophoresis in 1% (w/v) agarose gels and PCR
products were purified following a cold salt precipitation and resuspended in sterile
ultrapure water. All amplicons obtained were sequenced by ACTGene Anadlises
Moleculares Ltda (Alvorada, RS, Brazil). Nucleotide sequences of strains were analyzed
for percentage sequence similarity using BLASTn of the National Center for
Biotechnology Information (NCBI). Sequences from the present study and those of
closely related, reference and type strains (as per the LPSN list of valid and not validly
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published type strains) were downloaded from NCBI in FASTA format, and then aligned
using CLUSTAL X (Thompson et al. 1997) of MEGA X (Kumar et al. 2018). Phylogenetic
trees were constructed with the sequence alignments of all the tested genes. Maximum-
likelihood trees were built in MEGA 7 using the Tamura 3-parameter correction method.
The robustness of the branches of the trees was estimated with 1000 bootstrap
replications. The partial sequences of all genes derived from the present study were
deposited in GenBank, and their Accession Numbers are listed in Table S2. Please note
that it was not possible to amplify all of the examined gene loci from all of the strains.

Plant DNA extraction, amplification, sequencing and phylogenetic analysis

DNA was sampled from 106 species of Chamaecrista (119 taxa) covering all sections
and including all species with root nodules analyzed in the present study plus others
accessed from the literature and from the dataset associated with Sprent et al. (1996),
with only C. zygophylloides (Taub.) H.S. Irwin & Barneby not included (Table S3).
Additionally, four species of Cassia and Senna were included as an outgroup. Most of the
sequence data were accessed from GenBank (http:/www.ncbi.nim.nih.gov/genbank/),

but seven new sequences of the plastid trnL-F and four of the nuclear internal transcribed
spacer (ITS) were generated for a further seven Chamaecrista species. All DNA
sequences and associated voucher information are deposited in GenBank (Table S3).
Total DNA extraction, amplification, PCR product purification, and sequencing were as
described in Conceigéo et al. (2009). Electropherograms were assembled and edited
using the Geneious platform (Drummond et al., 2012). Alignments of all sequences were
performed using Muscle (Edgar, 2004) with default settings. Manual edition to correct
obvious alignment errors and to remove sections with dubious alignments were inspected
using the Geneious platform (Drummond et al., 2012). Bayesian analyses (BAs) were
performed with MrBayes 3.1 (Ronquist & Huelsenbeck, 2003) using a combined data set
with four partitions (frnL-F, ITS1, 5.8S and ITS2). Nucleotide-substitution models were
selected, on the basis of the Akaike information criterion (AIC) values, with JModeltest
2.1 (Guindon & Gascuel, 2003; Darriba et al., 2012). The substitution models selected for
trnL-F was GTR+G and for ITS1 was GTR+I+G, for 5.8S was SYM+I| and for ITS2 was
GTR+G. Indels were coded as the standard characters “variable”. We run all phylogenetic
analyses via the CIPRES Science Gateway v. 3.3 online portal (Miller et al., 2010). We
used FigTree 1.4.2 (Rambaut, 2014) to view and edit the final tree.
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Nodulation tests with rhizobial strains

We selected strains isolated from Chamaecrista species to evaluate their nodulation
capacity. Six Chamaecrista species, ranging in size/habit from trees (C. bahiae, C.
ensiformis var. plurifoliolata and C. duartei), treelets (C. blanchetii) to subshrubs (C.
desvauxi, C. rotundifolia), as well as the promiscuous papilionoid legume Siratro
(Macroptilium atropurpureum) were used as host plants in the nodulation tests. In
addition, Mimosa pudica was used as a promiscuous mimosoid legume to test the two
Paraburkholderia isolates. Siratro seedlings were inoculated with the different strains
according to Santos et al. (2017), while the Chamaecrista spp. and M. pudica were
inoculated according to Silva et al. (2018). At harvest (3 months after inoculation),
nodulation of the root system was evaluated for each plant, and the presence of the
symbiosis-essential protein leghemoglobin (Lb), as indicated by a pinkish coloration in

their interior, was scored.

Results

Anatomy, ultrastructure and immunocytochemistry of nodules

Chamaecrista species have a wide range of growth habits and habitats, but most are
shrubs and subshrubs. The few tree species are usually found in rainforests, such as the
Mata Atlantica (Fig. 1A) and Amazon Forest; an exception is C. eitenorum which has its
habitat in seasonally dry tropical forests (SDTF) in the Chapada Diamantina. Most of the
tree species have characteristic ramiflorous racemes (Fig. 1B) and are placed in the small
section Apoucouita at the base of the genus (Coutinho et al., 2016). Woody shrub species
occur in the Cerrado (savannah) and in open rocky fields often at altitudes >1000 m
(denoted Campo Rupestre) (Fig. 1C, D); these belong in sect. Absus, members of which
have terminal or axillary racemes. The Cerrado and Caatinga (a semiarid Brazilian biome)
are also the habitat for smaller, but still woody, sub-shrub and herbaceous species (Fig.
1E, F) which have axillary and supra-axillary reduced racemes (fascicles); these are
mostly contained in sect. Chamaecrista.

A complete list of nodulating Chamaecrista species is given in Table S4. Nineteen
Chamaecrista taxa were examined in the present study for nodulation, plus twelve from
the study of Sprent et al. (1996), and a further eight from de Faria (unpublished). All were
nodulated, including 26 new reports.
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The nodules sampled in the present study (varying from 0.1 to 2 cm in length) were
usually found on the secondary superficial roots (Fig 2A) of all the Chamaecrista species
examined. In general, nodules were cylindrical when young, but became lobed with age
with a few branches, and were a dark brown surface color (Fig. 2B); most were viable
and active as evidenced by the pink color in their interior due to Lb production (inset Fig.
2B). Nodule morphology and anatomy characterized all of the samples as indeterminate
as they have a persistent meristem at the distal end (Fig. 2C). Chamaecrista nodules
have a central infected tissue containing the microsymbionts which is surrounded by an
uninfected cortex consisting of a parenchymatous outer cortex composed of several
layers (4 to 6) of isodiametric cells with phenolic compounds being found scattered
throughout the outer cortical region; this is separated from the inner cortex by an
endodermis (Fig. 2C). Several vascular bundles are located at the periphery of the inner
cortex (Fig. 2C). In all Chamaecrista species, the central region of nodules contains a
combination of large infected parenchymatic cells and smaller uninfected interstitial cells
(Fig. 2C). In the invasion zone, which was located distally to the infected tissue, the
rhizobia were contained within ITs that invaded cells (Fig. 2D). Depending on the growth
habit of the species, these ITs either released the bacteria into symbiosomes (Fig. 2G,
S2), or the ITs developed into thinner-walled FTs which occupied almost the entire
cytoplasmic volume of the infected cells (Fig. 2D, S2). In mature nodules, senescent cells
were observed in the proximal part of the infected tissue, with a collapsing mass of FTs
in their interior (Fig. 2E). The small uninfected interstitial cells were vacuolated, and
distinct from the infected cells (Fig. 2F, G, S2). In subshrub Chamaecrista species, the
root nodules had infected cells with symbiosomes completely occupying the available
cytoplasm (Fig. 2G, S2I, K).

The occurrence of nodules with conspicuous FTs was confined to tree
Chamaecrista species in the section Apoucouita (Table 1, S4, Figs. 3, 4, S2), which are
generally restricted to tropical forests (Coutinho et al. 2016; Souza et al. 2021). The
composition of the FT cell walls was examined using a combination of three methods: (1)
histochemical staining of cellulose using Calcofluor white, (2) anatomical observations
with light microscopy and electron microscopy (TEM and SEM), and (3) immunogold
labelling of pectin HG using JIM5 combined with TEM.

Analysis of cellulose deposition in nodule infected cells using calcofluor white
showed a similar pattern to the pectin observations i.e. with primary cell wall components
evident in nodules from trees, treelets and large shrubs, but not in mature infected cells
in nodules of subshrubs (Table 2). For example, cellulosic material was detected in FTs
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344  in nodules of C. bahiae (Fig. 3A), C. duartei (Fig. 3B), C. ensiformis var. plurifoliolata, C.
345  brachystachya, C. confertifomis (Fig. 3C) and C. x blanchetiformis (Fig. 3D).
346  Fluorescence indicating cellulose was also observed in the infected zone of a C.
347  arrojadoana nodule (Fig. 3E) where it was localized to an IT in cells recently invaded by
348  rhizobia and, more generally, in immature invaded cells, but not in mature infected cells
349  of this subshrub species (Fig. 3F).

350 Under the SEM, conspicuous FTs were observed in nodules of the trees C. bahiae
351 (Fig. 4A), C. duartei, C. eitenorum and C. ensiformis var. plurifoliolata, and in the shrub
352  species C. blanchetiformis, C. brachystachya and C. confertiformis, all of which had FTs
353  with well-defined walls like those of the “standard” ITs of many legume types. The mature
354 infected cells in the infected zone of the nodules were densely occupied by FTs, and
355 these differed in structure from those observed in nodules of the subshrub species C.
356  repens (Fig. 4B), C. arrojadoana and C. ramosa, wherein bacteroids were enclosed in
357  FTs with thinner cell walls (so-called FT-SYM; Table S4) which allowed for the bacterial
358 outline with associated material on the bacterial surface to be observed under the SEM
359 (inset Fig. 4B). For nodules on the subshrub species, C. belemi, C. blanchetii, C.
360  zygophylloides, C. desvauxii, C. pascuorum, C. rotundifolia (Fig. 4C, Table S4) and C.
361  supplex, the bacteroids were free in the cells, although they are most likely to be enclosed
362  within symbiosome membranes, most of which did not survive processing for SEM. The
363 SEM observations were confirmed using light microscopy and TEM i.e. that tree species
364 inthe section Apoucouita, such as C. bahiae, C. duartei and C. ensiformis have FTs (Fig.
365 4D, S2A - D), that symbiosomes in treelets from the section Baseophyllum have an
366 intermediate (FT-SYM) structure and/or contain both FTs and symbiosomes (Fig. S2E —
367 H), while shrubs and subshrubs from the sections Absus and Chamaecrista (Fig. 4E, F,
368 S2l — L) generally contain symbiosomes only. However, there are several exceptions in
369 sections Absus and Chamaecrista that have an FT-SYM type, such as C. arrojadoana
370  (Fig. 4F), C. mucronata (Fig. S2L), and C. desvauxii (Naisbitt et al. 1992).

371 Immunocytochemistry using the monoclonal antibody JIM5 provided further
372 information about the nature of FTs and symbiosomes in Chamaecrista nodules. It
373 indicated the presence of an unesterified HG epitope in the pectic component of both FTs
374  (Fig. 4D, S2B, D) and symbiosomes (Fig. 4E, S2H, L) in infected cells of nodules from
375 several species of Chamaecrista examined (Table 2; Fig. S2). For nodules on tree
376  species in the section Apoucouita, such as C. bahiae, C. duartei and C. ensiformis, JIM5
377 immunogold labeled the walled FTs (Fig. 4D, S2B, D). JIM5 also labelled the thinner
378 walled FTs of treelets and large shrubs in the section Baseophyllum, such as C. blanchetii
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(Fig. S2F), but in nodules on other Baseophyllum species, such as C. cytisoides, the
infected cells contained a combination of JIM5-labelled symbiosomes and FTs, with the
FTs being more densely labeled (Fig. S2H). Similarly, JIM5 labeling was observed in
nodules of some subshrub species in the highly speciose sections Absus and
Chamaecrista, including those that had their bacteroids enclosed in either symbiosomes
(Fig. 4E, S2J) or were intermediate (FT-SYM), such as C. arrojadoana and C. mucronata
(Fig. 4F, S2L). It should be noted, however, that this was not a uniform observation across
these Chamaecrista sections, as nodules of many species had no JIM5 labelling, such
as C. chapadae (Fig. S2J), and of those that did have it the JIM5 epitope was located
within the symbiosomes themselves (Fig. 4E). Image analysis of the infected N-fixing
cells in sections from nodules on the species shown in Fig. S2 indicated that the FT-type
nodules from section Apoucouita were less densely colonized by bacteroids than those
of the SYM-type nodules in sections Absus and Chamaecrista, while the FT-SYM-type
nodules from section Baseophyllum were intermediately colonized (Fig. S3).

Light microscopy combined with immunohistochemistry using polyclonal antibodies
against P. phymatum STM815" and Cupriavidus taiwanensis LMG19424T indicated the
presence of Paraburkholderia as symbionts in nodules of the tree species C. eitenorum
(Fig. 5A, B). Specific immunogold localization of the P. phymatum antibody to the
bacteroids was confirmed under the TEM (Fig. 5C, D). Further immunogold localization
with JIM5 revealed HG epitopes on the cell walls surrounding both the FTs (Fig. 5E) and
the invasive ITs (5F) in the C. eitenorum nodules containing their Paraburkholderia

symbionts.

Phylogenetic analysis of nitrogen-fixing symbionts: housekeeping genes and ITS region

The diversity of rhizobia nodulating the various Chamaecrista species in the present study
was examined by MLSA to establish the phylogenetic relationships between symbiont
strains associated with tree and treelet Chamaecrista species vis-a-vis strains deposited
in the databases plus those isolated in our earlier study of symbionts from subshrub
Chamaecrista spp. (Santos et al. 2017) (Fig. 6). Most strains were grouped in the genus
Bradyrhizobium on the basis of close similarity to sequences of type strains. This genus
comprises various supergroups, including two mega-clades: |, the B. japonicum group,
and I, the B. elkanii group (Menna et al. 2009; Avontuur et al. 2019; Ormeno-Orillo and
Martinez-Romero, 2019). One cluster of Chamaecrista strains (Tree cluster |; Fig. 6)
consisting of isolates from the trees C. ensiformis var. plurifoliolata, C. bahiae and C.
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414  duartei were located within the B. japonicum supergoup, while the other cluster of
415  Chamaecrista tree strains (Tree cluster Il; Fig. 6), consisting only of isolates from C.
416  ensiformis var. plurifoliolata were located within the B. elkanii supergroup. Mega-clade |
417  also contained a large cluster of strains formed exclusively of bradyrhizobia isolated by
418 Santos et al. (2017) from root nodules of subshrub Chamaecrista species (Subshrub-
419  Shrub cluster; Fig. 6).

420 Analysis of the ITS region (16S-23S rDNA) (Fig. S4) suggested congruency with
421 the MLSA phylogeny, with two clusters containing strains from nodules of tree
422  Chamaecrista spp. plus one Subshrub-Shrub cluster. Strains from subshrubs formed a
423  separate cluster from all the Bradyrhizobium groups (Fig. S4). The ITS analysis indicates
424 the large differences in the DNA sequences of these Chamaecrista isolates, as it is one
425  of the strongest tools for discriminating between bradyrhizobial populations owing to its
426  high degree of variation providing greater powers of resolution (Willems et al., 2003). In
427  general, the rrs (16S rRNA) phylogeny (Fig. S5) was congruent with the MLSA and ITS
428  phylogenies, but with less precision and with modification in the position of some
429  bradyrhizobial isolates. None of the Bahia Chamaecrista strains clustered with the
430  described species from C. fasciculata, B. frederickii (Urquiaga et al., 2019) and B. niftali
431  (Klepa et al., 2019), both of which were isolated in the USA.

432 Confirming the immunogold microscopy observations for this species (Fig. 5A — D),
433  both strains isolated from nodules on the tree C. eitenorum sampled in Chapada
434  Diamantina belonged to the genus Paraburkholderia. A concatenated (16S rDNA + recA)
435  phylogenetic analysis demonstrated that they are potentially a new species (Fig. S6)
436 related to P. nodosa that was originally isolated from nodules of Mimosa scabrella (Chen
437  etal., 2007).

438

439  Phylogenetic analysis of nitrogen-fixing symbionts: symbiotic genes

440

441  The nodC (Fig. 7) and nifH (Fig. S7) bradyrhizobia phylogenies were relatively congruent
442  with the concatenated housekeeping and ITS phylogenies, with both forming the same
443  two Tree | and Tree |l clusters as the MLSA, but the single subshrub-shrub cluster (SSC)
444  comprising strains from this study and that of Santos et al. (2017) was divided into two
445  sub-groups (SSCI & SSCII) in the nodC phylogeny (Fig. 7). SSCI corresponded to Cluster
446 1 of Santos et al. (2017) but now also incorporated C. rotundifolia and C. ramosa
447  symbionts from the present study, while SSCIl was more heterogenous, grouping several
448 Santos et al. (2017) strains with a C. blanchetii strain from the present study
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(BRUESC623) plus strains from various other legumes. A single strain (BRUESC1034)
isolated from the shrub C. repens occupied a unique position outside any of the main
nodC clusters. For the tree symbionts, Tree cluster Il (TCIl) constituted a tight group of
six strains from C. ensiformis var. plurifoliolata, while Tree cluster | (TCI) constituted the
main group of Chamaecrista tree strains; these were related to Bradyrhizobium type
species that were isolated in Brazil from various legumes (except for B. iriomotense
EKO5T from Japan). The nifH phylogeny differed from the nodC one in that the two SSC
sub-groups were not apparent, with all the strains being grouped into a single cluster with
Bradyrhizobium sp. Tv2a-2 2 (isolated from the caesalpinioid legume Tachigali versicolor
in Barro Colorado Island of Panama; Tian et al., 2015) and B. ganzhouense, a symbiont
of Acacia melanoxylon (Lu et al. 2014).

The two strains of Paraburkholderia isolated from C. eitenorum (BRUESC1092,
BRUESC1093) formed a tight cluster in the nodC phylogeny with Paraburkholderia sp.
BRUESC684 (Fig. S8), a strain isolated from Calliandra viscidula collected in Chapada
Diamantina in Bahia State (Silva et al., 2018), but it should also be noted that both C.
eitenorum strains had symbiosis gene sequences which were closely related to P. nodosa
and P. mimosarum which are widely isolated symbionts of Mimosa species in Brazil
(Bontemps et al., 2010). Strains BRUESC1092 and BRUESC1093 also grouped with the
P. nodosa type strain Br3437T in the nifH gene phylogeny (Fig. S9).

Nodulation ability and host range of the Chamaecrista rhizobia

From the 28 strains of Bradyrhizobium isolated from nodules of seven Chamaecrista
species (C. bahiae, C. duartei, C. eitenorum, C. ensiformis var. plurifoliolata, C. blanchetii,
C. ramosa, C. repens and C. rotundifolia) 23 were tested for their nodulation ability on
Siratro, and 15 were tested on six Chamaecrista spp. The tested strains represented the
whole range of growth habits in the genus, from trees to subshrubs (Table 2), but also
the four nodC genotype clusters identified in Fig. 7 (SSCI, SSCII, TCI and TCII). Five of
the strains were isolated from the tree C. ensiformis var. plurifoliolata; three of these,
representing nodC TCIl (BRUESC1010) and TCIlI (BRUESC964), and BRUESC1011 (not
included in the nodC phylogeny) formed nodules on their homologous host (the other two
strains, BRUESC956 and BRUESC967 were not tested on C. ensiformis), and four of the
five strains nodulated the subshrub C. rotundifolia (BRUESC964 was not tested).
However, no nodules were observed when one of the C. ensiformis var. plurifoliolata
strains (BRUESC1011) was inoculated onto another Chamaecrista tree species (C.
bahiae). A Bradyrhizobium strain isolated from C. bahiae (BRUESC952) nodulated C.
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484  rotundifolia, but not C. blanchetii and C. desvauxii, while strain BRUESC1107 from C.
485  duartei formed effective nodules on C. desvauxii. The majority of the 19 Bradyrhizobium
486  strains tested nodulated Siratro; the exceptions were BRUESC623 from C. blanchetii
487 BRUESC964 from C. ensiformis var. plurifoliolata, BRUESC1033 and BRUESC1034
488 from C. repens, and BRUESC1106 from C. duartei (Table 2). Finally, the two
489  Paraburkholderia strains isolated from the tree C. eitenorum (BRUESC1092 and
490 BRUESC1093) effectively nodulated other tree species in the section Apoucouita, C.
491 duartei and C. ensiformis, but nodulated Mimosa pudica ineffectively, and both failed to
492  nodulate Siratro.

493

494  Phylogenetic analysis of the genus Chamaecrista

495

496 The individual phylogenetic analyses of Chamaecrista did not show apparent
497  incongruence between the ITS and trnL-F regions (Fig. 8), but as already described for
498  Chamaecrista (Conceigdo et al., 2009; Rando et al., 2016), the ITS region gives higher
499  resolution within the sections. In the Chamaecrista phylogeny (Fig. 8), three main large
500 clades emerged with high support (PP=1). These groups corresponded to the section
501  Apoucouita embracing the arborescent rainforest species, the section Baseophyllum
502 consisting of treelets and shrubs from Campo Rupestre and Caatinga, and the sections
503 Absus and Chamaecrista, which contain the highest diversity of species in the genus,
504  with most species being shrubs and subshrubs. Interestingly, these main clades
505 highlighted here are congruent with the phylogeny of the nitrogen-fixing microsymbionts,
506 and also demonstrate that the FT phenotype in which bacteroids are enclosed in cell wall
507 material, is apparently confined to the arborescent species in section Apoucouita,
508 whereas in species from the other clades/sections the microsymbionts are mainly
509 contained within symbiosomes. Interestingly, however, there are also a number of
510 species, particularly in section Baseophyllum, but also scattered amongst the other
511 sections, that are intermediate (FT-SYM) with regard to their bacteroid phenotype (Fig.
512 8).

513

514 Discussion

515  The occurrence of fixation threads (FTs), symbiosomes or intermediates depends on the
516  taxonomy, growth habit, and habitat of the Chamaecrista host
517

518 The 26 new reports in the present study raises the number of confirmed nodulating
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Chamaecrista species to 74 (Sprent, 2009; Santos et al. 2017; Faria et al. 2022; Table
S4), now representing nearly a quarter of this highly speciose genus. In general, tissue
distribution in the interior of Chamaecrista nodules is similar to that of indeterminate
nodules from other neotropical Caesalpinioid trees, such as Anadenanthera peregrina
(Gross et al., 2002), Mimosa spp. (dos Reis Junior et al., 2010), and Dimorphandra spp.
(Fonseca et al., 2012). However, the present study has also confirmed that Chamaecrista
nodules are unique within the Caesalpinioideae since their infected cells can, depending
on species, have their bacteroids either retained within FTs, as occurs in nodules on all
other non-Mimosoid nodulated Caesalpinioideae, or have their rhizobial symbionts
released into symbiosomes (SYM-type nodules), as occurs in all mimosoid and most
papilionoid nodules so far reported (Naisbitt et al., 1992; Sprent, 2001; Sprent 2009;
Sprent et al., 2017; Faria et al. 2022). The distribution of FT- versus SYM-type nodules
in Chamaecrista appears to depend on the growth habit of the plant ie., current
knowledge, reinforced by considerable additional data from the present study, indicates
that tree species are all FT-type, whereas smaller shrub, subshrub and herbaceous
species, which represent the majority of Chamaecrista species, tend to be SYM-types
(Naisbitt et al. 1992). Interestingly, the present study has also confirmed using SEM and
TEM that some treelet and large shrub species exhibit an intermediate (FT-SYM) type of
nodule in which the FTs are less distinct (Naisbitt et al. 1992), suggesting a transitional
stage between FTs and symbiosomes in Chamaecrista that has not so far been observed
in other non-Mimosoid grade Caesalpinioideae symbioses (Faria et al. 2022).

Composition of the FT in Chamaecrista species

As with other non-mimosoid Caesalpinioideae trees, such as Dimorphandra (Fonseca et
al., 2012), Erythrophleum and Moldenhawera species (De Faria et al. 2022), the FTs in
Chamaecrista tree species comprise a cell wall containing homogalacturonan (HG)
epitopes as recognized by the monoclonal antibody, JIM5, which labels unesterified
pectin. The present study has demonstrated that Chamaecrista FTs also contain
cellulose; this concurs with the study of Faria et al. (2022) who have recently
demonstrated that the cell wall of FTs in nodules on a range of non-mimosoid
Caesalpinioideae contain several pectic components, but also cellulosic ones. Indeed,
there is mounting evidence that the wall of the FT differs little from the IT cell wall (and
plant cell walls in general) except that the FT wall is generally thinner and contains less
unesterified pectin (JIM5 epitope) (Fonseca et al. 2012; Faria et al. 2022; this study). It
should also be noted that FTs are not simple cell wall-bound structures, but are similar to
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“conventional” symbiosomes in possessing a host membrane that surrounds the cell wall
(Faria et al. 2022), and hence the relative absence of unesterified pectin in FTs, as well
as their relatively thin walls compared to ITs is likely to be an adaptation to allow the
easier exchange of nutrients and Oz between the rhizobial bacteroids and the host
cytoplasm across this membrane (Fonseca et al. 2012; Faria et al. 2022). Such nutrient
and gaseous exchange would most likely be impeded by the thick cell wall of a typical IT
containing pectin that has been stiffened via cross-linking through the action of pectin
methylesterases (PME) (Su, 2023).

Our study has also revealed more about the ultrastructure of the FT-SYM- and SYM-
type Chamaecrista nodules, including the histochemical nature of the symbiosomes. For
example, JIM5-labelled material could be observed in a matrix that surrounds the
symbiosomes in mature infected cells from nodules of some SYM and FT-SYM-type
Chamaecrista shrub and subshrub species in the present study from Brazil, but also in
the Asian subshrub species C. pumila (Rathi et al. 2018). The JIM5 labelling observed in
the FT-SYM-type nodules is most likely because these are essentially thinner versions of
FTs, and still have obvious cell walls surrounding their bacteroids (Naisbitt et al. 1992;
this study), but it is curious that some SYM-type nodules also possess pectin without any
obvious walls. In pea nodules, although glycoproteins and glycolipids were observed,
symbiosomes contained neither polysaccharides nor cell wall material (Perotto et al.,
1991, 1995). This implies that our observations of bacteroids in some SYM-type
Chamaecrista nodules surrounded by partially methyl-esterified and unesterified HG
epitopes (JIM5) are different from the symbiosomes housing bacteroids within nodules
on species in the “advanced” Inverse Repeat-Lacking Clade (IRLC); the latter contain
greatly-enlarged endo-reduplicated bacteroids that have completely lost their ability to
divide and to proliferate outside the host plant i.e. they are essentially organelles (Brewin,
1991; Gage, 2004; Oono et al. 2010; Sprent et al. 2017; Ardley & Sprent, 2021;
Mathesius, 2022). On the other hand, such terminally differentiated bacteroids are not the
norm outside the IRLC, so they are clearly not essential for legume nodule functioning,
although they may be more efficient at fixing N2 (Mathesius, 2022). In most other legume
nodules, undifferentiated bacteroids are housed within symbiosomes, and it could be
argued that the Chamaecrista SYM-type nodules are essentially like these, especially
those in the Mimosoid clade (De Faria et al. 2022 and references therein). Therefore, as
suggested in the earlier study on a much narrower range of species (Naisbitt et al. 1992),
it would indeed appear that Chamaecrista contains a range of nodule phenotypes from
full FTs in the trees in the section Apoucouita through intermediates (FT-SYM) in treelets
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and large shrubs (e.g. in the section Baseophyllum, although not exclusively) to
“standard” symbiosomes (SYM-type) in the majority of Chamaecrista species in the
sections Absus and Chamaecrista. The comparative efficiencies of the different nodule
types to fix N are not yet clear, but the number of bacteroids per cell (Fig. S3, this study)
are significantly reduced in the FT-type compared to the SYM-type nodule, with the FT-
SYM-types being intermediate in both parameters, which suggests that the possession
of a cell wall around the bacteroids reduces the degree to which host cells can be packed
with N-fixing rhizobia. This, together with and reduced proportion of infected cells per
nodule (Naisbitt et al. 1992) is likely to reduce the overall efficiency of the FT-type nodule.

The influence of plant habit and biome on the diversity of nitrogen-fixing symbionts in
Chamaecrista

Our study plus that of Santos et al. (2017) has demonstrated that in common with almost
all non-Mimosoid legumes of the subfamily Caesalpinioideae (Fonseca et al., 2012;
Parker, 2015; Cabral Michel et al., 2021; Avontuur et al. 2021), symbiotic bacteria isolated
from nodules across the genus Chamaecrista belong almost exclusively to the genus
Bradyrhizobium. Both housekeeping genes and ITS sequences of Chamaecrista strains
were congruent and taken together with the two symbiosis related genes (nifH and nodC)
showed that at least a dozen strains could represent putative novel species of
Bradyrhizobium. Also, C. ensiformis, a widespread arborescent species from tropical
forests, had the highest diversity of Bradyrhizobium symbionts, differing from its closely-
related “cousin” in the section Apoucouita, C. eitenorum, which has a more restricted
distribution in SDTF.

The phylogenetic analysis of both the nodC and nifH genes showed that the
Bradyrhizobium strains obtained from Chamaecrista nodules sampled in Bahia formed
clearly separated branches suggesting that symbiotic genes were probably vertically
transmitted, as was already indicated by studies on bradyrhizobia from other legumes
(Moulin et al., 2004; Parker, 2015, Fonseca et al., 2012; Stepkowski et al., 2007, 2018).
These results also suggest a very high diversity of bradyrhizobia nodulating
Chamaecrista trees, shrubs and subshrubs native to Brazil, and to Bahia in particular.
The nodC phylogeny supported the likelihood of there being co-evolution and specificity
of the Chamaecrista-Bradyrhizobium symbiosis since the rhizobia of the subshrub
Chamaecrista species in sections Absus and Chamaecrista that are highly divergent from
their distant cousins in the rainforest tree section Apoucouita also had highly divergent
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nodC sequences. On the other hand, the different environments that these plant species
occupy, especially their soils (e.g. pH), will also play a part in their selection of particular
symbionts, as demonstrated for Mimosa in the Cerrado (Pires et al. 2018), and for
Chamaecrista in India (Rathi et al. 2018). Indeed, although the cross-inoculation
experiments demonstrated some degree of specificity, particularly for Chamaecrista tree
and treelet species, the fact that the widely distributed subshrub C. rotundifolia is
nodulated by Bradyrhizobium strains from all the observed nodC clades, including those
from the section Apoucouita species C. bahiae and C. ensiformis, as well as the ability of
most of the tested isolates to nodulate Siratro, suggests that Brazilian Chamaecrista
symbionts can be cosmopolitan in their selection of hosts outside their normal native
ranges, despite their apparent co-evolution with their (often) endemic hosts. A similar
observation was made with Mimosa, another large nodulated legume genus that has
radiated in Bahia, albeit with Beta-rhizobial symbionts rather than bradyrhizobia
(Bontemps et al. 2010).

Although bradyrhizobia are clearly the principal symbionts of Chamaecrista in Brazil
and elsewhere (see Introduction), other rhizobial types can nodulate the genus, such as
Sinorhizobium (Ensifer) in alkaline soils in India (Rathi et al. 2018). In the present study,
the tree species C. eitenorum, which is native to the SDTF, had the apparently unique
property of being nodulated by strains of Paraburkholderia related to those that nodulate
Mimosa and Calliandra spp. in the same environment (Bontemps et al. 2010; Silva et al.
2018); indeed, the fact that these isolates were also capable of nodulating C. duartei and
C. ensiformis in cross-inoculation studies suggests that Chamaecrista-Paraburkholderia
symbioses might be relatively abundant, at least among the tree species. Further to this,
the C. eitenorum- Paraburkholderia interaction is the first confirmed report of a Beta-
rhizobial symbiosis in nodules from a Caesalpinioideae species outside the Mimosoid
clade (LPWG, 2017), and it is also the first report of FTs being occupied by this type of
microsymbiont, which demonstrates that the FT phenotype is not controlled by any
particular rhizobial type (e.g. Bradyrhizobium), but is an inherent plant characteristic,
which might be expected if the “host controls the party” (Ferguson et al. 2019).

Concluding remarks
Our molecular phylogeny of Chamaecrista exhibits the same relationship among the

monophyletic clades already observed in other studies (Conceicao et al., 2009; Rando et
al., 2016; Mendes et al., 2020; Souza et al., 2021), even with the incorporation of new
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taxa. The small section Apoucouita remains a monophyletic group with the addition of six
new arborescent species. The section also appears as a sister group of all remaining
species of the genus, corroborating that its habitat and habit diverged distinctly from the
others, and that it may be basal within the genus. The shifts of growth habit appear to be
correlated with the habitat changes in Chamaecrista. In the genus, the diversification
occurred from rain forests with arborescent habits to open areas (savannahs and SDTF)
with smaller shrub and subshrub growth habits (Conceicéao et al., 2009; Coutinho et al.
2016; Souza et al., 2021).

We propose that the lower nutrient soils (and several other stresses, such as
seasonal drought) associated with savannahs and SDTF not only drove a reduction in
growth habit, but also necessitated a greater dependency on a more reliable nodulating
symbiosis, as the smaller root systems of shrub and subshrub Chamaecrista species
have a reduced access to a much more limited pool of soil N compared to large rainforest-
dwelling trees that also have a higher capacity to (re)cycle their N. Therefore, the shrub
and subshrub Chamaecrista species have largely rejected the FT-type symbiosis of their
arboreal cousins in the section Apoucouita, and have gradually adopted (via the
intermediate FT-SYM-type nodule) the more intimate SYM-type nodule, which with its full
incorporation of the bacteroids into the host cytoplasm exhibits the compartmentalization
that is linked with more stable and efficient symbioses (Parniske, 2018; Chomicki et al.
2020; Faria et al. 2022; Libourel et al. 2023; James 2023; Mohd-Radzman & Drapek,
2023). In this respect, the FT versus SYM pattern revealed by the present study across
the highly speciose genus Chamaecrista mirrors that across the Caesalpinioideae
subfamily as a whole i.e. that the hugely diverse (in terms of both growth habits and
number of genera) Mimosoid clade has retained nodulation by rejecting the less intimate
and relatively unstable FT-type nodule of its few nodulating cousins in the
Caesalpinioideae grade that subtends it (with the notable exception of Chamaecrista),
and by adopting the SYM-type nodule has avoided the massive losses of nodulation
evident in the non-Mimosoid Caesalpinioideae (Faria et al. 2022).
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948  Table 1. Plant growth habit (and taxonomic section within Chamaecrista), plus symbiosome type
949  (fixation threads, symbiosomes or intermediate), bacteroid size, reaction to calcofluor white and
950  JIM5 observed in infected cells of root nodules from Chamaecrista spp. native to Bahia State,
82% Brazil, and number of rhizobia strains isolated from each sample.
Symbio .
Species Predominant . Bacteroid  Calcofluor Number of
. some . . JIM5 .
habit N size (um) white strains
. type
(Section)
. Tree
C. bahiae (Apoucouita) FT - + 2
. Tree
C. duartei (Apoucouita) FT - + 4
C. ensiformis var. Tree FT i . 15
plurifoliolata (Apoucouita)
. Tree
. Treelet
C. blanchetii (Baseophyllum) FT - + 1
. . Treelet
C. x blanchetiformis (Baseophyllum) FT - + -
Treelet
C. brachystachya (Baseophyllum) FT - + -
. . Treelet
C. confertiformis (Baseophyllum) FT - + -
C. zygophylioides (22222) FT-SYM 5 i :
C. belemii (22222) FT-SYM 5 - -
) Shrub
C. arrojadoana (Chamaecrista) FT-SYM 3 - -
Shrub
C. repens (Chamaecrista) FT-SYM 3-4 - 2
Shrub
C. ramosa (Chamaecrista) FT-SYM 8 - 1
.. Shrub
C. desvauxii (Chamaecrista) FT-SYM 3 - -
Shrub
C. pascuorum (Chamaecrista) SYM 3-4 - -
o Shrub
C. rotundifolia (Chamaecrista) SYM 5 - 2
Subshrub
C. supplex (Chamaecrista) SYM 4 ) )
Subshrub
C. serpens (Chamaecrista) SYM 4 i i
Subshrub
C. flexuosa (Chamaecrista) SYM 3-4 - -
953 *FT = Fixation Thread, SYM = Symbiosome; FT-SYM = Intermediate between FT and SYM.
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Table 2. Nodulation ability on various plant hosts of rhizobial strains isolated from different
Chamaecrista host species native to Bahia state, Brazil. All strains tested were Bradyrhizobium
except for those indicated as Paraburkholderia*. The nodC group that the Bradyrhizobium strains
belonged to (Fig. 7) are indicated in parentheses: Subshrub-Shrub Cluster | (SSCI), Subshrub-

Shrub Cluster Il (SSCII), Tree Cluster | (TCI), Tree Cluster Il (TCII), or not known.

. Chamaecrista spp. Siratro
Strain Host tested* nodulation
BRUESC623 C. blanchetii ..
(SSCll) (Treelet) C. blanchetii (+) (-)
C. ensiformis var.
BRL(JTEaCI;gSG plurifoliolata C. rotundifolia (+) (+)
(Tree)
C. ensiformis var. .
BRUESC1010 plurifoliolata C. rotund/fol(a (+) nt
(TCI) (Tree) C. ensiformis (+)
BRUESC964 C. ensiformis var.
(TCll) plurifoliolata C. ensiformis (+) (-)
(Tree)
BRUESC967 C. ensiformis var.
(TCl) plurifoliolata C. rotundifolia (+) (+)
(Tree)
C. ensiformis var. C. bahiae (-)
B(F:]gtEkSn%lv?y plurifoliolata C. rotundifolia (+) +)
(Tree) C. ensiformis (+)
. C. rotundifolia (+)
B(rchg iﬁgﬁg)z C'(frae’gfe C. blanchetii (-) (+)
C. desvauxii (-)
BRUESC1033 C. repens C. rotundifolia (+) )
(not known) (Shrub) C. blanchetii (-)
BRUESC1034 C. repens C. bahiae (+) )
(singleton) (Shrub) C. rotundifolia (+)
BRUESC1106 C. duartei ..
(not known) (Tree) C. blanchetii () )
BRUESC1107 C. duartei .
(not known) (Tree) C. desvauxii (+) (+)
BRUESC1102 C. rotundifolia C. desvauxii (+) nt
(SSCI) (Subshrub) : +
BRUESC1103 C. rotundifolia C.bahiae (-) (+)
(SSCI) (Subshrub) C. blanchetii (-)
*BRUESC1092 C. eitenorum CC. diﬁ;tﬁi /(/+()) )
(Paraburkholderia) (Tree) o !
C. ensiformis (+)
“BRUESC1093 C. eitenorum & d‘gﬁgi;fl”()) 0
(Paraburkholderia) (Tree) C o )
. ensiformis (+)

nt = not tested; ns = not sequenced. (+), (-) = positive and negative nodulation. *Also nodulated Mimosa pudica.
BRUESC955 (TCI), BRUESC961 (TCIl), BRUESC963 (TCll), BRUESC965 (TCll), BRUESC966 (not known), BRUESC968 (TClI),
BRUESC969 (TCll), and BRUESC1091 (TCI) nodulated Siratro, but were not tested on any Chamaecrista species.
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963 Figure legends

964

965 Fig. 1. Chamaecrista species and their morphological variation across the various
966  sections of the genus. (A) Tree species of C. bahiae (Section Apoucouita) in the tropical
967 rainforest; (B) Flower and initial developing fruit of C. duartei; (C) General view of a C.
968  confertiformis plant in campo rupestre habitat; (D) Detail of a C. blanchetii (Section
969  Baseophyllum) fruit; (E) Supra-axillary fascicles of C. repens (Section Chamaecrista); (F)
970  Solitary flowers of C. ramose (Section Chamaecrista). Scale bars: (B) =3 cm; (D, E, F) =
971 1cm.

972

973  Fig. 2. Morphology and anatomy of nodules from species in the various sections of the
974 genus Chamaecrista. A. Nodules of C. bahiae (Section Apoucouita) under natural soil
975  conditions; B. View of nodule morphologies. An arrow indicates a branched nodule; C.
976  General view of a longitudinal section of a C. bahiae nodule showing infected tissue (it)
977 in the center surrounded by the inner (ic) and outer cortex (oc); D. Sector of a C. bahiae
978  nodule showing the invasion zone and part of the nitrogen (N) fixation zone; E. Proximal
979 part of a C. bahiae nodule showing infected cells in different stages of senescence; F.
980  Detail of mature infected cells of C. bahiae occupied by fixation threads and interstitial
981 uninfected cells; G. Detail of mature infected cells of C. rotundifolia (Section
982  Chamaecrista) occupied by symbiosomes and some interstitial non infected cells. Scale
983 bars:A,B=1cm;C =500 pum; D, E=50um;F, G =20 um.

984

985 Fig. 3. Fluorescence micrographs of Calcofluor White-stained semi-thin sections of
986  nodules from species in the various sections of the genus Chamaecrista. Fluorescence
987 was detected in the infected cells of: A. C. bahiae (Section Apoucouita); B. C. duartei
988  (Section Apoucouita); C. C. confertiformis (Section Baseophyllum) and D. C.
989  blanchetiformis (Section Baseophyllum). E. No fluorescence was detectable in the
990 infected cells of C. rotundifolia (Section Chamaecrista). F. Fluorescence was detected in
991 the newly-invaded cells of the invasion zone and in the early infected cells, but not in the
992  mature infected cells of C. belemii (Section Absus subs. Zygophyllum). Scale bars: A, B,
993 D, F=50um;C, E=20 um.

994

995  Fig. 4. Scanning electron micrographs (SEMs) (A — C) and Transmission electron
996  micrographs (TEMs) (D — F) of infected cells in Chamaecrista nodules from species in
997 the various sections of the genus demonstrating the structure and morphology of the
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bacteroids across the genus. A. C. bahiae (FT-type, Section Apoucouita); B. C. repens
(FT-SYM-type, Section Chamaecrista); C. C. rotundifolia (SYM-type, Section
Chamaecrista). D — F. TEMs of infected cells after immunogold localization of
homogalacturonan epitopes with the monoclonal antibody JIM5, which recognizes a
pectin epitope in plant cell walls. D C. bahiae; E C. arrojadoana (FT-SYM-type, Section
Chamaecrista) showing gold particles in symbiosome membrane (wall) and matrix
(arrows); F C. supplex (SYM-type, Section Chamaecrista) Scale bars: A,C =10 um; E =
10 um; B, D, F=1 um.

Fig. 5. Light micrographs (A, B) and TEMs (C — F) of sections of Chamaecrista eitenorum
var. eitenorum (Section Apoucouita) nodules. A. Infected tissue immunogold labelled with
an antibody against Paraburkholderia phymatum STM815T plus silver enhacement; B.
Infected tissue immunolabelled with an antibody against Cupriavidus taiwanensis
LMG19434T plus silver enhancement (negative control). C. Immunogold localization on
the bacteroid surface using an antibody against Paraburkholderia phymatum STM8157
(arrows). D. Negative control using IGL buffer. E. Immunogold localization of
homogalacturonan epitopes (arrows) with the monoclonal antibody JIMS5, which
recognizes a pectin epitope in plant cell walls, in an infected cell. F. A “classical” invasion
infection thread strongly immunogold labelled with JIM5 (arrows). Scale bars: A, B = 50
pm, C, D, E, F=0.5 ym.

Fig. 6. Maximum-likelihood phylogeny for the genus Bradyrhizobium based on the
concatenated dataset consisting of sequences of the genes atpD, dnaK, ginll, gyrB, recA
and rpoB. The isolates examined in this study are indicated in bold, and those from dos
Santos et al. (2017) are indicated by *. The scale bar indicates the number of nucleotide
substitutions per site. Numbers on branches are bootstrap values for 1000 replications

(shown only when 270%).

Fig. 7. Maximum-likelihood phylogeny of the genus Bradyrhizobium based on nodC. Host
association and specific geographic origin is listed in Table 1. The isolates examined in
this study are indicated in bold, and those from dos Santos et al. (2017) are indicated by
*. The scale bar indicates the number of nucleotide substitutions per site. Numbers on
branches are bootstrap values for 1000 replications (shown only when =70%).
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1032 Fig. 8. A. Phylogeny of the Leguminosae family adapted from LPWG (2017) showing
1033 the genera in the Caesalpinioideae subfamily associated with symbionts. B. Phylogeny
1034  of Chamaecrista based on DNA sequences of nuclear ITS and plastidial trnL-trnF loci.
1035  Majority-rule consensus tree derived from Bayesian analysis; the values of posterior
1036  probability (PP) are indicated above the branches in decimal form. Taxonomic groups of
1037  associated symbionts are colored. Species indicated by *(C. chapadae, C.

1038  zygophylloides) were not included in the phylogenetic analysis, but based on

1039  morphology, it was possible to place them in their appropriate taxonomic group. Arrows
1040 indicate the ages of nodes as estimated by Rando et al. (2016). C. C. bahiae; D. C.
1041  desvauxii; E. C. arrojadoana. (photos Juliana Rando)

1042

1043 Fig. S1. Location and distribution of Chamaecrista nodule sampling in Bahia State (NE
1044  Brazil).

1045

1046  Fig. S2. Light micrographs (A, C, E, G, I, K) and transmission electron micrographs
1047  (TEMSs) plus immunogold labelling with JIM5 (B, D, F, H, J, L) of nodules of Chamaecrista
1048  across four sections of the genus illustrating the range of nodule anatomical types from
1049  tree species with their bacteroids enclosed in fixation threads (FT) labelled with JIM5 (A
1050 - D) through intermediate types (FT-SYM) on treelets (E — H) to membrane-bound
1051  symbiosomes (SYM) on shrub and subshrub species that have little or no JIM5 signal (I
1052 - L). A, B. Chamaecrista duartei (section Apoucouita). C, D. Chamaecrista ensiformis
1053  (section Apoucouita). E, F. Chamaecrista blanchettii (section Baseophyllum). G, H.
1054  Chamaecrista cytisoides (section Baseophyllum). |, J. Chamaecrista chapadae (section
1055  Absus, subsect. Absus). K, L. Chamaecrista mucronata (section Chamaecrista). The FTs
1056 inthe section Apoucouitatree species C. duartei (A) and C. ensiformis (C) are discernible
1057 in infected cells (*) at the light microscope level. The walls of the FTs are indicated by
1058 arrows in TEMs in B and D, but note that the FTs in C. ensiformis (D) are more densely
1059 labelled with JIM5 than those in C. duartei (B). However, in the latter species the electron
1060 dense cell walls are more apparent, thus illustrating that there is no direct relationship
1061  between cell wall density and the presence/absence of unesterified pectin (JIM5) in FTs.
1062  Bacteroids in nodules on the section Baseophyllum treelet species C. blanchetii (E) and
1063  C. cytisoides (G) are less clearly defined at the light microscope level and this is because
1064 atthe TEM level (F, H) it is observed that bacteroids either have thin FT walls with sparse
1065 JIM5 labelling (arrows in F, H) or no walls at all (i.e., most of the bacteroids in C.
1066  cytisoides, H); however, more densely labelled walls surrounding bacteroids were also
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occasionally observed within C. cytisoides infected cells (double arrows in H), suggesting
that this species harbours both FTs and symbiosomes. The bacteroids in nodules on
shrub and subshrub species C. chapadae (I) and C. mucronata (K) were even less distinct
under the light microscope compared to the Baseophyllum treelet species, and this was
also confirmed under the TEM where they were shown to be enclosed in symbiosomes
Bars =20 um (A, C, E, G. |, K), 500 nm (B, D, F, L), 1 um (H, J), b = bacteroid, w = plant
cellwallin B, D, F, H, J, L.

Fig. S3. Proportional (%) occupation of infected cells by symbiotic rhizobia estimated by
counting pixels from light micrographs similar to those presented in Fig S2A and C for
FT-type, Fig. S2E and G for FT-SYM-type, and Fig. S2I and K for SYM-type nodules.
Data are presented as the mean proportion (+ s.d.) of each infected cell profile filled with
toluidine blue-stained structures representing bacteroids; 7-9 sections were examined
per symbiosome type (FT, FT-SYM, SYM).

Fig. S4. Maximume-likelihood phylogeny for the genus Bradyrhizobium based on the ITS
region. Host associations and specific geographic origins are listed in Table 1. The
isolates examined in this study are indicated in bold, and those from dos Santos et al.
(2017) are indicated by *. The scale bar indicates the number of nucleotide substitutions
per site. Numbers on branches are bootstrap values for 1000 replications (shown only
when 270%).

Fig. S5. Maximume-likelihood phylogeny for the genus Bradyrhizobium based on 16S
rDNA. Host association and specific geographic origin is listed in Table 1. The isolates
examined in this study are indicated in bold, and those from dos Santos et al. (2017) are
indicated by *. The scale bar indicates the number of nucleotide substitutions per site.
Numbers on branches are bootstrap values for 1000 replications (shown only when
270%).

Fig. S6. Maximum-likelihood phylogeny for the genus Paraburkholderia based on the
concatenated dataset consisting of sequences for the genes 16S rDNA and recA. The
isolates examined in this study are indicated in bold. The scale bar indicates the number
of nucleotide substitutions per site. Numbers on branches are bootstrap values for 1000
replications (shown only when =70%).
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Fig. S7. Maximum-likelihood phylogeny for the genus Bradyrhizobium based on the nifH
gene. Host association and specific geographic origin is listed in Table 1. The isolates
examined in this study are indicated in bold, and those from dos Santos et al. (2017) are
indicated by *. The scale bar indicates the number of nucleotide substitutions per site.
Numbers on branches are bootstrap values for 1000 replications (shown only when
270%).

Fig. S8. Maximume-likelihood phylogeny for the genus Parburkholderia based on the nodC
gene. Host association and specific geographic origin is listed in Table 1. The isolates
examined in this study are indicated in bold. The scale bar indicates the number of
nucleotide substitutions per site. Numbers on branches are bootstrap values for 1000

replications (shown only when 270%).

Fig. S9. Maximum-likelihood phylogeny for the genus Paraburkholderia based on the nifH
gene. Host association and specific geographic origin is listed in Table 1. The isolates
examined in this study are indicated in bold. The scale bar indicates the number of
nucleotide substitutions per site. Numbers on branches are bootstrap values for 1000

replications (shown only when 270%).

Table S1. Accession numbers of aerial parts of Chamaecrista species sampled in Bahia
(BA), Brazil and deposited in the Herbarium of the Universidade Estadual de Santa Cruz
(UESC). Also included is information about growth habit, vegetation type and locality
where the Chamaecrista species were sampled in BA specifically for this study.

Table S2. Genbank accession numbers of gene sequences from strains isolated in the

present study.

Table S3. Voucher information and GenBank accession numbers of the nuclear ITS
and plastidial trnL-trnF loci sequences included in the phylogeny of Chamaecrista (Fig.

8). New sequences are marked with an asterisk (*).

Table S4. Confirmed positive global nodulation reports for Chamaecrista; data are taken
from Sprent (2009) unless noted otherwise. Growth habit and habitat information were
either noted by the authors during sample collection in Brazil or were extracted from Flora
e Funga do Brasil (https:/floradobrasil.jbri.gov.br/FB22876) and/or Plants of the World
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1137  Online (https://powo.science.kew.org/). Nodule anatomy data, including the presence of
1138  either Symbiosome (SYM), Fixation Threads (FT), or Intermediate (FT-SYM) are taken
1139  from the literature, from the study of Sprent et al. (1996), or from the present study.

1140 Taxonomic information with regards to Sections and Subsections were extracted from
1141  Souza et al. (2021).
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FIG 8 A. Phylogeny of the Leguminosae family adapted from LPWG (2017) showing the
genera in the Caesalpinioideae subfamily associated with symbionts. B. Phylogeny

of Chamaecrista based on DNA sequences of nuclear ITS and plastidial trnL-trnF loci.
Maijority-rule consensus tree derived from Bayesian analysis; the values of posterior
probability (PP) are indicated above the branches in decimal form. Taxonomic groups of
associated symbionts are colored. Species indicated by *(C. chapadae, C.

zygophylloides) were not included in the phylogenetic analysis, but based on morphology, it
was possible to place them in their appropriate taxonomic group. Arrows indicate the ages
of nodes as estimated by Rando et al. (2016). C. C. bahiae; D. C. desvauxii; E. C.
arrojadoana. (photos Juliana Rando)
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