

1 **RESEARCH PAPER**

2

3 **The radiation of nodulated *Chamaecrista* species from the rainforest**

4 **into more diverse habitats has been accompanied by a reduction in**

5 **growth form and a shift from fixation threads to symbiosomes**

6

7 **Patricia Alves Casaes¹ | José Miguel Ferreira dos Santos² | Verônica Cordeiro Silva¹ |**

8 **Mariana Ferreira Kruschewsky Rhem¹ | Matheus Martins Teixeira Cota³ | Sergio Miana de**

9 **Faria⁴ | Juliana Gastaldello Rando⁵ | Euan K. James⁶ | Eduardo Gross⁷**

10

11 ¹Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Universidade

12 Estadual de Santa Cruz, Bahia, Brazil

13 ²Faculdade Pitágoras de Medicina e Faculdade Espírito Santo, Bahia, Brazil

14 ³Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Bahia,

15 Brazil

16 ⁴Embrapa-Agrobiologia, 465 km 07, Seropédica, Rio de Janeiro, Brazil

17 ⁵Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal do Oeste da

18 Bahia, Bahia, Brazil

19 ⁶The James Hutton Institute, Dundee, United Kingdom.

20 ⁷Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Bahia,

21 Brazil

22

23 **Correspondence**

24 Eduardo Gross

25 Departamento de Ciências Agrárias e Ambientais

26 UESC – Universidade Estadual de Santa Cruz

27 Rod. Jorge Amado, Km 16

28 Ilhéus-BA, 45662-900, Brazil

29 E-mail: egross@uesc.br

30

31 Euan K. James

32 The James Hutton Institute,

33 Invergowrie,

34 Dundee DD2 5DA,

35 UK.

36 E-mail: euan.james@hutton.ac.uk

38 **Abstract**

39 **All non-mimosoid nodulated genera in the legume subfamily Caesalpinoideae**
40 **confine their rhizobial symbionts within cell wall-bound “fixation threads” (FTs).**
41 **The exception is the large genus *Chamaecrista* in which shrubs and subshrubs**
42 **house their rhizobial bacteroids more intimately within symbiosomes, whereas**
43 **large trees have FTs. This study aimed to unravel the evolutionary relationships**
44 **between *Chamaecrista* growth habit, habitat, nodule bacteroid type, and rhizobial**
45 **genotype. The growth habit, bacteroid anatomy, and rhizobial symbionts of 30**
46 **nodulated *Chamaecrista* species native to different biomes in the Brazilian state of**
47 **Bahia, a major centre of diversity for the genus, was plotted onto an ITS-*TrnL*-F-**
48 **derived phylogeny of *Chamaecrista*. The bacteroids from most of the *Chamaecrista***
49 **species examined were enclosed in symbiosomes (SYM-type nodules), but those**
50 **in arborescent species in the section *Apoucouita*, at the base of the genus, were**
51 **enclosed in cell wall material containing homogalacturonan (HG) and cellulose (FT-**
52 **type nodules). Most symbionts were *Bradyrhizobium* genotypes grouped**
53 **according to the growth habits of their hosts, but the tree, *C. eitenorum*, was**
54 **nodulated by *Paraburkholderia*. *Chamaecrista* has a range of growth habits that**
55 **allow it to occupy several different biomes and to co-evolve with a wide range of**
56 **(mainly) bradyrhizobial symbionts. FTs represent a less intimate symbiosis linked**
57 **with nodulation losses, so the evolution of SYM-type nodules by most**
58 ***Chamaecrista* species may have (a) aided the genus-wide retention of nodulation,**
59 **and (b) assisted in its rapid speciation and radiation out of the rainforest into more**
60 **diverse and challenging habitats.**

61
62 **Keywords:** *Chamaecrista*, nodulation, homogalacturonan (HG), cellulose, fixation thread
63 (FT), Caesalpinoideae, *Bradyrhizobium*, *Paraburkholderia*, *nodC*, *nifH*.

64 Introduction

65 The monophyletic legume genus *Chamaecrista* (L.) Moench (Leguminosae -
66 Caesalpinoideae) has its centre of diversification in South America (Conceição et al.,
67 2009). Most species occur in Brazil, where 268 of approximately 366 recognized species
68 are distributed in various biomes and vegetation types. About 223 species are considered
69 as Brazilian endemics (LPWG 2020; Rando et al., 2020) particularly in the states of Bahia
70 (BA) and Minas Gerais (MG) which harbour 94 species distributed in such diverse
71 environments as savannah (Cerrado), Campo rupestre (upland rocky fields), semiarid
72 ecosystems (Caatinga), and tropical rain forest (Coutinho et al., 2016; Rando et al., 2016,
73 2020).

74 *Chamaecrista* is the ninth largest genus in the Leguminosae (Fabaceae) and the
75 third largest in the Caesalpinoideae subfamily (after *Acacia* and *Mimosa*); it contains a
76 wide variety of plant growth habits and sizes, ranging from trees through to shrubs, and
77 subshrubs/woody herbaceous perennials (Lewis, 2005; Coutinho et al., 2016; Mendes et
78 al. 2017; LPWG 2021). Furthermore, the distribution of *Chamaecrista* is unique in being
79 the only nodulated caesalpinioid genus which has species that have colonized temperate
80 regions (Sprent et al., 2013). All *Chamaecrista* species so far examined form symbiotic
81 root nodules with nitrogen-fixing bacteria collectively known as rhizobia (Gyaneshwar et
82 al., 2011; Peix et al., 2015; Sprent et al., 2017), while related genera comprising the
83 Cassia clade (LPWG 2017), p. ex. *Cassia* L. and *Senna* Mill. do not nodulate (Sprent,
84 2001, 2009). The independent rise of nodulation and its variation in *Chamaecrista*
85 (Delaux et al., 2015; Naisbitt et al., 1992) suggests that the genus has a pivotal position
86 in the evolution of nodulation (Sprent et al., 2013), and could be used as a model for
87 detailed studies of interactions between plants and nitrogen-fixing bacteria (Singer et al.,
88 2009). Indeed, it is for this reason that Sprent et al. (2013) suggested studying the
89 nitrogen-fixing nodules across *Chamaecrista* species in more depth with a focus on their
90 structure and rhizobial symbionts.

91 There is a paucity of information about nodule anatomy and development in the
92 paraphyletic grade comprising the Caesalpinoideae (*i.e.*, excluding the Mimosoid clade),
93 which includes *Chamaecrista*. What we do know is that all nodules so far studied from
94 the nine known nodulating non-Mimosoid Caesalpinoideae genera (*Campsandra*,
95 *Chamaecrista*, *Dimorphandra*, *Dinizia*, *Erythrophleum*, *Jacqueshuberia*, *Melanoxylon*,
96 *Moldenhawera* and *Tachigali*) are indeterminate, retaining meristematic activity (Sprent,
97 2009; Fonseca et al., 2012; Sprent et al., 2013, 2017; Faria et al. 2022). Moreover, while
98 the nodules in most papilionoid and all mimosoid species so far examined, have their

99 symbiotic rhizobia (bacteroids) released into membrane-bound vesicles called
100 symbiosomes (Sprent, 2009; Sprent et al., 2013, 2017), some papilionoid, and all
101 nodulated (non-mimosoid) caesalpinioid trees so far studied have their bacteroids
102 confined within cell wall-bound modified infection threads termed “persistent infection
103 threads” (PITs) or “fixation threads” (FTs) (Faria et al., 1987, 2022; Naisbitt et al., 1992;
104 Sprent, 2009; Fonseca et al., 2012; Sprent et al., 2013, 2017). In *Chamaecrista*, however,
105 nodules are anatomically diverse with their ultrastructure being apparently related to plant
106 growth habit i.e. the rhizobial bacteroids are enclosed in FTs in tree species, but within
107 membrane-bound symbiosomes in subshrub/woody herbaceous species (henceforth
108 collectively termed “subshrubs”), while larger shrub/treelet species have nodules with
109 intermediate structures between FTs and symbiosomes (Naisbitt et al., 1992).

110 The nodule anatomy of most species of *Chamaecrista* is so far undescribed, as
111 is the nodulation status of the majority of the genus. In addition, there have been
112 significant advances in microscopy techniques since Naisbitt et al., (1992), particularly in
113 methods to determine the composition of membranes and cell walls that could be
114 associated with the FTs and symbiosomes (Faria et al. 2022). Therefore, the first aim of
115 this study was to record the nodulation status of a wide variety of *Chamaecrista* species
116 covering their whole range of growth habits, from 20 m-high tree species to small
117 subshrubs at only 20-30 centimeters in height. Plant size variation in *Chamaecrista* is
118 also related to the biomes within which they occur: large trees are distributed in tropical
119 rainforests where soils are nitrogen (N) rich, while shrubs and subshrubs are distributed
120 in tropical savannas and in xeric formations with N-poor soils. Moreover, the phylogenetic
121 relations within the genus *Chamaecrista* also shows that monophyletic groups share
122 similar types of habitats and growth habit. The few arborescent species in the genus, all
123 native to tropical rainforests, are grouped in the basal monophyletic section *Apoucouita*
124 (Coutinho et al., 2016; Souza et al. 2021), while the considerably more numerous species
125 from open areas are shrubs and subshrubs that are scattered widely across the taxonomy
126 of the genus (Conceição et al., 2009, Souza et al., 2021). A second aim was to evaluate
127 the anatomy and ultrastructure of root nodules from *Chamaecrista* species of all growth
128 habits, focusing on the chemical composition of structures (symbiosomes, FTs, and
129 intermediates) enclosing the bacteroids within the infected tissue of the nodules.

130 The third aim was to explore the identity of the rhizobial symbionts of a wide
131 variety of *Chamaecrista* species covering the whole range of growth habits from trees
132 through to shrubs and subshrubs, and from nodules with FTs to those with symbiosomes.
133 Current data suggest that non-mimosoid Caesalpinoideae are preferentially nodulated

134 by *Bradyrhizobium* strains (Fonseca et al., 2012; Yao et al., 2014, 2015; Parker 2015;
135 Sprent et al., 2017; Rathi et al., 2018; Cabral Michel et al., 2021). Indeed, in the specific
136 case of the largest nodulating genus in this group, *Chamaecrista*, several studies have
137 shown that the North American subshrub *C. fasciculata* (Michx.) Greene (partridge pea)
138 has nodules that are associated with *Bradyrhizobium* (Parker 2012, Parker & Rousset
139 2014; Urquiaga et al., 2019; Klepa et al., 2019), and a recent molecular analysis of 47
140 strains from nine shrub and subshrub *Chamaecrista* species in Brazil described all the
141 symbiotic strains as belonging to genotypes of *Bradyrhizobium* (Santos et al., 2017).
142 Outside the New World, reports on native shrubby *Chamaecrista* species in India and
143 Africa suggest that they are also mainly nodulated by bradyrhizobia (de Lajudie et al.,
144 1998; Beukes et al., 2016; Rathi et al., 2018). Although evidence to date suggests that a
145 strong association between *Chamaecrista* and bradyrhizobia is consistent, nothing is
146 known about the diversity of rhizobial symbionts in nodules of tree species which have
147 their bacteroids enclosed in FTs as opposed to those with symbiosomes, nor whether
148 there is a link between rhizobial genotypes and the different biomes within which their
149 hosts occur.

150 Using these data plus unpublished anatomical data obtained from *Chamaecrista*
151 nodules sampled during the expedition of Sprent et al. (1996), combined with data from
152 the literature (Naisbitt et al. 1992; Santos et al. 2017; Faria et al. 2022), we then test the
153 hypothesis that the distribution of FTs and symbiosomes in the genus is not random and
154 may be the result of co-evolution between groups (sections) of *Chamaecrista* that are
155 native to particular environments (biomes), and the rhizobial microsymbionts that live
156 within them. This was done by constructing a phylogeny with ITS-*TrnL-F* sequences from
157 119 separate *Chamaecrista* taxa, and then plotting onto it plant growth habit, nodule
158 ultrastructure (occurrence of FTs or symbiosomes, if known), and the *nodC* genotypes of
159 the rhizobial microsymbionts.

160

161 **Materials and methods**

162

163 *Botanical material*

164

165 To sample root nodules in the field, we first located the 17 *Chamaecrista* species studied
166 here in different biomes of Bahia State, Brazil (Fig. S1). Samples of the root system
167 bearing nodules were collected from each individual plant, mainly during the rainy
168 season, when nodules are most active (dos Reis Junior et al., 2010). Aerial parts of each

169 species were collected, dried, and deposited in the Herbarium of the Universidade
170 Estadual de Santa Cruz (UESC) (Table S1) for confirmation of their identities.

171 On average, 12 nodules were collected from each of the 17 *Chamaecrista* species,
172 totaling 204 nodules. These samples were used to characterize the infected tissues and
173 to verify the presence of FTs using scanning electron microscopy (SEM), transmission
174 electron microscopy (TEM), light and fluorescence microscopy (see details below).

175

176 *Anatomy, histochemistry, ultrastructure and immunocytochemistry of nodules*

177

178 The nodules were separated from the root system and cut into 1-2 mm³ pieces with a
179 razor blade, before being fixed in a solution of 2.5% glutaraldehyde in 0.1 M sodium
180 cacodylate buffer (pH 7.2). Sample processing followed Santos et al. (2017) for
181 anatomical and ultrastructural characterization.

182 Histochemistry using the fluorescent compound calcofluor white, which binds to
183 beta 1-3 and beta 1-4 polysaccharides, such as those found in cellulose (Wood et al.,
184 1983), was used to provide evidence for the presence of invasive infection threads (ITs)
185 and FTs within the infected tissue of *Chamaecrista* nodules. Briefly, sections of nodules
186 were incubated with calcofluor white (1 g L⁻¹) in Evans blue as a background stain (0.5 g
187 L⁻¹) (Sigma-Aldrich) according to Wood et al. (1983), and the sections were then observed
188 under a Leica DM2500 equipped with ebq100-04 fluorescence coupled to a Leica
189 DFC310 Fx digital camera.

190 For transmission electron microscopy (TEM), serial ultrathin sections were collected
191 on nickel grids for immunogold tests using the monoclonal antibody JIM5 to verify the
192 presence of a homogalacturonan (HG) epitope in FTs inside the nodule infected cells;
193 this HG epitope is an essential component of pectin in cell walls (VandenBosch et al.,
194 1989; Fonseca et al., 2012). For species from which *Paraburkholderia* were isolated as
195 potential symbionts, nodules were also tested for the *in-situ* presence of symbiotic strains
196 using a polyclonal antibody against *P. phymatum* STM815^T according to dos Reis Junior
197 et al. (2010).

198 For scanning electron microscopy (SEM), fixed samples were dehydrated in a
199 graded acetone series to absolute, and completely dried using a Bal-Tec CPD 030 critical
200 point drier. Dried samples were mounted on stubs, coated with gold in a Bal-Tec SCD
201 050 sputter coater and viewed with a FEI Quanta 250 at the Centro de Microscopia
202 Eletrônica (CME) at UESC.

203

204 *Rhizobia isolation, cultivation and characterization*

205
206 Potential rhizobia were isolated from root nodules of seven of the 17 *Chamaecrista*
207 species sampled in the field from native undisturbed environments. An intensive effort
208 was made to isolate rhizobia from tree species of *Chamaecrista* because they often have
209 woody and lignified nodules, and hence the symbiotic bacteria are more difficult to isolate.
210 Accordingly, approximately 230 nodules were used for rhizobial isolation from *C.*
211 *ensiformis* var. *plurifoliolata*, *C. duartei*, *C. eitenorum* and *C. bahiae*. Rhizobia were
212 isolated, cultivated and characterized following the procedures of Rhem et al. (2021).

213

214 *Bacterial DNA extraction, amplification, sequencing and phylogenetic analysis*

215
216 For samples from each plant, bacterial isolates were grouped and selected according to
217 similarities in their phenotypical (colony) characteristics. Genomic DNA from selected
218 isolates was extracted according to Santos et al. (2017). The DNA was resuspended in
219 ultrapure water and stored at -20 °C. The yield and purity of the extracted DNA was
220 measured in a spectrophotometer (Shimadzu, SPD-M6A) by the ratio of absorbance at
221 260 and 280 nm. For *Bradyrhizobium* strains, the 16S rRNA gene and ITS region were
222 amplified. A multilocus sequence analysis (MLSA) was performed following Rhem et al.
223 (2021) to identify the phylogenetic positions of symbiont strains from different
224 *Chamaecrista* species. For MLSA, DNA sequences of four housekeeping genes were
225 used, i.e., *recA* encoding recombinase A, *dnaK* encoding the Hsp70 chaperone, *rpoB*
226 encoding RNA polymerase beta subunit, and *glnII* encoding glutamine synthetase isoform
227 II. We also amplified two symbiotic genes, i.e. approximately 930 bp of the *nodC*
228 (nodulation N-acetylglucosaminyltransferase) and 780 bp of the *nifH* (nitrogenase
229 reductase) genes. Thermal cycler programs and primers used are described in Rhem et
230 al. (2021). For *Paraburkholderia* strains, the 16S rRNA, *recA*, *nifH* and *nodC* genes were
231 amplified with the same primers and PCR conditions cited by Silva et al. (2018). Amplified
232 DNA was verified by horizontal electrophoresis in 1% (w/v) agarose gels and PCR
233 products were purified following a cold salt precipitation and resuspended in sterile
234 ultrapure water. All amplicons obtained were sequenced by ACTGene Análises
235 Moleculares Ltda (Alvorada, RS, Brazil). Nucleotide sequences of strains were analyzed
236 for percentage sequence similarity using BLASTn of the National Center for
237 Biotechnology Information (NCBI). Sequences from the present study and those of
238 closely related, reference and type strains (as per the LPSN list of valid and not validly

239 published type strains) were downloaded from NCBI in FASTA format, and then aligned
240 using CLUSTAL X (Thompson et al. 1997) or MEGA X (Kumar et al. 2018). Phylogenetic
241 trees were constructed with the sequence alignments of all the tested genes. Maximum-
242 likelihood trees were built in MEGA 7 using the Tamura 3-parameter correction method.
243 The robustness of the branches of the trees was estimated with 1000 bootstrap
244 replications. The partial sequences of all genes derived from the present study were
245 deposited in GenBank, and their Accession Numbers are listed in Table S2. Please note
246 that it was not possible to amplify all of the examined gene loci from all of the strains.
247

248 *Plant DNA extraction, amplification, sequencing and phylogenetic analysis*

249
250 DNA was sampled from 106 species of *Chamaecrista* (119 taxa) covering all sections
251 and including all species with root nodules analyzed in the present study plus others
252 accessed from the literature and from the dataset associated with Sprent et al. (1996),
253 with only *C. zygophylloides* (Taub.) H.S. Irwin & Barneby not included (Table S3).
254 Additionally, four species of *Cassia* and *Senna* were included as an outgroup. Most of the
255 sequence data were accessed from GenBank (<http://www.ncbi.nlm.nih.gov/genbank/>),
256 but seven new sequences of the plastid *trnL-F* and four of the nuclear internal transcribed
257 spacer (ITS) were generated for a further seven *Chamaecrista* species. All DNA
258 sequences and associated voucher information are deposited in GenBank (Table S3).
259 Total DNA extraction, amplification, PCR product purification, and sequencing were as
260 described in Conceição et al. (2009). Electropherograms were assembled and edited
261 using the Geneious platform (Drummond et al., 2012). Alignments of all sequences were
262 performed using Muscle (Edgar, 2004) with default settings. Manual edition to correct
263 obvious alignment errors and to remove sections with dubious alignments were inspected
264 using the Geneious platform (Drummond et al., 2012). Bayesian analyses (BAs) were
265 performed with MrBayes 3.1 (Ronquist & Huelsenbeck, 2003) using a combined data set
266 with four partitions (*trnL-F*, ITS1, 5.8S and ITS2). Nucleotide-substitution models were
267 selected, on the basis of the Akaike information criterion (AIC) values, with JModeltest
268 2.1 (Guindon & Gascuel, 2003; Darriba et al., 2012). The substitution models selected for
269 *trnL-F* was GTR+G and for ITS1 was GTR+I+G, for 5.8S was SYM+I and for ITS2 was
270 GTR+G. Indels were coded as the standard characters “variable”. We run all phylogenetic
271 analyses via the CIPRES Science Gateway v. 3.3 online portal (Miller et al., 2010). We
272 used FigTree 1.4.2 (Rambaut, 2014) to view and edit the final tree.
273

274 *Nodulation tests with rhizobial strains*

275
276 We selected strains isolated from *Chamaecrista* species to evaluate their nodulation
277 capacity. Six *Chamaecrista* species, ranging in size/habit from trees (*C. bahiae*, *C.*
278 *ensiformis* var. *plurifoliolata* and *C. duartei*), treelets (*C. blanchetii*) to subshrubs (*C.*
279 *desvauxi*, *C. rotundifolia*), as well as the promiscuous papilionoid legume Siratro
280 (*Macroptilium atropurpureum*) were used as host plants in the nodulation tests. In
281 addition, *Mimosa pudica* was used as a promiscuous mimosoid legume to test the two
282 *Paraburkholderia* isolates. Siratro seedlings were inoculated with the different strains
283 according to Santos et al. (2017), while the *Chamaecrista* spp. and *M. pudica* were
284 inoculated according to Silva et al. (2018). At harvest (3 months after inoculation),
285 nodulation of the root system was evaluated for each plant, and the presence of the
286 symbiosis-essential protein leghemoglobin (Lb), as indicated by a pinkish coloration in
287 their interior, was scored.

288

289 **Results**

290

291 *Anatomy, ultrastructure and immunocytochemistry of nodules*

292
293 *Chamaecrista* species have a wide range of growth habits and habitats, but most are
294 shrubs and subshrubs. The few tree species are usually found in rainforests, such as the
295 *Mata Atlântica* (Fig. 1A) and Amazon Forest; an exception is *C. eitenorum* which has its
296 habitat in seasonally dry tropical forests (SDTF) in the Chapada Diamantina. Most of the
297 tree species have characteristic ramiflorous racemes (Fig. 1B) and are placed in the small
298 section *Apoucouita* at the base of the genus (Coutinho et al., 2016). Woody shrub species
299 occur in the *Cerrado* (savannah) and in open rocky fields often at altitudes >1000 m
300 (denoted *Campo Rupestre*) (Fig. 1C, D); these belong in sect. *Absus*, members of which
301 have terminal or axillary racemes. The *Cerrado* and *Caatinga* (a semiarid Brazilian biome)
302 are also the habitat for smaller, but still woody, sub-shrub and herbaceous species (Fig.
303 1E, F) which have axillary and supra-axillary reduced racemes (fascicles); these are
304 mostly contained in sect. *Chamaecrista*.

305 A complete list of nodulating *Chamaecrista* species is given in Table S4. Nineteen
306 *Chamaecrista* taxa were examined in the present study for nodulation, plus twelve from
307 the study of Sprent et al. (1996), and a further eight from de Faria (unpublished). All were
308 nodulated, including 26 new reports.

309 The nodules sampled in the present study (varying from 0.1 to 2 cm in length) were
310 usually found on the secondary superficial roots (Fig 2A) of all the *Chamaecrista* species
311 examined. In general, nodules were cylindrical when young, but became lobed with age
312 with a few branches, and were a dark brown surface color (Fig. 2B); most were viable
313 and active as evidenced by the pink color in their interior due to Lb production (inset Fig.
314 2B). Nodule morphology and anatomy characterized all of the samples as indeterminate
315 as they have a persistent meristem at the distal end (Fig. 2C). *Chamaecrista* nodules
316 have a central infected tissue containing the microsymbionts which is surrounded by an
317 uninfected cortex consisting of a parenchymatous outer cortex composed of several
318 layers (4 to 6) of isodiametric cells with phenolic compounds being found scattered
319 throughout the outer cortical region; this is separated from the inner cortex by an
320 endodermis (Fig. 2C). Several vascular bundles are located at the periphery of the inner
321 cortex (Fig. 2C). In all *Chamaecrista* species, the central region of nodules contains a
322 combination of large infected parenchymatic cells and smaller uninfected interstitial cells
323 (Fig. 2C). In the invasion zone, which was located distally to the infected tissue, the
324 rhizobia were contained within ITs that invaded cells (Fig. 2D). Depending on the growth
325 habit of the species, these ITs either released the bacteria into symbiosomes (Fig. 2G,
326 S2), or the ITs developed into thinner-walled FTs which occupied almost the entire
327 cytoplasmic volume of the infected cells (Fig. 2D, S2). In mature nodules, senescent cells
328 were observed in the proximal part of the infected tissue, with a collapsing mass of FTs
329 in their interior (Fig. 2E). The small uninfected interstitial cells were vacuolated, and
330 distinct from the infected cells (Fig. 2F, G, S2). In subshrub *Chamaecrista* species, the
331 root nodules had infected cells with symbiosomes completely occupying the available
332 cytoplasm (Fig. 2G, S2I, K).

333 The occurrence of nodules with conspicuous FTs was confined to tree
334 *Chamaecrista* species in the section *Apoucouita* (Table 1, S4, Figs. 3, 4, S2), which are
335 generally restricted to tropical forests (Coutinho et al. 2016; Souza et al. 2021). The
336 composition of the FT cell walls was examined using a combination of three methods: (1)
337 histochemical staining of cellulose using Calcofluor white, (2) anatomical observations
338 with light microscopy and electron microscopy (TEM and SEM), and (3) immunogold
339 labelling of pectin HG using JIM5 combined with TEM.

340 Analysis of cellulose deposition in nodule infected cells using calcofluor white
341 showed a similar pattern to the pectin observations *i.e.* with primary cell wall components
342 evident in nodules from trees, treelets and large shrubs, but not in mature infected cells
343 in nodules of subshrubs (Table 2). For example, cellulosic material was detected in FTs

344 in nodules of *C. bahiae* (Fig. 3A), *C. duartei* (Fig. 3B), *C. ensiformis* var. *plurifoliolata*, *C.*
345 *brachystachya*, *C. confertiformis* (Fig. 3C) and *C. x blanchetiformis* (Fig. 3D).
346 Fluorescence indicating cellulose was also observed in the infected zone of a *C.*
347 *arrojadoana* nodule (Fig. 3E) where it was localized to an IT in cells recently invaded by
348 rhizobia and, more generally, in immature invaded cells, but not in mature infected cells
349 of this subshrub species (Fig. 3F).

350 Under the SEM, conspicuous FTs were observed in nodules of the trees *C. bahiae*
351 (Fig. 4A), *C. duartei*, *C. eitenorum* and *C. ensiformis* var. *plurifoliolata*, and in the shrub
352 species *C. blanchetiformis*, *C. brachystachya* and *C. confertiformis*, all of which had FTs
353 with well-defined walls like those of the “standard” ITs of many legume types. The mature
354 infected cells in the infected zone of the nodules were densely occupied by FTs, and
355 these differed in structure from those observed in nodules of the subshrub species *C.*
356 *repens* (Fig. 4B), *C. arrojadoana* and *C. ramosa*, wherein bacteroids were enclosed in
357 FTs with thinner cell walls (so-called FT-SYM; Table S4) which allowed for the bacterial
358 outline with associated material on the bacterial surface to be observed under the SEM
359 (inset Fig. 4B). For nodules on the subshrub species, *C. belemi*, *C. blanchetii*, *C.*
360 *zygophylloides*, *C. desvauxii*, *C. pascuorum*, *C. rotundifolia* (Fig. 4C, Table S4) and *C.*
361 *supplex*, the bacteroids were free in the cells, although they are most likely to be enclosed
362 within symbiosome membranes, most of which did not survive processing for SEM. The
363 SEM observations were confirmed using light microscopy and TEM *i.e.* that tree species
364 in the section *Apoucouita*, such as *C. bahiae*, *C. duartei* and *C. ensiformis* have FTs (Fig.
365 4D, S2A - D), that symbiosomes in treelets from the section *Baseophyllum* have an
366 intermediate (FT-SYM) structure and/or contain both FTs and symbiosomes (Fig. S2E –
367 H), while shrubs and subshrubs from the sections *Absus* and *Chamaecrista* (Fig. 4E, F,
368 S2I – L) generally contain symbiosomes only. However, there are several exceptions in
369 sections *Absus* and *Chamaecrista* that have an FT-SYM type, such as *C. arrojadoana*
370 (Fig. 4F), *C. mucronata* (Fig. S2L), and *C. desvauxii* (Naisbitt et al. 1992).

371 Immunocytochemistry using the monoclonal antibody JIM5 provided further
372 information about the nature of FTs and symbiosomes in *Chamaecrista* nodules. It
373 indicated the presence of an unesterified HG epitope in the pectic component of both FTs
374 (Fig. 4D, S2B, D) and symbiosomes (Fig. 4E, S2H, L) in infected cells of nodules from
375 several species of *Chamaecrista* examined (Table 2; Fig. S2). For nodules on tree
376 species in the section *Apoucouita*, such as *C. bahiae*, *C. duartei* and *C. ensiformis*, JIM5
377 immunogold labeled the walled FTs (Fig. 4D, S2B, D). JIM5 also labelled the thinner
378 walled FTs of treelets and large shrubs in the section *Baseophyllum*, such as *C. blanchetii*

379 (Fig. S2F), but in nodules on other *Baseophyllum* species, such as *C. cytisoides*, the
380 infected cells contained a combination of JIM5-labelled symbiosomes and FTs, with the
381 FTs being more densely labeled (Fig. S2H). Similarly, JIM5 labeling was observed in
382 nodules of some subshrub species in the highly speciose sections *Absus* and
383 *Chamaecrista*, including those that had their bacteroids enclosed in either symbiosomes
384 (Fig. 4E, S2J) or were intermediate (FT-SYM), such as *C. arrojadoana* and *C. mucronata*
385 (Fig. 4F, S2L). It should be noted, however, that this was not a uniform observation across
386 these *Chamaecrista* sections, as nodules of many species had no JIM5 labelling, such
387 as *C. chapadae* (Fig. S2J), and of those that did have it the JIM5 epitope was located
388 within the symbiosomes themselves (Fig. 4E). Image analysis of the infected N-fixing
389 cells in sections from nodules on the species shown in Fig. S2 indicated that the FT-type
390 nodules from section *Apoucouita* were less densely colonized by bacteroids than those
391 of the SYM-type nodules in sections *Absus* and *Chamaecrista*, while the FT-SYM-type
392 nodules from section *Baseophyllum* were intermediately colonized (Fig. S3).

393 Light microscopy combined with immunohistochemistry using polyclonal antibodies
394 against *P. phymatum* STM815^T and *Cupriavidus taiwanensis* LMG19424^T indicated the
395 presence of *Paraburkholderia* as symbionts in nodules of the tree species *C. eitenorum*
396 (Fig. 5A, B). Specific immunogold localization of the *P. phymatum* antibody to the
397 bacteroids was confirmed under the TEM (Fig. 5C, D). Further immunogold localization
398 with JIM5 revealed HG epitopes on the cell walls surrounding both the FTs (Fig. 5E) and
399 the invasive ITs (5F) in the *C. eitenorum* nodules containing their *Paraburkholderia*
400 symbionts.

401
402 *Phylogenetic analysis of nitrogen-fixing symbionts: housekeeping genes and ITS region*
403

404 The diversity of rhizobia nodulating the various *Chamaecrista* species in the present study
405 was examined by MLSA to establish the phylogenetic relationships between symbiont
406 strains associated with tree and treelet *Chamaecrista* species *vis-a-vis* strains deposited
407 in the databases plus those isolated in our earlier study of symbionts from subshrub
408 *Chamaecrista* spp. (Santos et al. 2017) (Fig. 6). Most strains were grouped in the genus
409 *Bradyrhizobium* on the basis of close similarity to sequences of type strains. This genus
410 comprises various supergroups, including two mega-clades: I, the *B. japonicum* group,
411 and II, the *B. elkanii* group (Menna et al. 2009; Avontuur et al. 2019; Ormeno-Orillo and
412 Martinez-Romero, 2019). One cluster of *Chamaecrista* strains (Tree cluster I; Fig. 6)
413 consisting of isolates from the trees *C. ensiformis* var. *plurifoliolata*, *C. bahiae* and *C.*

414 *duartei* were located within the *B. japonicum* supergroup, while the other cluster of
415 *Chamaecrista* tree strains (Tree cluster II; Fig. 6), consisting only of isolates from *C.*
416 *ensiformis* var. *plurifoliolata* were located within the *B. elkanii* supergroup. Mega-clade I
417 also contained a large cluster of strains formed exclusively of bradyrhizobia isolated by
418 Santos et al. (2017) from root nodules of subshrub *Chamaecrista* species (Subshrub-
419 Shrub cluster; Fig. 6).

420 Analysis of the ITS region (16S–23S rDNA) (Fig. S4) suggested congruency with
421 the MLSA phylogeny, with two clusters containing strains from nodules of tree
422 *Chamaecrista* spp. plus one Subshrub-Shrub cluster. Strains from subshrubs formed a
423 separate cluster from all the *Bradyrhizobium* groups (Fig. S4). The ITS analysis indicates
424 the large differences in the DNA sequences of these *Chamaecrista* isolates, as it is one
425 of the strongest tools for discriminating between bradyrhizobial populations owing to its
426 high degree of variation providing greater powers of resolution (Willems et al., 2003). In
427 general, the *rrs* (16S rRNA) phylogeny (Fig. S5) was congruent with the MLSA and ITS
428 phylogenies, but with less precision and with modification in the position of some
429 bradyrhizobial isolates. None of the Bahia *Chamaecrista* strains clustered with the
430 described species from *C. fasciculata*, *B. frederickii* (Urquiaga et al., 2019) and *B. niftali*
431 (Klepa et al., 2019), both of which were isolated in the USA.

432 Confirming the immunogold microscopy observations for this species (Fig. 5A – D),
433 both strains isolated from nodules on the tree *C. eitenorum* sampled in Chapada
434 Diamantina belonged to the genus *Paraburkholderia*. A concatenated (16S rDNA + *recA*)
435 phylogenetic analysis demonstrated that they are potentially a new species (Fig. S6)
436 related to *P. nodosa* that was originally isolated from nodules of *Mimosa scabrella* (Chen
437 et al., 2007).

438

439 *Phylogenetic analysis of nitrogen-fixing symbionts: symbiotic genes*

440
441 The *nodC* (Fig. 7) and *nifH* (Fig. S7) bradyrhizobia phylogenies were relatively congruent
442 with the concatenated housekeeping and ITS phylogenies, with both forming the same
443 two Tree I and Tree II clusters as the MLSA, but the single subshrub-shrub cluster (SSC)
444 comprising strains from this study and that of Santos et al. (2017) was divided into two
445 sub-groups (SSCI & SSCII) in the *nodC* phylogeny (Fig. 7). SSCI corresponded to Cluster
446 1 of Santos et al. (2017) but now also incorporated *C. rotundifolia* and *C. ramosa*
447 symbionts from the present study, while SSCII was more heterogenous, grouping several
448 Santos et al. (2017) strains with a *C. blanchetii* strain from the present study

449 (BRUESC623) plus strains from various other legumes. A single strain (BRUESC1034)
450 isolated from the shrub *C. repens* occupied a unique position outside any of the main
451 *nodC* clusters. For the tree symbionts, Tree cluster II (TCII) constituted a tight group of
452 six strains from *C. ensiformis* var. *plurifoliolata*, while Tree cluster I (TCI) constituted the
453 main group of *Chamaecrista* tree strains; these were related to *Bradyrhizobium* type
454 species that were isolated in Brazil from various legumes (except for *B. iriomotense*
455 EK05^T from Japan). The *nifH* phylogeny differed from the *nodC* one in that the two SSC
456 sub-groups were not apparent, with all the strains being grouped into a single cluster with
457 *Bradyrhizobium* sp. Tv2a-2 2 (isolated from the caesalpinioid legume *Tachigali versicolor*
458 in Barro Colorado Island of Panama; Tian et al., 2015) and *B. ganzhouense*, a symbiont
459 of *Acacia melanoxylon* (Lu et al. 2014).

460 The two strains of *Paraburkholderia* isolated from *C. eitenorum* (BRUESC1092,
461 BRUESC1093) formed a tight cluster in the *nodC* phylogeny with *Paraburkholderia* sp.
462 BRUESC684 (Fig. S8), a strain isolated from *Calliandra viscidula* collected in Chapada
463 Diamantina in Bahia State (Silva et al., 2018), but it should also be noted that both *C.*
464 *eitenorum* strains had symbiosis gene sequences which were closely related to *P. nodosa*
465 and *P. mimosarum* which are widely isolated symbionts of *Mimosa* species in Brazil
466 (Bontemps et al., 2010). Strains BRUESC1092 and BRUESC1093 also grouped with the
467 *P. nodosa* type strain Br3437^T in the *nifH* gene phylogeny (Fig. S9).

468

469 *Nodulation ability and host range of the Chamaecrista rhizobia*
470 From the 28 strains of *Bradyrhizobium* isolated from nodules of seven *Chamaecrista*
471 species (*C. bahiae*, *C. duartei*, *C. eitenorum*, *C. ensiformis* var. *plurifoliolata*, *C. blanchetii*,
472 *C. ramosa*, *C. repens* and *C. rotundifolia*) 23 were tested for their nodulation ability on
473 Siratro, and 15 were tested on six *Chamaecrista* spp. The tested strains represented the
474 whole range of growth habits in the genus, from trees to subshrubs (Table 2), but also
475 the four *nodC* genotype clusters identified in Fig. 7 (SSCI, SSCII, TCI and TCII). Five of
476 the strains were isolated from the tree *C. ensiformis* var. *plurifoliolata*; three of these,
477 representing *nodC* TCI (BRUESC1010) and TCII (BRUESC964), and BRUESC1011 (not
478 included in the *nodC* phylogeny) formed nodules on their homologous host (the other two
479 strains, BRUESC956 and BRUESC967 were not tested on *C. ensiformis*), and four of the
480 five strains nodulated the subshrub *C. rotundifolia* (BRUESC964 was not tested).
481 However, no nodules were observed when one of the *C. ensiformis* var. *plurifoliolata*
482 strains (BRUESC1011) was inoculated onto another *Chamaecrista* tree species (*C.*
483 *bahiae*). A *Bradyrhizobium* strain isolated from *C. bahiae* (BRUESC952) nodulated *C.*

484 *rotundifolia*, but not *C. blanchetii* and *C. desvauxii*, while strain BRUESC1107 from *C.*
485 *duartei* formed effective nodules on *C. desvauxii*. The majority of the 19 *Bradyrhizobium*
486 strains tested nodulated Siratro; the exceptions were BRUESC623 from *C. blanchetii*
487 BRUESC964 from *C. ensiformis* var. *plurifoliolata*, BRUESC1033 and BRUESC1034
488 from *C. repens*, and BRUESC1106 from *C. duartei* (Table 2). Finally, the two
489 *Paraburkholderia* strains isolated from the tree *C. eitenorum* (BRUESC1092 and
490 BRUESC1093) effectively nodulated other tree species in the section *Apoucouita*, *C.*
491 *duartei* and *C. ensiformis*, but nodulated *Mimosa pudica* ineffectively, and both failed to
492 nodulate Siratro.

493

494 *Phylogenetic analysis of the genus Chamaecrista*

495

496 The individual phylogenetic analyses of *Chamaecrista* did not show apparent
497 incongruence between the ITS and *trnL-F* regions (Fig. 8), but as already described for
498 *Chamaecrista* (Conceição et al., 2009; Rando et al., 2016), the ITS region gives higher
499 resolution within the sections. In the *Chamaecrista* phylogeny (Fig. 8), three main large
500 clades emerged with high support (PP=1). These groups corresponded to the section
501 *Apoucouita* embracing the arborescent rainforest species, the section *Baseophyllum*
502 consisting of treelets and shrubs from Campo Rupestre and Caatinga, and the sections
503 *Absus* and *Chamaecrista*, which contain the highest diversity of species in the genus,
504 with most species being shrubs and subshrubs. Interestingly, these main clades
505 highlighted here are congruent with the phylogeny of the nitrogen-fixing microsymbionts,
506 and also demonstrate that the FT phenotype in which bacteroids are enclosed in cell wall
507 material, is apparently confined to the arborescent species in section *Apoucouita*,
508 whereas in species from the other clades/sections the microsymbionts are mainly
509 contained within symbiosomes. Interestingly, however, there are also a number of
510 species, particularly in section *Baseophyllum*, but also scattered amongst the other
511 sections, that are intermediate (FT-SYM) with regard to their bacteroid phenotype (Fig.
512 8).

513

514 **Discussion**

515 *The occurrence of fixation threads (FTs), symbiosomes or intermediates depends on the*
516 *taxonomy, growth habit, and habitat of the Chamaecrista host*

517

518 The 26 new reports in the present study raises the number of confirmed nodulating

519 *Chamaecrista* species to 74 (Sprent, 2009; Santos et al. 2017; Faria et al. 2022; Table
520 S4), now representing nearly a quarter of this highly speciose genus. In general, tissue
521 distribution in the interior of *Chamaecrista* nodules is similar to that of indeterminate
522 nodules from other neotropical Caesalpinioid trees, such as *Anadenanthera peregrina*
523 (Gross et al., 2002), *Mimosa* spp. (dos Reis Junior et al., 2010), and *Dimorphandra* spp.
524 (Fonseca et al., 2012). However, the present study has also confirmed that *Chamaecrista*
525 nodules are unique within the Caesalpinoideae since their infected cells can, depending
526 on species, have their bacteroids either retained within FTs, as occurs in nodules on all
527 other non-Mimosoid nodulated Caesalpinoideae, or have their rhizobial symbionts
528 released into symbiosomes (SYM-type nodules), as occurs in all mimosoid and most
529 papilionoid nodules so far reported (Naisbitt et al., 1992; Sprent, 2001; Sprent 2009;
530 Sprent et al., 2017; Faria et al. 2022). The distribution of FT- versus SYM-type nodules
531 in *Chamaecrista* appears to depend on the growth habit of the plant *i.e.*, current
532 knowledge, reinforced by considerable additional data from the present study, indicates
533 that tree species are all FT-type, whereas smaller shrub, subshrub and herbaceous
534 species, which represent the majority of *Chamaecrista* species, tend to be SYM-types
535 (Naisbitt et al. 1992). Interestingly, the present study has also confirmed using SEM and
536 TEM that some treelet and large shrub species exhibit an intermediate (FT-SYM) type of
537 nodule in which the FTs are less distinct (Naisbitt et al. 1992), suggesting a transitional
538 stage between FTs and symbiosomes in *Chamaecrista* that has not so far been observed
539 in other non-Mimosoid grade Caesalpinoideae symbioses (Faria et al. 2022).

540
541 *Composition of the FT in Chamaecrista species*
542 As with other non-mimosoid Caesalpinoideae trees, such as *Dimorphandra* (Fonseca et
543 al., 2012), *Erythrophleum* and *Moldenhawera* species (De Faria et al. 2022), the FTs in
544 *Chamaecrista* tree species comprise a cell wall containing homogalacturonan (HG)
545 epitopes as recognized by the monoclonal antibody, JIM5, which labels unesterified
546 pectin. The present study has demonstrated that *Chamaecrista* FTs also contain
547 cellulose; this concurs with the study of Faria et al. (2022) who have recently
548 demonstrated that the cell wall of FTs in nodules on a range of non-mimosoid
549 Caesalpinoideae contain several pectic components, but also cellulosic ones. Indeed,
550 there is mounting evidence that the wall of the FT differs little from the IT cell wall (and
551 plant cell walls in general) except that the FT wall is generally thinner and contains less
552 unesterified pectin (JIM5 epitope) (Fonseca et al. 2012; Faria et al. 2022; this study). It
553 should also be noted that FTs are not simple cell wall-bound structures, but are similar to

554 “conventional” symbiosomes in possessing a host membrane that surrounds the cell wall
555 (Faria et al. 2022), and hence the relative absence of unesterified pectin in FTs, as well
556 as their relatively thin walls compared to ITs is likely to be an adaptation to allow the
557 easier exchange of nutrients and O₂ between the rhizobial bacteroids and the host
558 cytoplasm across this membrane (Fonseca et al. 2012; Faria et al. 2022). Such nutrient
559 and gaseous exchange would most likely be impeded by the thick cell wall of a typical IT
560 containing pectin that has been stiffened via cross-linking through the action of pectin
561 methylesterases (PME) (Su, 2023).

562 Our study has also revealed more about the ultrastructure of the FT-SYM- and SYM-
563 type *Chamaecrista* nodules, including the histochemical nature of the symbiosomes. For
564 example, JIM5-labelled material could be observed in a matrix that surrounds the
565 symbiosomes in mature infected cells from nodules of some SYM and FT-SYM-type
566 *Chamaecrista* shrub and subshrub species in the present study from Brazil, but also in
567 the Asian subshrub species *C. pumila* (Rathi et al. 2018). The JIM5 labelling observed in
568 the FT-SYM-type nodules is most likely because these are essentially thinner versions of
569 FTs, and still have obvious cell walls surrounding their bacteroids (Naisbitt et al. 1992;
570 this study), but it is curious that some SYM-type nodules also possess pectin without any
571 obvious walls. In pea nodules, although glycoproteins and glycolipids were observed,
572 symbiosomes contained neither polysaccharides nor cell wall material (Perotto et al.,
573 1991, 1995). This implies that our observations of bacteroids in some SYM-type
574 *Chamaecrista* nodules surrounded by partially methyl-esterified and unesterified HG
575 epitopes (JIM5) are different from the symbiosomes housing bacteroids within nodules
576 on species in the “advanced” Inverse Repeat-Lacking Clade (IRLC); the latter contain
577 greatly-enlarged endo-reduplicated bacteroids that have completely lost their ability to
578 divide and to proliferate outside the host plant i.e. they are essentially organelles (Brewin,
579 1991; Gage, 2004; Oono et al. 2010; Sprent et al. 2017; Ardley & Sprent, 2021;
580 Mathesius, 2022). On the other hand, such terminally differentiated bacteroids are not the
581 norm outside the IRLC, so they are clearly not essential for legume nodule functioning,
582 although they may be more efficient at fixing N₂ (Mathesius, 2022). In most other legume
583 nodules, undifferentiated bacteroids are housed within symbiosomes, and it could be
584 argued that the *Chamaecrista* SYM-type nodules are essentially like these, especially
585 those in the Mimosoid clade (De Faria et al. 2022 and references therein). Therefore, as
586 suggested in the earlier study on a much narrower range of species (Naisbitt et al. 1992),
587 it would indeed appear that *Chamaecrista* contains a range of nodule phenotypes from
588 full FTs in the trees in the section *Apoucouita* through intermediates (FT-SYM) in treelets

589 and large shrubs (e.g. in the section *Baseophyllum*, although not exclusively) to
590 “standard” symbiosomes (SYM-type) in the majority of *Chamaecrista* species in the
591 sections *Absus* and *Chamaecrista*. The comparative efficiencies of the different nodule
592 types to fix N are not yet clear, but the number of bacteroids per cell (Fig. S3, this study)
593 are significantly reduced in the FT-type compared to the SYM-type nodule, with the FT-
594 SYM-types being intermediate in both parameters, which suggests that the possession
595 of a cell wall around the bacteroids reduces the degree to which host cells can be packed
596 with N-fixing rhizobia. This, together with a reduced proportion of infected cells per
597 nodule (Naisbitt et al. 1992) is likely to reduce the overall efficiency of the FT-type nodule.
598

599 *The influence of plant habit and biome on the diversity of nitrogen-fixing symbionts in*
600 *Chamaecrista*

601
602 Our study plus that of Santos et al. (2017) has demonstrated that in common with almost
603 all non-Mimosoid legumes of the subfamily Caesalpinoideae (Fonseca et al., 2012;
604 Parker, 2015; Cabral Michel et al., 2021; Avontuur et al. 2021), symbiotic bacteria isolated
605 from nodules across the genus *Chamaecrista* belong almost exclusively to the genus
606 *Bradyrhizobium*. Both housekeeping genes and ITS sequences of *Chamaecrista* strains
607 were congruent and taken together with the two symbiosis related genes (*nifH* and *nodC*)
608 showed that at least a dozen strains could represent putative novel species of
609 *Bradyrhizobium*. Also, *C. ensiformis*, a widespread arborescent species from tropical
610 forests, had the highest diversity of *Bradyrhizobium* symbionts, differing from its closely-
611 related “cousin” in the section *Apoucouita*, *C. eitenorum*, which has a more restricted
612 distribution in SDTF.

613 The phylogenetic analysis of both the *nodC* and *nifH* genes showed that the
614 *Bradyrhizobium* strains obtained from *Chamaecrista* nodules sampled in Bahia formed
615 clearly separated branches suggesting that symbiotic genes were probably vertically
616 transmitted, as was already indicated by studies on bradyrhizobia from other legumes
617 (Moulin et al., 2004; Parker, 2015, Fonseca et al., 2012; Stepkowski et al., 2007, 2018).
618 These results also suggest a very high diversity of bradyrhizobia nodulating
619 *Chamaecrista* trees, shrubs and subshrubs native to Brazil, and to Bahia in particular.
620 The *nodC* phylogeny supported the likelihood of there being co-evolution and specificity
621 of the *Chamaecrista-Bradyrhizobium* symbiosis since the rhizobia of the subshrub
622 *Chamaecrista* species in sections *Absus* and *Chamaecrista* that are highly divergent from
623 their distant cousins in the rainforest tree section *Apoucouita* also had highly divergent

624 *nodC* sequences. On the other hand, the different environments that these plant species
625 occupy, especially their soils (e.g. pH), will also play a part in their selection of particular
626 symbionts, as demonstrated for *Mimosa* in the Cerrado (Pires et al. 2018), and for
627 *Chamaecrista* in India (Rathi et al. 2018). Indeed, although the cross-inoculation
628 experiments demonstrated some degree of specificity, particularly for *Chamaecrista* tree
629 and treelet species, the fact that the widely distributed subshrub *C. rotundifolia* is
630 nodulated by *Bradyrhizobium* strains from all the observed *nodC* clades, including those
631 from the section *Apoucouita* species *C. bahiae* and *C. ensiformis*, as well as the ability of
632 most of the tested isolates to nodulate Siratro, suggests that Brazilian *Chamaecrista*
633 symbionts can be cosmopolitan in their selection of hosts outside their normal native
634 ranges, despite their apparent co-evolution with their (often) endemic hosts. A similar
635 observation was made with *Mimosa*, another large nodulated legume genus that has
636 radiated in Bahia, albeit with Beta-rhizobial symbionts rather than bradyrhizobia
637 (Bontemps et al. 2010).

638 Although bradyrhizobia are clearly the principal symbionts of *Chamaecrista* in Brazil
639 and elsewhere (see Introduction), other rhizobial types can nodulate the genus, such as
640 *Sinorhizobium (Ensifer)* in alkaline soils in India (Rathi et al. 2018). In the present study,
641 the tree species *C. eitenorum*, which is native to the SDTF, had the apparently unique
642 property of being nodulated by strains of *Paraburkholderia* related to those that nodulate
643 *Mimosa* and *Calliandra* spp. in the same environment (Bontemps et al. 2010; Silva et al.
644 2018); indeed, the fact that these isolates were also capable of nodulating *C. duartei* and
645 *C. ensiformis* in cross-inoculation studies suggests that *Chamaecrista-Paraburkholderia*
646 symbioses might be relatively abundant, at least among the tree species. Further to this,
647 the *C. eitenorum- Paraburkholderia* interaction is the first confirmed report of a Beta-
648 rhizobial symbiosis in nodules from a Caesalpinoideae species outside the Mimosoid
649 clade (LPWG, 2017), and it is also the first report of FTs being occupied by this type of
650 microsymbiont, which demonstrates that the FT phenotype is not controlled by any
651 particular rhizobial type (e.g. *Bradyrhizobium*), but is an inherent plant characteristic,
652 which might be expected if the “host controls the party” (Ferguson et al. 2019).

653
654 *Concluding remarks*
655
656 Our molecular phylogeny of *Chamaecrista* exhibits the same relationship among the
657 monophyletic clades already observed in other studies (Conceição et al., 2009; Rando et
658 al., 2016; Mendes et al., 2020; Souza et al., 2021), even with the incorporation of new

659 taxa. The small section *Apoucouita* remains a monophyletic group with the addition of six
660 new arborescent species. The section also appears as a sister group of all remaining
661 species of the genus, corroborating that its habitat and habit diverged distinctly from the
662 others, and that it may be basal within the genus. The shifts of growth habit appear to be
663 correlated with the habitat changes in *Chamaecrista*. In the genus, the diversification
664 occurred from rain forests with arborescent habits to open areas (savannahs and SDTF)
665 with smaller shrub and subshrub growth habits (Conceição et al., 2009; Coutinho et al.
666 2016; Souza et al., 2021).

667 We propose that the lower nutrient soils (and several other stresses, such as
668 seasonal drought) associated with savannahs and SDTF not only drove a reduction in
669 growth habit, but also necessitated a greater dependency on a more reliable nodulating
670 symbiosis, as the smaller root systems of shrub and subshrub *Chamaecrista* species
671 have a reduced access to a much more limited pool of soil N compared to large rainforest-
672 dwelling trees that also have a higher capacity to (re)cycle their N. Therefore, the shrub
673 and subshrub *Chamaecrista* species have largely rejected the FT-type symbiosis of their
674 arboreal cousins in the section *Apoucouita*, and have gradually adopted (via the
675 intermediate FT-SYM-type nodule) the more intimate SYM-type nodule, which with its full
676 incorporation of the bacteroids into the host cytoplasm exhibits the compartmentalization
677 that is linked with more stable and efficient symbioses (Parniske, 2018; Chomicki et al.
678 2020; Faria et al. 2022; Libourel et al. 2023; James 2023; Mohd-Radzman & Drapek,
679 2023). In this respect, the FT versus SYM pattern revealed by the present study across
680 the highly speciose genus *Chamaecrista* mirrors that across the Caesalpinoideae
681 subfamily as a whole i.e. that the hugely diverse (in terms of both growth habits and
682 number of genera) Mimosoid clade has retained nodulation by rejecting the less intimate
683 and relatively unstable FT-type nodule of its few nodulating cousins in the
684 Caesalpinoideae grade that subtends it (with the notable exception of *Chamaecrista*),
685 and by adopting the SYM-type nodule has avoided the massive losses of nodulation
686 evident in the non-Mimosoid Caesalpinoideae (Faria et al. 2022).

687

688 **ACKNOWLEDGEMENTS**

689 The authors thank Dr Alan Prescott and Tamanatha Jithesh for assistance with image
690 analysis, and Professor A. Nogueira and Dr Chrizelle Beukes for critical reading and
691 suggestions. We would like to thank FAPESB for a grant to PAC Alves via the
692 postgraduate Program of Biology and Biotechnology of Microorganisms, and the Center

693 for Electron Microscopy at UESC for infrastructure. EK James acknowledges funding
694 from CAPES via the Ciéncia sem Fronteiras programme.
695

696 REFERENCES

697 **Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MP, Blom, J, ... &**
698 **Steenkamp, E. T. 2019** Genome-informed *Bradyrhizobium* taxonomy: where to from
699 here? *Systematic and Applied Microbiology*, **42**: 427-439.

700 **Beukes CW, Stepkowski T, Venter SN, Cłapa T, Phalane FL, le Roux MM, Steenkamp**
701 **ET. 2016.** Crotalarieae and Genisteae of the South African great escarpment are
702 nodulated by novel *Bradyrhizobium* species with unique and diverse symbiotic loci.
703 *Molecular Phylogenetics and Evolution* **100**: 206-218.

704 **Bontemps C, Elliott GN, Simon MF, dos Reis Junior, F.B., Gross, E., Lawton, R.C.,**
705 **Neto, N.E., Loureiro, M.F., de Faria, S.M., Sprent, J.I., James, E.K., Young, J.P.W.**
706 **2010.** *Burkholderia* species are ancient symbionts of legumes. *Molecular Ecology* **19**: 44-
707 52.

708

709 **Brewin NJ. 1991.** Development of the legume root nodule. *Annual Review of Cell Biology*
710 **7**: 191-226. 1991.

711 **Cabral-Michel D, Costa EM, Guimarães AA, Carvalho TS, Castro Caputo PS,**
712 **Willems, A, Moreira FMS. 2021.** *Bradyrhizobium campsiandrae* sp. nov.,
713 a nitrogen-fixing bacterial strain isolated from a native leguminous tree from the Amazon
714 adapted to flooded conditions. *Archives of Microbiology* **203**: 233–240.

715 **Chomicki G, Werner GDA, West SA, Kiers ET. 2020.** Compartmentalization drives the
716 evolution of symbiotic cooperation. *Philosophical Transactions Royal Society of London.*
717 *Series B: Biological Sciences* **375**: 20190602.

718 **Conceição AS, Queiroz LP, Lewis GP, de Andrade MJG, de Almeida PRM,**
719 **Schnadelbach AS, Van Den Berg C. 2009.** Phylogeny of *Chamaecrista* (Leguminosae
720 Caesalpinoideae) based on nuclear and chloroplast DNA regions. *Taxon* **58**: 1168-1180.

721 **Coutinho IAC, Rando, JG, Conceição AS, Meira RMSA. 2016.** A study of the
722 morphoanatomical characters of the leaves of *Chamaecrista* (L.) Moench sect.
723 *Apoucouita* (Leguminosae-Caesalpinoideae). *Acta Botanica Brasilica* doi: 10.1590/0102-

724 33062016abb0035

725 **Darriba. D, Taboada GL, Doallo R, Posada D. 2012.** JModelTEst 2: more models, new
726 heuristics and parallel computing. *Nature Methods* **9**: 772.

727 **de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M,**
728 **Collins MD, Lindström K, Dreyfus B, Gillis M. 1998.** Characterisation of tropical tree
729 rhizobia and description of *Mesorhizobium plurifarum* sp. nov. *International Journal of*
730 *Systematic Bacteriology* **48**: 369–382.

731 **Delaux PM, Radhakrishnan G, Oldroyd G. 2015.** Tracing the evolutionary path to
732 nitrogen-fixing crops. *Current Opinion in Plant Biology* **26**: 95-99.

733 **Diabate M, Munive A, de Faria SM, Ba A, Dreyfus B, Galiana A. 2005.** Occurrence of
734 nodulation in unexplored leguminous trees native to the West African tropical rainforest
735 and inoculation response of native species useful in reforestation. *New Phytologist* **166**:
736 231-239.

737 **dos Reis Junior FB, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE, Loureiro**
738 **MF, Queiroz LP, Scotti MR, Chen W-M et al. 2010.** Nodulation and nitrogen fixation by
739 *Mimosa* spp. in the Cerrado and Caatinga biomes of Brazil. *New Phytologist* **186**: 934-
740 946.

741 **Doyle JJ. 1998.** Phylogenetic perspective on nodulation: evolving views of plants and
742 symbiotic bacteria. *Trends in Plant Science* **3**: 473-478.

743 **Drummond AJ, Ashton B, Cheung M, Heled J, Moir R, Stones-Havas S, Thierer T,**
744 **Wilson A. 2012.** Geneious Version 6.1.6. Available from: <<http://www.geneious.com>>.

745 **Edgar RC. 2004.** MUSCLE: multiple sequence alignment with high accuracy and high
746 throughput. *Nucleic Acids Research* **32**: 1792-1797.

747 **Estrada-de los Santos, P., Palmer, M., Chávez-Ramírez, B., Beukes, C., Steenkamp,**
748 **E.T., Briscoe, L., Khan, N., Maluk, M., Lafos, M., Humm, E. et al. 2018.** Whole genome
749 analyses suggest that *Burkholderia* sensu lato contains two additional novel genera
750 (*Mycetohabitans* gen. nov., and *Trinickia* gen. nov.): implications for the evolution of
751 diazotrophy and nodulation in the *Burkholderiaceae*. *Genes* **9**: 389
752 doi:10.3390/genes9080389

753 **Faria SM, McInroy S, Sprent JI. 1987.** The occurrence of infected cells, with persistent
754 infection threads, in legume root nodules. *Canadian Journal of Botany* **65**: 553-558.

755 **Faria SM, Diedhiou AG, de Lima HC, Ribeiro RD, Galiana A, Castilho AF, Henriques
756 JC. 2010.** Evaluating the nodulation status of leguminous species from the Amazonian
757 forest of Brazil. *Journal of Experimental Botany* **61**: 3119-3127.

758 **Faria SM, Ringelberg JJ, Gross E, Koenen EJM, Cardoso D, Ametsitsi GKD,
759 Akomatey J, Maluk M, Tak N, Gehlot HS, Wright KM, Teaumroong N, Songwattana
760 P, de Lima HC, Prin Y, Zartman CE, Sprent JI, Ardley J, Hughes CE, James EK 2022.**
761 The innovation of the symbiosome has enhanced the evolutionary stability of nitrogen
762 fixation in legumes. *New Phytologist* **235**: 2365-2377.

763 **Ferguson BJ, Mens C, Hastwell AH, et al. 2019.** Legume nodulation: The host controls
764 the party. *Plant Cell and Environment* **42**:41–51. <https://doi.org/10.1111/pce.13348>

765 **Flora do Brasil 2020 em construção.** 2019. *Jardim Botânico do Rio de Janeiro*. [WWW
766 document] URL <http://floradobrasil.jbrj.gov.br/>. [accessed 30 January 2018].

767 **Fonseca MB, Peix A, de Faria SM, Mateos PF, Rivera LP, Simões-Araujo JL, França
768 MGC, Isaias RMS, Cruz C, Velázquez E et al. 2012** Nodulation in *Dimorphandra wilsonii*
769 Rizz. (Caesalpinoideae), a threatened species native to the Brazilian Cerrado. *PlosOne*
770 **7**: e49520.

771 **Gage DJ. 2004.** Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia
772 during nodulation of temperate legumes. *Microbiology and Molecular Biology Review* **68**:
773 280-300.

774 **Gross E, Cordeiro L, Caetano FH. 2002.** Nodule ultrastructure and initial growth of
775 *Anadenanthera peregrina* (L.) Speg. var. *falcata* (Benth.) Altschul plants Infected with
776 rhizobia. *Annals of Botany* **90**: 175-183.

777 **Guindon S, Gascuel O. 2003.** A simple, fast and accurate method to estimate large
778 phylogenies by maximum-likelihood. *Systematic Biology* **52**: 696-704.

779 **Hall TA. 1999.** BioEdit: a user-friendly biological sequence alignment editor and analysis
780 program for Windows 95/98/NT. *Nucleic Acids Symposium Series* **41**: 95-98.

781 **Han SZ, Wang, ET, Chen WX. 2005.** Diverse bacteria isolated from root nodules of

782 *Phaseolus vulgaris* and species within the genera *Campylotropis* and *Cassia* grown in
783 China. *Systematic and Applied Microbiology* **28**: 265-276.

784 **Irwin HS, Barneby RC. 1982.** The American Cassiinae, a synoptical revision of
785 Leguminosae tribe Cassieae subtribe Cassiinae in the New World. *Memoirs of New York*
786 *Botanical Garden* **35**: 1-918.

787 **James EK. 2023.** Intimacy stabilizes symbiotic nodulation. *Nature Plants*
788 <https://doi.org/10.1038/s41477-023-01438-5>
789

790 **Klepa MS, Urquiaga MC, Somasegaran P, Delamuta JRM, Ribeiro RA, Hungria MA.**
791 **2019.** *Bradyrhizobium niftali* sp. nov., an effective nitrogen-fixing symbiont of partridge
792 pea [*Chamaecrista fasciculata* (Michx.) Greene], a native caesalpinioid legume broadly
793 distributed in the USA. *International Journal of Systematic and Evolutionary Microbiology*
794 **69**: 3448–3459.

795 **Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018.** MEGA X: Molecular Evolutionary
796 Genetics Analysis across computing platforms *Molecular Biology and Evolution* **35**:1547-
797 1549; doi: 10.1093/nar/25.24.4876.

798 **Lafay B, Burdon JJ. 2007.** Molecular diversity of legume root-nodule bacteria in Kakadu
799 National Park, Northern Territory, Australia. *PLoS One* **2**:e277.

800 **Lewis GP, Schrire B, Mackinder B, Lock M. 2005.** *Legumes of the World*. London, UK:
801 Royal Botanic Gardens, Kew.

802 **Legume Phylogeny Working Group (LPWG) 2021.** The World Checklist of Vascular
803 Plants (WCVP): Fabaceae, vers. June 2021 (R. Govaerts, Ed.).
804 http://sftp.kew.org/pub/data_collaborations/Fabaceae/DwCA

805 **Legume Phylogeny Working Group (LPWG). 2017.** A new subfamily classification of
806 the Leguminosae based on a taxonomically comprehensive phylogeny. *Taxon* **66**: 44-77

807 **Libourel C, Keller J, Brichet L. et al. 2023.** Comparative phylotranscriptomics reveals
808 ancestral and derived root nodule symbiosis programmes. *Nature Plants*
809 <https://doi.org/10.1038/s41477-023-01441-w>

810 **Lu JK, Dou YJ, Zhu YJ, Wang SK, Sui XH, Kang LH. 2014.** *Bradyrhizobium*
811 *ganzhouense* sp. nov., an effective symbiotic bacterium isolated from *Acacia*

812 *melanoxylon* R. Br. nodules. *International Journal of Systematic and Evolutionary*
813 *Microbiology* **64**: 1900-1905.

814 **MAPA**. 2011. Secretaria de Defesa Agropecuária. *Instrução Normativa no 13*, de 24 de
815 março de 2011.

816 **Mendes TP, Souza AOD, Silva MJD**. 2017. A new species hidden in the lowlands of
817 Tocantins, Brazil: *Chamaecrista tocantinensis* (Fabaceae). *Systematic Botany* **42**: 326-
818 337.

819 **Mendes, TP, Oliveira, AOS, Silva, MJD** 2020. Molecular phylogeny and diversification
820 timing of the *Chamaecrista* sect. *Absus* subsect. *Absus* ser. *Paniculatae*, a newly
821 circumscribed and predominantly endemic of the Cerrado Biome group. *Phytotaxa* **446**:
822 159-182.

823 **Menna P, Barcellos FG, Hungria M**. 2009. Phylogeny and taxonomy of a diverse
824 collection of *Bradyrhizobium* strains based on multilocus sequence analysis of the 16S
825 rRNA gene, ITS region and *glnII*, *recA*, *atpD* and *dnaK* genes. *International Journal of*
826 *Systematic and Evolutionary Microbiology* **59**: 2934-2950.

827 **Miller MA, W. Pfeiffer W, Schwartz T**. 2010. Creating the CIPRES Science Gateway for
828 inference of large phylogenetic trees. *Gateway Computing Environments Workshop*
829 (*GCE*), New Orleans: LA, USA, pp. 1-8. doi: 10.1109/GCE.2010.5676129.

830 **Mohd-Radzman NA, Drapek C**. 2023. Compartmentalisation: A strategy for optimising
831 symbiosis and tradeoff management. *Plant Cell and Environment* **46**: 2998–3011.

832 **Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA**. 2008.
833 Database indexing for production MegaBLAST searches. *Bioinformatics* **15**: 1757-1764.

834 **Moulin L, Béna G, Boivin-Masson C, Stepkowski T**. 2004. Phylogenetic analyses of
835 symbiotic nodulation genes support vertical and lateral gene co-transfer within the
836 *Bradyrhizobium* genus. *Molecular Phylogenetics and Evolution* **30**: 720-732.

837 **Naisbitt T, James EK, Sprent JI**. 1992. The evolutionary significance of the genus
838 *Chamaecrista*, as determined by nodule structure. *New Phytologist* **122**: 487-492.

839 **Oldroyd GED, Downie JA**. 2008. Coordination of nodule morphogenesis with rhizobial
840 infection in legumes. *Annual Review of Plant Biology* **59**: 519-546.

841 **Oono R, Schmitt I, Sprent JI, Denison RF. 2010.** Multiple evolutionary origins of legume
842 traits leading to extreme rhizobial differentiation. *New Phytologist* **187**: 508–520.

843 **Parker MA. 2012.** Legumes select symbiosis island sequence variants in
844 *Bradyrhizobium*. *Molecular Ecology* **21**: 1769-1778.

845 **Parker MA. 2015.** The spread of *Bradyrhizobium* lineages across host legume clades:
846 from *Abarema* to *Zygia*. *Microbiology Ecology* **69**: 630-640.

847 **Parker MA, Kennedy DA. 2006.** Diversity and relationships of bradyrhizobia from
848 legumes native to eastern North America. *Canadian Journal of Microbiology* **52**: 1148-
849 1157.

850 **Parker MA, Roussette A. 2014.** Mosaic origins of *Bradyrhizobium* legume symbionts on
851 the Caribbean island of Guadeloupe. *Molecular Phylogenetics and Evolution* **77**: 110-
852 115.

853 **Parniske M. 2018.** Uptake of bacteria into living plant cells, the unifying and distinct
854 feature of the nitrogen-fixing root nodule symbiosis. *Current Opinion in Plant Biology* **44**:
855 164–174.

856 **Perotto S, Donovan N, Drobak BJ, Brewin NJ. 1995.** Differential expression of a
857 glycosyl inositol phospholipid antigen on the peribacteroid membrane during pea nodule
858 development. *Molecular Plant-Microbe Interactions* **8**: 560-568.

859 **Perotto S, VandenBosch KA, Butcher GW, Brewin NJ. 1991.** Molecular composition
860 and development of the plant glycocalyx associated with the peribacteroid membrane of
861 pea root nodules. *Development* **112**: 763-773.

862 **Rambaut A. 2014.** FigTree 1.4.2 [online]. Available from <http://tree.bio.ed.ac.uk/software/figtree/> [accessed 17 October 2023].

863

864 **Rando, JG, Zuntini, AR, Conceição, AS, van den Berg, C, Pirani, JR & Queiroz, LP.**
865 **2016.** Phylogeny of *Chamaecrista* ser. *Coriaceae* (Leguminosae) unveils a lineage
866 recently diversified in Brazilian Campo Rupestre vegetation. *International Journal of Plant
867 Sciences* **177**: 3–17.

868 **Rando, J.G.; Cota, M.M.T.; Conceição, A.S.; Barbosa, A.R.; Barros, T.L.A. 2020.**
869 ***Chamaecrista* in Flora do Brasil 2020.** Jardim Botânico do Rio de Janeiro. Available at:

870 <<http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB22876>>. Accessed on: 25 Oct.
871 2021

872 **Rathi, S., Nisha Tak, N., Bissa, G., Chouhan, B., Ojha, A., Adhikari, D., Barik, S.K.,**
873 **Satyawada, R.R., Sprent, J.I., James, E.K., et al. 2018.** Selection of *Bradyrhizobium* or
874 *Ensifer* symbionts by the native Indian caesalpinioid legume *Chamaecrista pumila*
875 depends on soil pH and other edaphic and climatic factors. *FEMS Microbiology Ecology*
876 10.1093/femsec/fiy180

877 **Rhem, M. F. K., Silva, V. C., dos Santos, J. M. F., Zilli, J. É., James, E. K., Simon, M.**
878 **F., & Gross, E. 2021.** The large mimosoid genus *Inga* Mill. (tribe Ingeae,
879 Caesalpinoideae) is nodulated by diverse *Bradyrhizobium* strains in its main centers of
880 diversity in Brazil. *Systematic and Applied Microbiology*, 126268.

881 **Ronquist F, Huelsenbeck JP. 2003.** MrBayes 3: Bayesian phylogenetic inference under
882 mixed models. *Bioinformatics* **19**: 1572–1574

883 **Salmi A, Boulila F, Bourebaba Y, Le Roux C, Belhadi D, De Lajudie P. 2018.**
884 Phylogenetic diversity of *Bradyrhizobium* strains nodulating *Calicotome spinosa* in the
885 Northeast of Algeria. *Systematic and Applied Microbiology* **41**: 452-459.

886 **Santos JMF, Alves PAC, Silva VC, Rhem MFK, James EK, Gross E. 2017.**
887 *Bradyrhizobium* diversity and structural aspects of nodulation on herbaceous
888 *Chamaecrista* (Moench) species. *Systematic and Applied Microbiology* **40**: 69-79.

889 **Silva VC, Alves PAC, Rhem MFK, dos Santos JMF, James EK, Gross E. 2018.**
890 Brazilian species of *Calliandra* Benth. (tribe Ingeae) are nodulated by diverse strains of
891 *Paraburkholderia*. *Systematic and Applied Microbiology* **41**: 241-250.

892 **Singer SR, Maki SL, Farmer AD, Ilut D, May GD, Cannon SB, Doyle JJ. 2009.**
893 Venturing beyond beans and peas: what can we learn from *Chamaecrista*? *Plant*
894 *Physiology* **151**: 1041-1047.

895 **Souza, AO, Lewis GP, Silva MJ. 2021.** A new infrageneric classification of the
896 pantropical genus *Chamaecrista* (Fabaceae/ Caesalpinoideae) based on a
897 comprehensive molecular phylogenetic analysis and morphology. *Botanical Journal of*
898 *the Linnean Society* **197**: 350-395.

899 **Sprent JI. 2009** *Legume Nodulation: A Global Perspective*. Wiley-Blackwell, USA.

900 **Sprent, J. I. 2001.** *Nodulation in legumes*. London, UK: Royal Botanic Gardens, Kew.

901 **Sprent JI, Ardley JK, James EK. 2013.** From North to South: A latitudinal look at legume
902 nodulation processes. *South African Journal of Botany* **89**: 31-41.

903 **Sprent JI, Ardley JA, James EK. 2017.** Biogeography of nodulated legumes and their
904 nitrogen fixing symbionts. *New Phytologist* **215**: 40-56.

905 **Sprent JI, Geoghegan IE, Whitty PW, James EK. 1996.** Natural abundance of ^{15}N
906 and ^{13}C in nodulated legumes and other plants in the Cerrado and neighbouring regions
907 of Brazil. *Oecologia* **105**: 440-446.

908 **Stępkowski T, Hughes CE, Law IJ, Markiewicz Ł, Gurda D, Chlebicka A, Moulin, L.**
909 **2007.** Diversification of lupine *Bradyrhizobium* strains: evidence from nodulation gene
910 trees. *Applied and Environmental Microbiology* **73**: 3254-3264.

911 **Stępkowski T, Banasiewicz J, Granada CE, Andrews M, Passaglia LMP. 2018.**
912 Phylogeny and phylogeography of rhizobial symbionts nodulating legumes of the tribe
913 Genisteae. *Genes* **9**: 163; doi:10.3390/genes9030163

914 **Su C. 2023.** Pectin modifications at the symbiotic interface. *New Phytologist* **238**: 25–32.

915 **Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Thompson DGH. 1997.** The
916 CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment
917 Aided by Quality Analysis Tools. *Nucleic Acids Research*, **25**, 4876-4882; doi:
918 10.1093/nar/25.24.4876.

919 **Tian R, Parker M, Seshadri R, Reddy TB, Markowitz V, Ivanova N, Pati A, Woyke T,**
920 **Baeshen MN, Baeshen NA, Kyprides N. 2015.** High-quality permanent draft genome
921 sequence of *Bradyrhizobium* sp. Tv2a. 2, a microsymbiont of *Tachigali versicolor*
922 discovered in Barro Colorado Island of Panama. *Standards in Genomic Sciences*. **10**: 27.

923 **Tsyganova AV, Brewin NJ, Tsyganov VE. 2021.** Structure and development of the
924 legume-rhizobial symbiotic interface in infection threads. *Cells* **10**: 1050.
925 <https://doi.org/10.3390/cells10051050>

926 **Urquiaga MC, Klepa MS, Somasegaran P, Ribeiro RA, Delamuta JRM, Hungria MA.**
927 **2019.** *Bradyrhizobium frederickii* sp. nov., a nitrogen-fixing lineage isolated from nodules

928 of the caesalpinioid species *Chamaecrista fasciculata* and characterized by tolerance to
929 high temperature in vitro. *International Journal of Systematic and Evolutionary*
930 *Microbiology*

931 **Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991.** 16S ribosomal DNA
932 amplification for phylogenetic study. *Journal of Bacteriology* **173**: 697-703.

933 **Willems A, Munive A, de Lajudie P, Gillis M. 2003.** In most *Bradyrhizobium* groups
934 sequence comparison of 16S-23S rDNA internal transcriber spacer regions corroborates
935 DNA-DNA hybridizations. *Systematic and Applied Microbiology* **26**: 203-210.

936 **Wood PJ, Fulcher RG, Stone BA. 1983.** Studies on the specificity of interaction of
937 cereal cell wall components with Congo Red and Calcofluor. Specific detection and
938 histochemistry of (1→ 3),(1→ 4),- β -D-glucan. *Journal of Cereal Science* **1**: 95-110.

939 **Yao Y, Wang R, Lu JK, Sui XH, Wang ET, Chen WX. 2014.** Genetic diversity and
940 evolution of *Bradyrhizobium* populations nodulating *Erythrophleum fordii*, an evergreen
941 tree indigenous to the southern subtropical region of China. *Applied and Environmental*
942 *Microbiology* **80**: 6184-6194.

943 **Yao Y, Sui XH, Zhang XX, Wang ET, Chen WX. 2015.** *Bradyrhizobium erythrophlei* sp.
944 nov. and *Bradyrhizobium ferriligni* sp. nov., isolated from effective nodules of
945 *Erythrophleum fordii*. *International Journal of Systematic and Evolutionary Microbiology*
946 **65**: 1831-1837.

947

948 **Table 1.** Plant growth habit (and taxonomic section within *Chamaecrista*), plus symbiosome type
 949 (fixation threads, symbiosomes or intermediate), bacteroid size, reaction to calcofluor white and
 950 JIM5 observed in infected cells of root nodules from *Chamaecrista* spp. native to Bahia State,
 951 Brazil, and number of rhizobia strains isolated from each sample.
 952

Species	Predominant habit (Section)	Symbio- some type*	Bacteroid size (μm)	Calcofluor white	JIM5	Number of strains
<i>C. bahiae</i>	Tree (<i>Apoucouita</i>)	FT	-	+	+	2
<i>C. duartei</i>	Tree (<i>Apoucouita</i>)	FT	-	+	+	4
<i>C. ensiformis</i> var. <i>plurifoliolata</i>	Tree (<i>Apoucouita</i>)	FT	-	+	+	15
<i>C. eitenorum</i>	Tree (<i>Apoucouita</i>)	FT	-	+	+	2
<i>C. blanchetii</i>	Treelet (<i>Baseophyllum</i>)	FT	-	+	+	1
<i>C. × blanchetiformis</i>	Treelet (<i>Baseophyllum</i>)	FT	-	+	+	-
<i>C. brachystachya</i>	Treelet (<i>Baseophyllum</i>)	FT	-	+	+	-
<i>C. confertiformis</i>	Treelet (<i>Baseophyllum</i>)	FT	-	+	+	-
<i>C. zygophylloides</i>	Shrub (<i>Absus</i>)	FT-SYM	5	-	+	-
<i>C. belemii</i>	Shrub (<i>Absus</i>)	FT-SYM	5	-	+	-
<i>C. arrojadoana</i>	Shrub (<i>Chamaecrista</i>)	FT-SYM	3	-	+	-
<i>C. repens</i>	Shrub (<i>Chamaecrista</i>)	FT-SYM	3-4	-	+	2
<i>C. ramosa</i>	Shrub (<i>Chamaecrista</i>)	FT-SYM	8	-	+	1
<i>C. desvauxii</i>	Shrub (<i>Chamaecrista</i>)	FT-SYM	3	-	+	-
<i>C. pascuorum</i>	Shrub (<i>Chamaecrista</i>)	SYM	3-4	-	+	-
<i>C. rotundifolia</i>	Shrub (<i>Chamaecrista</i>)	SYM	5	-	+	2
<i>C. supplex</i>	Subshrub (<i>Chamaecrista</i>)	SYM	4	-	+	-
<i>C. serpens</i>	Subshrub (<i>Chamaecrista</i>)	SYM	4	-	+	-
<i>C. flexuosa</i>	Subshrub (<i>Chamaecrista</i>)	SYM	3-4	-	+	-

953 *FT = Fixation Thread, SYM = Symbiosome; FT-SYM = Intermediate between FT and SYM.

954 **Table 2.** Nodulation ability on various plant hosts of rhizobial strains isolated from different
 955 *Chamaecrista* host species native to Bahia state, Brazil. All strains tested were *Bradyrhizobium*
 956 except for those indicated as *Paraburkholderia**. The *nodC* group that the *Bradyrhizobium* strains
 957 belonged to (Fig. 7) are indicated in parentheses: Subshrub-Shrub Cluster I (SSCI), Subshrub-
 958 Shrub Cluster II (SSCII), Tree Cluster I (TCI), Tree Cluster II (TCII), or not known.

Strain	Host	<i>Chamaecrista</i> spp. tested*	Siratro nodulation
BRUESC623 (SSCII)	<i>C. blanchetii</i> (Treelet)	<i>C. blanchetii</i> (+)	(-)
BRUESC956 (TCII)	<i>C. ensiformis</i> var. <i>plurifoliolata</i> (Tree)	<i>C. rotundifolia</i> (+)	(+)
BRUESC1010 (TCI)	<i>C. ensiformis</i> var. <i>plurifoliolata</i> (Tree)	<i>C. rotundifolia</i> (+) <i>C. ensiformis</i> (+)	nt
BRUESC964 (TCII)	<i>C. ensiformis</i> var. <i>plurifoliolata</i> (Tree)	<i>C. ensiformis</i> (+)	(-)
BRUESC967 (TCI)	<i>C. ensiformis</i> var. <i>plurifoliolata</i> (Tree)	<i>C. rotundifolia</i> (+)	(+)
BRUESC1011 (not known)	<i>C. ensiformis</i> var. <i>plurifoliolata</i> (Tree)	<i>C. bahiae</i> (-) <i>C. rotundifolia</i> (+) <i>C. ensiformis</i> (+)	(+)
BRUESC952 (not known)	<i>C. bahiae</i> (Tree)	<i>C. rotundifolia</i> (+) <i>C. blanchetii</i> (-) <i>C. desvauxii</i> (-)	(+)
BRUESC1033 (not known)	<i>C. repens</i> (Shrub)	<i>C. rotundifolia</i> (+) <i>C. blanchetii</i> (-)	(-)
BRUESC1034 (singleton)	<i>C. repens</i> (Shrub)	<i>C. bahiae</i> (+) <i>C. rotundifolia</i> (+)	(-)
BRUESC1106 (not known)	<i>C. duartei</i> (Tree)	<i>C. blanchetii</i> (-)	(-)
BRUESC1107 (not known)	<i>C. duartei</i> (Tree)	<i>C. desvauxii</i> (+)	(+)
BRUESC1102 (SSCI)	<i>C. rotundifolia</i> (Subshrub)	<i>C. desvauxii</i> (+)	nt
BRUESC1103 (SSCI)	<i>C. rotundifolia</i> (Subshrub)	<i>C. bahiae</i> (-) <i>C. blanchetii</i> (-)	(+)
*BRUESC1092 (<i>Paraburkholderia</i>)	<i>C. eitenorum</i> (Tree)	<i>C. duartei</i> (+) <i>C. desvauxii</i> (-) <i>C. ensiformis</i> (+)	(-)
*BRUESC1093 (<i>Paraburkholderia</i>)	<i>C. eitenorum</i> (Tree)	<i>C. duartei</i> (+) <i>C. desvauxii</i> (-) <i>C. ensiformis</i> (+)	(-)

959 nt = not tested; ns = not sequenced. (+), (-) = positive and negative nodulation. *Also nodulated *Mimosa pudica*.
 960 BRUESC955 (TCI), BRUESC961 (TCI), BRUESC963 (TCII), BRUESC965 (TCII), BRUESC966 (not known), BRUESC968 (TCII),
 961 BRUESC969 (TCII), and BRUESC1091 (TCI) nodulated Siratro, but were not tested on any *Chamaecrista* species.
 962

963 **Figure legends**

964

965 **Fig. 1.** *Chamaecrista* species and their morphological variation across the various
966 sections of the genus. (A) Tree species of *C. bahiae* (Section *Apoucouita*) in the tropical
967 rainforest; (B) Flower and initial developing fruit of *C. duartei*; (C) General view of a *C.*
968 *confertiformis* plant in *campo rupestre* habitat; (D) Detail of a *C. blanchetii* (Section
969 *Baseophyllum*) fruit; (E) Supra-axillary fascicles of *C. repens* (Section *Chamaecrista*); (F)
970 Solitary flowers of *C. ramosa* (Section *Chamaecrista*). Scale bars: (B) = 3 cm; (D, E, F) =
971 1 cm.

972

973 **Fig. 2.** Morphology and anatomy of nodules from species in the various sections of the
974 genus *Chamaecrista*. **A.** Nodules of *C. bahiae* (Section *Apoucouita*) under natural soil
975 conditions; **B.** View of nodule morphologies. An arrow indicates a branched nodule; **C.**
976 General view of a longitudinal section of a *C. bahiae* nodule showing infected tissue (it)
977 in the center surrounded by the inner (ic) and outer cortex (oc); **D.** Sector of a *C. bahiae*
978 nodule showing the invasion zone and part of the nitrogen (N) fixation zone; **E.** Proximal
979 part of a *C. bahiae* nodule showing infected cells in different stages of senescence; **F.**
980 Detail of mature infected cells of *C. bahiae* occupied by fixation threads and interstitial
981 uninfected cells; **G.** Detail of mature infected cells of *C. rotundifolia* (Section
982 *Chamaecrista*) occupied by symbiosomes and some interstitial non infected cells. Scale
983 bars: **A, B** = 1 cm; **C** = 500 μ m; **D, E** = 50 μ m; **F, G** = 20 μ m.

984

985 **Fig. 3.** Fluorescence micrographs of Calcofluor White-stained semi-thin sections of
986 nodules from species in the various sections of the genus *Chamaecrista*. Fluorescence
987 was detected in the infected cells of: **A.** *C. bahiae* (Section *Apoucouita*); **B.** *C. duartei*
988 (Section *Apoucouita*); **C.** *C. confertiformis* (Section *Baseophyllum*) and **D.** *C.*
989 *blanchetiformis* (Section *Baseophyllum*). **E.** No fluorescence was detectable in the
990 infected cells of *C. rotundifolia* (Section *Chamaecrista*). **F.** Fluorescence was detected in
991 the newly-invaded cells of the invasion zone and in the early infected cells, but not in the
992 mature infected cells of *C. belemii* (Section *Absus* subs. *Zygophyllum*). Scale bars: **A, B,**
993 **D, F** = 50 μ m; **C, E** = 20 μ m.

994

995 **Fig. 4.** Scanning electron micrographs (SEMs) (**A – C**) and Transmission electron
996 micrographs (TEMs) (**D – F**) of infected cells in *Chamaecrista* nodules from species in
997 the various sections of the genus demonstrating the structure and morphology of the

998 bacteroids across the genus. **A.** *C. bahiae* (FT-type, Section *Apoucouita*); **B.** *C. repens*
999 (FT-SYM-type, Section *Chamaecrista*); **C.** *C. rotundifolia* (SYM-type, Section
1000 *Chamaecrista*). **D – F.** TEMs of infected cells after immunogold localization of
1001 homogalacturonan epitopes with the monoclonal antibody JIM5, which recognizes a
1002 pectin epitope in plant cell walls. **D** *C. bahiae*; **E** *C. arrojadoana* (FT-SYM-type, Section
1003 *Chamaecrista*) showing gold particles in symbiosome membrane (wall) and matrix
1004 (arrows); **F** *C. supplex* (SYM-type, Section *Chamaecrista*) Scale bars: **A, C** = 10 μm ; **E** =
1005 10 μm ; **B, D, F** = 1 μm .

1006

1007 **Fig. 5.** Light micrographs (**A, B**) and TEMs (**C – F**) of sections of *Chamaecrista eitenorum*
1008 var. *eitenorum* (Section *Apoucouita*) nodules. **A.** Infected tissue immunogold labelled with
1009 an antibody against *Paraburkholderia phymatum* STM815^T plus silver enhancement; **B.**
1010 Infected tissue immunolabelled with an antibody against *Cupriavidus taiwanensis*
1011 LMG19434^T plus silver enhancement (negative control). **C.** Immunogold localization on
1012 the bacteroid surface using an antibody against *Paraburkholderia phymatum* STM815^T
1013 (arrows). **D.** Negative control using IGL buffer. **E.** Immunogold localization of
1014 homogalacturonan epitopes (arrows) with the monoclonal antibody JIM5, which
1015 recognizes a pectin epitope in plant cell walls, in an infected cell. **F.** A “classical” invasion
1016 infection thread strongly immunogold labelled with JIM5 (arrows). Scale bars: **A, B** = 50
1017 μm , **C, D, E, F** = 0.5 μm .

1018

1019 **Fig. 6.** Maximum-likelihood phylogeny for the genus *Bradyrhizobium* based on the
1020 concatenated dataset consisting of sequences of the genes *atpD*, *dnaK*, *glnII*, *gyrB*, *recA*
1021 and *rpoB*. The isolates examined in this study are indicated in bold, and those from dos
1022 Santos et al. (2017) are indicated by *. The scale bar indicates the number of nucleotide
1023 substitutions per site. Numbers on branches are bootstrap values for 1000 replications
1024 (shown only when $\geq 70\%$).

1025

1026 **Fig. 7.** Maximum-likelihood phylogeny of the genus *Bradyrhizobium* based on *nodC*. Host
1027 association and specific geographic origin is listed in Table 1. The isolates examined in
1028 this study are indicated in bold, and those from dos Santos et al. (2017) are indicated by
1029 *. The scale bar indicates the number of nucleotide substitutions per site. Numbers on
1030 branches are bootstrap values for 1000 replications (shown only when $\geq 70\%$).

1031

1032 **Fig. 8. A.** Phylogeny of the Leguminosae family adapted from LPWG (2017) showing
1033 the genera in the Caesalpinoideae subfamily associated with symbionts. **B.** Phylogeny
1034 of *Chamaecrista* based on DNA sequences of nuclear ITS and plastidial *trnL-trnF* loci.
1035 Majority-rule consensus tree derived from Bayesian analysis; the values of posterior
1036 probability (PP) are indicated above the branches in decimal form. Taxonomic groups of
1037 associated symbionts are colored. Species indicated by *(*C. chapadae*, *C.*
1038 *zygophylloides*) were not included in the phylogenetic analysis, but based on
1039 morphology, it was possible to place them in their appropriate taxonomic group. Arrows
1040 indicate the ages of nodes as estimated by Rando et al. (2016). **C.** *C. bahiae*; **D.** *C.*
1041 *desvauxii*; **E.** *C. arrojadoana*. (photos Juliana Rando)
1042

1043 **Fig. S1.** Location and distribution of *Chamaecrista* nodule sampling in Bahia State (NE
1044 Brazil).

1045
1046 **Fig. S2.** Light micrographs (**A**, **C**, **E**, **G**, **I**, **K**) and transmission electron micrographs
1047 (TEMs) plus immunogold labelling with JIM5 (**B**, **D**, **F**, **H**, **J**, **L**) of nodules of *Chamaecrista*
1048 across four sections of the genus illustrating the range of nodule anatomical types from
1049 tree species with their bacteroids enclosed in fixation threads (FT) labelled with JIM5 (**A**
1050 – **D**) through intermediate types (FT-SYM) on treelets (**E** – **H**) to membrane-bound
1051 symbiosomes (SYM) on shrub and subshrub species that have little or no JIM5 signal (**I**
1052 – **L**). **A**, **B.** *Chamaecrista duartei* (section *Apoucouita*). **C**, **D.** *Chamaecrista ensiformis*
1053 (section *Apoucouita*). **E**, **F.** *Chamaecrista blanchetii* (section *Baseophyllum*). **G**, **H.**
1054 *Chamaecrista cytisoides* (section *Baseophyllum*). **I**, **J.** *Chamaecrista chapadae* (section
1055 *Absus*, subsect. *Absus*). **K**, **L.** *Chamaecrista mucronata* (section *Chamaecrista*). The FTs
1056 in the section *Apoucouita* tree species *C. duartei* (**A**) and *C. ensiformis* (**C**) are discernible
1057 in infected cells (*) at the light microscope level. The walls of the FTs are indicated by
1058 arrows in TEMs in **B** and **D**, but note that the FTs in *C. ensiformis* (**D**) are more densely
1059 labelled with JIM5 than those in *C. duartei* (**B**). However, in the latter species the electron
1060 dense cell walls are more apparent, thus illustrating that there is no direct relationship
1061 between cell wall density and the presence/absence of unesterified pectin (JIM5) in FTs.
1062 Bacteroids in nodules on the section *Baseophyllum* treelet species *C. blanchetii* (**E**) and
1063 *C. cytisoides* (**G**) are less clearly defined at the light microscope level and this is because
1064 at the TEM level (**F**, **H**) it is observed that bacteroids either have thin FT walls with sparse
1065 JIM5 labelling (arrows in **F**, **H**) or no walls at all (i.e., most of the bacteroids in *C.*
1066 *cytisoides*, **H**); however, more densely labelled walls surrounding bacteroids were also

1067 occasionally observed within *C. cytisoides* infected cells (double arrows in **H**), suggesting
1068 that this species harbours both FTs and symbiosomes. The bacteroids in nodules on
1069 shrub and subshrub species *C. chapadae* (**I**) and *C. mucronata* (**K**) were even less distinct
1070 under the light microscope compared to the *Baseophyllum* treelet species, and this was
1071 also confirmed under the TEM where they were shown to be enclosed in symbiosomes
1072 Bars = 20 μ m (**A, C, E, G, I, K**), 500 nm (**B, D, F, L**), 1 μ m (**H, J**), b = bacteroid, w = plant
1073 cell wall in **B, D, F, H, J, L**.

1074
1075 **Fig. S3.** Proportional (%) occupation of infected cells by symbiotic rhizobia estimated by
1076 counting pixels from light micrographs similar to those presented in Fig S2A and C for
1077 FT-type, Fig. S2E and G for FT-SYM-type, and Fig. S2I and K for SYM-type nodules.
1078 Data are presented as the mean proportion (\pm s.d.) of each infected cell profile filled with
1079 toluidine blue-stained structures representing bacteroids; 7-9 sections were examined
1080 per symbiosome type (FT, FT-SYM, SYM).

1081
1082 **Fig. S4.** Maximum-likelihood phylogeny for the genus *Bradyrhizobium* based on the ITS
1083 region. Host associations and specific geographic origins are listed in Table 1. The
1084 isolates examined in this study are indicated in bold, and those from dos Santos et al.
1085 (2017) are indicated by *. The scale bar indicates the number of nucleotide substitutions
1086 per site. Numbers on branches are bootstrap values for 1000 replications (shown only
1087 when \geq 70%).

1088
1089 **Fig. S5.** Maximum-likelihood phylogeny for the genus *Bradyrhizobium* based on 16S
1090 rDNA. Host association and specific geographic origin is listed in Table 1. The isolates
1091 examined in this study are indicated in bold, and those from dos Santos et al. (2017) are
1092 indicated by *. The scale bar indicates the number of nucleotide substitutions per site.
1093 Numbers on branches are bootstrap values for 1000 replications (shown only when
1094 \geq 70%).

1095
1096 **Fig. S6.** Maximum-likelihood phylogeny for the genus *Paraburkholderia* based on the
1097 concatenated dataset consisting of sequences for the genes 16S rDNA and *recA*. The
1098 isolates examined in this study are indicated in bold. The scale bar indicates the number
1099 of nucleotide substitutions per site. Numbers on branches are bootstrap values for 1000
1100 replications (shown only when \geq 70%).

1101

1102 **Fig. S7.** Maximum-likelihood phylogeny for the genus *Bradyrhizobium* based on the *nifH*
1103 gene. Host association and specific geographic origin is listed in Table 1. The isolates
1104 examined in this study are indicated in bold, and those from dos Santos et al. (2017) are
1105 indicated by *. The scale bar indicates the number of nucleotide substitutions per site.
1106 Numbers on branches are bootstrap values for 1000 replications (shown only when
1107 $\geq 70\%$).
1108

1109 **Fig. S8.** Maximum-likelihood phylogeny for the genus *Parburkholderia* based on the *nodC*
1110 gene. Host association and specific geographic origin is listed in Table 1. The isolates
1111 examined in this study are indicated in bold. The scale bar indicates the number of
1112 nucleotide substitutions per site. Numbers on branches are bootstrap values for 1000
1113 replications (shown only when $\geq 70\%$).
1114

1115 **Fig. S9.** Maximum-likelihood phylogeny for the genus *Paraburkholderia* based on the *nifH*
1116 gene. Host association and specific geographic origin is listed in Table 1. The isolates
1117 examined in this study are indicated in bold. The scale bar indicates the number of
1118 nucleotide substitutions per site. Numbers on branches are bootstrap values for 1000
1119 replications (shown only when $\geq 70\%$).
1120

1121 **Table S1.** Accession numbers of aerial parts of *Chamaecrista* species sampled in Bahia
1122 (BA), Brazil and deposited in the Herbarium of the Universidade Estadual de Santa Cruz
1123 (UESC). Also included is information about growth habit, vegetation type and locality
1124 where the *Chamaecrista* species were sampled in BA specifically for this study.
1125

1126 **Table S2.** Genbank accession numbers of gene sequences from strains isolated in the
1127 present study.
1128

1129 **Table S3.** Voucher information and GenBank accession numbers of the nuclear ITS
1130 and plastidial *trnL-trnF* loci sequences included in the phylogeny of *Chamaecrista* (Fig.
1131 8). New sequences are marked with an asterisk (*).
1132

1133 **Table S4.** Confirmed positive global nodulation reports for *Chamaecrista*; data are taken
1134 from Sprent (2009) unless noted otherwise. Growth habit and habitat information were
1135 either noted by the authors during sample collection in Brazil or were extracted from *Flora*
1136 e *Funga do Brasil* (<https://floradobrasil.jbrj.gov.br/FB22876>) and/or *Plants of the World*

1137 *Online* (<https://powo.science.kew.org/>). Nodule anatomy data, including the presence of
1138 either Symbiosome (SYM), Fixation Threads (FT), or Intermediate (FT-SYM) are taken
1139 from the literature, from the study of Sprent et al. (1996), or from the present study.
1140 Taxonomic information with regards to Sections and Subsections were extracted from
1141 Souza et al. (2021).

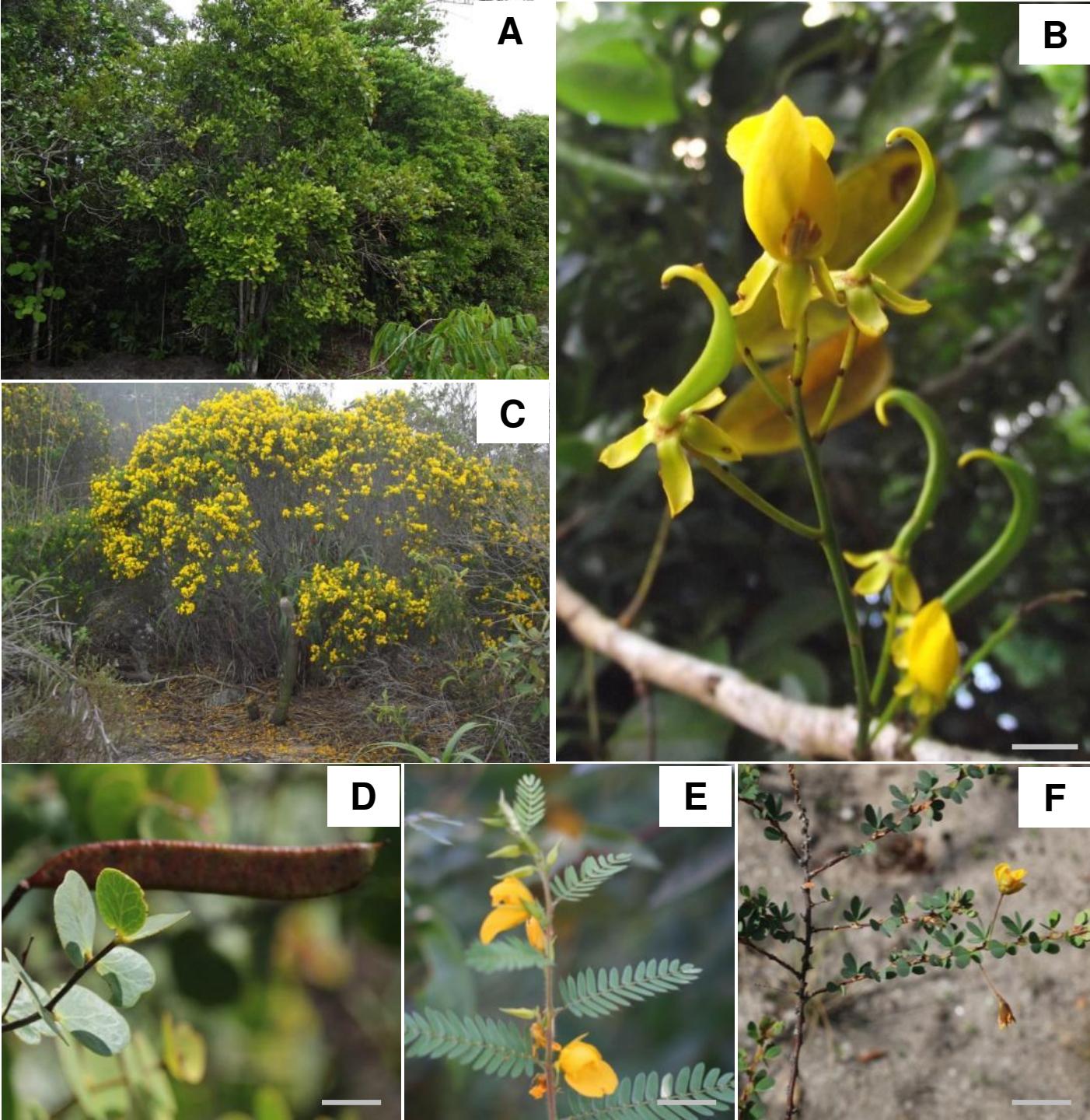


Fig. 1

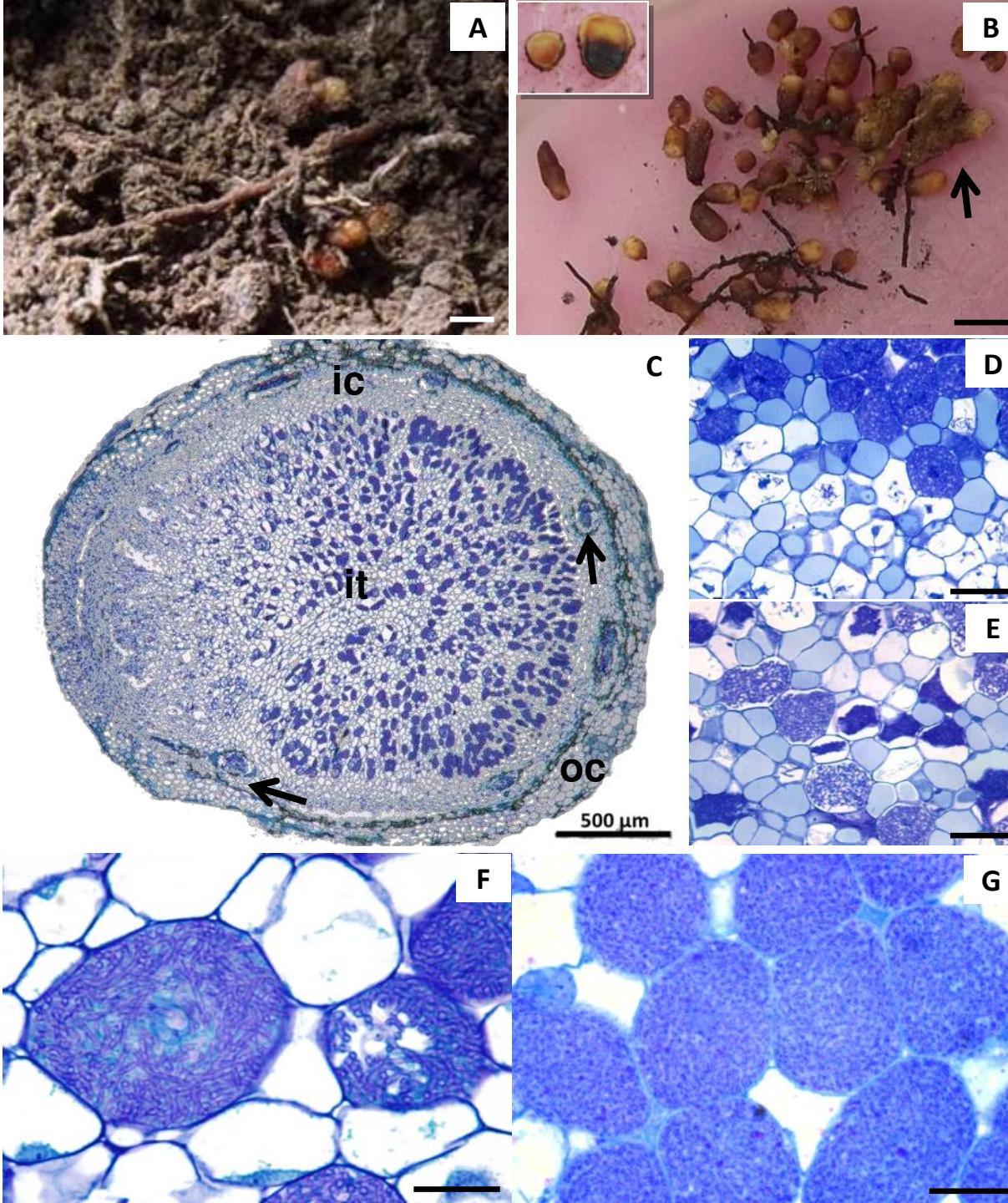


Fig. 2

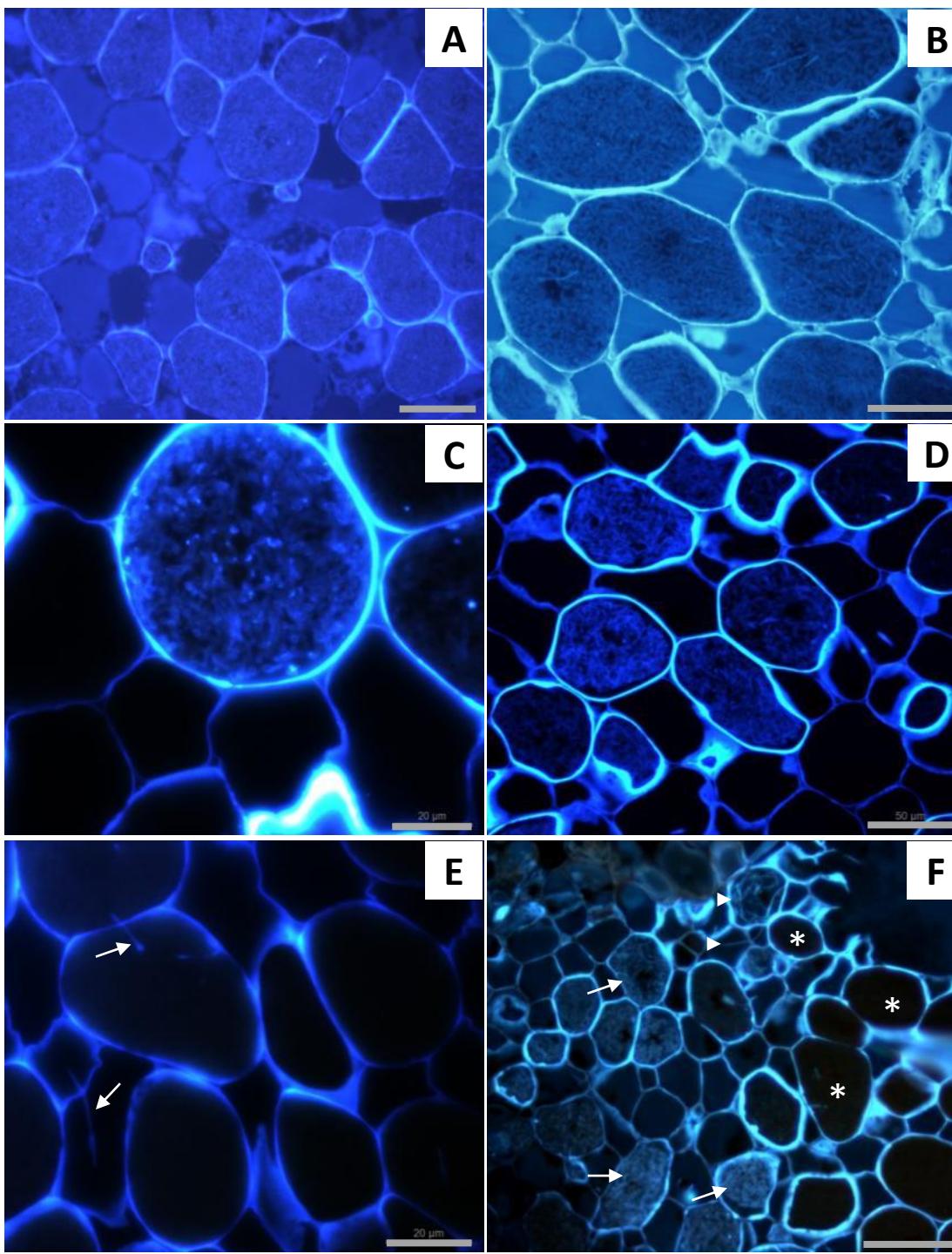
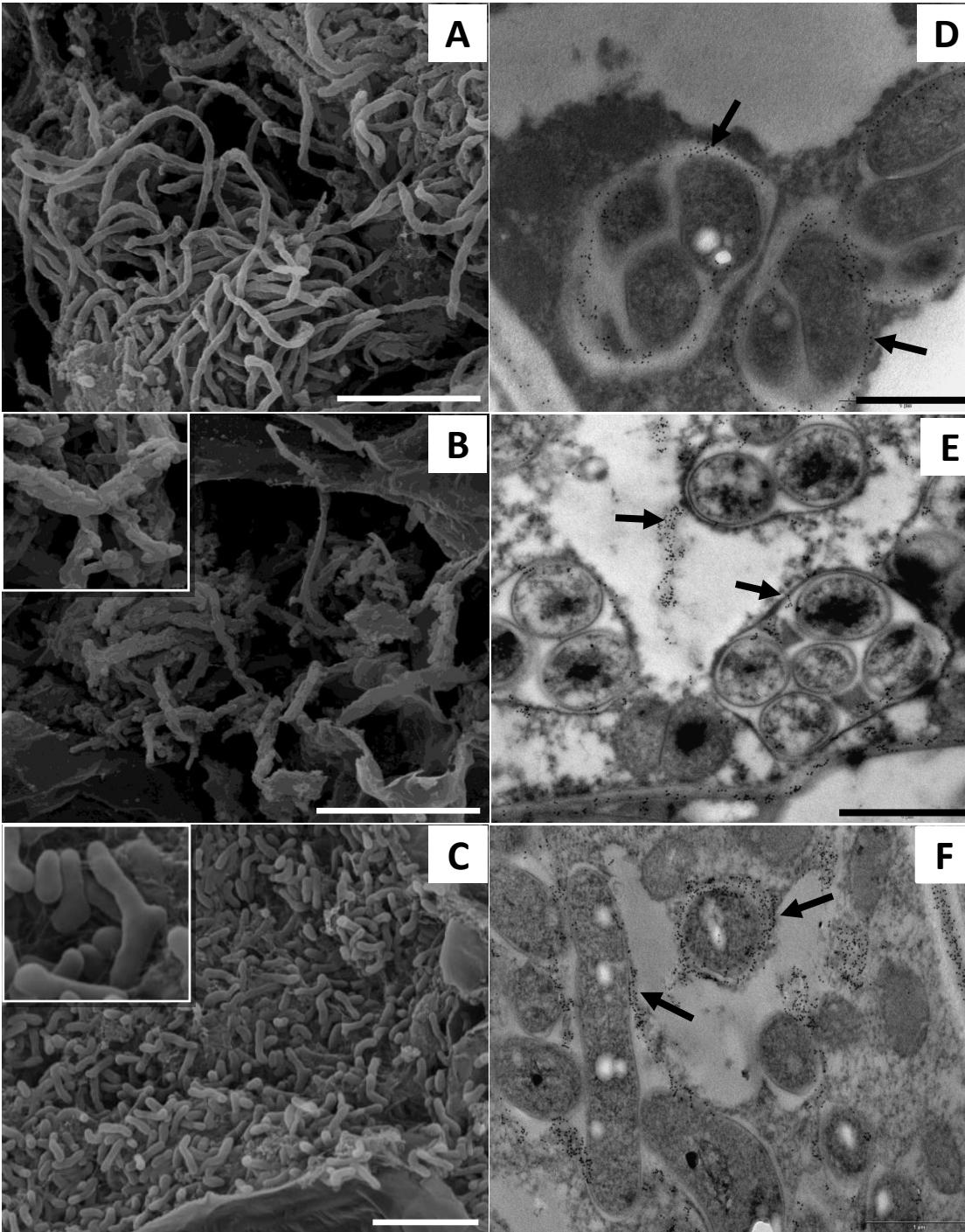



Fig. 3

Fig. 4

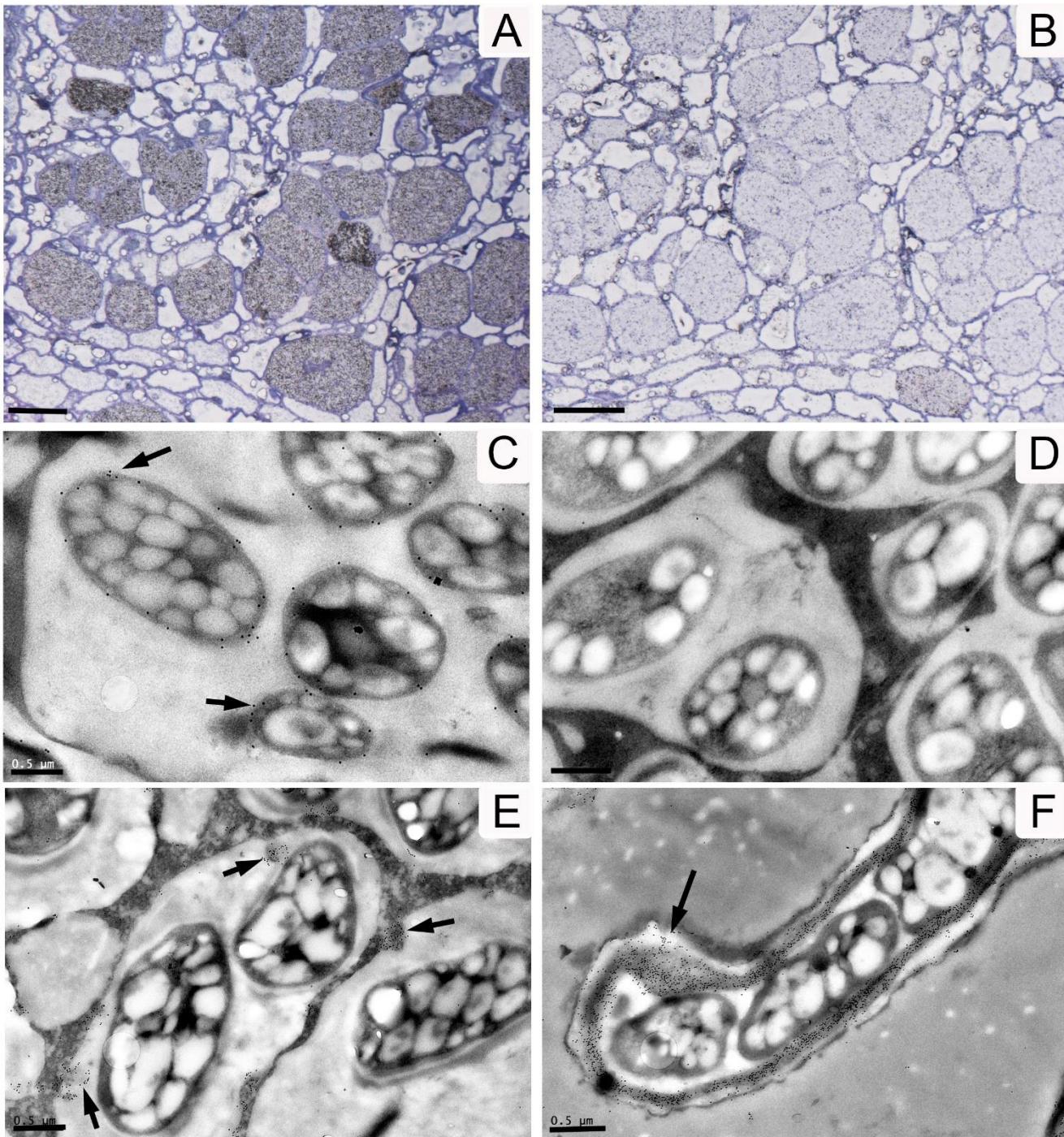
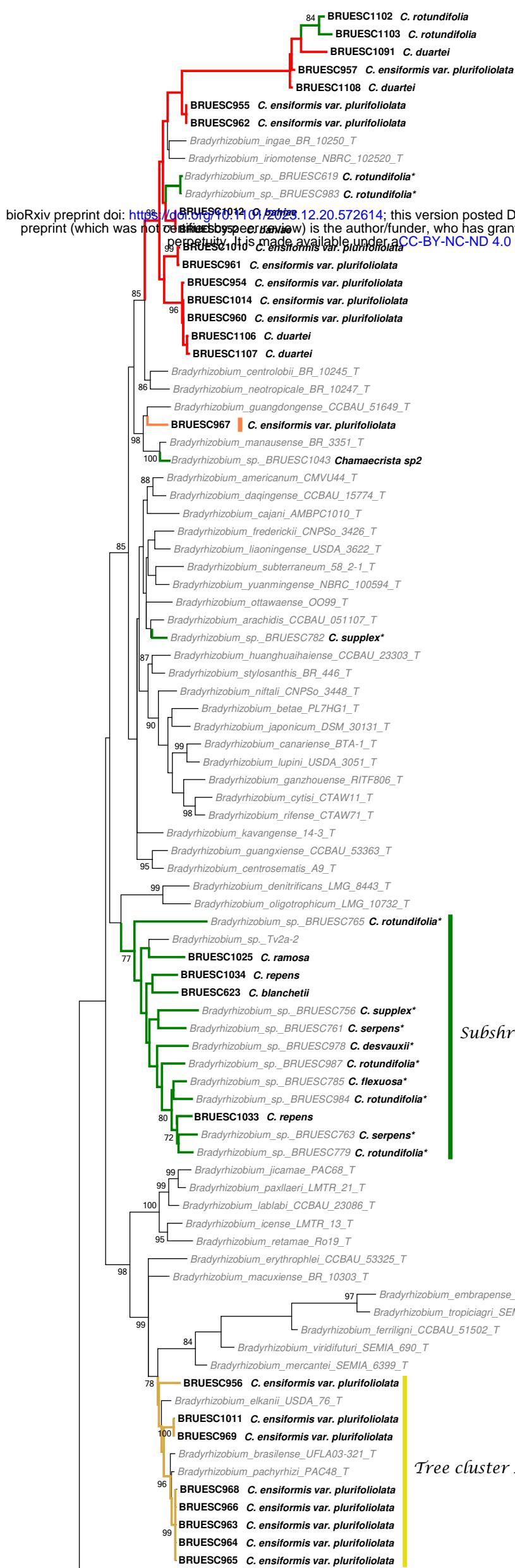



Fig. 5

Fig. 6 Concatenated

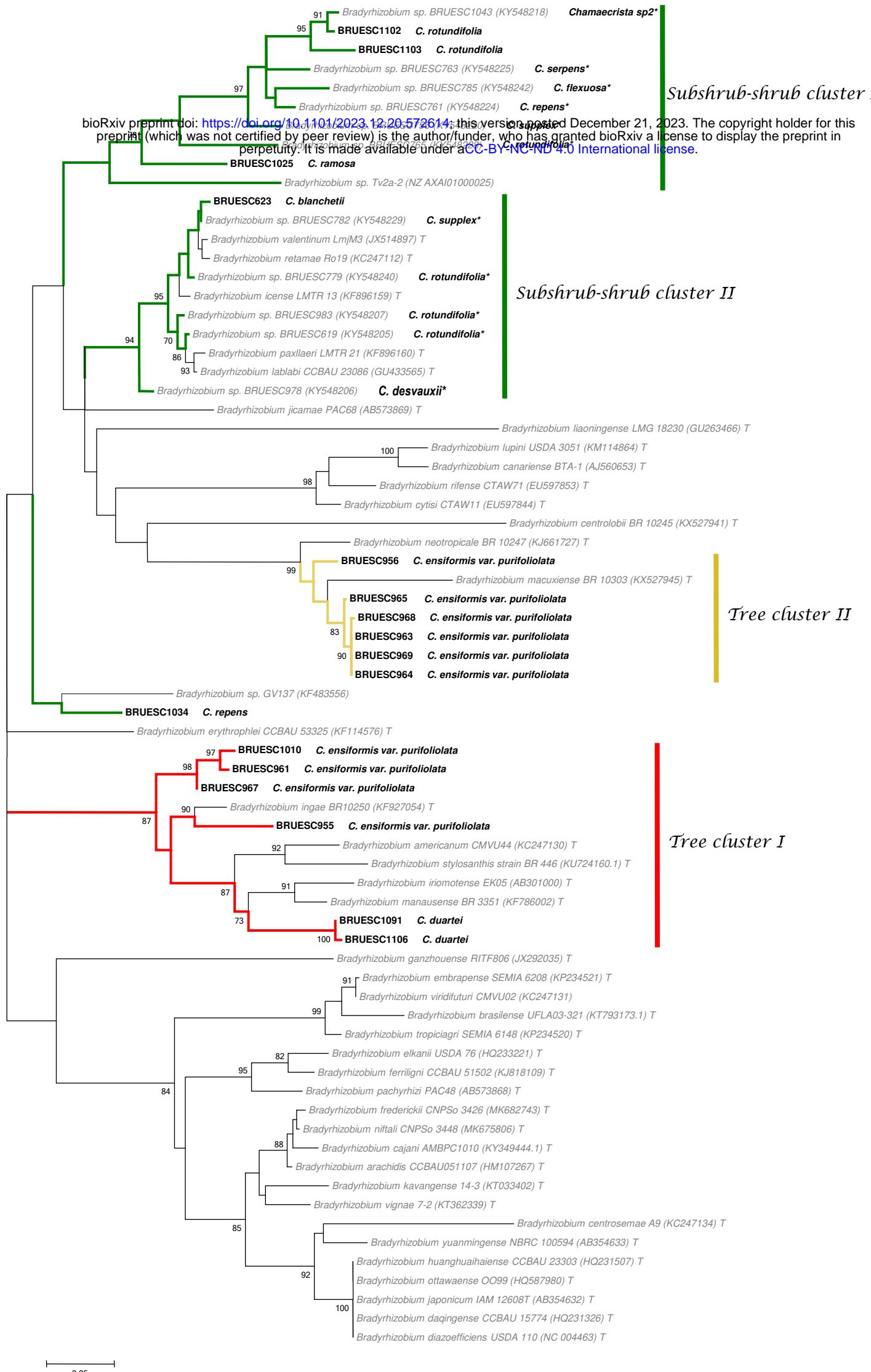
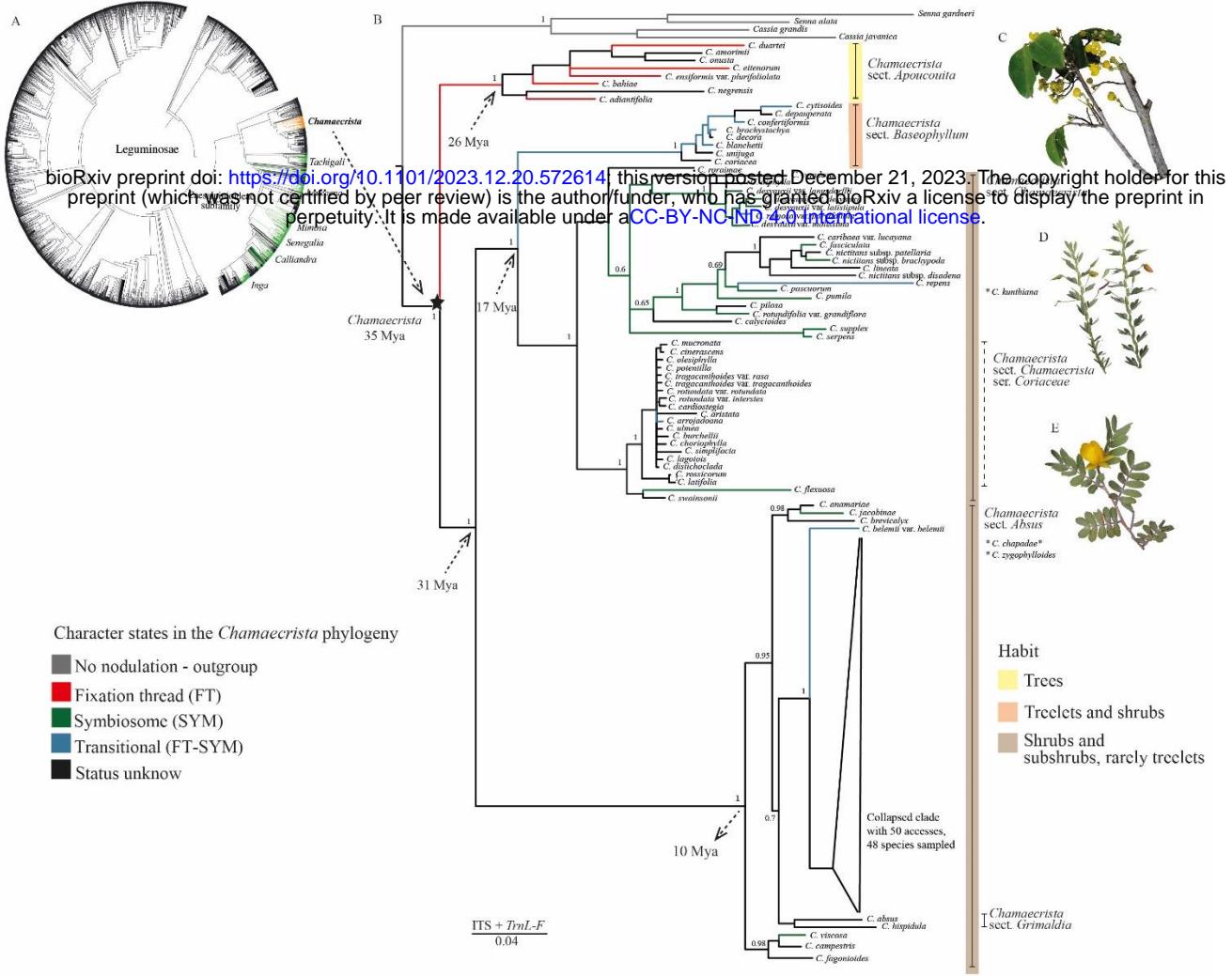



Fig. 7. *nodC*

FIG 8 A. Phylogeny of the Leguminosae family adapted from LPWG (2017) showing the genera in the Caesalpinioideae subfamily associated with symbionts. **B.** Phylogeny of *Chamaecrista* based on DNA sequences of nuclear ITS and plastidial *trnL-trnF* loci. Majority-rule consensus tree derived from Bayesian analysis; the values of posterior probability (PP) are indicated above the branches in decimal form. Taxonomic groups of associated symbionts are colored. Species indicated by * (*C. chapadae*, *C. zygophylloides*) were not included in the phylogenetic analysis, but based on morphology, it was possible to place them in their appropriate taxonomic group. Arrows indicate the ages of nodes as estimated by Rando et al. (2016). **C.** *C. bahiae*; **D.** *C. desvauxii*; **E.** *C. arrojadoana*. (photos Juliana Rando)