
1  

Cell Types or Cell States? An Investigation of Adrenergic and Mesenchymal 

Cell Phenotypes in Neuroblastoma 

 

Anuraag Bukkuri1,2* , Stina Andersson3,4,5*, Joel S. Brown1, Emma U. Hammarlund2,4,5 and Sofie Mohlin3,4,5  

 

Affiliations: 

1 Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt 

Cancer Center, Tampa, USA. 

2 Department of Experimental Sciences, Lund University; Lund, Sweden. 

3 Division of Pediatrics, Department of Clinical Sciences, Lund University; Lund, Sweden. 

4 Lund Stem Cell Center, Lund University; Lund, Sweden. 

5 Lund University Cancer Center, Lund University; Lund, Sweden. 

 

* Shared first authors 

  Corresponding authors: anuraag.bukkuri@moffitt.org; sofie.mohlin@med.lu.se 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.20.572368doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.20.572368
http://creativecommons.org/licenses/by/4.0/


2  

Summary  

Neuroblastoma is a pediatric cancer that exhibits two cellular phenotypes: adrenergic (ADRN) and 

mesenchymal (MES). ADRN is differentiated and therapy-sensitive, while MES is less differentiated with 

elevated therapy resistance. To understand neuroblastoma and its treatment response, it is important to 

elucidate how these phenotypes impact the eco-evolutionary dynamics of cancer cell populations and 

whether they represent  distinct cell types or dynamic cell states. Here, we show that neuroblastoma cells 

undergo an ADRN to a MES phenotypic switch under chemotherapy treatment. We use a strong inference 

approach to generate four hypotheses on how this switch may occur: cell types without resistance, cell types 

with resistance, cell states without resistance, and cell states with resistance. For each of these hypotheses, 

we create theoretical models to make qualitative predictions about their resulting eco-evolutionary 

dynamics. Our results provide a framework to further experimentally determine whether ADRN and MES 

phenotypes are distinct cell types or dynamic cell states. 
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Introduction 

Neuroblastoma is a malignancy of the sympathetic nervous system. One of the most common and deadliest 

pediatric cancers, neuroblastoma shows a range of clinical outcomes, from spontaneous regression to 

metastatic, therapy-resistant cancer with poor patient outcomes. However, the mechanisms underlying the 

initiation, progression, and emergence of therapeutic resistance in neuroblastoma are not fully understood. 

Neuroblastoma cells can develop resistance via mutations in specific pathways (primarily the Ras/MAPK 

signaling pathway1). However, it has been shown that mutation-independent phenotypic plasticity in cell 

state transitions also allow for adaptation to stressful environments. 

 

In recent years, experimental studies using RNA sequencing and epigenetic profiling have found two cancer 

cell phenotypes in neuroblastoma with divergent gene expression profiles: adrenergic (ADRN) and 

mesenchymal (MES).2,3,4,5,6 The differentiated ADRN phenotype is more sensitive to therapy than the 

undifferentiated MES phenotype but comprises a higher portion of the population under baseline 

conditions.2 Although patient tumors most commonly present with an ADRN phenotype, using protein 

markers, epigenetic analyses, or bulk RNA sequencing, studies have identified mesenchymal cells in 

patients, a fraction of tumors even presenting with a dominant mesenchymal phenotype.2,7310 Furthermore, 

evidence suggests that cells can switch between these phenotypes, i.e., a cell with a MES phenotype can 

adopt an ADRN phenotype and vice versa.2,8,11 This trait is described as plasticity. Such interconversion 

has been demonstrated for several neuroblastoma cell lines.2,8,12,13 This phenotypic plasticity, where the 

fraction of cells with an adopted MES phenotype quickly expand and constitute the majority of the complete 

cell population in response to chemotherapy or ALK inhibitor treatment,2,14 likely plays a key role in the 

ability of neuroblastomas to develop resistance to therapy. 

 

However, the field lacks a consensus on the classification of these phenotypes. The ADRN and MES 

phenotypes are sometimes treated as separate cell types, cell states, or the distinction is evaded altogether 

by classifying cells as ADRN- or MES-like. In fact, these terms are often used interchangeably within the 

same study. However, it is critical to make a distinction between cell types and cell states, as this has 

important implications for the eco-evolutionary dynamics of neuroblastoma cell populations under therapy. 

Cell types refer to heritably distinct cellular species in which progeny resemble their parents; cell states refer 

to transient phenotypes that cells can adopt and dynamically shift between in a phenotypically plastic 

manner. Although some studies attempt to develop methods to delineate this difference, they have mainly 

taken a gene-centric approach to this problem of distinction, omitting broader implications at the population 

level.15,16 
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In this paper, we address the question of whether ADRN and MES phenotypes represent different cell types 

or cell states and whether cells with an ADRN phenotype can evolve resistance to therapy using a strong 

inference approach.17 This approach, originally proposed by John Platt in 1964, consists of generating 

several competing (falsifiable) hypotheses and devising tests that can distinguish between them. This is to 

ascertain the hypothesis most in accordance with observed reality. In the words of Rob Phillips, we do this 

<by turning our thinking into formal mathematical predictions and confronting that math with experiments 

that have not yet been done,= or also described as <Figure 1 Theory=.18 To do this, we run preliminary 

experiments to show the ADRN to MES phenotypic switch that occurs under therapy. We then create 

mathematical models of four hypotheses to explain how this switch may happen: cell types without 

resistance (H1), cell types with resistance (H2), cell states without resistance (H3), and cell states with 

resistance (H4). We use simulations to qualitatively predict trends in the ecological (population) and 

evolutionary (drug resistance) dynamics of the ADRN and MES phenotypes under treatment. We find that 

if ADRN cells evolve resistance, the frequency of ADRN cells will increase with subsequent therapeutic 

insult. We also find that if the ADRN and MES phenotypes are cell states, cells in the MES state will 

increase in frequency upon induction of therapy but will remain stable or decline shortly after. Conversely, 

if they are cell types, MES cells will increase in frequency for the entire duration of therapy. 

Table 1. Summary table capturing the four biological hypotheses, surrounding questions of cell type vs. state and 

evolution of resistance, that will be modeled. 

 

 

Results 

Chemotherapy treatment expands the CD44+ MES cell population 

Neuroblastoma cell lines and patient-derived tumors vary in their composition of ADRN- and MES-

phenotype cells. Using neuroblastoma SK-N-BE(2) cells, we experimentally determined their ADRN vs. 

MES dynamics at baseline and during chemotherapy treatment. Subclone SK-N-BE(2)c cells have 

previously been described as primarily presenting with an ADRN phenotype2, however, the fraction of each 
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population has not been determined. A recent study identified CD44 as a strong and specific proxy marker 

for MES cells.19 We therefore decided to here use CD44 to sort and distinguish ADRN (CD44low) and MES 

(CD44high) cells from each other. 

 

Effects on the ADRN vs. MES dynamics after chemotherapy treatment has not been described for this cell 

line. We treated SK-N-BE(2) cells with cisplatin for 24, 48 or 72 hours, and stained them for CD44 prior to 

flow cytometry-based analysis. The majority of SK-N-BE(2) cells presented with a dominant ADRN 

phenotype (CD44low) at baseline (Fig. 1A). Our results demonstrate a shift in cell phenotype during 

treatment, with the fraction of cells expressing mesenchymal CD44 increasing with time exposed to cisplatin 

(Fig 1A). We also observed that cisplatin-treated cells proliferated at a slower pace (Fig 1B). 

 

 

Figure 1. Cisplatin treatment affects CD44 expression and cell growth of SK-N-BE(2) cells. (A) Representative dot 

plots illustrating SK-N-BE(2) cells subjected to treatment for 24, 48 and 72 hours and corresponding untreated cells. 

Q1 and Q2 represents dead cells, Q3 CD44high cells and Q4 CD44low cells. Three biological repeats were performed. 

(B) Number of viable cells after treatment with 5 µM cisplatin. Dashed line denotes the 200 000 cells seeded 24 hours 

prior to treatment and diamonds/dots represent two independent biological replicates at each time point.  

 

 

Our data are in concordance with previous literature on other neuroblastoma-derived cell lines, and support 

the notion that neuroblastomas consist of cells of various phenotypes. However, the experimental data do 

not reveal whether the two phenotypes are distinct cell types or dynamic cell states. To elucidate this 

question, we turned to mathematical modeling. 
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Modeling Framework of Neuroblastoma Eco-Evolutionary Dynamics 

To model the eco-evolutionary dynamics of neuroblastoma cancer cell populations, we used an evolutionary 

game theoretic approach called the G function framework.20,21 This framework was originally developed in 

the context of evolutionary ecology22324 and has recently been applied to problems in cancer.25330 The G 

function, or fitness generating function, is at the core of this framework and captures the per capita growth 

rate of a population as a function of its mean strategy (v) and its density (x). With this, we can write the 

population dynamics of a cancer cell morph as the product of the per capita growth rate and the current 

population size: 

���� = ��(�, �) 
Next, we turned our attention to the strategy dynamics by capturing the resistance level of the morph to a 

drug. By Fisher9s fundamental theorem,31334 the rate of evolution is proportional to the product of the trait9s 

evolvability and the strength of selection. This can mathematically be formalized as: 

���� = � ����  

where k is the trait9s evolvability and dG/dv is the selection gradient, representing how a perturbation in 

trait value impacts fitness. With this framework, we constructed and simulated G function models of the 

dynamics of neuroblastoma cancer cell populations under therapy. To do this, we considered four 

hypotheses on the relation between ADRN and MES phenotypes and the evolution of resistance. We created 

a mathematical model of the underlying ecological and evolutionary dynamics (if applicable). Next, we ran 

simulations that track the population and resistance strategy dynamics over time, when the population is 

exposed to continuous and intermittent therapy regimens. The parameter values used in the simulations can 

be found in Table 1 below and were chosen to parallel qualitative trends observed in the preliminary 

experiments.  
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Parameter Interpretation Value 

rA Intrinsic Growth Rate 0.6 

rM Intrinsic Growth Rate of MES Cells 0.6 

K Carrying Capacity 5 7 106 

³ Spontaneous Transition Rate from ADRN to MES 0.02 

m Drug Dosage 0.1 

» Baseline Level of Resistance 1 

b Efficacy of Evolving a Resistance Strategy 1 

a Facultative Transition Scaling Rate from ADRN to MES 0.8 

µ Spontaneous MES to ADRN Transition Rate 0.2 

³ Competitive Effect of MES cells on ADRN Cells 0.95 

´ Competitive Effect of ADRN cells on MES Cells 0.98 

k Evolvability 0.4 

v Drug Resistance [0,>) 

Table 2: Parameter Definitions and Values used in Simulations. 

Cell Type without Resistance Hypothesis 

The first hypothesis (H1, Table 1) views the ADRN and MES phenotypes as distinct cell types and assumes 

that ADRN cells remain sensitive to therapy without evolving resistance. Since ADRN and MES cells in 

this scenario are different cell types, we do not allow interconversion between them. We assumed that the 

cells grow in a logistic manner. Since it is not experimentally feasible to isolate ADRN and MES cells and 

measure intrinsic growth rates, we assume ADRN and MES cells have the same proliferation rate, but imbue 

ADRN cells with a competitive advantage over MES cells (� < �) to ensure that they attain a higher 

frequency in the population at baseline. Although there are alternative ways of doing this, such as by 

allowing ADRN cells to have the same intrinsic death rate and a higher intrinsic growth rate than MES cells, 

they do not alter qualitative results. For simplicity, we assumed that MES cells are fully resistant to therapy 

and ADRN cells die in a constant, density independent manner from therapy. Since we assume ADRN cells 

do not evolve resistance, we do not have any evolutionary dynamics in this model. Mathematically, we can 

formalize this hypothesis as follows: 
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With this model, we further simulated therapy, which we chose to administer from time 300 to 400 and time 

1200 to 1300 (Fig. 2). Drug holidays allow the population to recover to near-homeostatic conditions. Under 

both regimens, ADRN cells have a competitive fitness advantage over MES cells under no therapy, and thus 

comprised most of the population under baseline conditions. Indeed, the 71% ADRN 29% MES frequency 

under untreated homeostasis (as determined by comparing the proportions of ADRN and MES cells in our 

model simulation (Fig. 2) immediately before therapeutic periods) is in accordance with experimental 

observations (Fig. 1A). During times of therapy, MES cells expand and outcompete ADRN cells since MES 

cells are agnostic to therapy and ADRN cells are sensitive. Furthermore, since ADRN cells do not gain 

resistance to therapy, repeated therapeutic insults gave identical ecological responses, and the same cyclical 

behavior was observed across on-off cycles. 

 

Figure 2. Simulations under Cell Type with Resistance Hypothesis. Blue and red curves capture ADRN and MES 

population dynamics. White and green backgrounds reflect periods without and periods with treatment. During periods 

of therapy, MES cells have a competitive advantage over ADRN cells, leading to an increase in number and frequency. 

When therapy is removed, the opposite is true, with ADRN cells taking over the population. Since ADRN cells do not 

gain resistance, identical ADRN and MES population dynamics are observed for repeated bouts of therapy. 

 

 

It's worth noting that, particularly under therapy, the parameter values we choose can influence which cell 

type dominates the population. For instance, it could be expected that higher drug dosages would promote 

the expansion of MES cells in the population. To investigate this idea, we analytically compute the equilibria 

of our model under therapy: 

 

����7 = � 1 2 � 2� ��"9
1 2 ��  
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���7 = � 2 �� =1 2 � 2� ��"9
1 2 �� > 

 

Notice the impact of drug dosage and ADRN proliferation rate on the ADRN and MES equilibria: drug 

dosage decreased (increased) the ADRN (MES) equilibrium, whereas ADRN proliferation rate increased 

(decreased) the ADRN (MES) equilibrium. This can be visualized by plotting the equilibria as a function of 

drug dosage and ADRN proliferation rate (Fig. 3). 

 

  

Figure 3. ADRN and MES Equilibria Plotted as Functions of Drug Dosage and ADRN Proliferation Rate. Blue and 

red curves capture ADRN and MES equilibria. The left (right) plot is produced by varying � (�!) and setting all other 

parameters to their default values, as given in Table 1. Drug dosage decreases the ADRN equilibrium and increases 

the MES equilibrium. Conversely, ADRN proliferation rate increases the ADRN equilibrium and decreases the MES 

equilibrium. 

 

 

Cell Type with Resistance Hypothesis 

For our second hypothesis (H2, Table 1), we still assumed that the ADRN and MES phenotypes represent 

different cell types, but we allowed ADRN cells to evolve resistance to therapy. To do this, we modified 
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our drug-induced death term to account for the impact of a resistance strategy and added an equation for the 

evolutionary dynamics of drug resistance. Note that we assumed that ADRN cells suffer no cost from 

evolving resistance to Cisplatin. Since ADRN and MES cells in this scenario are still different cell types, 

resistance is a trait of solely ADRN cells. Thus, the evolutionary dynamics are derived only from the 

ecological dynamics of ADRN cells as shown under the 8Modeling Framework9 section. 

 

We simulated therapy, administered from time 300 to 400 and 1000 to 1100, where drug holidays allow 

cells to return to near homeostatic conditions (Fig. 4). Overall, we noticed similar dynamics to our previous 

hypothesis: ADRN cells outcompete MES cells when no therapy is present and MES cells have an advantage 

during times of therapy. As expected, periods of therapy promote the evolution of the strategy toward higher 

resistance levels, while periods without therapy induce evolutionary stasis. Note that the rate of evolution 

of resistance of ADRN cells decreases as cells acquire resistance. This is because their selection gradient 

(selection pressure) decreases, thereby slowing the evolution of resistance (see Equation 2). Furthermore, 

since ADRN cells gain resistance to therapy over time, the MES cells have less of an advantage during each 

repeated therapeutic insult. This leads to a smaller increase (decrease) in MES (ADRN) cells during each 

therapeutic period. 

Figure 4. Simulations under Cell Type with Resistance Hypothesis. Blue and red curves capture ADRN and MES 

population dynamics. The black curve represents the evolutionary dynamics of resistance. White and green 

backgrounds reflect periods without and periods with treatment, respectively. During periods of therapy, MES cells 

have a competitive advantage over ADRN cells, leading to an increase in number and frequency. When therapy is 

removed, the opposite is true, with ADRN cells taking over the population. As ADRN cells gain resistance, the 

relative advantage of MES cells during periods of therapy decreases.  

 

 

Since we did not include a cost of resistance, there is ostensibly a level of resistance for which MES cells 

no longer outcompete ADRN cells in the presence of therapy. To find this point, we analytically solve for 

the ecological equilibria of our system: 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.20.572368doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.20.572368
http://creativecommons.org/licenses/by/4.0/


11  

 

����7 = � 1 2 � 2� (� + ��)�"9
1 2 ��  

���7 = � 2 �� =1 2 � 2� (� + ��)�"9
1 2 �� > 

 

We again plotted the ADRN and MES equilibrium values as a function of drug resistance, v (Fig. 5). For 

our parameter values, the ADRN ecological equilibrium surpasses the MES equilibrium when they attain a 

resistance value of v>10. In other words, in a treated environment in which m=0.1, if v>10, the population 

will primarily be composed of ADRN cells at equilibrium, whereas if v<10, the population will primarily 

be composed of MES cells at equilibrium. 

 

Figure 5. ADRN and MES Equilibria Plotted as Functions of Resistance Level. Blue and red curves capture ADRN 

and MES equilibria. The plot is produced by varying � and setting all other parameters to their default values, as given 

in Table 1.  Higher drug resistance levels promote higher ADRN equilibria and lower MES equilibria. 

 

 

Cell State without Resistance Hypothesis 

Our third hypothesis (H3, Table 1) considers the ADRN and MES phenotypes as different cell states in the 

life cycle of a cell (species) and assumes that ADRN cells do not evolve resistance to therapy. This means 

that we allow for interconversion between cells in the ADRN and MES states. Specifically, we allow for a 
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spontaneous, obligate, background transition between cell states as well as a facultative, condition-

dependent transition from the ADRN to MES state. When cells are under stress due to therapy, they can 

transition to the MES state, which serves as a refuge from therapy. This can be mathematically formalized 

as shown in Equation 5. Note that since we do not allow for the evolution of resistance, we are only 

concerned with ecological dynamics in this situation. 

 

Next, we simulated therapy, administered from time 100 to 200 and 300 to 400 (Fig. 6). During periods of 

no therapy, we noticed that cells reach and maintain an equilibrium composed of primarily cells in the 

ADRN state. As before, the 71% ADRN and 29% MES frequency under baseline conditions parallel 

experimental results (Fig. 1A). Under therapy, cells rapidly switch to the MES state to avoid the effects of 

therapy. The population of cancer cells then exists primarily in a MES state. This can be conceptualized as 

a transient state of partial resistance in the population since cells do not actually acquire resistance but 

instead transition in a plastic manner to a MES state of resistance, and not all cells exist in the MES state 

during therapy. Because we do not allow for the evolution of resistance, repeated therapeutic administrations 

lead to identical ecological dynamics. 

Figure 6. Simulations under Cell State without Resistance Hypothesis. Blue and red curves capture ADRN and MES 

population dynamics, respectively. White and green backgrounds reflect periods without and periods with treatment. 

Upon administration of therapy, we see a dramatic shift in frequency and number from the ADRN state to the MES 

state, allowing the population to seek refuge from therapy. However, since cells in the ADRN state do not evolve 

resistance, this represents a temporary state of resistance.  After therapy is removed, the population reverts to a 

primarily sensitive phenotype, with most cells transitioning back to the ADRN state. 

 

 

Cell State with Resistance Hypothesis 

Our fourth hypothesis (H4, Table 1) views ADRN and MES phenotypes as cellular states and allows for the 

evolution of resistance. Our ecological dynamics are similar to before, although we modify our drug-induced 
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death and facultative transition terms to account for the impact of resistance. Since the ADRN and MES 

phenotypes are conceptualized as states in the life history of the same cell type instead of as separate cell 

types altogether, a unifying fitness function across both cell states is required. To do this, we utilize a method 

developed35 and applied26,29 in prior work that combines techniques from evolutionary game theory and 

matrix population modeling. We represent our ordinary differential equation model as a population 

projection matrix (PPM) and use the spectral bound (Ã(PPM)) of this matrix as a measure of fitness, as it 

controls the long-term, asymptotic growth rate of the population. By setting G = Ã(PPM), we derived our 

evolutionary dynamics as outlined under the 8Modeling Framework9 section.  

 

With this model, we simulated the effects of therapy, administered from time 100 to 200 and time 300 to 

400 (Fig. 7). As before, during times of no therapy, the population rapidly reaches and maintains an 

equilibrium of cells primarily in the ADRN state. When therapy is administered, the number and frequency 

of cells in the MES state increase dramatically. However, as cells become increasingly resistant, the death 

due to drug and facultative transitions to the MES state decreases as well. Consequently, we note a gradual 

transition of cells from the MES state to the ADRN state during therapy. Note that the dramatic shift of cells 

to the MES state followed by a gradual transition of cells to the ADRN state under therapy is unique to this 

hypothesis. 
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Figure 7. Simulations under Cell State with Resistance Hypothesis. Blue and red curves capture ADRN and MES 

population dynamics, respectively. The black curve represents the evolutionary dynamics of resistance. White and 

green backgrounds reflect periods without and periods with treatment. Upon administration of therapy, we see a 

dramatic shift in frequency and number from the ADRN state to the MES state, allowing the population to seek refuge 

from therapy. As cells in the ADRN state gain resistance, the frequency and number of cells in the ADRN (MES) state 

increases (decreases). When therapy is removed altogether, the population reverts to its pre-therapy distribution, with 

most cells existing in the ADRN state. 

 

 

Discussion 

The finding in 20172 that neuroblastomas are composed of two distinct phenotypes, ADRN and MES, has 

shaped how the field views clinical outcomes and has influenced pre-clinical experimental design and 

analysis. While many chemotherapeutics and targeted therapies used for neuroblastoma patients are 

successful in the initial phase, the treatment often fails eventually. In order to overcome this issue, it is 

critical to understand the ecological and evolutionary dynamics of cellular populations with ADRN and 

MES phenotypes, particularly under therapy. In line with previously published data, we experimentally show 

here that neuroblastoma cell populations treated with chemotherapy in vitro shift from an ADRN phenotype-

dominated composition to a MES phenotype. However, whether such a shift is driven by demographic 

transitions between cell states or is the result of ecological interactions between cell types is unknown. 

Furthermore, whether cells with the ADRN phenotype can evolve resistance is unclear. 

 

We used our generated cell population data to test four different hypotheses addressing the concepts of cell 

type versus cell state and evolution of resistance of the ADRN phenotype. We created eco-evolutionary 

mathematical models for each hypothesis and qualitatively simulated expected ecological, evolutionary, and 

demographic dynamics under therapy. Our simulations showed that if cells with an ADRN phenotype can 

evolve resistance to therapy, we would notice different dynamics with repeated administrations of therapy. 
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Namely, the frequency of cells with a ADRN phenotype would increase with subsequent therapeutic insults; 

while the MES phenotype would decrease. Conversely, for resistance to not evolve requires that population 

dynamics are identical across therapeutic cycles. Also, our simulations show that if the ADRN and MES 

phenotypes represent cell types, cells of a MES phenotype would increase in frequency for the entire 

duration of the therapeutic period. If they are instead cell states, cells of a MES phenotype would increase 

in frequency initially but will either begin a gradual decline soon after (if evolution of resistance occurs) or 

will remain stable (if evolution of resistance does not occur) during periods of therapy. In summary, our 

mathematical models, inspired by preliminary biological data, provide a framework for further experimental 

steps to elucidate the characteristics of neuroblastoma cell phenotype (state or type), the evolution of 

resistance, and how these impact treatment response. 

Limitations of the study 

The experimental part of this study is limited to in vitro experiments in one cell line. Although our  

experiments corroborate with previously published data, our results should be validated in additional cell 

lines and in an in vivo setting. Additionally, our model assumptions, notably the lack of a cost of resistance, 

should be validated with in vitro experiments.  
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Material and methods 

Cell culture 

The neuroblastoma cell line SK-N-BE(2) (ATCC, 2022) was cultured in MEM supplemented with 10% 

fetal bovine serum, 100 units penicillin and 10 µg/mL streptomycin. Cells were kept at 37°C, 21% O2 and 

5% CO2 in a humidified incubator and dissociated with trypsin. Cells were routinely tested for mycoplasma. 

 

Cell counting 

Cells were stained with Trypan blue and live cells were counted in two technical replicates with a TC20 

Automated Cell Counter (Bio-Rad). 

 

Flow cytometry 

200 000 cells were seeded to 35 mm wells and were either treated with 5	µM cisplatin after 24 hours or kept 

as untreated control. Cells were harvested with trypsin after 24, 48 or 72 hours of treatment, washed once 

in PBS and stained with antibodies (Table 1) in 100 µL FACS buffer (PBS, 0.5% BSA, 4mM EDTA) at 

4°C avoiding light. Cells were then washed once again in PBS, resuspended in FACS buffer with 1:3000 

DAPI and subjected to flow cytometry in BD LSRII or BD LSR Fortessa. Compensation controls, FMO 

controls and isotype controls were included in each run and samples were run in three technical replicates. 

 

Table 3. List of antibodies 

Antibody Species Dilution Source  Product # 

Human/Mouse CD44 Alexa Fluor® 647-conjugated 

Antibody 
 

Rat 1:50 R&D Systems FAB6127R 

Rat IgG2B Alexa Fluor® 647-conjugated Isotype 

Control 
 

Rat 1:50 R&D Systems IC013R 
 

 

Data analysis 

Flow cytometry data was analyzed with FlowJo v10. Cell debris and duplicate cells were excluded by gating 

SSC-A against FSC-A followed by FSC-A against FSC-W. Gating had to be adapted to each biological 

replicate as the autofluorescence varied between them. 
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