

1 Effect of eye globe and optic nerve morphologies 2 on gaze-induced optic nerve head deformations

3
4 Tingting Liu¹, Pham Tan Hung², Xiaofei Wang^{1, 3*}, Michaël J. A. Girard^{2, 4, 5, 6*}
5
6

7 1. Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education,
8 Beijing Advanced Innovation Center for Biomedical Engineering, School of
9 Biological Science and Medical Engineering, Beihang University, Beijing, China
10 2. Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
11 3. School of Ophthalmology and Optometry and School of Biomedical Engineering,
12 Wenzhou Medical University, Wenzhou, China
13 4. Duke-NUS Medical School, Singapore
14 5. Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
15 6. Department of Biomedical Engineering, College of Design and Engineering,
16 National University of Singapore, Singapore

17
18 *These authors contributed equally to this work and are both corresponding authors

19
20 **Keywords:** Optic Nerve Head, Eye Movements, Finite Element
21 Analysis, Glaucoma, Biomechanics
22

23 **Word count:** 4599 (Manuscript Text)
24 230 (Abstract)
25

26 **Tables:** 3
27

28 **Figures:** 6
29

30 **Corresponding Author:** Xiaofei Wang
31 School of Biological Science and Medical Engineering
32 Beihang University
33 Room 424, Building 5
34 37 Xueyuan Road
35 Beijing 10083, China
36 xiaofei.wang@buaa.edu.cn
37

38 Michaël J.A. Girard
39 Ophthalmic Engineering & Innovation Laboratory (OEIL)
40 Singapore Eye Research Institute (SERI)
41 The Academia, 20 College Road
42 Discovery Tower Level 6,
43 Singapore 169856
44 mgirard@duke-nus.edu.sg
45
46
47
48
49

50 **Submission to IOVS: 19/12/2023**
51
52

53 ABSTRACT

54 **Purpose:** To investigate the effect of globe and optic nerve (ON) morphologies
55 and tissue stiffnesses on gaze-induced optic nerve head deformations using
56 parametric finite element modeling and a Design of Experiment (DOE)
57 approach.

58 **Methods:** A custom software was developed to generate finite element models
59 of the eye using 10 morphological parameters: dural radius, scleral, choroidal,
60 retinal, pial, peripapillary border tissue thicknesses, prelaminar tissue depth,
61 lamina cribrosa (LC) depth, ON radius, and ON tortuosity. A 10-factor 2-level
62 full-factorial analysis (1,024 models) was used to predict the effects of each
63 morphological factor and their interactions on LC strains induced by 13°
64 adduction. Subsequently, a further DOE analysis (1,024 models) was
65 conducted to study the effects and potential interactions between the top 5
66 morphological parameters identified from the initial DOE study and 5 critical
67 tissue stiffnesses.

68 **Results:** In the DOE analysis of 10 morphological parameters, the five most
69 significant factors were ON tortuosity, dural radius, ON radius, scleral thickness
70 and LC depth. Further DOE analysis incorporating biomechanical parameters
71 highlighted the importance of dural and LC stiffness. A larger dural radius and
72 stiffer dura increased LC strains but the other main factors had the opposite
73 effects. Notably, a significant interaction was found between dural radius and
74 dural stiffness.

75 **Conclusions:** This study highlights the significant impact of morphological
76 factors on LC deformations during eye movements, with key morphological
77 effects being more pronounced than tissue stiffnesses.

78 INTRODUCTION

79 Glaucoma is one of the most common causes of blindness worldwide.¹
80 The biomechanical theory of glaucoma suggests that the deformations of the
81 optic nerve (ON) head (ONH) tissues, especially the lamina cribrosa (LC), may
82 lead to the apoptosis of retinal ganglion cells and visual field defects, either
83 directly or indirectly.² Intraocular pressure (IOP) and cerebrospinal fluid
84 pressure (CSFP) are the two main mechanical loads acting on the ONH that
85 have been shown to be correlated to glaucoma pathogenesis^{3–5}. Recent
86 studies using finite element (FE) modeling,^{6–8} optical coherence tomography^{9–}
87 ¹³ and magnetic resonance imaging (MRI)^{14–16} have highlighted that ON traction
88 during eye movements can yield large ONH deformations, which may be as
89 large as or significantly larger than those caused by a substantial IOP elevation
90 to 40 or 50 mmHg.

91 In vivo studies have shown that gaze-induced ONH deformations vary
92 widely across individuals^{17,18}. The differences are likely due to variations in the
93 biomechanical properties and morphologies of the eye globe, ON and ONH.
94 For instance, ON tortuosity varies across individuals, as shown in **Figure 1**. A
95 less tortuous ON has been hypothesized to generate a larger traction force,
96 and thus potentially larger ONH deformations.¹⁵ Therefore, to identify those
97 who are vulnerable to ON traction during eye movements, it would be critical to
98 identify the biomechanical and morphological factors (and their interactions)
99 that significantly affect ONH deformations. Using FE modeling, we have
100 previously investigated the effects of biomechanical properties on gaze-
101 induced ONH deformations and predicted that a stiffer dura would generate a
102 larger ONH deformation.⁶ However, the effects of eye-globe and ON

103 morphologies on gaze-induced ONH deformations and their potential
104 interactions with biomechanical properties remain unexplored.

105 The aim of this study was to explore the effects of eye-globe and ON
106 morphologies on gaze-induced ONH deformations, and to examine any
107 potential interactions between morphological parameters and biomechanical
108 parameters of tissues, using parametric FE modeling and design of experiment
109 (DOE).

110 **METHODS**

111 In this study, we developed a methodology to automatically generate
112 thousands of 3D eye models to study the effects of eye-globe and ON
113 morphologies, as well as tissue biomechanical properties, on gaze-induced
114 ONH deformations. Specifically, a custom-written software (C++) was designed
115 to automatically generate FE models of the eye, each with a set of pre-
116 determined morphological and material parameters. These models were then
117 fed into the FE solver FEBio (Musculoskeletal Research Laboratories,
118 University of Utah, UT, US) to predict gaze-induced ONH deformations.
119 Configurations of all key factors were generated by a DOE approach. The initial
120 DOE analysis evaluated 10 morphological parameters to determine the top 5,
121 which were then combined with the 5 key tissue stiffnesses from previous
122 studies. This resulted in a refined set of 10 parameters, covering both
123 morphology and tissue stiffness, for a follow-up DOE study. Since adduction is
124 known to induce significant ONH deformations compared to abduction,^{6,7,9} an
125 adduction of 13° was chosen for each model, as employed in our previous work.
126 The response of each model was characterized by the magnitude of the
127 effective strain within the LC. Below is a detailed description of the methodology.

128 **Geometry and Biomechanical Properties of the Baseline FE
129 Model**

130 A whole-eye FE model was established, including the sclera, choroid,
131 prelaminar neural tissue, LC, ON, pia mater, dura mater, orbital fat-muscle
132 complex (OFC) and orbital bone. The baseline geometric parameters of eye
133 global tissues were set to averaged values reported in the literature, shown in
134 **Table 1**. To maintain simplicity, we opted to combine and simulate the
135 extraocular muscles and the orbital fat as a unified entity referred to as OFC.
136 Only half of the eye was reconstructed because the FE model was assumed to
137 be symmetric about a transverse plane passing through the center of the eye
138 globe (**Figure 2**).

139 The baseline biomechanical properties were the same as those used in
140 our previous studies.^{6,7} Briefly, both the sclera and LC were modeled as soft
141 tissues reinforced with collagen fibers. Those fibers can exhibit stretch-induced
142 stiffening and they are typically distributed within a 2D plane (following a von-
143 Mises probability distribution). The collagen fibers in the peripapillary sclera
144 surrounding the disc were organized into a ring, while those in the peripheral
145 sclera were organized randomly (as specified by the kf parameter in **Table 2**)
146 and parallel to the anterior scleral surface. The collagen fibers in the LC
147 exhibited lower anisotropy than that in the peripapillary sclera and were aligned
148 radially, extending from the central vessel trunk to the LC insertion sites.²⁰ All
149 other tissues were considered either hyperelastic or linear elastic as shown in
150 **Table 2**. Among them, peripapillary border tissue (PBT) is the border tissue of
151 the choroid and sclera²¹. The peripapillary choroid is separated from the
152 prelaminar neural tissue by a collagenous layer, which constitutes the border

153 tissue of the choroid. Likewise, the scleral flange is separated from the LC by
154 the border tissue of the sclera. Since the biomechanical behavior of the PBT
155 has not yet been reported, we assumed that the PBT shared the same
156 biomechanical properties as those of the pia²². All soft tissues were assumed
157 to be incompressible. The orbital wall was considered a rigid body.

158 ***Parameterization of Morphological and Biomechanical
159 Properties***

160 The morphology of the FE model was parameterized using 10 factors
161 representing the geometry of the eye globe, ONH, and that of the ON. These
162 factors were: dural radius, scleral thickness, choroidal thickness, retinal
163 thickness, ON radius (excluding the pia and dura), pial thickness, the thickness
164 of PBT,²³ prelaminar tissue depth, central LC depth, and ON tortuosity (**Figure
165 3**). Specifically, the thicknesses of the eye globe tissues (sclera, choroid, and
166 retina) were modified by adjusting the distance between each tissue's
167 boundaries and the fixed sclera-choroid interface, while maintaining the
168 thickness of other tissue unchanged. For the ON tissues (pia and PBT), a
169 similar approach was used where the inner surface of each specific tissue was
170 fixed and the outer surface were altered to vary its thickness. The radii of the
171 dura and ON were adjusted by changing their distance from the central axis of
172 the ON and ONH. ON tortuosity was altered by adjusting the positions of three
173 control points along its central path. Refer to **Supplementary Material A-1** for
174 more details on how the morphological parameters of the eye globe and ONH
175 were varied.

176 The biomechanical properties of each tissue were directly modified in
177 the input file of the FE model.

178 ***Contact Definitions, Boundary and Loading Conditions***

179 Contacts between tissues were the same as those defined in our
180 previous study.^{6,7} Briefly, the OFM and the dura were tied together; the OFM
181 was able to slide over the bony orbital margin with a friction factor of 0.5; the
182 cornea-scleral shell and the OFM had a sliding contact with no friction to mimic
183 the Tenon's capsule enveloping the eyeball. Rigid contact was assigned
184 between the horizontal rectus muscle insertions and a 'non-physiological' rigid
185 body. This latter had a center of mass at the center of the eyeball, which was
186 constrained with a prescribed rotation to simulate an adduction of 13°. For
187 boundary conditions, the OFM and ON were fixed at the orbital apex to mimic
188 the fibrous adhesion of those tissues to the optic canal. The orbital bone was
189 also held in place by fixing its outer margin. In addition to an adduction of 13°,
190 an IOP of 15 mm Hg was applied to the surface of the retinal and prelaminar
191 tissues and a CSFP of 12.9 mm Hg was applied within the subarachnoid space
192 of the ON. Loading was applied in two steps: first, IOP and CSFP were applied
193 and maintained, then an adduction of 13° was applied. All contact patterns,
194 boundaries and loading conditions are illustrated in **Figure 2**.

195 ***FE Simulations, Post-processing and Output Measurement***

196 All FE models were consistently meshed with 73,922 nodes and 62,821
197 elements, including 62,521 8-node hexahedra and 300 6-node pentahedra
198 elements. All tissues were bonded by shared nodes at tissue boundaries
199 (**Figure 2**). The mesh density was numerically validated through a convergence
200 test as described in our previous study.⁶ A single model required about 20
201 minutes to solve on a desktop workstation (Intel Xeon Silver 4114 CPU @
202 2.20GHz, 32GB of memory).

203 The preprocessing Matlab script executed FEBio to solve the generated
204 models and outputted the Lagrange strain tensors for each step and the
205 volumes of all LC elements into a text file. Effective strains were calculated from
206 the principal components of the Green Lagrange strain tensor. To isolate the
207 specific effect of eye movement, effective strains of each LC element after the
208 first load step (with only IOP and CSFP) and those after the second load step
209 (following eye movement) were extracted. The differential, termed "delta
210 effective strain", was then calculated for each element. This delta effective
211 strain for each LC element was multiplied by its volume, and these values were
212 summed and divided by the total LC volume, yielding the volume-weighted
213 mean LC delta effective strain. For simplicity, this will be referred to as the LC
214 effective strain in the subsequent manuscript.

215 ***DOE of Morphological Factors***

216 For the 10 morphological parameters (**Figure 3**), a two-level full factorial
217 design was used, resulting in a total of 1,024 models. This comprehensive
218 design allowed us to assess the effects of the main factors and any potential
219 interactions among them. The low and high levels of all morphological
220 parameters (excluding ON tortuosity) were set by varying them by 20% around
221 their baseline values (**Table 1**). For simplicity, we varied ON tortuosity within a
222 narrower range, from 1.013 (low level) to 1.1 (high level), as these values have
223 typically been observed in MRI studies. Detailed information on the
224 morphological parameters for each model is available in the **Supplementary**
225 **Material B-Sheet1.**

226 ***DOE of Both Morphological and Biomechanical Factors***

227 We conducted another DOE analysis to examine the potential
228 interactions between morphological parameters and tissue stiffnesses. This
229 analysis included five key morphological parameters identified from the initial
230 DOE analysis and the stiffnesses of five tissues (LC, ON, sclera, pia and dura)
231 informed by our previous study.^{6,7}

232 In this DOE analysis, high and low levels of the biomechanical properties
233 of LC, ON, sclera, pia and dura were set by varying the material constants by
234 20% around their baseline values (see **Table 3** for the exact values). The
235 variation in morphological parameters was consistent with the initial DOE
236 analysis. A two-level full factorial design was employed, resulting in 1,024
237 models. Detailed information on the morphological parameters and tissue
238 stiffnesses for each model is available in the **Supplementary Material B-**
239 **Sheet2.**

240 ***Statistical Analysis***

241 All statistical analyses were carried out in Minitab (release 20, Minitab,
242 LLC, Pennsylvania, USA). A P-value of less than 0.05 was considered
243 statistically significant.

244 For each model, we reported gaze-induced LC effective strain as
245 responses. Main effects and interaction effects were reported, and the
246 significance of factors was tested and ranked as detailed below. The main effect
247 indicates the average change in the response when a factor's level shifts from
248 low (512 models) to high (512 models), in which other factors vary between
249 both levels. Interaction effects refer to how the influence of one factor on the
250 response changes depending on the level of another factor. Essentially, it

251 examines whether the combined impact of two factors differs from the sum of
252 their individual effects.

253 Analysis of Variance (ANOVA) was used to assess the significance of
254 individual factors or interactions when they vary from low to high levels. It is
255 important to note that in DOE, the use of ANOVA is not limited by the number
256 of levels a factor has. Even when a factor is set at just two levels, as in this
257 study, ANOVA remains well-suited for assessing the factor's significance on
258 the response variable and continues to be the standard method in Minitab. This
259 is because ANOVA focuses on partitioning the total variability in the data into
260 components attributable to different sources, including the main effects of
261 factors and their interactions. As ANOVA was performed individually for all
262 factors and their possible interactions, we applied the Bonferroni correction to
263 our p-values to account for the increased risk of Type I errors due to multiple
264 comparisons.

265 In the DOE analysis, a linear relationship between the factors (and their
266 interactions, if included) and the response is assumed and liner models were
267 fitted with these factors as independent variables. In this context, the R^2 value
268 indicates how well the linear model fits the experimental data, essentially
269 assessing how effectively the factors explain the variation in the response.
270 Statistically significant factors were further ranked based on the magnitude of
271 change they induced in the response variable (equals to the absolute value of
272 the regression coefficients), facilitating the identification of the most influential
273 factors and interactions.

274 **RESULTS**

275 ***The Effects of 10 Morphological Parameters***

276 The average LC effective strain (i.e., delta strain after removing the
277 effects of IOP and CSFP) across all models was 0.031. In the DOE analysis,
278 we examined 55 factors, comprising 10 main factors and 45 pairwise
279 interactions. Out of these, 25 factors were statistically significant ($p < 0.05$).
280 Among the significant factors, only five factors contribute to more than 1% of
281 the total effects: ON tortuosity, dural radius, ON radius, scleral thickness and
282 LC depth. A linear regression model showed that these five factors accounted
283 for 96.69% of the total effects in the responses. Details on the statistically
284 significant factors with less than 1% impact on the total effects are available in
285 **Supplementary Material B-Sheet3.**

286 Larger ON tortuosity, scleral thickness, ON radius and LC depth
287 decreased LC strains following eye movements, while a larger dural radius
288 increased LC strains. **Figure 4** illustrates the magnitude and trend of the effects.

289 **Figure 5** shows the morphology of the undeformed and deformed FE
290 models and color-coded strains (ONH and LC) in models with low and high
291 levels of these five factors. In the baseline model, the mean LC effective strain
292 caused by 13° adduction was 0.042. The mean LC effective strains for models
293 with larger ON tortuosity, dural radius, ON radius, scleral thickness and LC
294 depth were 0.026, 0.054, 0.026, 0.035, and 0.037, respectively.

295 ***The Effects of 5 Morphological Parameters and 5 Tissue
296 Stiffnesses***

297 A total of 55 factors, including main factors and their interactions, were
298 examined; 39 of these were statistically significant ($p < 0.05$). The factors that
299 individually contributed to more than 1% of the total effects, in descending order,
300 are ON tortuosity, dural radius, ON radius, dural stiffness, scleral thickness, LC

301 stiffness, LC depth, the interaction between the dural radius and the dural
302 stiffness, together accounting for 95.52% of the total effects in the responses.
303 For detailed information on factors that were statistically significant but had an
304 effect of less than 1% of the total effects, refer to **Supplementary Material B-**
305 **Sheet4.**

306 **Figure 6** illustrates the magnitude and trend of the effects. The trend for
307 the 5 morphological parameters are consistent with the results from the above
308 morphological DOE analysis. For biomechanical properties, a stiffer dura
309 increased LC strains, whereas a stiffer LC reduced strains. The most
310 pronounced interaction occurred between dural radius and dural stiffness.
311 Specifically, an increase in LC strain associated with a larger dural radius was
312 found to be amplified when combined with a stiffer dura.

313 **DISCUSSION**

314 In this study, we developed a parametric FE model and studied the
315 effects of eye-globe and ON morphologies, as well as tissue stiffnesses on
316 ONH deformations during eye movements. Our models demonstrated that ON
317 tortuosity, dural radius, ON radius, scleral thickness and LC depth were the five
318 main morphological factors that significantly affect gaze-induced ONH
319 deformations. These parameters retained their significance in a combined
320 analysis with tissue stiffnesses. We also observed a significant interaction
321 between the dural radius and dural stiffness, proving to be a considerable factor
322 in the ONH's response to eye movement.

323 ***A Larger Dural Radius Increased LC Strains During Eye Movements***

324 Our study found that a larger dural radius (i.e., the optic nerve sheath
325 inner radius) leads to higher LC strains, similar to the effect of a stiffer dura.

326 During eye movements, peripapillary tissues are sheared in the transverse
327 plane by the optic nerve sheath, resulting in significant deformations.⁷ An
328 increased dural radius would tend to restrict eye movements by exerting a
329 larger pulling force onto the ONH, as evidenced by the calculated traction force
330 from the FE models (**Supplementary Material A-2**). The potential for such
331 forces to cause axonal death in glaucoma requires further investigation.

332 In this study, it is important to acknowledge that variations in the dural
333 radius were accompanied by changes in the length of the scleral flange, as the
334 insertion point of the dura into the sclera was altered. Consequently, an
335 increase in dural radius resulted in an enlargement of the scleral flange in the
336 model. Although this relationship aligns with anatomical observations, where
337 the dural radius and scleral flange size are positively correlated,^{4,24} this
338 confounding factor complicates the interpretation of the effect of a larger dura
339 radius. Specifically, a larger scleral flange could potentially indicate a weaker
340 ONH, which is more susceptible to deformation. To dissect the potential
341 confounding impacts of an increased scleral flange and dural radius, we
342 conducted additional simulations (**Supplementary Material A-3**). In these
343 models, we modified the dural and ON radius without varying the scleral flange
344 size. Keeping the scleral flange size constant, we observed that an increase in
345 dural radius (along with a concurrent increase in ON radius, which can actually
346 reduce LC strain) led to an increase in LC strains. This approach allowed us to
347 confirm that an increased dural radius indeed contributes to higher LC strains.

348 Computed tomography (CT) studies have shown that the optic nerve
349 sheath diameter (ONSD) is significantly larger in patients with normal tension
350 glaucoma (NTG) compared to healthy controls^{25,26}, suggesting that NTG eyes

351 may exhibited more ONH deformation due to eye movement. However, other
352 studies have found no significant difference in ONSD between NTG and healthy
353 controls,²⁷ and that NTG subjects may have a smaller ONSD owing to a lower
354 CSFP.^{28,29} These conflicting findings could be due to ethnic differences or
355 underlying differences in the pathogenesis of various NTG subtypes. Our
356 previous studies demonstrated a negative correlation between IOP-induced
357 ONH strain and retinal sensitivity in high tension glaucoma subjects¹⁷, whereas
358 NTG subjects showed a stronger correlation with gaze-induced ONH
359 deformation³⁰. Given these results, it is quite possible that NTG itself may have
360 different subtypes, with some subjects being sensitive to IOP and others
361 sensitive to gaze. The role of morphological differences in the dura in these
362 variations remains unexplored, and further studies are warranted.

363 ***A Large ON Tortuosity Decreased LC Strains During Eye Movements***

364 Our study suggested that increased ON tortuosity may lead to lower LC
365 strains during eye movements. A relatively taut ON has the potential to exhibit
366 rapid straightening during eye movements and thus exert more force on the
367 ONH tissue, a phenomenon observed in our FE models (**Supplementary**
368 **Material A-2**). In a previous study involving a small Chinese population, we
369 found that ONs in glaucoma subjects (mean IOP: 26.4 ± 4.6 mmHg) were tauter
370 than in normal controls (mean IOP: 15.3 ± 3.6 mmHg). This smaller ON
371 tortuosity in glaucoma subjects may exert more force on the ONH tissues during
372 eye movements, indicating a potential risk factor for glaucoma.¹⁵ However,
373 another study³¹ reported that ON path redundancy was greater in NTG than in
374 normal controls in primary gaze and abduction. The discrepancy between those
375 two studies may be attributed to: 1) differences in subjects (high-tension

376 glaucoma subjects of Chinese ethnicity versus NTG subjects of unknown
377 ethnicity); 2) small sample sizes; or simply; 3) differences in methods to assess
378 ON tortuosity.

379 A recent study reported that ON tortuosity in highly myopic subjects was
380 significantly larger than that in emmetropic controls.¹⁶ It would seem that, in
381 high myopia, the 'slack' ON (i.e., increased ON tortuosity) might act as a
382 protective mechanism against ONH deformations. However, it is crucial to
383 acknowledge that high myopic subjects with more tortuous ONs might still be
384 susceptible to greater ONH deformations during eye movements due to other
385 influencing factors. For instance, in high myopic eyes, the ON-globe junction
386 must travel a longer distance for the same amount of eye movement compared
387 to normal eyes. This is due to the extreme elongation of high myopic eyes,
388 which can exhaust the redundancy in ON tortuosity. Additionally, the weakened
389 structural stiffness of the sclera and other ONH structures in high myopia could
390 make them more susceptible to ONH deformations.

391 ***A Thicker Sclera Decreased LC Strains During Eye Movements***

392 Our study showed that scleral thickness significantly affects LC strains,
393 with a thicker sclera associated with lower LC strains during eye movements.
394 This finding aligns with other studies examining the effects of factors on IOP-
395 ^{32,33} and CSFP-⁵ induced LC strains. Since other ONH tissues are relatively
396 compliant compared to the sclera, scleral deformation induced by eye
397 movement can be directly transmitted to surrounding tissues, suggesting that
398 eyes with a thinner sclera may be more sensitive to eye movements. In case of
399 high myopia, scleral thickness decreases significantly with increasing axial
400 length.³⁴ In severe cases, scleral thickness can be as low as 31% of that in

401 normal subjects³⁵, potentially leading to the development of staphylomas. The
402 reduced scleral thickness in high myopia could result in large LC deformations
403 and increasing susceptibility to ONH damage during eye movements. However,
404 as discussed above, ONH deformations in high myopic eyes are also affected
405 by axial length and ON tortuosity. Further studies are warranted to investigate
406 the interactions of these factors in high myopia.

407 ***Other Factors Affecting LC Strains During Eye Movements***

408 Our study showed that a larger ON radius (i.e., the ON parenchyma,
409 excluding the dural and pial sheaths) had a protective effect, resulting in smaller
410 LC strains. There is a typical shear deformation due to ON traction, with clear
411 temporal pulling from the dura in adduction. We speculated that a larger ON
412 radius might possibly provide more mechanical support to the LC during ON
413 traction, which could potentially lead to smaller LC strains. ON radius is
414 associated with disc size. Previous studies have reported conflicting results
415 regarding the relationship between disc size and glaucoma. Some studies^{2,36,37}
416 demonstrated that a larger optic disc size is associated with higher glaucoma
417 susceptibility, while other studies suggested that smaller discs with less space
418 for nerve fibers to travel through increase glaucoma susceptibility^{38,39}. There
419 are also studies^{40,41} found no significant correlation between the degree of ON
420 atrophy in glaucoma and disc size. Note that disc size measured in these
421 studies were not equal to the ON size posterior to LC. Direct measurement of
422 ON size with MRI imaging^{42,43} have shown that the ON radius of glaucoma
423 subjects was smaller than that of normal controls, which was significantly
424 correlated with retinal nerve fiber layer thickness thinning and perimetric loss.
425 A recent study suggested that myopes also tended to have smaller ONs.⁴⁴ It is

426 worth noting that histologic studies showed that optic atrophy led to a smaller
427 retrobulbar ON⁴⁵, suggesting that ON diameter may correlate with the extent of
428 optic atrophy and a smaller ON diameter in glaucoma subjects might be the
429 consequence of retinal ganglion cells (RGC) apoptosis³¹. The link between ON
430 size and glaucoma needs further exploration.

431 Our study also revealed that a larger LC depth resulted in smaller gaze-
432 induced LC strains. In this study, a greater LC depth corresponds to a more
433 curved LC. Previous studies^{46–49} showed that the LC depth and LC curvature
434 were significantly larger in POAG eyes than in healthy eyes. These differences
435 could be the consequences of glaucoma.⁵⁰ However, it remains unclear
436 whether an initial larger LC depth/curvature is protective or detrimental in the
437 development of glaucoma. Since LC morphology varies with race, sex, age and
438 axial length^{51–54}, the relationship between the LC morphology and gaze-
439 induced LC deformations needs to be further studied.

440 Lastly, our study reconfirmed the significance of tissue stiffness on gaze-
441 induced LC deformations. A stiffer dura increases LC strains, which is
442 consistent with our previous study.⁶ In addition, LC stiffness also had a strong
443 influence on gazed-induced LC strains, where a stiffer LC resulted in a
444 reduction of LC strains. This is straightforward as a stiffer material will deform
445 less under the same loading condition. This observation is consistent with other
446 studies investigating LC strains induced by IOP^{32,33} and CSFP⁵⁵. However, the
447 effect of tissue stiffness on gazed-induced LC strains is smaller than that of the
448 three main morphologies (ON tortuosity, dural radius, and ON radius; **Figure 6**
449 and **Supplementary Material B-Sheet4**).

450 ***The Interactions Affecting LC Strains During Eye Movements***

451 This study revealed significant interactions among various factors, with
452 the most notable being between dural radius and dural stiffness. A larger dural
453 radius tends to increase LC strains, an effect that is amplified with stiffer dura
454 and diminished when the dura is more compliant. These findings underscore
455 the importance of considering individual-specific characteristics such as eye
456 globe and ON morphologies, as well as their biomechanical properties, in
457 assessing the susceptibility of LC deformation during eye movements. Given
458 the complex and multifaceted nature of morphological and biomechanical
459 properties of the ONH, our parametric FE models provided an ideal platform for
460 studying and quantifying the main factors and their interactions in a systematic
461 manner to inform future experimental study design and analysis.

462 **Limitations.** In this study, several limitations warrant further discussion.
463 First, our models only predicted acute ONH deformations during eye
464 movements and could not account for the long-term growth & remodeling
465 processes that are known to take place in ocular tissues.

466 Second, there are some inherent limitations in a two-level full factorial
467 design. As each factor has only two levels, it cannot account for the nonlinear
468 effect between the factor and the response. Additionally, in a full factorial design,
469 all possible combinations of the factors are tested, resulting in a high number
470 of experiments. This would increase the time and cost to conduct the study.
471 Considering more advanced experimental designs that account for nonlinear
472 effects and minimize the number of experiments can enhance the efficiency
473 and precision of future studies in this field.

474 Third, the morphological factors in our study included dural radius, but
475 not dural thickness. Previous computational studies and this study have shown

476 that a stiffer dura could significantly increase LC strains during eye
477 movements.⁶ To enhance our understandings, future studies should examine
478 the effect of an increased dural thickness on LC deformation during eye
479 movements.

480 Fourth, to rank the effects of all morphological factors, we varied these
481 parameters by 20% from their baseline values, as proper physiologic ranges
482 for each parameter are not known. As a result, morphological size variations
483 from larger tissues were higher. A more precise understanding of the
484 physiological ranges for these parameters would be valuable for more accurate
485 assessments in future studies.

486 Finally, the simplified morphological properties of our models provided a
487 reasonable approximation, allowing us to improve our understanding of ONH
488 biomechanics during eye movements. It will be necessary to update this work
489 as more biomechanical information on eye and orbital tissues becomes
490 available.

491 **Conclusion.** Our parametric finite element models demonstrated that
492 ON tortuosity, dural radius, ON radius, scleral thickness and LC depth were the
493 five most important morphological factors influencing gaze-induced ONH
494 deformations. Additionally, the stiffnesses of dura and LC were the most
495 important biomechanical factors influencing gaze-induced ONH deformations,
496 and the interactions between dural radius and the dural stiffness was significant.
497 Our study provides an ideal platform for studying and quantifying the main
498 factors and interactions between factors to inform experimental design and
499 analysis. Further experimental and clinical studies are needed to explore the

500 role of effect of individual-specific characteristics on gaze-induced ONH
501 deformations in ocular diseases, such as myopia and glaucoma.

502

503 **ACKNOWLEDGMENTS**

504 Acknowledgement is made to (1) the National Natural Science
505 Foundation of China (12272030, 12002025), (2) the 111 Project (Project No.:
506 B13003), (3) the donors of the National Glaucoma Research, a program of the
507 BrightFocus Foundation, for support of this research (G2021010S [MG]), (5)
508 NMRC-LCG grant 'TAckling & Reducing Glaucoma Blindness with Emerging
509 Technologies (TARGET)', award ID: MOH-OFLCG21jun-0003 [MG], (6) the
510 "Retinal Analytics through Machine learning aiding Physics (RAMP)" project
511 that is supported by the National Research Foundation, Prime Minister's Office,
512 Singapore under its Intra-Create Thematic Grant "Intersection Of Engineering
513 And Health" - NRF2019-THE002-0006 awarded to the Singapore MIT Alliance
514 for Research and Technology (SMART) Centre [MG].

515

516 REFERENCES

517 1. Kapetanakis VV, Chan MPY, Foster PJ, Cook DG, Owen CG, Rudnicka
518 AR. Global variations and time trends in the prevalence of primary open
519 angle glaucoma (POAG): a systematic review and meta-analysis. *Br J
520 Ophthalmol.* 2016;100(1):86-93. doi:10.1136/bjophthalmol-2015-307223

521 2. Burgoyne CF, Crawford Downs J, Bellezza AJ, Francis Suh JK, Hart RT.
522 The optic nerve head as a biomechanical structure: a new paradigm for
523 understanding the role of IOP-related stress and strain in the
524 pathophysiology of glaucomatous optic nerve head damage. *Progress in
525 Retinal and Eye Research.* 2005;24(1):39-73.
526 doi:10.1016/j.preteyeres.2004.06.001

527 3. Tun TA, Atalay E, Baskaran M, et al. Association of Functional Loss With
528 the Biomechanical Response of the Optic Nerve Head to Acute Transient
529 Intraocular Pressure Elevations. *JAMA Ophthalmol.* 2018;136(2):184.
530 doi:10.1001/jamaophthalmol.2017.6111

531 4. Wang N, Xie X, Yang D, et al. Orbital Cerebrospinal Fluid Space in
532 Glaucoma: The Beijing Intracranial and Intraocular Pressure (iCOP) Study.
533 *Ophthalmology.* 2012;119(10):2065-2073.e1.
534 doi:10.1016/j.ophtha.2012.03.054

535 5. Hua Y, Voorhees AP, Sigal IA. Cerebrospinal Fluid Pressure: Revisiting
536 Factors Influencing Optic Nerve Head Biomechanics. *Invest Ophthalmol
537 Vis Sci.* 2018;59(1):154. doi:10.1167/iovs.17-22488

538 6. Wang X, Rumpel H, Lim WEH, et al. Finite Element Analysis Predicts
539 Large Optic Nerve Head Strains During Horizontal Eye Movements. *Invest
540 Ophthalmol Vis Sci.* 2016;57(6):2452. doi:10.1167/iovs.15-18986

541 7. Wang X, Fisher LK, Milea D, Jonas JB, Girard MJA. Predictions of Optic
542 Nerve Traction Forces and Peripapillary Tissue Stresses Following
543 Horizontal Eye Movements. *Invest Ophthalmol Vis Sci.* 2017;58(4):2044.
544 doi:10.1167/iovs.16-21319

545 8. Shin A, Yoo L, Park J, Demer JL. Finite Element Biomechanics of Optic
546 Nerve Sheath Traction in Adduction. *Journal of Biomechanical Engineering.*
547 2017;139(10):101010. doi:10.1115/1.4037562

548 9. Wang X, Beotra MR, Tun TA, et al. In Vivo 3-Dimensional Strain Mapping
549 Confirms Large Optic Nerve Head Deformations Following Horizontal Eye
550 Movements. *Invest Ophthalmol Vis Sci.* 2016;57(13):5825.
551 doi:10.1167/iovs.16-20560

552 10. Chang MY, Shin A, Park J, et al. Deformation of Optic Nerve Head and
553 Peripapillary Tissues by Horizontal Duction. *American Journal of*
554 *Ophthalmology.* 2017;174:85-94. doi:10.1016/j.ajo.2016.10.001

555 11. Suh SY, Le A, Shin A, Park J, Demer JL. Progressive Deformation of the
556 Optic Nerve Head and Peripapillary Structures by Graded Horizontal
557 Duction. :7.

558 12. Sibony PA. Gaze Evoked Deformations of the Peripapillary Retina in
559 Papilledema and Ischemic Optic Neuropathy. *Invest Ophthalmol Vis Sci.*
560 2016;57(11):4979. doi:10.1167/iovs.16-19931

561 13. Lee WJ, Kim YJ, Kim JH, Hwang S, Shin SH, Lim HW. Changes in the
562 optic nerve head induced by horizontal eye movements. Hamann S, ed.
563 *PLoS ONE.* 2018;13(9):e0204069. doi:10.1371/journal.pone.0204069

564 14. Demer JL, Clark RA, Suh SY, et al. Magnetic Resonance Imaging of Optic
565 Nerve Traction During Adduction in Primary Open-Angle Glaucoma With

566 Normal Intraocular Pressure. *Invest Ophthalmol Vis Sci*. 2017;58(10):4114.

567 doi:10.1167/iovs.17-22093

568 15. Wang X, Rumpel H, Baskaran M, et al. Optic Nerve Tortuosity and Globe

569 Proptosis in Normal and Glaucoma Subjects: *Journal of Glaucoma*.

570 2019;28(8):691-696. doi:10.1097/JG.0000000000001270

571 16. Wang X, Chang S, Grinband J, et al. Optic nerve tortuosity and

572 displacements during horizontal eye movements in healthy and highly

573 myopic subjects. *Br J Ophthalmol*. Published online May 26,

574 2021:bjophthalmol-2021-318968. doi:10.1136/bjophthalmol-2021-318968

575 17. Chuangsawanich T, Tun TA, Braeu FA, et al. Differing Associations

576 between Optic Nerve Head Strains and Visual Field Loss in Patients with

577 Normal- and High-Tension Glaucoma. *Ophthalmology*. 2023;130(1):99-

578 110. doi:10.1016/j.ophtha.2022.08.007

579 18. Thanadet Chuangsawanich, Tin A Tun, Fabian A Braeu, et al. Adduction

580 induces large optic nerve head deformations in subjects with normal-

581 tension glaucoma. *Br J Ophthalmol*. Published online April 3, 2023:bjo-

582 2022-322461. doi:10.1136/bjo-2022-322461

583 19. Le A, Chen J, Lesgart M, Gawargious BA, Suh SY, Demer JL. Age-

584 dependent Deformation of the Optic Nerve Head and Peripapillary Retina

585 by Horizontal Duction. *American Journal of Ophthalmology*. 2020;209:107-

586 116. doi:10.1016/j.ajo.2019.08.017

587 20. Zhang L, Albon J, Jones H, et al. Collagen Microstructural Factors

588 Influencing Optic Nerve Head Biomechanics. *Investigative Ophthalmology*

589 & Visual Science

 2015;56(3):2031-2042. doi:10.1167/iovs.14-15734

590 21. Wang YX, Panda-Jonas S, Jonas JB. Optic nerve head anatomy in myopia
591 and glaucoma, including parapapillary zones alpha, beta, gamma and
592 delta: Histology and clinical features. *Progress in Retinal and Eye*
593 *Research*. 2021;83:100933. doi:10.1016/j.preteyeres.2020.100933

594 22. Sigal IA, Ethier CR. Biomechanics of the optic nerve head. *Experimental*
595 *Eye Research*. 2009;88(4):799-807. doi:10.1016/j.exer.2009.02.003

596 23. Jonas JB, Holbach L, Panda-Jonas S. Peripapillary ring: histology and
597 correlations. *Acta Ophthalmologica*. 2014;92(4):e273-e279.
598 doi:10.1111/aos.12324

599 24. Liu H, Yang D, Ma T, et al. Measurement and Associations of the Optic
600 Nerve Subarachnoid Space in Normal Tension and Primary Open-Angle
601 Glaucoma. *American Journal of Ophthalmology*. 2018;186:128-137.
602 doi:10.1016/j.ajo.2017.11.024

603 25. Jaggi GP, Miller NR, Flammer J, Weinreb RN, Remonda L, Killer HE. Optic
604 nerve sheath diameter in normal-tension glaucoma patients. *Br J*
605 *Ophthalmol*. 2012;96(1):53-56. doi:10.1136/bjo.2010.199224

606 26. Pircher A, Montali M, Berberat J, Remonda L, Killer HE. Relationship
607 between the optic nerve sheath diameter and lumbar cerebrospinal fluid
608 pressure in patients with normal tension glaucoma. *Eye*. 2017;31(9):1365-
609 1372. doi:10.1038/eye.2017.70

610 27. Abegão Pinto L, Vandewalle E, Pronk A, Stalmans I. Intraocular pressure
611 correlates with optic nerve sheath diameter in patients with normal tension
612 glaucoma. *Graefes Arch Clin Exp Ophthalmol*. 2012;250(7):1075-1080.
613 doi:10.1007/s00417-011-1878-3

614 28. Wang N, Xie X, Yang D, et al. Orbital Cerebrospinal Fluid Space in
615 Glaucoma: The Beijing Intracranial and Intraocular Pressure (iCOP) Study.
616 *Ophthalmology*. 2012;119(10):2065-2073.e1.
617 doi:10.1016/j.ophtha.2012.03.054

618 29. Liu H, Yang D, Ma T, et al. Measurement and Associations of the Optic
619 Nerve Subarachnoid Space in Normal Tension and Primary Open-Angle
620 Glaucoma. *American Journal of Ophthalmology*. 2018;186:128-137.
621 doi:10.1016/j.ajo.2017.11.024

622 30. Chuangsawanich T, Tun TA, Braeu FA, et al. *Adduction Induces Large
623 Optic Nerve Head Deformations in Subjects with Normal Tension
624 Glaucoma*. Bioengineering; 2021. doi:10.1101/2021.08.25.457300

625 31. Demer JL, Clark RA, Suh SY, et al. Optic Nerve Traction During Adduction
626 in Open Angle Glaucoma with Normal versus Elevated Intraocular
627 Pressure. *Current Eye Research*. 2020;45(2):199-210.
628 doi:10.1080/02713683.2019.1660371

629 32. Sigal IA, Yang H, Roberts MD, Burgoyne CF, Downs JC. IOP-Induced
630 Lamina Cribrosa Displacement and Scleral Canal Expansion: An Analysis
631 of Factor Interactions Using Parameterized Eye-Specific Models. *Invest
632 Ophthalmol Vis Sci*. 2011;52(3):1896. doi:10.1167/iovs.10-5500

633 33. Sigal IA. Interactions between Geometry and Mechanical Properties on the
634 Optic Nerve Head. *Invest Ophthalmol Vis Sci*. 2009;50(6):2785.
635 doi:10.1167/iovs.08-3095

636 34. Shen L, You QS, Xu X, et al. Scleral Thickness in Chinese Eyes. *Invest
637 Ophthalmol Vis Sci*. 2015;56(4):2720. doi:10.1167/iovs.14-15631

638 35. Cheng H, Singh O, Kwong K, Xiong J, Woods B, Brady T. Shape of the
639 myopic eye as seen with high-resolution magnetic resonance imaging.
640 *Optom Vis Sci.* 1992;69(9):698-701. doi:10.1097/00006324-199209000-
641 00005

642 36. Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne
643 CF. Deformation of the Lamina Cribrosa and Anterior Scleral Canal Wall
644 in Early Experimental Glaucoma. *Invest Ophthalmol Vis Sci.*
645 2003;44(2):623. doi:10.1167/iovs.01-1282

646 37. Wang X, Tun TA, Nongpiur ME, et al. Peripapillary sclera exhibits a v-
647 shaped configuration that is more pronounced in glaucoma eyes. *Br J
648 Ophthalmol.* Published online December 16, 2020:bjophthalmol-2020-
649 317900. doi:10.1136/bjophthalmol-2020-317900

650 38. Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic Evaluation of the
651 Optic Nerve Head. *Survey of Ophthalmology.* 1999;43(4):293-320.
652 doi:10.1016/S0039-6257(98)00049-6

653 39. Teng Y, Yu X, Teng Y, et al. Evaluation of crowded optic nerve head and
654 small scleral canal in intrapapillary hemorrhage with adjacent peripapillary
655 subretinal hemorrhage. *Graefes Arch Clin Exp Ophthalmol.*
656 2014;252(2):241-248. doi:10.1007/s00417-013-2459-4

657 40. Jonas JB, Fernández MC, Naumann GOH. Correlation of the Optic Disc
658 Size to Glaucoma Susceptibility. *Ophthalmology.* 1991;98(5):675-680.
659 doi:10.1016/S0161-6420(91)32234-6

660 41. Jonas JB, Sturmer J, Papastathopoulos KI, Meier-Gibbons F, Dichtl A.
661 Optic disc size and optic nerve damage in normal pressure glaucoma.

662 *British Journal of Ophthalmology*. 1995;79(12):1102-1105.

663 doi:10.1136/bjo.79.12.1102

664 42. Zhang YQ, Li J, Xu L, et al. Anterior visual pathway assessment by
665 magnetic resonance imaging in normal-pressure glaucoma. *Acta
666 Ophthalmologica*. 2012;90(4):e295-e302. doi:10.1111/j.1755-
667 3768.2011.02346.x

668 43. Lagre`ze WA, Gaggl M, Weigel M, et al. Retrobulbar Optic Nerve Diameter
669 Measured by High-Speed Magnetic Resonance Imaging as a Biomarker
670 for Axonal Loss in Glaucomatous Optic Atrophy. *Invest Ophthalmol Vis Sci*.
671 2009;50(9):4223. doi:10.1167/iovs.08-2683

672 44. Nguyen BN, Cleary JO, Glarin R, et al. Ultra-High Field Magnetic
673 Resonance Imaging of the Retrobulbar Optic Nerve, Subarachnoid Space,
674 and Optic Nerve Sheath in Emmetropic and Myopic Eyes. *Trans Vis Sci
675 Tech*. 2021;10(2):8. doi:10.1167/tvst.10.2.8

676 45. Jonas JB, Schmidt AM, Müller-Bergh JA, Naumann GOH. Optic nerve fiber
677 count and diameter of the retrobulbar optic nerve in normal and
678 glaucomatous eyes. *Graefe's Arch Clin Exp Ophthalmol*. 1995;233(7):421-
679 424. doi:10.1007/BF00180945

680 46. Lee KM, Kim TW, Lee EJ, Girard MJA, Mari JM, Weinreb RN. Association
681 of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open
682 Angle Glaucoma.

683 47. Lee SH, Kim TW, Lee EJ, Girard MJA, Mari JM. Diagnostic Power of
684 Lamina Cribrosa Depth and Curvature in Glaucoma. *Invest Ophthalmol Vis
685 Sci*. 2017;58(2):755. doi:10.1167/iovs.16-20802

686 48. Kim YW, Jeoung JW, Kim DW, et al. Clinical Assessment of Lamina
687 Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma. *Wendrich*
688 A, ed. *PLoS ONE*. 2016;11(3):e0150260.
689 doi:10.1371/journal.pone.0150260

690 49. Ha A, Kim TJ, Girard MJA, et al. Baseline Lamina Cribrosa Curvature and
691 Subsequent Visual Field Progression Rate in Primary Open-Angle
692 Glaucoma. *Ophthalmology*. 2018;125(12):1898-1906.
693 doi:10.1016/j.ophtha.2018.05.017

694 50. Park SC, Brumm J, Furlanetto RL, et al. Lamina Cribrosa Depth in Different
695 Stages of Glaucoma. *Invest Ophthalmol Vis Sci*. 2015;56(3):2059.
696 doi:10.1167/iovs.14-15540

697 51. Tun TA, Wang X, Baskaran M, et al. Determinants of lamina cribrosa depth
698 in healthy Asian eyes: the Singapore Epidemiology Eye Study. *Br J*
699 *Ophthalmol*. Published online May 20, 2020:bjophthalmol-2020-315840.
700 doi:10.1136/bjophthalmol-2020-315840

701 52. Luo H, Yang H, Gardiner SK, et al. Factors Influencing Central Lamina
702 Cribrosa Depth: A Multicenter Study. *Invest Ophthalmol Vis Sci*.
703 2018;59(6):2357. doi:10.1167/iovs.17-23456

704 53. Vianna JR, Lanoe VR, Quach J, et al. Serial Changes in Lamina Cribrosa
705 Depth and Neuroretinal Parameters in Glaucoma. *Ophthalmology*.
706 2017;124(9):1392-1402. doi:10.1016/j.ophtha.2017.03.048

707 54. Ren R, Yang H, Gardiner SK, et al. Anterior Lamina Cribrosa Surface
708 Depth, Age, and Visual Field Sensitivity in the Portland Progression Project.
709 *Invest Ophthalmol Vis Sci*. 2014;55(3):1531. doi:10.1167/iovs.13-13382

710 55. Feola AJ, Myers JG, Raykin J, et al. Finite Element Modeling of Factors
711 Influencing Optic Nerve Head Deformation Due to Intracranial Pressure.
712 *Invest Ophthalmol Vis Sci.* 2016;57(4):1901. doi:10.1167/iovs.15-17573

713 56. Vaiman M, Abuita R, Bekerman I. Optic nerve sheath diameters in healthy
714 adults measured by computer tomography. *Int J Ophthalmol.*
715 2015;8(6):1240-1244. doi:10.3980/j.issn.2222-3959.2015.06.30

716 57. Norman RE, Flanagan JG, Rausch SMK, et al. Dimensions of the human
717 sclera: Thickness measurement and regional changes with axial length.
718 *Experimental Eye Research.* 2010;90(2):277-284.
719 doi:10.1016/j.exer.2009.11.001

720 58. Jiang R, Wang YX, Wei WB, Xu L, Jonas JB. Peripapillary Choroidal
721 Thickness in Adult Chinese: The Beijing Eye Study. *Invest Ophthalmol Vis
722 Sci.* 2015;56(6):4045. doi:10.1167/iovs.15-16521

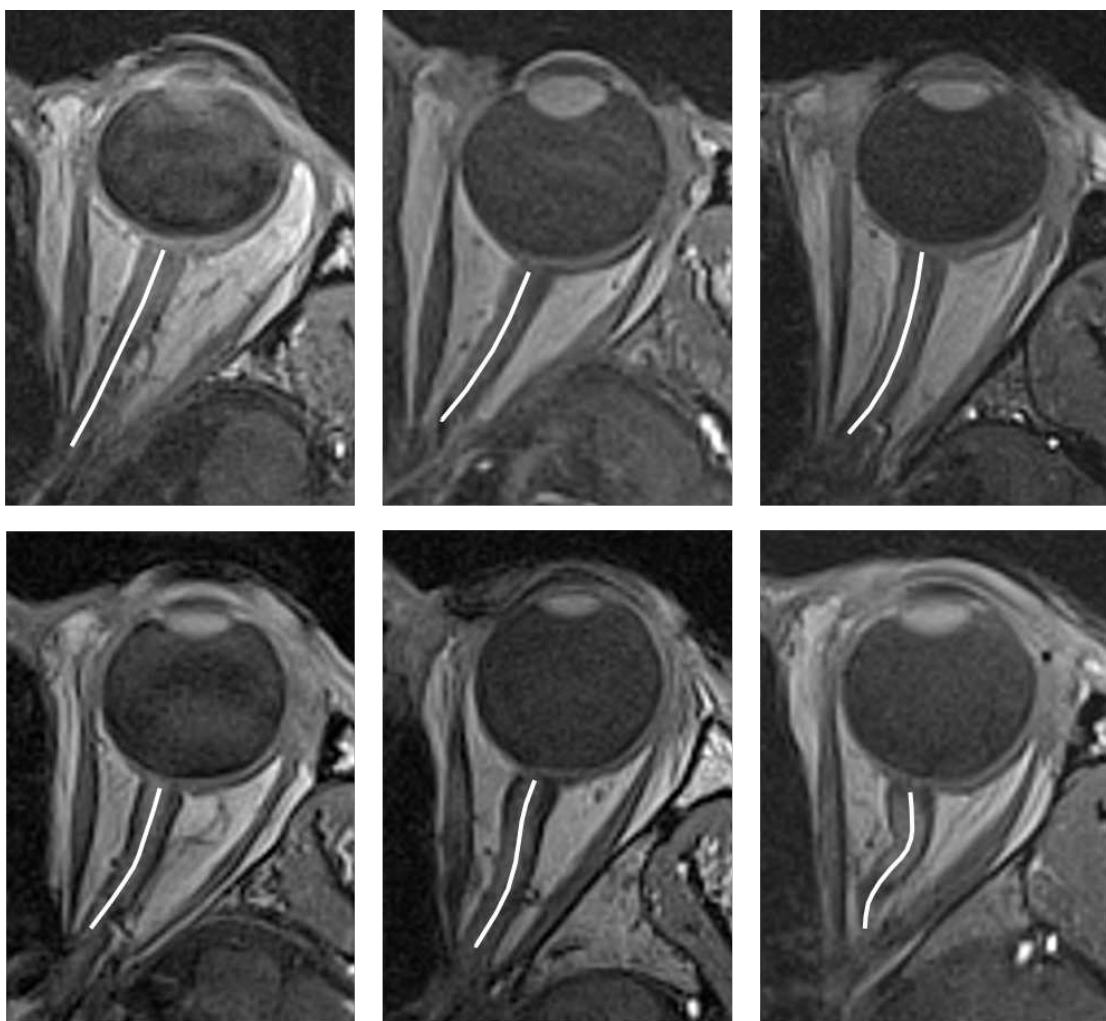
723 59. Alamouti B. Retinal thickness decreases with age: an OCT study. *British
724 Journal of Ophthalmology.* 2003;87(7):899-901. doi:10.1136/bjo.87.7.899

725 60. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite Element Modeling of
726 Optic Nerve Head Biomechanics. *Invest Ophthalmol Vis Sci.*
727 2004;45(12):4378. doi:10.1167/iovs.04-0133

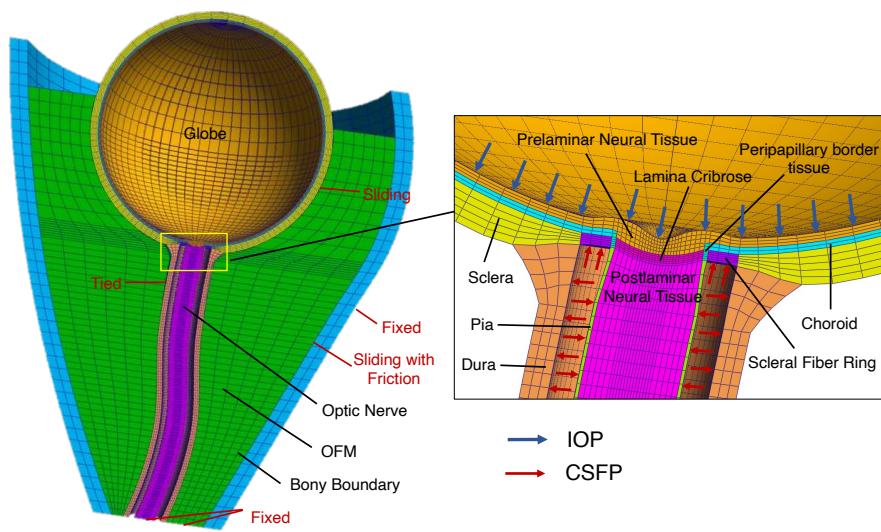
728 61. Bowd C, Weinreb RN, Lee B, Emdadi A, Zangwill LM. Optic disk
729 topography after medical treatment to reduce intraocular pressure.
730 *American Journal of Ophthalmology.* 2000;130(3):280-286.
731 doi:10.1016/S0002-9394(00)00488-8

732 62. Jonas RA, Holbach L. Peripapillary border tissue of the choroid and
733 peripapillary scleral flange in human eyes. *Acta Ophthalmol.* 2020;98(1).
734 doi:10.1111/aos.14206

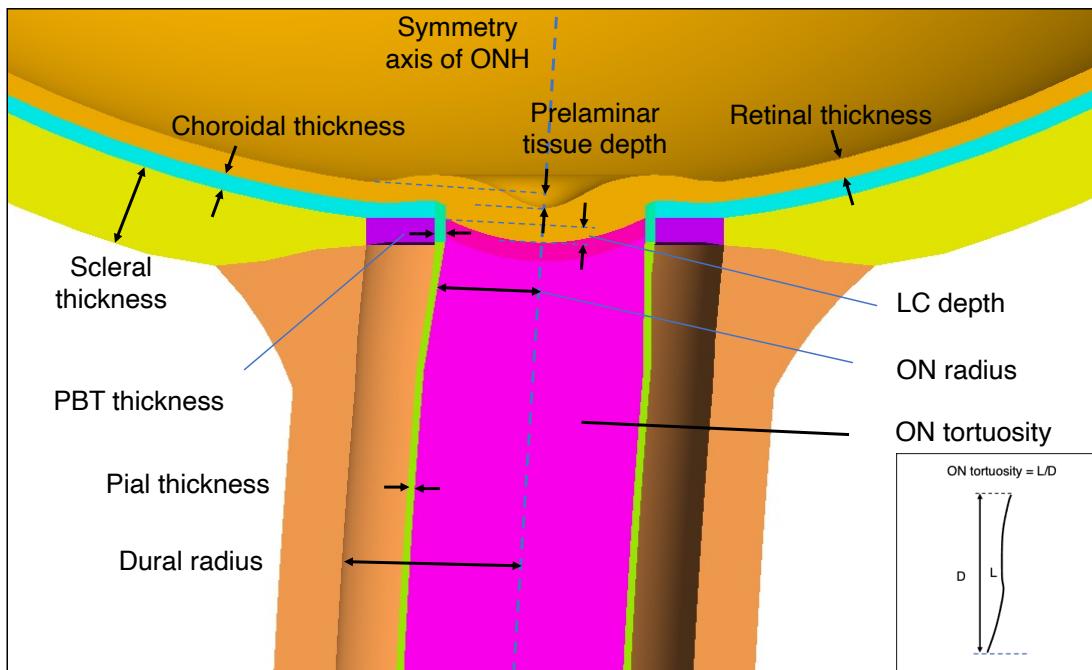
735 63. Girard MJA, Suh JKF, Bottlang M, Burgoyne CF, Downs JC. Scleral
736 Biomechanics in the Aging Monkey Eye. *Invest Ophthalmol Vis Sci.*
737 2009;50(11):5226. doi:10.1167/iovs.08-3363

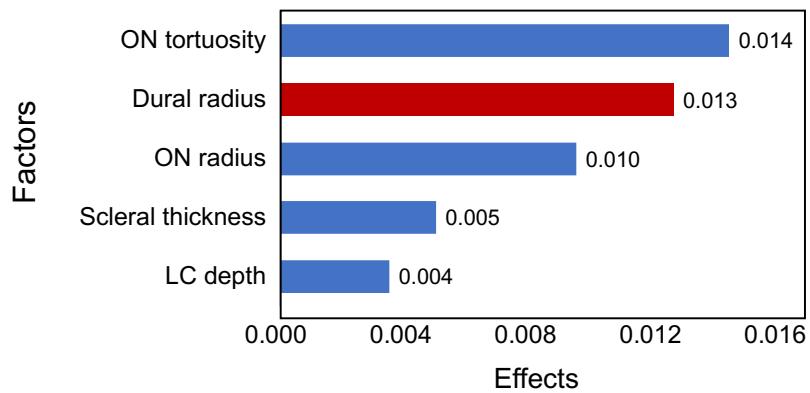

738 64. Friberg TR, Lace JW. A comparison of the elastic properties of human
739 choroid and sclera. *Experimental Eye Research.* 1988;47(3):429-436.
740 doi:10.1016/0014-4835(88)90053-X

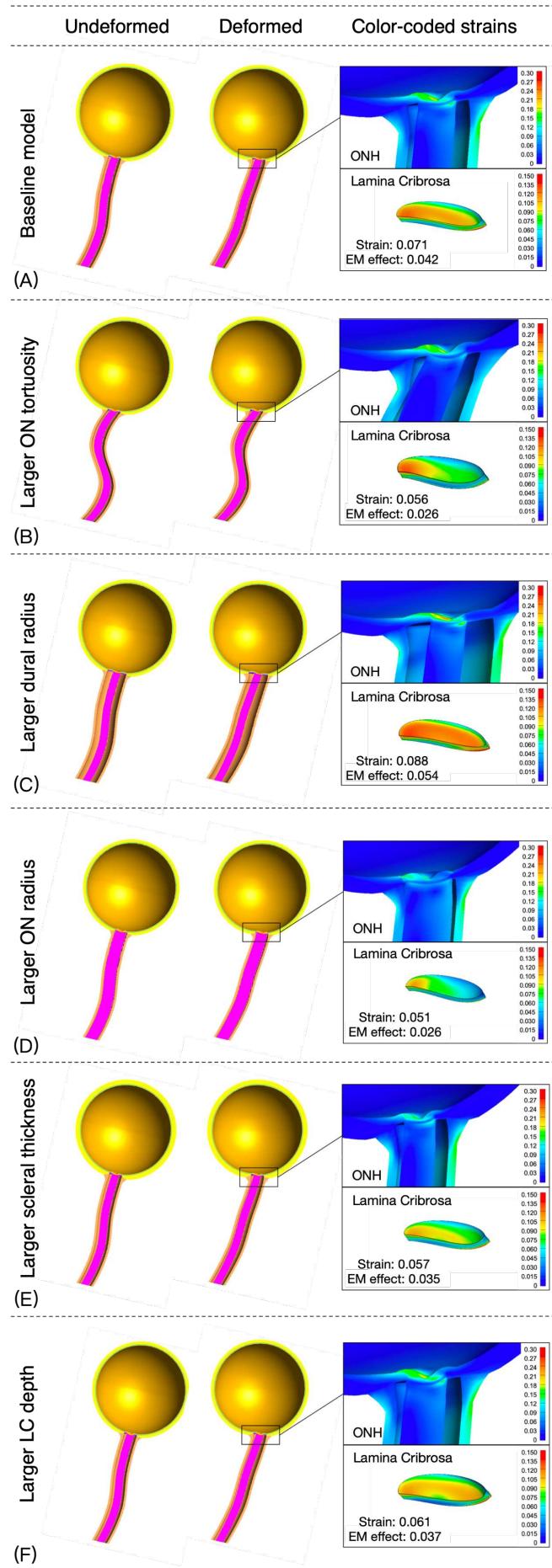
741 65. Miller K. Constitutive model of brain tissue suitable for finite element
742 analysis of surgical procedures. *Journal of Biomechanics.* 1999;32(5):531-
743 537. doi:10.1016/S0021-9290(99)00010-X


744 66. Schoemaker I, Hoefnagel PPW, Mastenbroek TJ, et al. Elasticity, Viscosity,
745 and Deformation of Orbital Fat. *Invest Ophthalmol Vis Sci.*
746 2006;47(11):4819. doi:10.1167/iovs.05-1497

747


FIGURES


Figure 1. MRI images of the orbital region demonstrate the morphological diversity of the optic nerve (ON). These six figures show examples of ONs displaying varying degrees of curvature, ranging from straight to highly tortuous. The white lines represent the ON middle curve.


Figure 2. Left panel shows the reconstructed geometry and FE mesh of the eye movement model with boundary conditions and tissue connections. Right panel shows an enlarged view of the detailed ONH region (sclera, scleral fiber ring, the peripapillary border tissue, choroid, Bruch's membrane, lamina cribrosa, neural tissues, pia and dura) illustrating the IOP and CSFP applied to each model in the primary gaze position.

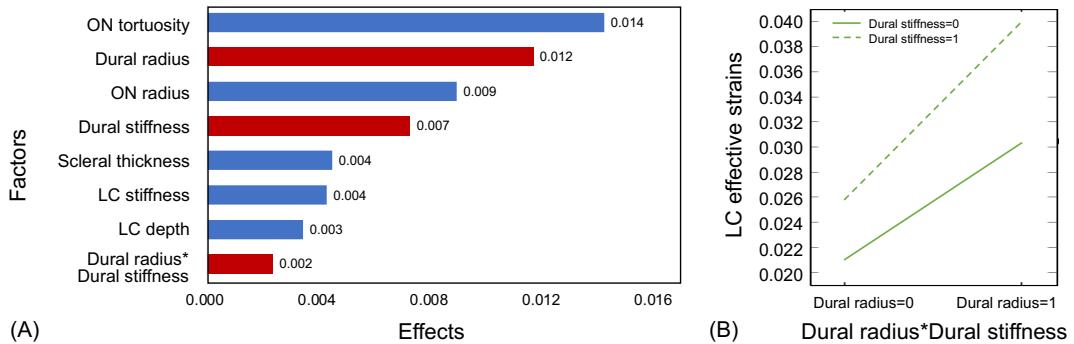

Figure 3. Input factors defining the parametric FE model geometry (only the ONH region of the entire eye is shown). See **Table 1** for the ranges of input factors. The blue dashed line represents the symmetry axis of ONH.

Figure 4. Ranking of the effects of morphological factors (only the five most significant factors contributing to more than 1% of the total effects were shown) on the mean effective strain of LC. A longer bar indicates a more significant effect when varying parameters from a low to a high level. Blue bars indicate positive effects (strain reduction) and red bars indicate negative effects (strain increase).

Figure 5. ONH deformations induced by an adduction of 13° with the five main factors (ON tortuosity, dural radius, ON radius, scleral thickness and LC depth) at their low and high levels, respectively. The enlarged views of the ONH and LC show the color-coded effective strain. In the enlarged views, "Strain" represents the total LC effective strain induced by IOP, CSFP and eye movement, and "EM effect" represents the mean LC delta effective strains after removing the effects of IOP and CSFP. Note that the LC deformations were exaggerated 5 times for illustration purposes.

Figure 6. (A) Ranking of the effects of morphological factors, tissue stiffnesses and their interactions (factors contributing to more than 1% of the total effects were shown) on the mean effective strain of LC. A longer bar indicates a more significant effect when varying parameter from a low to a high level. Blue bars indicate positive effects (strain reduction) and red bars indicate negative effects (strain increase). (B) The interactions between dural radius and dural stiffness. When dural stiffness is at the low level, LC effective strain increased by 0.0093 (from 0.0210 to 0.0303) with an increase in dural radius. At the high level of dural stiffness, LC effective strain increased by 0.0140 (from 0.0259 to 0.0399) with the increase of dural radius. 0, low level; 1, high level.

TABLES

Table 1. Morphological factors and their ranges

Morphological factors	Baseline	Low	High	References
Dural radius, mm	2.17	1.74	2.61	Vaiman et al. ⁵⁶
Scleral thickness, mm	0.996	0.7968	1.19	Norman et al. ⁵⁷
Choroidal thickness, mm	0.134	0.1072	0.1608	Jiang et al. ⁵⁸
Retinal thickness, mm	0.249	0.1992	0.29	Alamouti ⁵⁹
ON radius, mm	1.333	1.0664	1.5996	Sigal et al. ⁶⁰
Pial thickness, mm	0.06	0.048	0.072	Sigal et al. ⁶⁰
Prelaminar tissue depth, mm	0.33	0.264	0.396	Bowd et al. ⁶¹
LC depth, mm	0.3	0.24	0.36	Tun et al. ⁵¹
PBT thickness, mm	0.083	0.0664	0.0996	Jonas et al. ⁶²
ON tortuosity	1.013	1.013	1.1	Wang et al. ¹⁵

Table 2. Tissue biomechanical properties

Tissue	Constitutive Model	Biomechanical Properties	References
Sclera	Mooney-Rivlin Von Mises Distributed Fibers	$c_1 = 0.805 \text{ MPa}$ $c_3 = 0.0127 \text{ MPa}$ $c_4 = 1102.25$ $k_f = 2$ (scleral ring) $k_f = 0$ (other region of sclera) θ_p : preferred fiber orientations*	Girard et al. ⁶³
PBT	Yeoh model	$c_1 = 0.1707 \text{ MPa}$ $c_2 = 4.2109 \text{ MPa}$ $c_3 = -4.9742 \text{ MPa}$	Wang et al. ⁶
Choroid	Isotropic Elastic	Elastic modulus = 0.6 MPa Poisson's ratio = 0.49	Friberg et al. ⁶⁴
Retina	Isotropic Elastic	Elastic modulus = 0.03MPa Poisson's ratio = 0.49	Miller ⁶⁵
Lamina Cribrosa	Mooney-Rivlin Von Mises Distributed Fibers	$c_1 = 0.05 \text{ MPa}$ $c_3 = 0.0025 \text{ MPa}$ $c_4 = 100$ $k_f = 1$ θ_p : preferred fiber orientation§	Zhang et al. ²⁰
Optic nerve	Isotropic Elastic	Elastic modulus = 0.03MPa Poisson's ratio = 0.49	Miller ⁶⁵
Pia	Yeoh model	$c_1 = 0.1707 \text{ MPa}$ $c_2 = 4.2109 \text{ MPa}$ $c_3 = -4.9742 \text{ MPa}$	Wang et al. ⁶
Dura	Yeoh model	$c_1 = 0.1707 \text{ MPa}$ $c_2 = 4.2109 \text{ MPa}$ $c_3 = -4.9742 \text{ MPa}$	Wang et al. ⁶
Fat	Isotropic Elastic	Elastic modulus = 0.027MPa Poisson's ratio = 0.49	Schoemaker et al. ⁶⁶
Orbit	Isotropic Elastic	Elastic modulus = 300 MPa Poisson's ratio = 0.49	Schoemaker et al. ⁶⁶

*Collagen fibers orientations in the scleral fiber ring were aligned circumferentially around the scleral canal. Fibers in other parts of the sclera were organized randomly. Fiber orientations were assigned to these elements using a custom-written MATLAB code.

§ Collagen fibers orientations in the LC were along the radial direction, extending from the central vessel trunk to the scleral canal.

Table 3. Biomechanical properties of five tissues and their ranges

Tissue	Constitutive Model	Material Constants (Baseline)	Material Constants (Low level)	Material Constants (High level)
Sclera	Mooney-Rivlin Von Mises Distributed Fibers	c1 = 0.805 MPa c3 = 0.0127 MPa c4 = 1102.25	c1 = 0.644 MPa c3 = 0.01016 MPa c4 = 881.8	c1 = 0.966 MPa c3 = 0.0152 MPa c4 = 1322.7
Dura	Yeoh model	c1 = 0.1707 MPa c2 = 4.2109 MPa c3 = -4.9742 MPa	c1 = 0.13656 MPa c2 = 3.36872 MPa c3 = -5.96904 MPa	c1 = 0.20484 MPa c2 = 5.05308 MPa c3 = -3.97936 MPa
Pia	Yeoh model	c1 = 0.1707 MPa c2 = 4.2109 MPa c3 = -4.9742 MPa	c1 = 0.13656 MPa c2 = 3.36872 MPa c3 = -5.96904 MPa	c1 = 0.20484 MPa c2 = 5.05308 MPa c3 = -3.97936 MPa
ON	Isotropic Elastic	0.03 MPa	0.024 MPa	0.036 MPa
Lamina Cribrosa	Mooney-Rivlin Von Mises Distributed Fibers	c1 = 0.05 MPa c3 = 0.0025 MPa c4 = 100	c1 = 0.04 MPa c3 = 0.002 MPa c4 = 80	c1 = 0.06 MPa c3 = 0.003 MPa c4 = 120