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Abstract
Increasing evidence proves the transcription of enhancer RNA (eRNA) and its important role in
gene regulation. However, we are only at the infancy stage of understanding eRNA interactions
with other biomolecules and the corresponding functionality. To accelerate eRNA mechanistic
study, we present the first integrative computational platform for human eRNA identification,
interactome discovery, and functional annotation, termed eRNA-IDO. eRNA-IDO comprises two
modules: eRNA-ID and eRNA-Anno. Functionally, eRNA-ID identifies eRNAs from de novo
assembled transcriptomes. The bright spot of eRNA-ID is indeed the inclusion of 8 kinds of
enhancer makers, whose combination enables users to personalize enhancer regions flexibly and
conveniently. In addition, eRNA-Anno provides cell/tissue specific functional annotation for any
novel and known eRNAs through discovering eRNA interactome from the prebuilt or user-defined
eRNA-coding gene networks. The pre-built networks include GTEx-based normal co-expression
networks, TCGA-based cancer co-expression networks, and omics-based eRNA-centric regulatory
networks. Our eRNA-IDO carries sufficient practicability and significance for understanding the
biogenesis and functions of eRNAs. The eRNA-IDO server is freely available at
http://bioinfo.szbl.ac.cn/eRNA_IDO/.
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I ntroduction

The past decade has seen increasing evidence confirming the pervasive transcription of noncoding
RNA from active enhancer regions, termed enhancer RNA (eRNA). Due to the dynamic nature of
enhancer activity across different tissues and lineages, eRNA transcription shows high specificity
to biological contexts [1]. eRNAS, once regarded as “transcription noise” or “byproduct” [2], have
now been widely validated to play important roles in diversified biological functions and diseases
such as cardiovascular development [3] and cancer [4]. Mechanistically, eRNA can promote
enhancer-promoter loops and regulate epigenetics through interacting with severa general factors,
including components of cohesion or mediator [5, 6], and histone acetyltransferases CBP/p300 [4,
7]. In addition, the interaction of eRNAs with transcription elongation factors can facilitate the
pause-release of RNA polymerase || pause-release to control transcription elongation.

Due to the increasing attention to eRNA functionality, severa databases have been designed
to characterize the transcription and potential targets of eRNAs, such as HeRA [8], TCeA [9],
Animal-eRNAdb [10], and eRic [11]. However, these databases only provided information on
annotated eRNA loci and enhancer regions, where users cannot investigate novel eRNAs.
Furthermore, despite the existence of many ncRNA functional annotation platforms, they are not
well-suited to eRNAs. For example, ncFANs v2.0 [12] requires known ncRNA identifiers as input,
but in fact eRNAs have no reference ID or symbol. AnnoLnc2 [13] predicts the functions of novel
INcRNAS based on co-expresson networks. Still, neither considers cell/tissue specificity nor
provides the eRNA-specific characteristics such as histone modification, chromatin architecture,
and interactive molecules. Until now, a comprehensive platform for eRNA functional annotation is
still lacking.

Therefore, we present the first one-stop platform for human eRNA identification, interactome
discovery, and functional annotation, termed eRNA-IDO (Figure 1). eRNA-IDO comprises two
available modules: eRNA-ID and eRNA-Anno. eRNA-ID enables users to define enhancers and
identifies enhancer-derived noncoding RNAs from the uploaded de novo assembled transcriptome.
eRNA-Anno predicts eRNA functions by discovering eRNA-connected protein-coding genes
(PCGs) in normal/cancer co-expression and eRNA-centric regulatory networks. All functions of

eRNA-IDO can be realized based on pre-built data and aso allow for user-defined data, thus
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carrying sufficient practicability and convenience for biological researchers. This web server is
freely available at http://bioinfo.szbl.ac.cn/feRNA_IDO/ and opens to all users, without a login

requirement.

Materials and Methods

Workflow and data ar chitecture of eERNA-ID

The left panel of Figure 1 shows the schematic workflow of eRNA-ID. eRNA-ID takes de novo
assembled transcripts of RNA-seq or GRO-seq data provided by users as input. The transcripts
overlapped with annotated PCGs, simple repeats, and blacklisted regions are removed according
to the GENCODE v33 reference [14]. Next, the coding potential of the remaining transcripts is
evaluated by CPC2 [15] (default parameter), and noncoding RNAs transcribed from enhancer
regions are predicted as eRNAs. Enhancer regions can be either uploaded by usersin BED format
or defined using our marker buffet. The marker buffet is composed of 8 kinds of enhancer markers,
including H3K27ac (Supplementary Table S1), H3K4mel (Supplementary Table S2),
chromatin accessibility (Supplementary Table S3), RNA polymerase Il binding (Supplementary
Table $4), super-enhancers from SEdb v2.0 [16], EnhancerAtlas v2.0 [17] enhancers, FANTOM5
[18] enhancers and SCREEN/ENCODE [19] enhancers, which are optionally overlapped or
merged (using bedtools multiinter/merge) to obtain high-confidence or comprehensive enhancer
profiles. The +/-3[ kb regions around the center of the selected markers are defined as potential
enhancer regions. These markers are cell/tissue-specific except those from FANTOMS and
SCREEN database. The data type, source, and number of biosamples of these enhancer markers
are listed in Table 1. Finally, eRNA-ID outputs the chromatin locations, adjacent genes (+/- 1Mb),

and enhancers of predicted eRNAS.

Workflow and data ar chitecture of eERNA-Anno

The right panel of Figure 1 shows the schematic workflow of eRNA-Anno. eRNA-Anno takes
either chromatin coordinates of novel eRNAs or the identifiers of known eRNAs annotated in
HeRA [8] and eRic [11] database as input. Novel eRNAs should be input in BED or GTF format.

For known eRNAs, the ENSR identifiers, chromatin coordinates, and adjacent genes (within
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+/-1Mb) are acceptable. Below is the detailed description for each procedure.

1. eRNA quantification

The expression levels of known eRNAs are obtained from HeRA and eRic. Suppose chromatin
coordinates of novel eRNAs serve as input, in that case, RNA-seq data from TCGA
(https://portal.gdc.cancer.gov/) and GTEx portal [20] are used to quantify eRNA expression. To
save the processing time, the expression levels are estimated based on the read coverage from

BigWig files. Theformulais:
Y (Cov) x 10°
RXLXT
Where Y,(Cov) is the total read coverage of a given eRNA region, Ris read length, L is eRNA

FPKM =

length, and T is the total mapped reads of the library.

2. Profiling genetic/epigenetic landscape

eRNA-AnNNno portrays a genetic/epigenetic landscape for eRNAS, including chromatin accessibility,
clinically relevant mutation, and histone modification (H3K27ac and H3K4mel). Histone
modification and chromatin accessibility are characterized based on ChiP-seq and
ATAC-seg/DNase-seg from Cistrome database [21] (Supplemental Table 1-3). Clinically relevant
mutations within the query eRNA regions are collected from ClinVar [22] and COSMIC [23]
database.

3. eRNA-PCG network congtruction

eRNA-ANNo constructs a co-expression network between eRNAs and PCGs and an eRNA-centric
regulatory network. Both user-uploaded expression matrix and publicly available data are
supported for the co-expresson network. Publicly available data refer to RNA-seq data of 52
normal tissues from GTEx porta [20] and 31 cancer types from the TCGA porta
(Supplementary Table S5). The toolkit GCEN [24] calculates Spearman correlation coefficients
and adjusted p-values.

For the eRNA-centric regulatory network, the relationships of eRNAs with TF, RBP, and E-P loop
are investigated. eRNA-TF interactions are obtained based on 11356 ChiP-seq datasets from
Cistrome database [21], which involve 1354 TFs and 642 cellg'tissues (Supplementary Table $4).
eRNA-RBP interactions are obtained based on 518 CLIP-seq datasets from POSTAR3 database

[25], which involve 221 RBPs and 34 cellg/tissues (Supplementary Table S6). TFs and RBPs
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with peaks located within eRNA regions are defined as potential regulators of eRNAs. E-P loops
identified by 200 HiChlP experiments across 108 cell types (Supplementary Table S7) are
collected from HiChIPdb [26]. The loops harboring anchors overlapped with query eRNAs are
defined as eRNA-mediated loop.

4. Subnetwork extraction

eRNA-ANNo extracts hubs/modules from the overall network to obtain the tightly connected PCGs
of query eRNAs. Module extraction uses SPICi [27] in the unweighted mode (default parameter).
5. Functional enrichment analyses

Functional enrichment analyses, including gene ontology (GO), KEGG pathway, and MSigDB
hallmark enrichment [28], are performed based on hypergeometric test using our in-house scripts

(https://github.com/zhangywQ713/FunctionEnrichment).

Results

eRNA-ID for eRNA identification

eRNA-ID is designed for eRNA identification based on de novo assembled transcriptome. As
shown in the input interface (http://bioinfo.szbl.ac.cn/eRNA_IDO/eRNA-ID), users need to
upload a transcriptome profile in GTF format, which can be generated from RNA-seq and
GRO-seq data, and define enhancer regions using our marker buffet or by uploading their BED
file. eRNA-ID adopts the similar analytical workflow used in ncFANs-eL.nc [12] to predict eRNAS
(see Materials and Methods). The major advantage of eRNA-ID compared to ncFANSs is the
inclusion of a pre-built buffet of 8 kinds of enhancer markers (H3K27ac, H3K4mel, chromatin
accessibility, RNA polymerase |1 binding, SEdb v2.0 super-enhancers, and three types of enhancer
annotations from EnhancerAtlas v2.0 [17], FANTOMS [18], and SCREEN [19] databases), which
enables users to personalize enhancer regions of their interests. For example, users may require
high-confidence enhancer regions ssmultaneously labeled by multiple markers or want to obtain as
many enhancers as possible by merging all markers. The processing procedure of eRNA-ID is fast;
a GRO-seq derived transcriptome with 3483 transcripts (SRA008244) and a total RNA-seq
derived de novo transcriptome with 222,848 transcripts (GSM2824220) cost 45 and 88 seconds
respectively (default parameters).

In the output interface of eRNA-ID (Figure 2), a table showing chromatin coordinates,
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enhancers, and putative targets (adjacent genes within +/- 1Mb of eRNAS) of predicted eRNASs is
provided. Users can also view the information in a genome browser based on JBrowse [29].
Moreover, users can conduct functional annotation for these novel eRNAs by clicking on the

“Deliver eRNA to eRNA-ANNo” button.

eRNA-Anno for interactome discovery and functional annotation

eRNA-Anno is designed for the network-based interactome discovery and functional annotation of
eRNAs. In this module, users need to input either chromatin coordinates of novel eRNAs (Figure
3A) or the identifiers/locations of known eRNAs annotated in the HeRA [8] and eRic [11]
database (Figure 3B), followed by network selection and parameter setting. eRNA-Anno first
quantifies the eRNA expression levels based on RNA-seq data from TCGA and GTEX portal. As
hundreds of RNA-seq samples take long processing time, we used the read coverages from
BigWig files to speed up the quantification (see Materials and Methods). To examine the
reliability of this method, we correlated the expression levels of known eRNAs based on this
method with those based on canonical method and obtained from HeRA and eRic database. As
expected, our method is highly correlated with canonical method using featureCounts [30]
(Figure S1A-B) and is approximately 400 times faster (Figure S1C).

Next, eRNA-IDO annotates the functions of eRNAs through discovering their interactomes.
Interactome discovery is based on the eRNA-centric networks. Networks include normal
co-expression networks based on GTEx expression profiles [20], cancer co-expression networks
based on TCGA expression profiles (https://portal.gdc.cancer.gov/), and eRNA-centric regulatory
networks. Co-expression relationships have been widely used to annotate the functions of eRNAs
[31-33]. Additionally, eERNAs were reported to exert regulatory functions through interacting with
other biomolecules, including transcription factors (TFs) [34-36], RNA binding proteins (RBPs) [4,
37, 38], and target gene activated by E-P loops [39, 40]. These interactions make the regulatory
network a powerful tool for eRNA functional annotation, resembling to those we used for other
NncRNASs [12, 41-44]. The procedure of network construction is shown in M aterials and M ethods.
Parameters include tissue/cancer type of expression profile, co-expression coefficient, significance
threshold, biosamples of interaction relationships, and epigenetic landscape (Figure 3C-D).

Once receiving launch instruction, eRNA-Anno will initiate the analytical procedure (see
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Material and Methods) to discover the potential targets of query eRNAs from the selected
networks and annotate their functions based on the hub- and module-based strategies. The whole
procedure will take tens of minutes, depending on the number of the input eRNAs (Figure. S2).
Therefore, we highly recommend users to set an email notification or record the task ID for result
retrieval, when a task with alarge set of eRNAsis submitted.

In the output interface, eRNA-Anno provides basic information about eRNAS (i.e., location
and expression, epigenetic landscape, and disease relevance) and putative targets and functions
based on different networks. In the section of “location and expression” chromatin coordinate, the
expression level in norma and cancer samples, adjacent genes (<=1Mb), and overlapped
super-enhancers are listed in the table (Figure 4A). To evaluate the activity of enhancers where
eRNA istranscribed, eRNA-Anno profiles active enhancer markers (H3K 27ac and H3K4mel) and
chromatin accessibility of eRNA regions (Figure 4B). Given that mutations in eRNA regions are
adways related to eRNA expression and subsequent disease development [45], the clinically
relevant mutations within query eRNA regions are shown (Figure 4C). The interactome and
predicted functions of eRNAs based on the selected networks are displayed in the second part
(Figure5). For example, in a cancer co-expression network (Figure 5A), the eRNA-PCG network
isvisualized in aforce-directed layout, and the functions of connected PCGs are provided (Figure
5B). Since genes with similar functions tend to be concentrically distributed, eRNA-Anno extracts
hubs and modules composed of tightly connected genes from the overall network (Figure 5D).
The function of query eRNAs can be inferred by the functions of the PCGs within the same
module or hub (Figure 5C).

Moreover, for the eRNA-centric regulatory network (Figure 5E), the relationships of eRNAs
with TFs, RBPs, and E-P loops are visualized in multiple modes, including network, table, and
genome browser. Similarly, the functions of eRNAs can be inferred by the related biomoleculesin
the overall network, modules, or hubs. After obtaining the results based on individuad networks,

users can combine them to get asummary (Figure 6).

A case study to showcase the usage of eRNA-ANNo
As the input interface has many user-dependent options and the output interface displays

interactive information, we show a case to well understand the usage and interpretation of results
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obtained from eRNA-Anno. CCAT1 and LINCO02257, characterized as colon cancer-associated
eRNASs [46, 47], were used in this study. We input them in GTF format, selected “TCGA-COAD”
and “GTEx-Colon Transverse” in eRNA quantification, chose co-expression and regulatory
networks, set parameters, and finally launched eRNA-Anno, as shown in Figure 3.

In the output interface, eRNA-Anno showed that both CCAT1 and LINC02257 exhibit higher
expression levelsin colorecta cancer (Figure 4A) and are enriched with active enhancer markers
(Figure 4B), which is in line with the published studies [46, 47]. In addition, CCAT1 and
LINC02257 regions harbor carcinoma-associated mutations (Figure 4C), indicating their clinical
significance. To evauate the interactome and functions of CCAT1 and LINC02257, we next
looked into the co-expresson network in colon adenocarcinoma. The topology of the
co-expression network showed limited connections between CCAT1 and LINC02257 (Figure5A),
indicating their large independence in regulating target gene expression. Besides, functional
enrichment analysis on the co-expressed protein-coding genes demonstrated that CCAT1 and
LINC02257 are potentially enriched for trandation and cell cycle pathways (Figure 5B). The
module involved in CCAT1 precisely pinpointed the role of CCAT1 in regulating the cell cycle
(Figure 5C-D), which conforms to previous finding [48, 49]. Moreover, the eRNA-centric
regulatory network detected the interactive TFs, RBPs and the genes targeted by E-P loops, and
simultaneously revealed the potential functions of CCAT1 and LINCO02257 in cell cycle and
cancer pathways. To intuitively visualize eRNA locations and the mutational, epigenetic and
interactive landscapes, a genome browser based on JBrowse [29] was provided (Figure 5E).
Finally, we overlapped the nodes and edges between the eRNA-centric regulatory network and
cancer co-expression network. We discovered high-confidence interactions of CCAT1 in a cell
cycle-related module (Figure 6), of which some targets such as CDK4 [50] and SOX4 [51] had
been reported. This case study exemplifies the potential of eRNA-Anno, showing how it can

provide comprehensive and reliable prediction on eRNA interactome and functions.

Discussion
As a web server dedicated for eRNA, eRNA-IDO endows eRNA identification, interactome

discovery and functional annotation in a convenient manner. The major advantage of eRNA-IDO
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include but are not limited to the below:

1) eRNA-ID provides a combination of multiple enhancer markers to realize convenient and
personalized definition of enhancer regions. Compared to ncFANs-eLnc [12] with only
H3K27ac marker, eRNA-ID includes 8 kinds of enhancer markers.

2) eRNA-Anno serves for any novel and known eRNAs. Considering the poor
characterization of eRNAS, the applicability to novel eRNAs endows eRNA-Anno with
higher flexibility and biological practicability compared to other tools requiring known
identifiers such as ncFANs [12] and the databases [8-11].

3) Biologica context-specific expresson and interaction profiles are pre-built in
eRNA-Anno. Comparing to the tools without biological specificity such as AnnoLnc2
[13], eRNA-AnNNo is expected to provide more precise clues for the in vivo investigations.
Also, the pre-built profiles enable the service in amore convenient and expedite manner.

4) eRNA-IDO isthe first one-stop platform for eRNA identification, interactome discovery,
and functional annotation.

We also acknowledge that there remain some drawbacks and will put continuous effort to
overcome them. First, our eRNA-IDO is currently designed for human data. More species will be
supported in future. Second, further characteristics of eRNAs such as m°A modification [52] and
RNA structure [53, 54] are essentia for eRNA functionality but have not been investigated by
eRNA-Anno. Third, current eRNA-IDO only considers normal tissue and cancer. More disease-
and cell-specific expression and interaction profiles will be incorporated. Hopefully, our
eRNA-IDO will benefit from user feedback and become more powerful upon our continuous

updates.

Funding

This work was supported by the National Natural Science Foundation of China (no. 32100533, ho.
31970630), Open grant funds from Shenzhen Bay Laboratory to L.L. (no. SZBL2021080601001),

and the Natural Science Foundation of Zhejiang Province (no. LY 21C060002).


https://doi.org/10.1101/2023.12.19.572028
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.19.572028; this version posted December 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Conflict of interest

The authors declare that they have no competing interests.

Figure

Figure 1. The workflow of eRNA-IDO. eRNA-IDO comprises two functional modules: eRNA-ID
for eRNA identification and eRNA-Anno for interactome discovery and functional annotation.
Figure 2. The output interface of eRNA-ID. The predicted eRNA locations, enhancer regions,
markers for active enhancers, putative targets (adjacent genes), and overlapped IncRNAs are
shown in atable and can be visualized in the genome browser. More detail s are shown in the demo:
http://bioinfo.szbl.ac.cn/eRNA_1DO/retrieve/?taskid=5a9L FX S8oGCm.

Figure 3. The input interface of eRNA-ANNo, (A) including a potential eRNA list, optional target
candidates, parameters for eRNA quantification, network selection, and genetic/epigenetic
landscape. (B) Input interface for known eRNAs annotated in HeRA [8] and eRic [11]. (C)
Parameters of co-expression network and (D) eRNA-centric regulatory network.

Figure 4. The output interface of eRNA-Anno shows the basic information of query eRNA
CCAT1 and LINC02257, including (A) location and expression level, (B) epigenetic landscape,
and (C) mutation-based disease relevance. (D) The genome browser can be activated by clicking
on the button “Visudization in genome browser”. More details are shown in the demo:
http://bioinfo.szbl.ac.cn/eRNA_IDO/retrieve/taskid=97XPLicEAj4euY G/.

Figure 5. The output interface of eRNA-Anno shows the interactomes and functions of CCAT1
and LINC02257 based on (A) co-expression networks and (B) regulatory networks.

Figure 6. Summary of the interactome and functions of query eRNAs based on the combination of
co-expression network and regulatory network. Upon (A) parameter setting, (B) a high-confidence
network composed of the overlapped nodes and edges is generated for CCAT1 and LINC02257.
(C) The module involved in CCAT1 indicates its interactive genes and functions in cell cycle

regulation.

Table

Table 1. Data type, source, and the number of biosamples of enhancer markers
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Supplementary Figures

Supplementary Figure 1. Comparison of the strategies for eRNA quantification. (A-B)
Distribution of Pearson correlation coefficients of eRNA levels quantified by our methods with
those collected from (A) HeRA and (B) eRic database. (C) Comparison of the running time
between our method and canonica featureCounts [30]. The test sample is
GTEX-ZY FC-2626-SM-5NQ6S from GTEXx database. The task was done on a Dell Precision
T7920 workstation with single core.

Supplementary Figure 2. The running time of eRNA-Anno across the different eRNA numbers.

X-axis and y-axis represent the input eRNA numbers and the running time, respectively.

Supplementary Tables

Supplementary Table 1. ChlP-seq dataset of H3K 27ac modification
Supplementary Table 2. ChlP-seq dataset of H3K4mel modification
Supplementary Table 3. ATAC-seg/DNase-seq datasets of chromatin accessibility
Supplementary Table 4. ChlP-seq datasets of 1354 TFs

Supplementary Table 5. Normal tissue- and cancer-specific RNA-seq datasets
Supplementary Table 6. CLIP-seq datasets of RBPs

Supplementary Table 7. HiChlP datasets from HiChlPdb
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