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Gut microbial carbohydrate metabolism 
contributes to insulin resistance

Tadashi Takeuchi1, Tetsuya Kubota1,2,3,4,5 ✉, Yumiko Nakanishi1,2, Hiroshi Tsugawa6,7,8,9, 

Wataru Suda10, Andrew Tae-Jun Kwon11, Junshi Yazaki12, Kazutaka Ikeda7,13, Shino Nemoto1, 

Yoshiki Mochizuki12, Toshimori Kitami14, Katsuyuki Yugi15,16,17, Yoshiko Mizuno18,19, 

Nobutake Yamamichi20, Tsutomu Yamazaki21, Iseki Takamoto3,22, Naoto Kubota3, 

Takashi Kadowaki3,23, Erik Arner11, Piero Carninci24,25, Osamu Ohara12,13, Makoto Arita7,8,26,27, 

Masahira Hattori10, Shigeo Koyasu28 & Hiroshi Ohno1,2,8 ✉

Insulin resistance is the primary pathophysiology underlying metabolic syndrome 

and type 2 diabetes1,2. Previous metagenomic studies have described the 

characteristics of gut microbiota and their roles in metabolizing major nutrients in 

insulin resistance339. In particular, carbohydrate metabolism of commensals has been 

proposed to contribute up to 10% of the host9s overall energy extraction10, thereby 

playing a role in the pathogenesis of obesity and prediabetes3,4,6. Nevertheless, the 

underlying mechanism remains unclear. Here we investigate this relationship using  

a comprehensive multi-omics strategy in humans. We combine unbiased faecal 

metabolomics with metagenomics, host metabolomics and transcriptomics data to 

profle the involvement of the microbiome in insulin resistance. These data reveal that 

faecal carbohydrates, particularly host-accessible monosaccharides, are increased in 

individuals with insulin resistance and are associated with microbial carbohydrate 

metabolisms and host infammatory cytokines. We identify gut bacteria associated 

with insulin resistance and insulin sensitivity that show a distinct pattern of 

carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated 

bacteria ameliorate host phenotypes of insulin resistance in a mouse model. Our 

study, which provides a comprehensive view of the host3microorganism relationships 

in insulin resistance, reveals the impact of carbohydrate metabolism by microbiota, 

suggesting a potential therapeutic target for ameliorating insulin resistance.

We analysed 306 individuals (71% male) aged from 20 to 75 years 

(median age, 61 years), who were recruited during their annual health 

check-ups (Extended Data Fig. 1a). Individuals diagnosed with diabetes 

were excluded to avoid any long-lasting effects of hyperglycaemia5,6. 

Consequently, our study included relatively healthy individuals com-

pared with most of the previous metagenomic studies of diabetes 

and obesity538,11,12; the median (interquartile range (IQR)) body mass 

index (BMI) and glycated haemoglobin (HbA1c) were 24.9)kg)m22 

(22.2327.1)kg)m22) and 5.8% (5.536.1%), respectively (Supplementary 

Table 1). The main clinical phenotype analysed in this study was insulin 

resistance (IR), which we defined as a homeostatic model assessment of 

IR (HOMA-IR) score of at least 2.5 (ref. 13). We also analysed the associa-

tions between faecal metabolites and metabolic syndrome (MetS), an 

IR-related pathology. The clinical characteristics of IR and MetS largely 

overlapped except for blood pressure and sex ratio, for which there 

was no difference between individuals with IR versus normal insulin 

sensitivity (IS) (Supplementary Table 1). Untargeted metabolomics 

analysis using two mass spectrometry (MS)-based analytical platforms 
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identified 195 and 100 annotated faecal and plasma hydrophilic metab-

olites, and 2,654 and 635 annotated faecal and plasma lipid metabolites, 

respectively (Extended Data Fig. 1a). To identify the overall difference 

in microbial functions, faecal metabolites and predicted genes were 

summarized into co-abundance groups (CAGs) and KEGG categories, 

respectively (Extended Data Fig. 1b). Transcriptomic information of 

peripheral blood mononuclear cells (PBMCs) was obtained using the 

cap analysis of gene expression (CAGE) method14, which can measure 

gene expression at the transcription-start-site resolution.

To examine how omics data of faecal samples can predict IR, we first 

compared the area under the curve (AUC) of receiver operating charac-

teristic (ROC) curves on the basis of random-forest classifiers. Predictor 

variables for the models were selected using the minimum-redundancy 

maximum-relevance algorithm15 from the faecal 16S, metabolome, 

metagenome and their merged datasets (Supplementary Table 2). 

We found that the selected features of faecal metabolomic data gen-

erally outperformed those of 16S and metagenomics in predicting IR 

(Fig. 1a), suggesting that faecal metabolomics could be used to study 

IR pathogenesis.

Faecal carbohydrates are increased in IR

We next searched for the associations between clinical phenotypes and 

faecal metabolite CAGs (Fig. 1b and Supplementary Tables 338). Major 

confounding factors, namely sex and age, were adjusted throughout the 

correlation and regression analyses with clinical markers. Among the 

hydrophilic metabolites, most of the CAGs showing significant associa-

tions with IR were those of carbohydrate metabolites, mainly mono-

saccharides (hydrophilic CAGs 5, 12 and 15; Fig. 1b, top). Short-chain 

fatty acids (SCFAs), which are known as carbohydrate fermentation 

products, were also increased in IR (hydrophilic CAG 8). Hydrophilic 

CAG 18 remained unannotated as it included metabolites from dif-

ferent pathways (Supplementary Table 5). KEGG pathway enrich-

ment analysis of the metabolites in these IR-related hydrophilic CAGs 

revealed that these metabolites were indeed involved in carbohydrate 

metabolism (Extended Data Fig. 2a). Specifically, we found that the 

major monosaccharides such as fructose, galactose, mannose and 

xylose significantly correlated with IR (Fig. 1c). Among the SCFAs, 

propionate was particularly increased in IR (Extended Data Fig. 2b), 

consistent with its role in gluconeogenesis16. Faecal monosaccharides 

were similarly increased in MetS, obesity and prediabetes (Fig. 1d and 

Extended Data Fig. 2c,d). By contrast, disaccharides showed weak or 

no association (Extended Data Fig. 2b3d). These findings show that 

the end products of carbohydrate degradation4such as monosaccha-

rides, which are readily absorbed and used by the host4are particularly 

increased in the faeces of individuals with IR and MetS. Supporting 

these findings, our analysis of previously published faecal metabo-

lomics data from the TwinsUK cohort17 showed that faecal monosac-

charides, notably glucose and arabinose, were positively associated 

with obesity and HOMA-IR, both of which relate to IR (Extended Data 

Fig. 3a3c and Supplementary Table 9). Similarly, the peak intensity 

of faecal fructose, glucose and galactose was associated with BMI in 
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Fig. 1 | Faecal carbohydrate metabolites are distinctly altered in IR. a, Left, 

the AUC of random forest classifiers was used to predict IR based on genus- 

level 16S (n)=)282), metagenome at the KEGG orthologue (KO) level (n)=)266), 

faecal metabolome and metagenome (KEGG orthologue))+)faecal metabolome 

(n)=)266) data. The number of featured markers selected from the datasets 

increases along the x axis. Right, the box plots show the AUC obtained by selected 

features. Each dot represents an AUC value of a random-forest classifier using  

a given number of selected features as predictor variables. b, CAGs of faecal 

hydrophilic metabolites (hydroCAG, top) and lipid metabolites (lipidCAG, 

bottom), and clinical phenotypes and markers (n)=)282). The two-column heat 

map on the left represents the associations with the main clinical phenotypes 

(IR and MetS) analysed using rank-based linear regression, whereas the main 

heat map shows the partial Spearman9s correlations (pSC) adjusted by age  

and sex with representative metabolic markers. Only the CAGs with adjusted  

P (Padj))<)0.05 are coloured. The category names for CAGs were determined on 

the basis of the most abundant metabolites in the CAGs. Further details are 

provided in Supplementary Tables 338. FBG, fasting blood glucose; neg., 

negative; pos., positive. The lipid abbreviations are defined in Supplementary 

Table 27. c, pSC between HOMA-IR and faecal levels of monosaccharides. The 

coefficients (pSC) and Padj values are described (n)=)282). d, Faecal levels of 

monosaccharides in MetS (n)=)306). For a, the box plots indicate the median 

(centre line), upper and lower quartiles (box limits), and upper and lower 

extremes except for outliers (whiskers). conc., concentration. For c, the density 

plots indicate median and distribution. For a and d, statistical analysis was 

performed using Kruskal3Wallis tests followed by Dunn9s test (a) and rank-based 

linear regression adjusted by age and sex (d); *P)<)0.05, **P)<)0.01, ***P)<)0.001. 

See the Source Data (a) and Supplementary Table 5 (d) for exact P values.
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a small number of individuals without inflammatory bowel disease 

(IBD) from HMP2 data18 (Extended Data Fig. 3d). Together, these find-

ings indicate that faecal carbohydrates are increased in IR and related 

pathologies and that this alteration is consistently observed across  

populations.

In addition to hydrophilic metabolites, faecal lipid CAGs were also 

associated with IR (Fig. 1b). Lysophospholipids, bile acids and acyl-

carnitine were associated with IR and MetS as reported previously19. 

Among them, a lipid CAG largely consisting of digalactosyl/glucosyl-

diacylglycerol (DGDG) (lipid CAG 11) came to our attention as DGDG is 

reportedly derived from bacteria20,21. These lipids contain glucose and/

or galactose in their structures, although their biological functions in 

mammals are largely unclear. Most of the DGDGs in this cluster showed 

positive correlations with some of the precursor diacylglycerols and 

monosaccharides (that is, glucose and galactose) (Extended Data 

Fig. 4a). As diacylglycerols are deeply involved in IR pathogenesis22, 

the biological functions of this metabolite class are of particular inter-

est. Notably, DGDGs with different acyl chains in lipid CAG 41 showed 

no association with IR (Supplementary Table 7), implying that the dif-

ferences in acyl chains of lipids may have a physiological importance 

as reported previously23.

Microorganism–metabolite relationships in IR

We next investigated the alteration in gut microbiota and the functions 

of gut microbiota that are associated with IR. Gut microbiota diver-

sity varied among individuals (Extended Data Fig. 5a3e). We then pro-

filed the genus-level microbial composition of the study participants 

using 16S rRNA sequencing data24 and identified four bacterial groups 

(Extended Data Fig. 5f). Group 1 was dominated by the Lachnospiraceae 

family such as Blautia and Dorea, whereas group 2 was characterized by 

Bacteroidales (such as Bacteroides, Parabacteroides and Alistipes) and 

Faecalibacterium. Group 3 contained Actinobacteria genera. Group 4  

did not form a distinct network. We could further classify the study 

participants into four clusters, A to D, on the basis of their taxonomic 

profiles (Fig. 2a). Individuals in cluster C distinctly harboured group 2 
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Fig. 2 | IR-associated faecal metabolites are associated with altered gut 

microbiota and microbial genetic functions. a, Co-abundance clusters of 

bacteria at the genus level and their abundance (n)=)282). The participants were 

classified into four clusters, A to D, according to their taxonomic profiles. The 

proportion of individuals with IR are shown. Mid, intermediate. b, HOMA-IR, 

BMI, triglycerides (TG) and HDL-C levels among the participant clusters.  

c, Bacteria3metabolite networks of co-abundance microbial groups from a  

and faecal metabolites (n)=)282). All faecal hydrophilic and bacteria-related 

lipid metabolites were included. Only interactions with positive and significant 

(Padj)<)0.05) Spearman9s correlations are shown. The metabolites in CAGs 

relating to carbohydrates in Fig. 1b are highlighted in red. Unclust., unclustered. 

d, The number of significant positive and negative correlations between 

genera and faecal carbohydrates. The top five genera in each correlation are 

shown. e, KEGG pathways relating to carbohydrate metabolism and membrane 

transport, faecal carbohydrates, the top three genera positively or negatively 

correlated with faecal carbohydrates, and the participant clusters. KEGG 

orthologues significantly (Padj)<)0.05) associated with the metabolite (left) and 

taxonomic abundance (right) are summarized as the percentage enrichment 

among KEGG pathways. The median percentage of 15 faecal carbohydrates 

(carb.) is shown in colour (blue to red) on the left, whereas the percentage 

enrichment is shown as the disk size on the right; the Spearman9s correlations 

between pathway-level abundance and six genera are shown in colour (blue to 

yellow) in the middle (n)=)266). f, The abundance of representative KEGG 

orthologues involved in glycosidase among the participant clusters (n)=)266). 

The abundance was transformed by arcsine square root transformation. The 

density plots in b and f indicate the median and distribution. Statistical analysis 

was performed using rank-based linear regression adjusted by age and sex  

(b; Supplementary Table 10), two-sided Wilcoxon rank-sum tests with multiple- 

testing correction (e; Supplementary Table 16), and Kruskal3Wallis tests with 

Dunn9s test (f; Supplementary Table 18). *P < 0.05, **P < 0.01, ***P < 0.001 in 

comparison to cluster C (with the lowest proportion of IR) (b and f).
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with Bacteroidales, whereas those in cluster D showed a higher abun-

dance of group 1 and 3 bacteria (Extended Data Fig. 5g). Notably, the 

proportion of IR (Fig. 2a; P)=)0.0071) was significantly lower in cluster C.  

Other metabolic parameters associated with IR and MetS such as 

HOMA-IR, BMI, triglycerides, HDL-cholesterol (HDL-C) and adiponectin 

were also different between cluster C (with the lowest proportion of 

IR) and the other three clusters (Fig. 2b and Supplementary Table 10). 

The proportion of IR among individuals with abundant group 1 and 

3 bacteria was consistently higher than those with abundant group 

2 bacteria, as identified on the basis of shotgun metagenomics data 

(Extended Data Fig. 5h). HOMA-IR showed negative associations with 

the genus Alistipes in the Rikenellaceae family and several species from 

Bacteroides, Bifidobacterium and Ruminococcus (Extended Data Fig. 5i 

and Supplementary Tables 11 and 12), partly recapitulating previous 

reports regarding individuals with obesity25327. Notably, different genera 

and species correlated with other clinical markers, suggesting that the 

individual association between microbial taxa and clinical manifesta-

tion is not as robust as in the co-abundance analysis.

We next constructed a microorganism3metabolite network on the 

basis of the significant positive or negative correlations (Supplemen-

tary Table 13). Although faecal SCFAs and lipids such as DGDG corre-

lated with both IR- and IS-associated bacterial groups, IR-associated 

faecal carbohydrates predominantly correlated with genera in groups 1 

and 4, the most prominent being Dorea in Lachnospiraceae (Fig. 2c,d). 

By contrast, the majority of these carbohydrates negatively corre-

lated with IS-associated genera in group 2 bacteria such as Bacteroides, 

Alistipes and Flavonifractor (Fig. 2d and Extended Data Fig. 5j), with 

minimal correlations with bacteria in group 1. Accordingly, the faecal 

carbohydrate levels were distinctly different among the participant 

clusters (Extended Data Fig. 5k). Previous studies have suggested 

that several Lachnospiraceae species are involved in polysaccharide 

fermentation28,29, while Alistipes is increased on an animal-based diet 

rather than a polysaccharide-rich diet30. These findings highlight a tight 

connection between carbohydrate-degradation products and IR- and 

IS-associated bacteria, suggesting that these bacteria may be involved 

in the aberrant faecal carbohydrate profile in IR.

The IR-associated faecal carbohydrates were also correlated with 

KEGG pathways relating to carbohydrate metabolism and transpor-

tation, such as the phosphotransferase system (PTS), starch and 

sucrose metabolism, and galactose metabolism, while negatively 

associated with pathways relating to carbohydrate catabolism, such 

as glycolysis and pyruvate metabolism (Fig. 2e and Supplementary 

Tables 14 and 15). These pathways were also distinctly correlated with 

the participant clusters defined in Fig. 2a and the genera relating to 

carbohydrates defined in Fig. 2d. Amino acid metabolism was also 

different, particularly between clusters C and D, whereas lipid metabo-

lism did not show distinct associations with microbiota (Extended 

Data Fig. 6a,b and Supplementary Table 16). Although carbohydrate 

pathways such as PTS and starch and sucrose metabolism showed 

strong positive associations with HbA1c and ³-GTP, the associations 

with other IR markers were generally sparse (Extended Data Fig. 6c 

and Supplementary Table 17), suggesting that metabolites are more 

sensitive to the clinical manifestations as shown in Fig. 1a. PTS is an 

essential component for bacteria to incorporate sugars into themselves 

as energy sources31. Detailed analyses of KEGG orthologues revealed 

that faecal carbohydrates and participant clusters mainly correlated 

with PTSs relating to disaccharides and amino sugars (Extended Data 

Fig. 6d,e and Supplementary Table 18), suggesting that the preference 

of sugar use by microbiota through PTS may affect the metabolite 

levels. Glycosidases, which catalyse the breakdown of oligo- and disac-

charides32, were also associated with faecal monosaccharides (Extended 

Data Fig. 6f). Extracellular glucosidases such as ³-fructofuranosidase 

(K01193, KEGG Orthology database), amylosucrase (K05341, KEGG 

Orthology database) and oligo-1,6-glucosidase (K01182, KEGG Orthol-

ogy database), which were predicted to degrade sucrose and dextrin 

into glucose and fructose (Extended Data Fig. 6g,h), showed the high-

est positive correlations, especially with faecal glucose. By contrast, 

glucosidases relating to starch use such as ³-amylases (K01176 and 

K07405, KEGG Orthology database) were negatively linked with faecal 

carbohydrates. Importantly, the abundance of these glycosidase genes 

was significantly different between participant cluster C and the other 

three clusters, suggesting that taxonomic profiles largely explain the 

variations of glucosidases (Fig. 2f, Extended Data Fig. 6h and Supple-

mentary Table 18). Consistently, disaccharide-breakdown genes were 

predominantly conserved in the genomes of Blautia and Dorea abun-

dant in cluster D, whereas they were almost lacking in Bacteroidales 

abundant in cluster C (Extended Data Fig. 6i). Together, our findings 

reveal four distinct populations with unique taxonomic profiles and 

carbohydrate metabolisms characterized by sugar use and degrada-

tion, which correlate with IR and its related markers.

Faecal carbohydrates and inflammation in IR

Consistent with previous reports1,2, the host cytokine, metabolomic 

and transcriptomic signatures were highly associated with IR (Sup-

plementary Tables 19321). Moreover, many of these PBMC genes were 

functionally involved in inflammation (Extended Data Fig. 7a) and 

possibly derived from monocytes (Supplementary Table 21). Several 

studies have suggested that microbial components such as lipopoly-

saccharides have a role in facilitating inflammation of metabolic  

diseases33,34. However, it remains unclear whether microbial metabo-

lism is involved in low-grade inflammation. We therefore tried to infer 

possible associations between host inflammatory signatures of IR and 

faecal carbohydrates. First, the cross-omics correlation-based network 

with individual metabolites, bacteria, transcripts and cytokines associ-

ated with IR revealed that faecal carbohydrates were strongly tied with 

both bacteria and host IR-related signatures, especially cytokines, sug-

gesting that these metabolites are the hubs of the host3microorganism  

network in IR (Fig. 3a, Extended Data Fig. 7b,c and Supplementary 

Table 22). Differential abundance, calculated as the ratio of their abun-

dance in IR and IS, was most pronounced in the associations between 

faecal carbohydrates and cytokines. Notably, IL-10, a plasma cytokine, 

showed the most prominent associations with faecal carbohydrates 

and modestly with PBMC-derived transcripts, supporting recent stud-

ies showing its paradoxical effect to facilitate IR35337. Faecal carbohy-

drates moderately explained the variance of IL-10 and, to a lesser extent,  

adiponectin, leptin and serpin E1, suggesting that faecal carbohydrates 

are particularly associated with these cytokines (Fig. 3b). Although 

the proportions of variance explained by faecal carbohydrates were 

lower than by plasma metabolites, they were much higher than those 

by genus-level abundance, highlighting the role of faecal metabo-

lites linking gut microbiota and host inflammatory responses. We 

next sought to infer whether these cytokines mediated the effects 

of faecal carbohydrates on host metabolism using causal mediation  

analyses38. We found that IL-10, serpin E1, adiponectin and leptin medi-

ated most in silico causal relationships between faecal carbohydrates 

and host IR markers such as HOMA-IR (Fig. 3c, Extended Data Fig. 7d 

and Supplementary Table 23). Notably, there were unique correspond-

ences between metabolites and cytokines; for example, IL-10 mediated 

the effects of fructose, mannose, xylose and rhamnose, but not other 

metabolites. Although the biological importance of these unique cor-

respondences remains to be investigated, the combined analyses of 

faecal microbiota, metabolome and host inflammatory phenotypes in 

IR suggest a previously unrecognized interaction, whereby excessive 

monosaccharides may affect host cytokine expression.

IS-associated bacteria in experimental models

The above findings from human multi-omics analyses revealed an asso-

ciation between carbohydrate metabolites and IR pathology. To address 
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the causal relationship between gut microbiota, faecal carbohydrates 

and metabolic diseases, we first analysed metabolites in the bacterial 

culture of 22 human faecal IS- and IR-associated bacteria. These bac-

teria were selected on the basis of the findings from the genus-level 

co-occurrence (Fig. 2a,b) and the species-level (Extended Data Fig. 5i) 

profiles. Principal component analysis plots of 198 metabolites indi-

cated that Bacteroidales, a representative IS-associated bacterial order, 

showed a distinct metabolic profile along PC1 (Extended Data Fig. 8a,b 

and Supplementary Table 24). The top 10 metabolites contributing to 

the group separation included several amino acids and fermentation 

products such as succinate and fumarate, and the majority of these 

metabolites were preferentially produced by Bacteroidales (Extended 

Data Fig. 8b,c). We detected 13 out of 15 carbohydrates associated with 

IR (Fig. 1b) in the bacterial culture (Extended Data Fig. 8b). Most of 

these carbohydrates were plotted negatively along PC1, suggesting 

that these metabolites were negatively associated with Bacteroidales. 

Glucose, mannose and glucosamine were preferentially consumed 

by Bacteroidales compared with the other orders, whereas lactulose 

was mainly produced by Eubacteriales (Extended Data Fig. 8d). Alis-

tipes indistinctus was the most potent in consuming a wide variety 

of carbohydrates (Extended Data Fig. 8e,f). These findings show that 

Bacteroidales species are potent consumers of several carbohydrates, 

driving the production of their fermentation products.

We next tested the potential therapeutic effects of seven candidate 

bacteria shown to be associated with IS in human cohort findings. 

Postprandial blood glucose levels were particularly reduced in mice 

administered with A. indistinctus, Alistipes finegoldii and Bacteroides 

thetaiotaomicron that were fed a high-fat diet (Fig. 4a). Insulin toler-

ance tests also revealed that these strains ameliorated IR, most prom-

inently by A. indistinctus administration (Fig. 4b,c). A. indistinctus  

administration ameliorated body mass gain, ectopic triglyceride 

accumulation in the liver and glucose intolerance (Extended Data 

Fig. 9a3d). Serum levels of HDL-C, adiponectin and, to a lesser extent,  

triglycerides, were also improved in mice that were treated with  

A. indistinctus (Extended Data Fig. 9e3g). The findings of the hyperin-

sulinaemic3euglycaemic clamp analysis indicated that A. indistinctus 

administration significantly improved IR and, particularly, whole-body 

glucose disposal (Extended Data Fig. 9h3j). Phosphorylation of AKT 

in the liver and epididymal fat was increased in mice treated with  

A. indistinctus and A. finegoldii mice (Extended Data Fig. 9k,l), sug-

gesting that insulin signalling was improved in the liver and adipose 
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tissue. These findings reveal a potency of A. indistinctus administration 

in ameliorating diet-induced obesity and IR.

Mechanistically, metabolic measurement revealed that carbohydrate 

oxidation was significantly reduced in mice that were treated with  

A. indistinctus, implying that carbohydrate use is limited (Extended Data 

Fig. 9m and Supplementary Table 25). As dietary intake and locomotor 

activity remained unchanged (Extended Data Fig. 9n,o), we reasoned 

that host-accessible carbohydrates in the intestine were reduced by 

treatment with A. indistinctus. In this regard, A. indistinctus admin-

istration substantially altered caecal metabolites, characterized by 

a reduction in several carbohydrates including fructose, a lipogenic 

monosaccharide39 (Extended Data Fig. 10a3c and Supplementary 

Table 26). Fructose was similarly reduced in the serum (Extended Data 

Fig. 10d). Importantly, the AUC of insulin tolerance test was positively 

correlated with the caecal monosaccharides fructose, glucose and 

mannose (Fig. 4d). Collectively, these findings reveal that A. indistinctus 

ameliorates IR and affects intestinal carbohydrate metabolites in mice, 

supporting our observations in the human cohort.

Discussion

To deepen our understanding of the host3microorganism relationship 

in IR, we used multimodal techniques to conduct a comprehensive 

and extensive study investigating the interactions between the gut 

microbiome and metabolic diseases in humans. Although carbohy-

drate metabolism by the gut microorganisms has been suggested to 

influence the pathogenesis of obesity3,4,25 and prediabetes6,8, the actual 

mechanistic linkage has been elusive in humans owing to the lack of 

detailed metabolomic information. In this regard, the major strength 

of our approach is that we combine faecal metabolomics catalogu-

ing more than 2,800 annotated metabolites with both microbiome 

and host pathology. This metabolome-based approach enabled us 

to identify the faecal metabolites related to IR, identify an associa-

tion between faecal carbohydrates and low-grade inflammation of IR, 

and efficiently select candidate strains for functional validations in 

experimental settings (Extended Data Fig. 10e). Together, our study 

highlights the advantage of comprehensive omics strategy in explor-

ing the involvement of microbial metabolism and their products in 

the pathogenesis of IR. Excessive monosaccharides have the potential 

to promote ectopic lipid accumulation while also activating immune 

cells, leading to low-grade inflammation and IR40342. Fructose is a widely 

recognized risk factor for inflammation and IR due to its role in lipid 

accumulation39, whereas galactose has been shown to participate 

in the energy metabolism of activated immune cells43. Our in vivo 

studies confirm that A. indistinctus administration improves lipid 

accumulation and thereby IR, while simultaneously reducing intesti-

nal monosaccharide levels (Fig. 4d). Nevertheless, we are aware that 

further mechanistic studies are needed to examine the kinetics of 

absorption and their effects on host metabolism. In particular, how 

Alistipes strains suppress carbohydrate metabolism is an intriguing 

question (for example, whether these bacteria per se inhibit carbohy-

drate metabolism, or whether they interact with other commensals), 

as it would directly open the possibility of a new therapeutic strategy. 

Given that A. indistinctus improved whole-body IS (Extended Data 

Fig. 9i), it would be important to investigate the involvement of insulin 

signalling not only in the liver but also in peripheral tissues, including 

skeletal muscle and adipose tissue, along with the accumulation of 

specific lipid molecules (such as ceramides and diacylglycerols) in 

these tissues. Such investigations hold the potential to shed light on 

the underlying mechanisms that contribute to A. indistinctus-mediated 

improvement of IR. Finally, two participants in the human study were 

unable to collect their faeces in the morning, which could potentially 

influence the outcomes due to the lack of stringent control over 

time-of-day and fasting conditions. We therefore believe that longi-

tudinal studies incorporating a timely documentation of dietary habits 

are warranted to dissect the intricate impacts of microbial metabolism 

on the trajectory of diabetes and its complications while accounting 

for potential confounding factors.
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Methods

Study participants and data collection

The study participants were recruited from 2014 to 2016 during their 

annual health check-ups at the University of Tokyo Hospital. The indi-

viduals included both male and female Japanese individuals aged from 

20 to 75 years. The exclusion criteria were as follows: established diag-

nosis of diabetes, routine use of medications for diabetes and/or intesti-

nal diseases, use of antibiotics within 2)weeks before sample collection 

and loss of 3)kg of body weight in the 3)months before sample collection. 

Written consent was obtained from the participants after a thorough 

explanation of the nature of the study at their health-checkups.

To normalize the participants9 clinical characteristics, we planned 

to recruit around 100 healthy individuals, 100 individuals with obesity 

(BMI)g25, based on the Japanese definition) and 100 individuals with a 

prediabetic condition (FBG)g110)mg)dl21 and/or HbA1c)g6.0%) on the 

basis of their clinical data, and stopped recruiting when the number of 

participants almost reached the goal. The sample size was determined 

on the basis of previous metagenomics studies showing microbial 

signatures of diabetic patients5,6. We enrolled 112, 100 and 101 individu-

als for the normal, obese and prediabetic groups, respectively. The 

participants were provided with instructions to fast overnight before 

their visits, and all clinical information and blood samples were col-

lected in the morning during their hospital visit. Blood samples were 

immediately centrifuged to collect plasma and then stored at 280)°C 

until the sample preparation and analysis. The participants were also 

instructed to collect faecal samples in the morning and were provided 

with guidance on how to collect and preserve faecal samples, along with 

a kit comprising a sampling tube and an ice pack. The faecal samples 

were then transported to the hospital either by refrigerated shipping 

or by the participants themselves. In both scenarios, the samples were 

delivered in a chilled state within 24)h after collection and stored at 

280)°C until sample preparation and analysis. Consequently, 256 par-

ticipants collected their faeces in the morning on the day of their hos-

pital visit. As for the remaining participants, they collected their faeces 

in the morning between 2 days before and 7 days after their hospital 

visit, with the exception of 5 individuals who collected their faeces in 

the morning more than 7 days after their hospital visit, 2 individuals 

who reported collecting their faeces in the evening 1 day before their 

hospital visit, and 5 individuals who did not provide faecal samples. 

Moreover, two individuals withdrew from the study after enrolment. 

Thus, 306 individuals who underwent physical examination, labora-

tory tests, faecal sampling for faecal 16S rRNA pyrosequencing and 

metabolomic analyses, and plasma sampling for plasma metabolomic 

analyses were included for the analysis. Owing to the limited samples, 

faecal metagenomics data were available for 290 individuals; CAGE 

analysis data for 298 individuals; and plasma cytokine and insulin data 

for 282 individuals. The number of samples included in each analysis is 

described in the figure legends. The clinical study was approved by the 

institutional review board of RIKEN and The University of Tokyo and 

performed in accordance with the institutes9 guidelines.

Although we determined the criteria for enrolment, these criteria 

were not necessarily appropriate for subsequent analyses. For example, 

those in the prediabetes group were significantly leaner than those in 

the obese group (27.3)kg)m22 versus 25.2)kg)m22, P)<)0.0001). Moreover, 

owing to the nature of the study participants (that is, those participated 

in regular health checkups), the blood glucose and HbA1c of the predia-

betes group were significantly but only marginally higher than those 

of the obese group (FBG, 106)mg)dl21 versus 94)mg)dl21, P)<)0.0001; and 

HbA1c, 6.2% versus 5.6%, P)<)0.0001). We therefore reasoned that, in 

these subclinical conditions of diabetes, many metabolic traits may 

be overlapping between prediabetes and obesity groups and they do 

not necessarily capture their distinct features in metabolic and clinical 

continuums. This hinders us from distinguishing microbial and metabo-

lomic characteristics directly related to human metabolic dysfunctions. 

We therefore considered that individual indices representing partici-

pants9 clinical conditions (that is, IR and MetS, as described below) 

may offer a better interpretation of the participants9 metabolic traits 

and data. Nevertheless, we observed consistent results even with the 

clinical criteria of obesity and prediabetes (Extended Data Fig. 2d).

Phenotypic outcomes

IR is defined as HOMA-IR)g2.5, as has been set for the Japanese popu-

lation13. Similarly, normal IS was defined as HOMA-IR)f1.6. HOMA-IR 

is calculated using the following formula: fasting plasma insulin 

(μU)ml21))×)fasting plasma glucose (mg)dl21)/405. HOMA-IR values could 

be calculated for 282 individuals only, owing to the limited data of 

plasma insulin in some participants. MetS is diagnosed according to 

the Japanese criteria44, which require an abdominal circumference of 

g85)cm for male and g90)cm for female individuals and at least two 

out of the following three clinical abnormalities: (1) dyslipidaemia, 

defined as triglyceride levels of g150)mg)dl21 and/or HDL-C levels of 

<40)mg)dl21; (2) elevated blood pressure, defined as systolic blood pres-

sure of g130)mmHg and/or diastolic blood pressure of g85)mmHg; and 

(3) impaired fasting glucose, defined as FBG levels of g110)mg)dl21. Indi-

viduals who meet the criteria of abdominal circumference but only one 

clinical abnormality were defined as pre-MetS, as reported previously45.

Measurement of plasma cytokines

Plasma cytokines were measured using Human Adipokine Magnetic 

Bead Panel 2 (Millipore, HADK2MAG-61K) and Human Obesity Pre-

mixed Magnetic Luminex Performance Assay Kit (R&D, FCSTM08) 

according to the manufacturers9 instructions. Measurements below 

the lower detection limits were considered to be zero, and those above 

the upper detection limits were considered to be the highest values of 

analysed cytokines.

Preparation for faecal samples

Aliquots (5)g) of faeces were blended with 30)ml methanol and filtrated 

with 100)μm of mesh filter to remove food residue after vigorous vortex-

ing. The filtrate was centrifuged at 15,000g for 10)min at 4)°C and the 

supernatant (methanol extract) was used for metabolomics analysis. 

DNA of the faecal microbiome was extracted from the pellet.

Extraction and measurement for hydrophilic metabolites of 

faecal and plasma samples

We followed the extraction process and gas chromatography-tandem 

MS (GC3MS/MS) measurement methods for water-soluble metabolites 

described previously46 with some modifications. In brief, a 10)μl aliquot 

of plasma was added to 150)μl methanol, 125)μl Milli-Q water, 15)μl inter-

nal standard solution (1)mM 2-isopropylmalic acid) and 60)μl CHCl3. For 

faecal samples, a 25)μl aliquot of methanol extract was added to 125)μl 

methanol, 150)μl Milli-Q water containing internal standard (100)μM 

2-isopropylmalic acid) and 60)μl CHCl3. The solution was shaken at 

1,200)rpm for 30)min at 37)°C. After centrifugation at 16,000g for 5)min 

at room temperature, 250)μl of the supernatant was transferred to a new 

tube and 200)μl of Milli-Q water was added. After mixing, the solution 

was centrifuged at 16,000g for 5)min at room temperature, and 250)μl of 

the supernatant was transferred to a new tube. The samples were evapo-

rated dry using a vacuum evaporator for 20)min at 40)°C and lyophi-

lized using a freeze dryer. Dried extracts were derivatized with 40)μl of 

20)mg)ml21 methoxyamine hydrochloride (Sigma-Aldrich) dissolved in 

pyridine and shaken at 1,200)rpm for 90)min at 30)°C. The solution was 

then mixed with 20)μl of N-methyl-N-trimethylsilyl-trifluoroacetamide 

(MSTFA, GL Science) and incubated for 30)min at 37)°C with shaking 

at 1,200)rpm. After derivatization, the samples were centrifuged at 

16,000g for 5)min at room temperature, and the supernatant was trans-

ferred to a glass vial. The analysis was performed using a GC3MS/MS 

platform on the Shimadzu GCMS-TQ8030 triple quadrupole mass 

spectrometer (Shimadzu) with a capillary column (BPX5, SGE Analytical 



Science). The GC oven was programmed as follows: 60)°C held for 2)min, 

increased to 330)°C (15)°C)min21), and finally 330)°C held for 3.45)min. 

GC was operated in constant linear velocity mode set to 39)cm)s21. The 

detector and injector temperatures were 200)°C and 250)°C, respec-

tively. Injection volume was set at 1)μl with a split ratio of 1:30.

We followed the SCFA extraction and GC3MS/MS measurement meth-

ods as previously described47 with some modifications. A 90)μl aliquot 

of plasma was added to 10)μl Milli-Q water containing internal standards 

(2)mM [1,2-13C2]acetate, 2)mM [2H7]butyrate and 2)mM crotonate). For 

faecal samples, a 25)μl aliquot of methanol extract was added to 10)μl 

Milli-Q water containing internal standards and then centrifugally 

concentrated at 40)°C and reconstituted with 100)μl of Milli-Q water. 

Then, 50)μl of hydrochloric acid (HCl) and 200)μl of diethyl ether were 

added to the solution and mixed well. After centrifugation at 3,000g 

for 10)min, 80)μl of the organic layer was transferred to a glass vial 

and 16)μl N-tert-butyldimethylsilyl-N-trifluoroacetamide (MTBSTFA, 

Sigma-Aldrich) was added to derivatize the samples. The vials were incu-

bated at 80)°C for 20)min and allowed to stand for 48)h before injection. 

The analysis was performed using a Shimadzu GCMS-TQ8030 triple 

quadrupole mass spectrometer with a capillary column (BPX5). The 

GC oven was programmed as follows: 60)°C held for 3)min, increased to 

130)°C (8)°C)min21), increased to 330)°C (30)°C)min21) and finally 330)°C 

held for 3)min. The detector and injector temperatures were 230)°C 

and 250)°C, respectively. GC was operated in constant linear velocity 

mode set to 40)cm)s21. Injection volume was set at 1)μl with a split ratio 

of 1:30. The data were processed and concentration was calculated by 

LabSolutions Insight (Shimadzu).

Overall, 195 and 100 metabolites in the faecal and plasma samples, 

respectively, were detected by our GC3MS/MS platform and passed 

quality control. The values below the limit of detection were replaced 

with zero. Consequently, 110 faecal and 88 plasma metabolites that 

were detected (that is, above zero) in more than 75% of participants were 

included in subsequent analyses, for which they were combined into 

a common analysis pipeline and defined as hydrophilic metabolites.

Lipidomics of faecal and plasma samples

The lipidomics analysis was performed according to a previously 

reported study20. Methanol, isopropanol, chloroform and acetoni-

trile of liquid chromatography (LC)3MS grade were purchased from 

Wako. Ammonium acetate and EDTA were purchased from Wako and 

Dojindo, respectively. Milli-Q water was purchased from Millipore 

(Merck). EquiSPLASH was purchased from Avanti Polar Lipids. Pal-

mitic acid-d3 and stearic acid-d3 were purchased from Olbracht Serdary 

Research Laboratories.

For plasma lipid extraction, an aliquot of 20)μl of human plasma 

sample was added to 200)μl of methanol containing 5)μl of EquiSPLASH, 

10)μM palmitic acid-d3 and 10)μM stearic acid-d3, and vortexed for 10)s. 

Then, 100)μl of chloroform was added and vortexed for 10)s. After incu-

bation for 2)h at room temperature, the solvent tube was centrifuged 

at 2,000g for 10)min at 20)°C. A total of 200)μl of supernatant was 

transferred to an LC3MS vial (Agilent Technologies). For faecal lipid 

extraction, 50)μl of the methanol extract was added to 145)μl of metha-

nol containing 5)μl of EquiSPLASH, 10)μM palmitic acid-d3 and 10)μM 

stearic acid-d3 in a 2)ml glass tube, and vortexed for 10)s. Then, 100)μl of 

chloroform was added and vortexed for 10)s. After incubation for 1)h at 

room temperature, 20)μl of water was added and vortexed for 10)s. After 

10)min incubation at room temperature, the solvent was centrifuged 

at 2,000g for 10)min at 4)°C, and the supernatant was transferred to 

the LC3MS vial. All of the samples were divided into four batches for 

plasma analyses and five batches for faecal analyses, with 70380 and 

55360 samples per batch after randomization, respectively. For each 

batch, a series of samples was prepared, and subsequent LC3MS/MS 

measurements were performed. A quality control sample was prepared 

by mixing the same volume of plasma from the first batch subjects. 

A procedure blank was prepared by using the same volume of water 

instead of a biological sample. The blank sample was analysed at the 

beginning and the end of each analysis batch, and the quality-control 

sample was injected every ten study samples.

The LC system consisted of a Waters Acquity UPLC system. 

Lipids were separated on an Acquity UPLC Peptide BEH C18 column 

(50)×)2.1)mm; 1.7)μm) (Waters). The column was maintained at 45)°C 

at a flow rate of 0.3)ml)min21. The mobile phases consisted of (A) 1:1:3 

(v/v/v) acetonitrile:methanol:water with ammonium acetate (5)mM) 

and 10)nM EDTA; and (B) 100% isopropanol with ammonium acetate 

(5)mM) and 10)nM EDTA. A sample volume of 0.523)μl, depending bio-

logical samples, was used for the injection. The separation was con-

ducted under the following gradient: 0)min, 0% B; 1)min, 0% B; 5)min, 

40% B; 7.5)min, 64% B; 12)min, 64% B; 12.5)min, 82.5% B; 19)min, 85% B; 

20)min, 95% B; 20.1)min, 0% B; and 25)min, 0% B. The sample temperature 

was maintained at 4)°C.

MS detection of lipids was performed on a quadrupole/time-of-flight 

mass spectrometer TripleTOF 6600 (SCIEX). All analyses were per-

formed in high-resolution mode in MS1 (~35,000 full width at 

half-maximum) and the high sensitivity mode (~20,000 full width at 

half-maximum) in MS2. Data-dependent MS/MS acquisition (DDA) was 

used. The parameters were MS1 and MS2 mass ranges, m/z)7031,250; 

MS1 accumulation time, 250)ms; MS2 accumulation time, 100)ms; col-

lision energy, +40/242)eV; collision energy spread, 15))eV; cycle time, 

1,300)ms; curtain gas, 30; ion source gas 1, 40(+)/50(2); ion source  

gas 2, 80(+)/50(2); temperature, 250)°C(+)/300)°C(2); ion spray volt-

age floating, +5.5/24.5)kV; declustering potential, 80)V. The other DDA 

parameters were dependent product ion scan number, 16; intensity 

threshold, 100)cps; exclusion time of precursor ion, 0)s; mass toler-

ance, 20)ppm; ignore peaks, within m/z)200; and dynamic background 

subtraction, true. The mass calibration was automatically performed 

using an APCI positive/negative calibration solution through a calibra-

tion delivery system.

MS-DIAL (v.4.48)20,48 was used with the following parameters: (data 

collection) retention time begin, 1.0)min; retention time end, 18 min; 

MS1 and MS2 mass range begin, 0)Da; MS1 and MS2 mass range end, 

2,000)Da; MS1 tolerance, 0.01)Da; MS2 tolerance, 0.025)Da; (peak detec-

tion) minimum peak height, 3,000 amplitude; mass slice width, 0.1)Da; 

smoothing method, linear weighted moving average; smoothing level, 

3 scan; minimum peak width, 5 scan; exclusion mass list, none; (identifi-

cation) retention time tolerance, 1.5)min; MS1 accurate mass tolerance, 

0.01)Da; MS2 accurate mass tolerance, 0.05)Da; identification score cut 

off, 70%; all lipid subclasses were used as the search space; (alignment) 

retention time tolerance 0.15)min; MS1 tolerance, 0.015)Da. The default 

values were used for other parameters. In faecal lipidomics, a total of 

48,790 and 20,367 chromatographic peaks were detected in positive- 

and negative-ion mode data, respectively. Of these, 2,654 unique lipid 

molecules were annotated and semi-quantified in the MS-DIAL software 

program and used for further statistical analyses. Likewise, in plasma 

lipidomics, 1,469 and 2,167 chromatographic peaks were detected in 

positive- and negative-ion mode data, respectively, and 635 unique lipid 

molecules were annotated and semi-quantified. The semi-quantitative 

value of lipids was calculated by the internal standards according to 

the previous study20. The abbreviations of lipids are listed in Supple-

mentary Table 27. Details of lipid subclass characterization follow the 

previous study20.

Co-abundance clustering of metabolites

To generate co-abundance clusters, 110 hydrophilic metabolites and 

2,654 lipid metabolites detected in more than 75% of participants 

were included. These metabolites were clustered based on their 

co-abundance using the R package WGCNA49 (v.1.72-1). The follow-

ing parameters were used for the analysis. For hydrophilic metabo-

lites, soft thresholding β)=)12, minimum cluster size)=)3, deep split)=)4, 

cut height)=)0.9999, PAM clustering)=)F. For lipid metabolites, soft 

thresholding β)=)14, minimum cluster size)=)20, deep split)=)4, cut 
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height)=)0.999, PAM clustering)=)F. As soft thresholding of WGCNA 

was not able to cluster all of the metabolites, the remaining metabolites 

that did not fit the criteria were subsequently clustered on the basis of 

biweight midcorrelation. The following parameters were used for the 

secondary clustering. For hydrophilic metabolites, minimum cluster 

size)=)3, deep split)=)4, cut height)=)0.9999, PAM clustering)=)F. For lipid 

metabolites, minimum cluster size)=)6, deep split)=)4, cut height)=)0.999, 

PAM clustering)=)F. The clusters with biweight midcorrelation above 

0.8 were merged. The first principal component (PC1) of each cluster 

was calculated using the moduleEigengenes command of WGCNA and 

used as the representative value of the cluster for further analyses. The 

representative classes of the clusters were described in Supplemen-

tary Tables 2 and 3. KEGG pathway enrichment analysis of CAGs was 

performed on MetaboAnalyst (v.5.0)50 using 84 metabolite sets based 

on the KEGG pathway. Hypergeometric test and false-discovery rate 

(FDR)-adjusted P values were used to test significance. The enrichment 

ratio was calculated as the ratio of actual metabolite number to the 

expected value in each pathway.

Reanalysis of publicly available metabolomic data

To validate the associations between clinical markers and faecal metab-

olites, we used the metabolomic data of TwinsUK17 and HMP2 (ref. 18). 

The metabolome data of the TwinsUK cohort included 1,116 metabolites 

including 36 carbohydrates. The median (interquartile range) of age and 

BMI were 65)years (60371)years) and 25.4 (22.8328.8), and the propor-

tion of males was 6.6%. As reported previously17, the metabolite levels  

were scaled by run-day medians. The data were then log-transformed 

and scaled. For regression analyses, we filtered out the metabolites 

detected in less than 50% of participants; as a result, 759 metabolites 

including 29 carbohydrates were used for further analyses. The record 

of BMI and HOMA-IR were used for phenotypic outcomes. For BMI, we 

retrieved 786 samples measured on the same day of faecal collection. 

For HOMA-IR, plasma glucose and insulin obtained in the same year of 

the faecal collection were used for the following calculation: plasma 

glucose (mM))×)insulin (pM)/6.945/22.5. We identified 550 individuals 

who underwent both faecal collection and glucose and insulin meas-

urement in the same year and included them in the analysis. The HMP2 

data were obtained from the Inflammatory Bowel Disease Multi9omics 

Database (https://ibdmdb.org/). Among the 26 out of 106 samples from 

non-IBD control, BMI data were available for 20 samples. We further 

excluded four individuals aged <10)years. As HMP2 is a longitudinal 

study, only the first faecal sampling for metabolomics was used for 

the current analysis to avoid redundancy. The intensity of fructose, 

glucose and/or galactose was log-transformed and scaled.

DNA extraction from faecal samples

DNA extraction was performed according to a protocol described 

previously47 with slight modifications. Before DNA extraction, the 

faecal pellet was washed once with PBS and suspended in a 10)mM 

Tris-HCl/20)mM EDTA buffer (pH)8.0). Lysozyme (Sigma-Aldrich), 

achromopeptidase (Wako) and proteinase K (Merck) were subsequently 

added to the samples for cell lysis. DNA was recovered by a phenol3

chloroform extraction method. To purify the extracted DNA, RNA was 

digested with RNase (Nippon Gene). DNA was then precipitated in a 

solution containing polyethylene glycol 6000 (Hampton Research). 

The DNA concentration was quantified using Quant-iT PicoGreen 

(Thermo Fisher Scientific).

16S rRNA gene sequencing and taxonomic assignment

The hypervariable V13V2 region of the 16S rRNA gene was amplified 

by PCR using barcoded primers. PCR amplicons were purified using 

AMPure XP magnetic purification beads (Beckman Coulter), and quanti-

fied using the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies 

Japan). Equal amounts of each PCR amplicon were mixed and then 

sequenced using the MiSeq (Illumina) system.

On the basis of sample-specific barcodes, reads were assigned to 

each sample using bcl2fastq. Next, the reads lacking both forward 

and reverse primer sequences were removed using BLAST and parasail 

followed by trimming of both primer sequences. Data were further 

denoised by removing reads with average quality values of <25 and pos-

sible chimeric sequences. Reads with BLAST match lengths of <90% with 

the representative sequence in the 16S databases (described below) 

were considered to be chimeras and were removed. The filter-passed 

reads were used for further analysis. The 16S database was constructed 

from three publicly available databases: the Ribosomal Database Pro-

ject (RDP; v.10.27), CORE (http://microbiome.osu.edu/) and a reference 

genome sequence database obtained from the NCBI FTP site (ftp://ftp.

ncbi.nih.gov/genbank/, December 2011).

Operational taxonomic unit (OTU) clustering and UniFrac analysis 

from the filter-passed reads, 3,000 high-quality reads per sample were 

randomly chosen. All reads (the number of samples)×)3,000) were then 

sorted according to their average quality value and grouped into OTUs 

using UCLUST (http://www.drive5.com/) with a sequence-identity 

threshold of 97%. The representative sequences of the generated OTUs 

were processed for homology search against the databases mentioned 

above using the GLSEARCH program for taxonomic assignments. For 

assignment at the phylum, genus and species levels, sequence similarity 

thresholds of 70%, 94% and 97% were applied, respectively.

Shotgun metagenomic sequencing

Metagenome shotgun libraries (insert size of 500)bp) were prepared 

using the TruSeq Nano DNA kit (Illumina) and sequenced on the Illumina 

NovaSeq platform. After quality filtering, reads mapped to the human 

genome (HG19) or the phiX bacteriophage genome were removed. For 

each individual, the filter-passed NovaSeq reads were assembled using 

MEGAHIT (v.1.2.4). Prodigal (v.2.6.3) was used to predict protein-coding 

genes (g100)bp) in the contigs (g500)bp) and singletons (g300)bp). 

Finally, 6,458,217 non-redundant genes were identified in the 290 

samples by clustering the predicted genes using CD-HIT with a 95% 

nucleotide identity and 90% length coverage cut-off. Functional assign-

ment of the non-redundant genes was performed using DIAMOND 

(e-value)f)1.0)×)1025) against the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database (release 2019-10-07) to obtain the KEGG 

orthologues. The genes with the best hit correlating to eukaryotic 

genes were excluded from further analysis.

Quantification of annotated genes in human gut microbiomes

For taxonomic assignment of metagenomic reads, 1)million filter-passed 

reads were processed for mOTU analysis (v.2.5.1)51 to obtain the rela-

tive abundance at the species level. To functionally annotate the 

predicted genes, 1)million filter-passed metagenomic reads per indi-

vidual were mapped to the combined reference gene set consisting of 

non-redundant genes identified in this study, JPGM52 and IGC53 using 

Bowtie2 with a 95% identity cut-off. Multi-mapped reads, that is, the 

reads that mapped to multiple genes with identical scores, were nor-

malized to the proportion of the number of other reads that uniquely 

mapped to these genes, according to a strategy outlined in a previous 

report52. The proportion of KEGG orthologues was calculated from 

the number of reads mapped to them. For the enrichment analysis of 

KEGG pathways, the significantly and positively (negatively) associ-

ated KEGG orthologue gave +1 (21) for all of the upstream pathways 

linked to the KEGG orthologue, and the points were summarized as 

the ratio to the number of KEGG orthologues in the pathway. For the 

KEGG-orthologue-level analyses of PTS, those including 8phospho-

transferase system (PTS)9 in the KEGG pathway (02060) were selected 

for the following correlation analyses. In the analyses of glucosidases, 

8glycoside hydrolases9 defined in the CAZy database on the basis of 

EC numbers54 were selected. We further selected those included in 

8starch and sucrose metabolism9 in the KEGG pathway (00500). We 

defined intracellular glucosidase by their substrate described in the 

https://ibdmdb.org/
http://microbiome.osu.edu/
ftp://ftp.ncbi.nih.gov/genbank/
ftp://ftp.ncbi.nih.gov/genbank/
http://www.drive5.com/


KEGG pathway map; those cleave phosphorylated carbohydrates were 

recognized as intracellular, and the rest of the genes were recognized 

to possess extracellular enzymatic activities. The pathways were fur-

ther summarized into carbohydrate metabolism (09101), amino acid 

metabolism (09105), lipid metabolism (09103) and membrane trans-

port (09131) on the basis of the KEGG Orthology database.

Comparison of KEGG organism genomes

The list of KEGG organisms used for this genome analysis is listed in 

Supplementary Table 28. All KEGG organisms from genera Alistipes,  

Bacteroides, Flavonifractor, Blautia, Dorea and Coprococcus, which 

showed the top three positive or negative correlations with faecal 

carbohydrates in Fig. 2d, were selected for this analysis. The lists 

of genes involving the 8starch and sucrose metabolism9 pathway 

(00500) in these KEGG organisms were extracted using the R package  

KEGGREST (v.1.32.0). The representative protein sequences of Blautia 

hydrogenotrophica strain 2789STDY5608857 (taxonomy ID 53443), 

Dorea longicatena strain 2789STDY5608851 (taxonomy ID 88431) and 

Dorea formicigenerans strain ATCC 27755 (taxonomy ID 411461) were 

downloaded from the NCBI Datasets (https://www.ncbi.nlm.nih.gov/

datasets/genomes/). KEGG annotation of these protein sequence files 

was performed using BlastKOALA (https://www.kegg.jp/blastkoala/) 

with 8Bacteria9 used as the taxonomy group. The presence of KEGG 

orthologues relating to extracellular glycoside hydrolases in starch 

and sucrose metabolism pathways shown in grey in Extended Data 

Fig. 6f was summarized.

RNA extraction from PBMC

Blood samples were collected in Vacutainer CPT tubes (Becton  

Dickinson) and mixed with the anticoagulant by gently inverting 

the tubes 8 to 10 times. After centrifugation of the blood for 30)min 

at 1,500g, PBMCs were isolated as a diffuse layer above the gel. The 

plasma was removed, and the PBMCs were collected in conical tubes 

with 500)μl RNAlater (Thermo Fisher Scientific). The conical tubes were 

centrifuged at 1,000g at room temperature for 3)min to pellet the cells 

and the supernatant was discarded. The RNA was then isolated using 

the Maxwell 16 LEV simplyRNA Blood Kit (Promega) according to the 

manufacturer9s instructions. The quality of the RNA was assessed using 

Bioanalyzer (Agilent), as recommended by the manufacturer. The RNAs 

were quantified using the GloMax plate reader (Promega) and Quant-iT 

RiboGreen RNA Assay Kit (Thermo Fisher Scientific).

CAGE analysis

The CAGE libraries were constructed according to the dual-index 

nanoCAGE protocol, a template-switching-based variation of the 

standard CAGE protocol designed for low quantities of RNA55,56. 

cDNA libraries were prepared with RNA extracted from PBMC samples 

and sequenced on the Illumina HiSeq 2000 (50)bp paired-end). The 

sequenced reads were processed with the MOIRAI pipeline57: low qual-

ity and rDNA reads were first removed, then the remaining reads were 

mapped to the human genome version hg38 patch 1 using BWA v.0.5.9 

(r16). The mapped reads were overlapped with the FANTOM5 robust 

promoter set (http://fantom.gsc.riken.jp/5/datafiles/latest/extra/

CAGE_peaks/) and mapped to the nearest GENCODE v.27 annotations 

within (500)bp)58,59. The mapped reads falling under each FANTOM5 

CAGE cluster were summed to produce the raw expression counts. 

Expression counts were converted to counts per million (CPM), and 

CAGE clusters expressed in less than 100 samples with at least 1 CPM 

and greater than 1 sample with at least 10 CPM were removed from 

further analysis. For each sample, the richness index was calculated 

using the R package vegan9s rarefy function with a subsample size of 

100 on the filtered raw counts. Samples with a read library size of less 

than 1,000,000 and a number of unique CAGE clusters of <11,000 

and richness less than 44 were removed as outliers, with the thresh-

olds selected from visual inspection of the respective distributions.  

Cell type specificities of promoters of interest were determined using 

the FANTOM5 hg38 human promoterome view.11 in the ZENBU genome 

browser (https://fantom.gsc.riken.jp/zenbu/). Top-hit cells for analysed 

promoters were described. For cell-type gene set enrichment analysis of 

genes significantly associated with IR, annotated genes were analysed 

using Enrichr60,61 and the Human Gene Atlas database60, and the results 

of cell types with Padj)<)0.05 were selected. The Enrichr combined score 

is defined as: c)=)log[p])z, where c is the combined score, p is the P value 

based on Fisher9s exact test and z is the z-score60.

Metabolite measurement in bacterial culture

The following strains were used for this culture analysis: A. indistinc-

tus ( JCM16068), A. finegoldii ( JCM16770), Alistipes putredinis ( JCM 

16772), B. thetaiotaomicron ( JCM 5827), Bacteroides xylanisolvens ( JCM 

15633), Bacteroides ovatus ( JCM 5824), Bacteroides caccae ( JCM 9498), 

Parabacteroides merdae ( JCM 9497), Parabacteroides distasonis ( JCM 

5825), D. formicigenerans ( JCM 31256), D. longicatena ( JCM 11232),  

B. hydrogenotrophica ( JCM 14656), Blautia producta (BP, JCM 1471), Cop-

rococcus comes ( JCM 31264), Faecalibacterium prausnitzii ( JCM 31915), 

Flavonifractor plautii ( JCM 32125), Clostridium spiroforme ( JCM1432), 

Coriobacterium glomerans ( JCM 10262), Roseburia hominis ( JCM 

17582), Adlercreutzia equolifaciens subsp. equolifaciens ( JCM 14793), 

Eggerthella lenta ( JCM 9979) and Collinsella aerofaciens ( JCM 10188). 

All strains were obtained from RIKEN BioResource Research Center. All 

of the strains were cultivated in EG medium ( JCM Medium No. 14) sup-

plemented with 5% Fildes extract prepared by pepsin-digested horse 

blood instead of horse blood itself. For measurement of metabolites in 

bacterial culture, 60)μl of the bacterial culture grown in the EG medium 

was inoculated into 3)ml of the experiment medium (EG medium) and 

cultivated for 24)h. The samples were centrifuged, and the cell-free 

supernatant was collected for analysis. GC3MS was performed to 

measure hydrophilic metabolites as described above. We identified 

261 metabolites by the analysis and used 198 metabolites observed in 

at least 30% of samples for the following analyses.

Animal experiments

C57BL6/N male mice aged 6)weeks were purchased from CLEA Japan. 

They were randomly assigned to either the control or treatment 

group and housed in a conventional animal facility of Yokohama City  

University. The mice were fed Quick Fat (CLEA Japan) for 3)weeks before 

bacterial administration and continued to be fed for 3)weeks during bac-

terial challenges. A. indistinctus ( JCM16068), A. finegoldii ( JCM16770),  

B. thetaiotaomicron ( JCM 5827), B. xylanisolvens ( JCM 15633), P. merdae 

( JCM 9497), F. prausnitzii ( JCM 31915) and C. spiroforme ( JCM1432) were 

used to broadly compare the efficacy of bacterial administration on the 

animal model. These strains were cultivated in EG medium overnight, 

and the concentration was adjusted to 2.5)×)108)CFU per ml by PBS. 

The bacteria and PBS, a negative control, were orally administered to 

the mice at a dose of 200)μl per mouse. The bacteria and PBS as the 

vehicle control were provided 3 times a week for 3 or 4)weeks. Body 

mass was measured before oral gavage. Postprandial blood glucose 

measurement and insulin tolerance test were performed 3)weeks after 

the initiation of bacterial challenges. After the insulin tolerance test, 

the mice were subjected to 5)h fasting before insulin injection, and 

0.85)U)kg21 human regular insulin (Eli Lilly) was subsequently adminis-

tered intraperitoneally. The intraperitoneal glucose tolerance test was 

performed 4)weeks after the initiation of bacterial challenges. The mice 

were subjected to 5)h fasting before glucose infusion, and 2.0)g per kg 

glucose (Nacalai Tesque) was administered intraperitoneally. In both 

experiments, the blood glucose was collected from the tail vein and seri-

ally measured using GLUCOCARD G Black (Arkray). For the necropsy, 

the mice were euthanized by isoflurane (MSD), and the fat mass of per-

igonadal and mesenteric fats was measured. Blood was drawn through 

cardiac puncture after the anaesthesia. HDL-C (Wako), triglycerides 

(Wako) and adiponectin (Otsuka) were measured in accordance with 

https://www.ncbi.nlm.nih.gov/datasets/genomes/
https://www.ncbi.nlm.nih.gov/datasets/genomes/
https://www.kegg.jp/blastkoala/
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/
https://fantom.gsc.riken.jp/zenbu/
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the manufacturers9 instructions. The Yokohama City University animal 

facility is maintained under a 12)h312)h light3dark cycle at 24)±)1.5)°C 

and 55)±)10% humidity.

To assess the metabolism, dietary intake and locomotor activity of 

mice, C57BL6/N male mice at the age of 6)weeks were purchased from 

CLEA Japan and were maintained in a vinyl isolator of SPF animal facility 

at RIKEN Yokohama branch. Using the same experimental protocol in 

the conventional condition, the mice were fed Quick Fat (CLEA Japan) 

for 3)weeks before bacterial administration and continued to be fed 

the diet during bacterial challenges and metabolic measurement. 

We gave three oral gavages of A. indistinctus or PBS (vehicle control) 

every other day and then placed the mice individually in acrylic cages. 

We further gave one oral gavage 2)days after the start of individual 

housing. Their metabolic activity, dietary intake and physical activity 

were subsequently monitored. There was no significant difference in 

body mass at the start of metabolic measurement (mean)±)s.d. of body 

mass were 25.7)±)2.6)g and 26.1)±)1.4)g in the vehicle and A. indistinctus 

groups, respectively). Oxygen and carbon dioxide concentration was 

measured using the ARCO-2000 system, an open-circuit metabolic gas 

analysis system with a mass spectrometer (Arco Systems). VO2, VCO2, 

energy expenditure, fat oxidation rate, carbohydrate oxidation rate 

and respiratory quotient were calculated within the system. Dietary 

intake and physical activity were simultaneously monitored through 

ACTIMO-100M and MFD-100M (Shinfactory). The differences in diurnal 

variation were tested using two-way mixed ANOVA, and P values for 

interactions between time and group were reported. The RIKEN animal 

facility is maintained under a 12)h312)h light3dark cycle at 23)±)2)°C 

and 50)±)10% humidity. The sample size was determined on the basis 

of our preliminary experiments. Bacterial administration and body 

mass measurements were performed by an independent researcher 

who was not involved in the grouping and outcome assessments. All 

experimental procedures were approved by the Institutional Animal 

Care and Use Committee of the RIKEN and Yokohama City University 

and performed in accordance with the institutes9 guidelines.

Western blot analysis of phosphorylated AKT

To analyse phosphorylation of AKT (p-AKT) at Ser473, the mice admin-

istered with A. indistinctus, A. finegoldii and PBS (vehicle control)  

3 times a week for 4)weeks were subjected to 6)h fasting before the insulin 

injection, and 0.85)U)kg21 human regular insulin (Eli Lilly) was subse-

quently administered from the inferior vena cava. The liver, epididymal 

fat (eWAT) and gastrocnemius muscle were subsequently collected 

5)min after the insulin injection, weighed and snap-frozen by liquid 

nitrogen. To prepare the lysates for western blotting, the tissues were 

homogenized in buffer A (25)mM Tris-HCl, pH)7.4, 10)mM sodium ortho-

vanadate, 10)mM sodium pyrophosphate, 100)mM sodium fluoride, 

10)mM EDTA, 10)mM EGTA and 1)mM phenylmethylsulfonyl fluoride). 

Thereafter, the lysates were resolved on 10% SDS3PAGE. Phosphoryl-

ated or total protein of AKT was isolated by immunoblotting using 

specific antibodies after the tissue lysates were resolved by SDS3PAGE 

and transferred to a Hybond-P PVDF transfer membrane (Amersham 

Biosciences). Bound antibodies were detected with HRP-conjugated 

secondary antibodies using ECL detection reagents (Amersham Bio-

sciences). Rabbit polyclonal antibodies directed against AKT and p-AKT 

(Ser473) were purchased from Cell Signaling Technology. Precision 

Plus Protein All Blue Standards (Bio-Rad) were used for the molecular 

mass markers.

Hyperinsulinaemic–euglycaemic clamp test

The protocol has been published elsewhere62,63. Mice administered with 

A. indistinctus or PBS (vehicle control) for 5 to 6)weeks were used for the 

experiment. Jugular vein catheterization was performed 1)day before 

the clamp test. In brief, a mouse was anaesthetized with isoflurane 

(MSD), and the right jugular vein was exposed. A double-channel cath-

eter was subsequently inserted to the vein. The next day, the mice were 

subjected to 4)h fasting before the clamp test. Human regular insulin  

(Eli Lilly) was intravenously administered at 7.5)mU)kg21)min21, and the 

blood glucose levels were monitored every 5))min for 120)min. 50% glu-

cose solution containing 6,6-d2-glucose (Sigma-Aldrich) was simultane-

ously infused to keep blood glucose levels around 100 to 120)mg)dl21. 

To separate the plasma, approximately 25)μl of blood was also drawn 

from tail vein at 0, 90, 105 and 120)min, placed into a tube containing 

2)μl of heparin (Mochida Pharmaceutical) and centrifuged at 12,000g 

at 4)°C for 5)min. The plasma levels of glucose and 6,6-d2-glucose were 

measured using GC3MS. In brief, a 5)μl aliquot of plasma was extracted 

and derivatized with methoxyamine hydrochloride (Sigma-Aldrich) 

and N-methyl-N-(trimethylsilyl)trifluoroacetamide (GL Sciences), as 

previously described46. The analysis was performed using a GC3MS/

MS platform on a Shimadzu GCMS-TQ8040 triple quadrupole mass 

spectrometer (Shimadzu) with a capillary column (BPX5) (SGE Analyti-

cal Science/Trajan Scientific and Medical). The programme of GC3MS/

MS analysis was previously described46 with minor modifications. We 

integrated each derivative peak to obtain mass isotopomers of glucose 

for the following ions: m/z 319.1, 320.1 and 321.1. The glucose infusion 

rate was determined as the infusion rate at 90, 105 and 120)min. The rate 

of glucose disappearance was determined on the basis of the plasma 

levels of 6,6-d2-glucose and total glucose using a non-steady-state equa-

tion as described previously63,64 and considered as the whole-body 

glucose disposal after insulin stimulation. Hepatic glucose production 

was determined as the subtraction of glucose disappearance rate and 

glucose infusion rate.

Analysis of triglyceride contents in the liver

For the necropsy, the mice were anesthetized using isoflurane (MSD), 

and the left half of liver was dissected, weighed and frozen in liquid 

nitrogen. The extraction of triglyceride contents from the liver tissue 

has been reported elsewhere62,64. In brief, the samples were homog-

enized in buffer A (25)mM Tris-HCl at pH)7.4, 10)mM sodium orthovana-

date, 10)mM sodium pyrophosphate, 100)mM sodium fluoride, 10)mM 

EDTA, 10)mM EGTA and 1)mM phenylmethylsulfonyl fluoride) and mixed 

with chloroform/methanol (2:1, v/v). The mixture was shaken for 15)min, 

centrifuged and the organic layer was collected. The extraction step 

was repeated three times. The collected samples were evaporated 

and resuspended in 1% Triton X-100/ethanol. The triglyceride content 

was assessed using Triglyceride E-test Wako (Wako) according to the 

manufacturer9s instructions.

Statistical methods and comparisons

For general statistical comparisons, two-sided Wilcoxon rank-sum tests 

were used for two-group comparisons, Kruskal3Wallis tests followed 

by Dunn9s post hoc analysis were used for comparisons of more than 

two groups, and Fisher9s exact tests were used for comparison of cat-

egorical variables. For general correlation analyses, Spearman9s rank 

correlation in the function corr.test of the R package psych v.2.1.6 was 

used. For partial correlation analyses, partial Spearman9s rank correla-

tion in the function pcor.test of the R package ppcor v.1.1 was used. To 

predict the metabolite levels and their CAGs (Fig. 1b,d and Extended 

Data Figs. 2c,d and 3a), rank-based regression analyses were performed 

using the function rfit of the R package Rfit (v.0.24.2)65. For the ordi-

nal independent variables (that is, IR, MetS, and original categories 

with obese and prediabetes), IS, no MetS, and healthy categories were 

considered as the references, respectively, and the coefficients and  

P values for other categories were calculated against these reference 

categories. For the analyses involving generalized linear models (GLM) 

such as Fig. 2b and Extended Data Figs. 5i and  6c, the dependent vari-

ables were assumed to follow a Gamma distribution and arcsine square 

root transformation was applied to the relative-abundance values of 

microbiota and KEGG orthologues. To enhance comparability, the 

standardized coefficient was also calculated by standard deviations of 

dependent and independent variables using the function lm.beta of the 



R package QuantPsyc v.1.5 in Extended Data Fig. 5i. In the reanalysis of 

TwinsUK data, we fitted generalized linear mixed-effects models with 

age, sex, zygosity and BMI as fixed effects and sample collection year as 

a random effect using the function glmer of R package lme4 v.1.1-27.1 to 

estimate the associations between HOMA-IR and faecal carbohydrate 

metabolites (Extended Data Fig. 3b,c). Similarly, in the reanalysis of 

HMP2 data, we fitted a generalized linear mixed-effects model with 

consent age and sex as fixed effects and sample collection site as a 

random effect to estimate the associations between BMI and faecal 

fructose, glucose and/or galactose (Extended Data Fig. 3d). To analyse 

the associations between the participants9 clusters and clinical mark-

ers in Fig. 2b, the clusters were reordered before regression analyses 

according to their proportion of individuals with IR, where cluster C 

showing the lowest proportion of IR was set as the reference. To cal-

culate the KEGG pathway enrichment associated with the participant 

clusters (Fig. 2e and Extended Data Fig. 6a,b), the KEGG orthologues 

were compared between each cluster and the remaining three clusters 

using a two-sided Wilcoxon rank-sum test, and significant (Padj)<)0.05) 

KEGG orthologues were summarized into the pathway level (Supple-

mentary Table 16). For comparison of metabolites in bacterial cultures 

(Extended Data Fig. 8), one-way ANOVA followed by Tukey9s post hoc 

test was performed, followed by multiple testing corrections based on 

the Benjamini3Hochberg procedure. For comparisons of time-series 

data such as insulin tolerance test, two-way repeated-measures ANOVA 

was used and the between-group difference was analysed by estimated 

marginal means. P)<)0.05 was considered to be significant. To analyse 

the body mass change in animal experiments, ANCOVA analysis was 

performed to adjust baseline body mass (that is, body mass change as a 

dependent variable and)group)and)baseline body mass as independent 

variables). We also validated the assumption of this ANCOVA model, 

that is, homogeneity of regression slopes, homogeneity of variances 

and normality of residuals. For multiple-testing corrections, P values 

were corrected using the Benjamini3Hochberg procedure using the 

R function p.adjust. Padj)<)0.05 was used as a cut-off unless otherwise 

specified. All data were collected using Microsoft Excel 2016. All sta-

tistical and graphical analyses were conducted using R v.4.1.1 using R 

studio v.1.4.1717, unless otherwise specified.

ROC curve analysis of omics datasets

To analyse ROC curves of omics datasets, the datasets of faecal metabo-

lomics, including hydrophilic and lipid metabolites, faecal 16S rRNA 

gene sequencing at the genus level, faecal metagenome consisting 

of KEGG orthologues and clinical metadata, were included. We first 

selected feature variables in each dataset, that is, the best explaining 

variables in the given dataset, using the minimum redundancy maxi-

mum relevance (mRMR) algorithm15. The function mRMR.classic of the 

R package mRMRe v.2.1.2.1 was used for the calculation. The datasets 

were square-root-transformed before mRMR calculation. We selected  

5 to 50 variables in 5 increments as the maximum number of genera was 

50. Using the selected variables, we next established random-forest 

models using the R package caret v.6.0-88 to classify the individuals 

into IR or not. Specifically, the results of mRMR were split into train 

and test datasets in a 3:1 ratio. The generated random-forest models 

were evaluated using a tenfold cross-validation method and applied 

to the test datasets to obtain probability scores. The accuracy of each 

classification model was described by the AUC of ROC curves using 

the R package pROC v.1.17.0.1.

Construction of microorganism–metabolite networks

To construct the co-abundance networks of genus-level bacteria, we 

selected 28 genus-level microorganisms that were observed in more 

than 40% of the participants and calculated the correlations using 

the R package CCREPE (compositionality corrected by renormaliza-

tion and permutation)66 v.1.28.0 with Spearman9s correlations and the 

default settings. Interactions with Padj)<)0.05 were selected for further 

analysis. Bacteria that exhibited a positive correlation with one another 

were determined to be members of an independent co-abundance 

microbial group, except for the interaction between Bacteroides and 

Robinsoniella. We decided to categorize Robinsoniella into the Blautia 

and Dorea group owing to its stronger correlation with Blautia in com-

parison to Bacteroides, both of which showed the highest centrality 

within their respective networks. Those weakly associated with each 

other or negatively associated with the members of other CAGs were 

classified as miscellaneous (Extended Data Fig. 5f). To characterize 

the microbial profiles of the study participants, the individuals were 

clustered on the basis of the abundance of 28 genera, which includes 

20 genera in co-abundance microbial groups identified with CCREPE 

and 8 unclustered genera, using the ward.D function of the R package 

pheatmap v.1.0.12. Four distinct clusters of participants were deter-

mined, and the proportion of IR was compared using Fisher9s exact 

tests. Microorganism3metabolite networks were constructed on the 

basis of the correlations between the 28 genera observed in at least 

40% of samples and the faecal metabolites, including all hydrophilic 

metabolites (n)=)110) and bacteria-related lipid metabolites (n)=)259). 

Bacteria-related metabolites were defined according to previous 

reports20,21. The following classes were selected: DGDG, PE-Cer, MGDG 

O, FAHFA, Cer-AS, Cer-BDS, NAGly, NAGlySer, PI-Cer, SL, AcylCer, bile 

acids, DGDG O and AAHFA. Positive and negative Spearman9s correla-

tions with Padj)<)0.05 were separately depicted in the networks. The 

networks were visualized using Cytoscape (v.3.7.0)67.

Construction of cross-omics networks

To construct and visualize a correlation-based network of omics data, 

we first analysed IR-associated host signatures using plasma cytokines, 

plasma metabolites and CAGE promoter expression data. We identified 

the significant host markers through the following models: (1) GLM 

with a gamma distribution: HOMA-IR as a dependent variable and)host 

markers, age and sex as independent variables; (2) logistic regression 

model: IR (HOMA-IR)g)2.5)=)1, HOMA-IR)f)1.6)=)0) as a dependent vari-

able and significant host markers in the model 1, age and sex as inde-

pendent variables. In both models, host markers with Padj)<)0.05 were 

considered to be significant. We finally identified 6, 21 and 36 significant 

associations from plasma cytokines, plasma metabolites and CAGE 

promoter expression data, respectively (Supplementary Tables 19321). 

In terms of bacteria, 20 genera with significant interactions between 

each other, which were identified with CCREPE as shown in Extended 

Data Fig. 5f, were included. In terms of faecal metabolites, 15 carbohy-

drates associated with IR in the CAG analysis as shown in Fig. 1b were 

included. Pairwise partial Spearman9s rank correlations adjusted by age, 

sex, BMI and FBG between all given factors were calculated with the R 

package ppcor v.1.1. The correlations with Padj)<)0.05 were selected for 

visualization. The size of nodes was determined as the ratio of median 

abundance in IR over IS. As the median values of genera Robinsoniella 

and Rothia were zero, these elements were removed from the visualiza-

tion. The width of lines was determined as the absolute value of partial 

Spearman9s coefficient. The networks were visualized using Cytoscape 

v.3.7.0. as in the microorganism3metabolite networks described above.

Explained variance of plasma cytokines by omics data

To assess the explained variance of ten plasma cytokines, we estab-

lished random-forest models using the R package caret v.6.0-88 to 

predict the plasma cytokine levels using 15 IR-associated faecal car-

bohydrates identified in Fig. 1b; 20 genera with significant interac-

tions with each other that were identified in Fig. 2a; 21 IR-associated 

plasma hydrophilic metabolites (Supplementary Table 20); or 36 

IR-associated CAGE promoters (Supplementary Table 21). Plasma 

cytokines were log10-transformed and scaled before the regression 

analyses. The data were split into train and test datasets at a 4:1 ratio. 

The generated random-forest models were evaluated using a tenfold 

cross-validation method and applied to the test datasets to obtain 
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predictions. The explained variance shown as R2 was calculated as its 

definition: 1)2)sum(test)2)predict)2/sum(test)2)mean(test))2. The nega-

tive values were considered as zero.

Causal mediation analysis

To infer the effects of plasma cytokines on in silico causal relation-

ships between faecal carbohydrates and IR markers (HOMA-IR, BMI, 

triglycerides and HDL-C), we performed causal mediation analysis using 

the R package mediation (v.4.5.0)38. As previously reported68, we first 

screened significant associations (Padj)<)0.05) between 15 IR-associated 

faecal carbohydrates and four IR markers, and significant associations 

between ten plasma cytokines and four IR markers. Age and sex were 

included as independent variables in both models. We then performed 

causal mediation analyses with the following models: (1) Mediator 

models: cytokine)~)metabolite)+)age)+)sex; (2) outcome models: IR 

marker)~)metabolite)+)age)+)sex)+)cytokine. In both models, faecal car-

bohydrate and plasma cytokine values were scaled before the analy-

ses, and GLM with Gaussian distribution was used. A nonparametric 

bootstrap procedure was used to calculate the significance, followed 

by multiple testing corrections using the R function p.adjust. Average 

causal mediation effects and average direct effects with Padj values from 

representative models are reported in Extended Data Fig. 7d, whereas 

all of the results including the total effects and proportion mediated 

are reported in Supplementary Table 23.

Reporting summary

Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability

Raw sequencing data of faecal microbiota have been deposited at the 

DNA Data Bank of Japan9s BioProject (https://www.ddbj.nig.ac.jp/

bioproject/index-e.html) under accession number PRJDB11444. Raw 

metabolomic data have been deposited at the RIKEN DROP Met (http://

prime.psc.riken.jp/menta.cgi/prime/drop_index) under index number 

DM0037. Raw CAGE sequencing data are deposited at the Japanese 

Genotype-phenotype Archive of National Bioscience Database Center 

(https://humandbs.biosciencedbc.jp/en/) under accession number 

JGAS000569. The following publicly available databases were used in 

this study: Ribosomal Database Project (https://www.canr.msu.edu/

cme/resources#:~:text=RIBOSOMAL%20DATABASE%20PROJECT,J), 

CORE (http://microbiome.osu.edu/), a reference genome sequence 

database obtained from the NCBI FTP site (ftp://ftp.ncbi.nih.gov/

genbank/, December 2011), UCLUST (http://www.drive5.com/), the 

KEGG Orthology database (https://www.genome.jp/kegg/ko.html), 

glycoside hydrolase family classification in the CAZy database (http://

www.cazy.org/Glycoside-Hydrolases.html), the Inflammatory Bowel 

Disease Multi9omics Database (https://ibdmdb.org/) and the Human 

Gene Atlas Database associated with Enrichr (https://maayanlab.cloud/

Enrichr/). Source data are provided with this paper.
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Fecal metabolite analysis

Clustering based on co-abundance (CAGs) 
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Lipid: 108 CAGs

Fecal microbiota analysis

16S: 28 core genera (detected in > 40%) and 

4 co-abundance groups by CCREPE

Metagenome: 6,711 KEGG orthologue

1. Microbial signature in IR and MetS

Host inflammatory phenotypes

in IR and MetS

2. Host-microbe-metabolite interactions

Network analysis using partial Spearman’s 

correlation corrected by age, sex, BMI and 

fasting blood glucose

3. Validation of candidate bacteria/metabolites via experimental models  

Bacterial culture experiments using human-derived fecal microbes

Diet-induced obese mice provided IS-associated microbes

Pro and anti-Inflammatory cytokines

PBMC gene expressions and cell type gene

set enrichment analysis

Plasma metabolites associated with energy

metabolism

Causal mediation analysis to assess whether 

cytokines mediate the relationship between 

fecal metabolites and metabolic markers.

Extended Data Fig. 1 | Overview of multi-omics analysis and data.  

a, Individuals without a prior diagnosis of diabetes, diabetic medications,  

or intestinal diseases were included (n)=)306). Insulin resistance (IR) and 

metabolic syndrome (MetS) were the main clinical phenotypes. To evaluate  

the host-microbe relationship, we collected 1) host factors: clinical, plasma 

metabolome, peripheral blood mononuclear cells (PBMC) transcriptome, and 

cytokine data, and 2) microbial factors: 16S rRNA pyrosequencing, shotgun 

metagenome, and faecal metabolome. The numbers of elements after quality 

filtering are shown for each data set. b, The multi-omics analysis workflow. To 

identify the microbes that affect metabolic phenotypes, we first analysed the 

phenotype-associated metabolomic signatures by binning metabolites into 

co-abundance groups (CAGs). Microbial signatures were determined using the 

16S and metagenomic datasets, and their associations with metabolites were 

analysed. To gain insight into the host-microbe relationship, the associations 

among faecal metabolites/microbes and host plasma metabolites, cytokines, 

and PBMC genes were analysed. We also assessed the mediation effects of 

plasma cytokines on the relationships between faecal metabolites and 

metabolic markers. Finally, to validate the effects of candidate metabolites/

microbes on metabolic phenotypes, we performed bacterial culture and 

animal experiments. The associations between clinical phenotypes and omics 

markers were adjusted by age and sex wherever appropriate.
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Extended Data Fig. 2 | Faecal carbohydrate metabolites are increased in  

IR and MetS. a, The KEGG pathway enrichment analysis of the metabolites in 

hydrophilic CAGs 5, 8, 12, 15, and 18, which were associated with IR in Fig. 1b.  

The size of disks shows the enrichment (i.e., the ratio of observed numbers and 

expected numbers of metabolites in each KEGG pathway). The pathways with 

raw P values < 0.05 are shown in the figure. b, Partial correlations between 

HOMA-IR and faecal levels of short-chain fatty acids (SCFA) such as acetate, 

propionate, and butyrate (left panel), and disaccharides such as maltose and 

sucrose (right panel). The coefficients (pSC) and P values of partial Spearman9s 

correlations adjusted by age and sex are described (n)=)282). c, Faecal levels  

of SCFA (left panel) and disaccharides (right panel) were compared between  

no MetS, pre MetS, and MetS (n)=)306). d, Faecal levels of monosaccharides  

(left panel), SCFA (middle panel), and disaccharides (right panel) were 

compared between healthy, obese, and prediabetes (n)=)306). Density plots 

indicate median and distribution. *Padj)<)0.05, **Padj)<)0.01, ***Padj)<)0.001; 

hypergeometric test with multiple test corrections (a) and rank-based linear 

regression adjusted by age and sex (c, d). The detailed statistics are reported in 

Supplementary Table 5, 6.
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Extended Data Fig. 3 | Faecal carbohydrate metabolites are associated  

with IR-related pathologies. a, The faecal xylose, glucose, and arabinose  

were compared between individuals with normal weight, overweight, and 

obesity in the TwinsUK cohort (n)=)786). b, The associations between faecal 

carbohydrates observed in at least 50% samples and HOMA-IR in the TwinsUK 

cohort (n)=)550). The size and colour of the disks represent the estimate and  

the direction of the associations. Metabolites with Padj)<)0.05 are depicted 

(n)=)550). c, The associations between faecal glucose and arabinose and 

HOMA-IR as analysed in Fig. b. The lines and grey zones show the fitted  

linear regression lines with 95% confidence intervals. The estimates of 

metabolites and their P values are described. d, The association between  

faecal fructose/glucose/galactose and BMI in non-IBD individuals aged > 10 

years old in the HMP2 cohort (n)=)16). The data were analysed with a generalized 

linear mixed-effect model with consent age and sex as fixed effects, and the 

sample collection site as a random effect. The line and grey zone show the 

fitted linear regression lines with a 95% confidence interval. The estimate and  

P value are described. The first faecal sampling for metabolomics was used to 

avoid redundancy. Density plots indicate median and distribution. *P)<)0.05, 

**P)<)0.01; rank-based linear regression adjusted by age, sex, and zygosity  

(a) and generalized linear mixed-effect models with age, sex, zygosity, and BMI 

as fixed effects, and sample collection year as a random effect (b). The detailed 

statistics are reported in Supplementary Table 9.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Faecal microbiota in IR. a, b, Chao1 and Shannon9s 

alpha diversity indices in IR and MetS (n)=)282). c, d, PCoA plots of Bray-Curtis 

dissimilarity, showing the variations of faecal microbiota at the genus level 

based on 16S rRNA gene sequencing (c), and at the species (mOTU) level based 

on shotgun sequencing (d), clustered by IR or MetS (n= 282). Dots represent 

individual data summarized into PCo1 and PCo2. e, PCA plots showing the 

variations of KEGG orthologues based on shotgun metagenomic sequencing 

clustered by IR or MetS (n)=)266). Dots represent individual data summarized 

into PC1 and PC2. f, Co-abundance groups of genus-level microbes and their 

abundance in the participant clusters defined in Fig. 2a. Co-abundance was 

determined based on compositionality-corrected Spearman9s correlations, 

with Padj)<)0.05 considered significant. The disk size represents the median 

abundance in the participants. Three co-abundance groups were determined 

based on their networks, while the rest of the microbes were named as 

<miscellaneous=. g, The co-abundance groups of genus-level microbes  

and their abundance in the participant clusters. Those not clustered by 

compositionality-corrected Spearman9s correlations in f were shown as 

<Unclustered=. The size of the disks represents overabundance to the mean  

in four clusters of participants determined in Fig. 2a. The far-left column  

shows the genera that exhibit significant differences among the four clusters. 

h, The co-abundance clusters of microbes at the genus level using the shotgun 

metagenomic data and their abundance (n)=)266). The genera forming distinct 

groups in f, i.e., groups 1, 2, and 3, were included in this analysis. The participants 

were clustered into three mOTU clusters A to C based on the heatmap clustering. 

The proportion of individuals with IS, intermediate, and IR are shown in the pie 

charts above the heatmap as Fig. 2a. i, The associations between representative 

metabolic markers and genera (left panel, n)=)282) and mOTU (right, n)=)266). 

Only those with significant associations with metabolic markers are depicted. 

The disk size and colour represent absolute values of standardized coefficient 

and the direction of associations. The detailed statistics are reported in 

Supplementary Table 11. j, Microbe-metabolite networks of IR- or and IS-

associated co-abundance microbial groups from Fig. 2a and faecal metabolites 

(n)=)282). All faecal hydrophilic metabolites and faecal microbe-related lipid 

metabolites were included in the analysis. Only those with negative Spearman9s 

correlation between the genus-level microbial abundance and the metabolites 

with Padj)<)0.05 are shown, which is complementary to Fig. 2c. The metabolites 

in CAGs relating to carbohydrates shown in Fig. 1b are highlighted in red. k, The 

relative abundance of IR-associated faecal carbohydrates in the participant 

clusters. The metabolites significantly different among these four clusters are 

coloured grey in the top row. a, b, Box plots indicate the median, upper and 

lower quartiles, and upper and lower extremes except for outliers. Kruskal-

Wallis test (g, k). See the Source Data (g) for exact P values.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Microbial carbohydrate metabolism is altered in IR. 

a, b, The associations between the KEGG pathways relating to amino acid 

metabolism (a) and lipid metabolism (b), faecal carbohydrates, top three 

genera positively or negatively correlated with faecal carbohydrates in Fig. 2d, 

and the participant clusters defined in Fig. 2a. KEGG orthologues significantly 

(Padj)<)0.05) associated with the metabolite (left) and taxonomic abundance 

(right) are summarized as percent enrichment among the KEGG pathways. The 

median % of 15 faecal carbohydrates are coloured in the left panel whereas % 

enrichment is depicted as the disk size in the right panel. The Spearman9s 

correlations between pathway-level abundance and 6 genera were analysed  

in the middle panel (n)=)266). c, The associations between representative 

metabolic markers and the KEGG pathways relating to carbohydrate metabolism, 

amino acid metabolism, lipid metabolism, and membrane transport defined  

in the KEGG orthology database. The pathways with significant associations  

with metabolic markers are included in the plots. The disk size and colour 

represent % enrichment and the direction of associations, and only significant 

(Padj)<)0.05) associations are depicted (n)=)266). d, Spearman9s correlation 

between KEGG orthologues associated with phosphotransferase system  

(PTS) and faecal carbohydrate metabolites. KEGG orthologues significantly 

(Padj)<)0.05) associated with faecal metabolites are coloured red or blue 

(n)=)266). The far-left column shows the type of carbohydrate metabolites  

that each PTS gene is involved in. e, The abundance of representative KEGG 

orthologues involved in PTS were compared among four participant  

clusters (n)=)266). The abundance was transformed by arcsine square root 

transformation. f, Spearman9s correlation between KEGG orthologues 

significantly associated with glycoside hydrolases in starch and sucrose 

metabolism (KEGG pathway #00500) and faecal carbohydrate metabolites 

(n)=)266). The far-left column shows whether the genes were predicted to 

function as extracellular enzymes. g, Representative pathways in starch and 

sucrose metabolism (KEGG pathway #00500) relating to glycosidase activities 

to degrade poly- and oligosaccharides into monosaccharides. h, The abundance 

of representative KEGG orthologues involved in glycosidase were compared 

among four participant clusters (n)=)266). The abundance was transformed by 

arcsine square root transformation. i, The presence and absence of KEGG 

orthologues predicted to function as extracellular enzymes in 45 strains. The 

strains from the top three genera positively or negatively correlated with faecal 

carbohydrates shown in Fig. 2d, i.e., Bacteroides, Alistipes, Flavonifractor, 

Dorea, Blautia, and Coprococcus, were included in this analysis. Density plots 

indicate median and distribution (e, h). *P)<)0.05, **P)<)0.01, ***P)<)0.001 in 

comparison to cluster C (with the lowest proportion of IR); Kruskal-Wallis test 

with Dunn9s test (e, h) (Supplementary Table 18).
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Extended Data Fig. 7 | Cytokine and faecal metabolite interactions in IR.  

a, Cell-type gene set enrichment analysis based on the Human Gene Atlas 

database using Enrichr. Annotated peripheral blood mononuclear cell (PBMC) 

transcripts positively or negatively associated with IR (Supplementary 

Table 21) were analysed (n)=)275). Red and blue colour scales represent IR and 

IS-associated cell types, respectively (please refer to Methods for details).  

b, The cross-omics network shown in Fig. 3a with the annotations. c, The number 

of correlations between faecal carbohydrates and other omics elements shown 

in Fig. 3a. The proportion to all possible correlations is shown. d, Representative 

causal mediation models analysing the effects of IL-10 and adiponectin 

mediating in silico relationships between faecal carbohydrates and HOMA-IR. 

Causal mediation analysis with multiple test corrections were used to test 

significance. Estimates (³) and Padj values of average causal mediation effects 

(ACME), which are the indirect effects between the metabolites and host markers 

mediated by cytokines, and average direct effects (ADE), which are the direct 

effects controlling for cytokines, are described. Age and sex were adjusted in 

the models. The detailed information is reported in Supplementary Table 23.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Bacteroidales strains distinctly alter metabolites  

in the culture supernatant. a, b, PCA plots of metabolites in cell-free 

supernatants of 22 bacterial strains listed in (a). These strains were selected 

based on the findings from the genus-level co-occurrence (Fig. 2a, b) and the 

species-level profiles (Extended Data Fig. 5i). The strains from genera and 

species relating to IR-related markers shown in Extended Data Fig. 5i are 

particularly highlighted in boldface. The top 10 metabolites contributing to 

the PCA separation (left panel) and 13 out of 15 IR-related carbohydrates 

identified in Fig. 1b (right panel) are biplotted on the PCA plot, respectively (b). 

c, d, The levels of carbohydrate fermentation products (c) and carbohydrates 

relating to IR in the human cohort (d) in the cell-free supernatants. e, Pie charts 

summarizing the consumption and production of carbohydrates shown in (d). 

Those significantly decreased or increased compared with the vehicle control 

group were considered as consumption or production. f, The top consumers  

of carbohydrates, which summarizes the results shown in (e). Representative 

data of two independent experiments. c, d, Data are mean and s.d. The detailed 

statistics are reported in Supplementary Table 24 (n)=)3 per group).
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Alistipes indistinctus ameliorates IR. a, Body mass 

change from the baseline. The P value adjusted by baseline body mass by 

ANCOVA are shown (n)=)25 and 26 for control and A. indistinctus (AI) groups, 

respectively. Pooled data of three independent experiments). b, TG contents in 

the liver (n)=)12 and 14 for control and AI groups, respectively. Pooled data of 

two independent experiments). c, d, The blood glucose levels (c) and AUC  

(d) in intraperitoneal glucose tolerance test (IPGTT) (n)=)5 and 4 for control  

and AI groups, respectively). e–g, Serum levels of HDL-cholesterol (HDL-C, e), 

triglycerides (TG, f), and adiponectin (g) (n)=)5 per group in e and f, n)=)8 per 

group in g). h, Glucose infusion rate (GIR) during hyperinsulinemic-euglycemic 

clamp (n)=)7 per group). The rates at 90, 105, and 120)min after the start of 

insulin infusion were shown as representative of steady-state conditions of 

euglycemia. i, j, Whole-body glucose disposal rate (Rd, i) and hepatic glucose 

production (HGP, j) measured with hyperinsulinemic-euglycemic clamp (n)=)7 

per group). k, l, Representative images of phosphorylated Akt (p-Akt) at S473 

and total Akt in the liver and epidydimal fat (eWAT) in mice administered Alistipes 

indistinctus (AI), Alistipes finegoldii (AF), and PBS as vehicle control (k). The 

protein expression of p-Akt was normalized to that of total Akt (n)=)4 vs 5 vs 5) (l). 

The raw images of blotting membranes are shown in Supplementary Fig. 1  

(n)=)3 per group). m–o, Respiratory quotient (RQ) and carbohydrate oxidation 

rate (m), diet intake (n), and locomotor activity (o) after one-week bacterial 

administration (n)=)4 and 5 for control and AI groups, respectively). P values for 

interactions between time and group are described in (m). Other metabolic 

measures are reported in Supplementary Table 25. Representative data of two 

independent experiments (c–g, k–o). a, Density plots indicate median and 

distribution. b–j, l, m, Data are mean and s.d. ANCOVA (main panel) with 

unadjusted linear regression (right panel) (a), two-sided Wilcoxon rank-sum 

test (b, d–g, i, j), two-way repeated measure ANOVA (c), Two-way ANOVA (h) and 

one-way ANOVA (l) with Tukey9s test, two-way mixed ANOVA (m), and Kruskal-

Wallis test (n, o).
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Alistipes indistinctus reduces intestinal 

carbohydrates. a, PCA plots of metabolites in caecal contents of  

AI-administered mice. The top 10 metabolites contributing to the PCA 

separation (left panel) and 12 out of 15 IR-related carbohydrates identified in 

Fig. 1b (right panel) are biplotted on the PCA plot, respectively (n)=)8 per 

group). b, The PC1 of PCA plots in Fig. a (n)=)8 per group). c, Caecal levels of 

representative IR-related carbohydrates observed in AI-administered mice 

(n)=)8 per group). The detailed statistics of all caecal metabolites are reported 

in Supplementary Table 26. d, Serum levels of fructose in AI-administered mice 

(n)=)7 and 5 for control and AI groups, respectively). e, A schematic summary.  

In this study, we combined faecal metabolome, 16S rRNA gene sequencing, and 

metagenome data with host metabolome, transcriptome, and cytokine data  

to comprehensively delineate the involvement of gut microbiota in IR (upper 

panel). Carbohydrate degradation products such as monosaccharides are 

prominently increased in IR (middle panel). Metagenomic findings show that 

the degradation and utilization of poly- and disaccharides are facilitated in  

IR and that these microbial functions are strongly associated with faecal 

monosaccharides. Further analysis also suggests that the effects of these 

metabolites on host metabolic parameters such as BMI are in part mediated by 

specific cytokines. Finally, our animal experiments provide evidence showing 

that oral administration of AI, a candidate strain selected based on human 

cohort findings, reduces intestinal carbohydrates and lipid accumulation, 

thereby leading to the amelioration of IR (lower panel). Taken together, our 

study provides novel insights into the mechanisms of host-microbe interplays 

in IR. Representative data of two independent experiments. b, Box plots indicate 

the median, upper and lower quartiles, and upper and lower extremes except 

for outliers. c, d, Data are mean and s.d. Two-sided Wilcoxon rank-sum test (b–d).
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