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Abstract

With the rapid development of computational methods for single-cell sequencing data,
benchmarking serves a valuation resource. As the number of benchmarking studies
surges, it is timely to assess the current state of the field. We conducted a systematic
literature search and assessed 245 papers, including all 95 benchmark-only papers from
the search and an additional 150 method development papers containing benchmarking.
This collective effort provides the most comprehensive quantitative summary of the
current landscape of single-cell benchmarking studies. We examine performances across
nine broad categories, including often ignored aspects such as role of datasets,
robustness of methods and downstream evaluation. Our analysis highlights challenges
such as how to effectively combine knowledge across multiple benchmarking studies and
in what ways can the community recognise the risk and prevent benchmarking fatigue.
This paper highlights the importance of adopting a community-led research paradigm to
tackle these challenges and establish best practice standards.
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Introduction

Single-cell sequencing has gained tremendous popularity in recent years and there has
been an explosion of computational methods for analysing single-cell data since 2017.
Within the domain of single-cell RNA-sequencing (ScCRNA-seq) alone, there are now over
1500 tools that have been recorded at www.scrna-tools.org (Zappia and Theis 2021). The
exponential growth in single-cell RNA-sequencing tools presents applied scientists with a
double-edged sword, as highlighted by a recent Nature paper (Dance 2022): a wealth of
choices for data analysis, yet an overwhelming challenge in navigating through an ever-
growing and complex array of methodologies.

To address the complexities of selection among the multitude of single-cell RNA-
sequencing tools, the research community has placed a considerable emphasis on
benchmarking. This is evident not only through numerous individual efforts to publish
benchmark papers on various topics (You et al. 2021; Luecken et al. 2021; Mereu et al.
2020; Tian et al. 2019; H. Li et al. 2023) but also through the emergence of community-
focused initiatives, such as the “Open Problems in Single-Cell Analysis”
(https://openproblems.bio/), a web portal for hosting various single-cell analysis tasks such
as cell-cell communication and spatial decomposition.

In the broader bioinformatics community, qualitative guidelines have been suggested to
ensure high quality benchmarking. Notably, Weber and colleagues (Weber et al. 2019)
proposed ten essential guidelines based on their experiences in computational biology.
Further, Mangul’'s group (Mangul et al. 2019) reviewed 25 studies across various topics in
computational omics research and proposed principles that enhance the reproducibility
and transparency of results. Currently, it remains unclear to what extent various research
communities have embraced established benchmarking practices. In light of the rapid
advancement of methodologies and the acknowledged significance of benchmarking
within the single-cell research field, this field stands out as a good exemplar to explore the
present state of benchmarking practices and help understand gaps that necessitate
community attention. Recently, Sonrel and colleagues provided the first paper (Sonrel et
al. 2023) that quantitatively reviewed a collection of 62 single-cell benchmarking papers.
They emphasised the technical aspects of the single-cell benchmark works and
highlighted the need for code reproducibility, interoperability and extensibility. However,
due to the multifaceted nature of the single-cell field encompassing not only technical
aspects but also other considerations such as methodology, dataset and biological
context, there is a need for a more comprehensive evaluation that takes account of the
wider aspects of the single-cell field.

To achieve a quantitative understanding of the current landscape in single-cell
benchmarking, we embarked on an extensive review. This involved conducting a
systematic literature search for single-cell papers published between 1/1/2017 to
31/3/2023 via a PRISMA strategy (Page et al. 2021). The final collection includes 245
papers. This includes every benchmark-only paper in single-cell research (n = 95), where
each paper is read by two different readers at least, along with a set of 150 method
development papers that incorporate benchmarking elements, representing a collective
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human effort over approximately 270 hours. We designed a two-stage survey with nine
sections such as study design and downstream evaluation metric, each aligning with a
crucial aspect of benchmarking to gather key information from each paper and asked
participants in the research group to fill in the survey (Methods). In total, more than 70
variables were collected. Through this systematic approach, we provide a comprehensive
overview of the current state of play in single-cell benchmarking and raise awareness
among the computational community regarding the challenges and opportunities.

Results

A comprehensive study design to evaluate single-cell benchmarking studies

To examine the current landscape of single-cell benchmarking studies systematically, we
employed a two-stage process. In the first stage, we designed a pilot study, where we
carefully read 17 selected benchmarking studies and identified all evaluation strategies
presented in those studies (Figure 1a). Next, we categorised all these strategies into nine
separate sections representing information relating to datasets, methods, accuracy
criteria, scalability, stability, downstream analysis, context specific discovery,
communication and software (Figure 1b). We then designed a survey with multiple
choices and open-ended questions that facilitate the capture of all nine aspects of
evaluations associated with a given benchmarking study. The finalised survey was given
to volunteer participants who then reviewed and recorded the information on each paper
as survey response (Figure 1c).

We performed a systematic literature search using key terms such as “single-cell”,
“systematic evaluation”, “benchmark” (Supplementary Figure 1, 2). We followed the
PRISMA flow diagram to systematically record the selection process, including the
inclusion and exclusion criteria. We intentionally included both benchmark-only papers
(BOP) and method development papers (MDP) with a benchmarking component. We
acknowledge that method development papers often include a benchmarking section to
illustrate the effectiveness of their proposed methods. By including both the BOP and
MDP papers, we are able to present a more comprehensive overview of the
benchmarking practice in single-cell research.

In total, 31 readers contributed to the reading with a total of 356 survey responses
(Supplementary Table 1). This corresponds to a total of 245 unigue papers including 95
benchmark-only papers and 150 method development papers (Supplementary Figure 3),
where all benchmark-only papers were read at least by two readers and their consensus
was taken. The collection of papers involves 9 different technologies including single-cell
RNA-seq (scRNA-seq), single-cell genomics, single-cell ATAC-seq (SCATAC-seq), single-
cell multiomics, spatial transcriptomics (ST) and spatial imaging. The benchmarked topics
are diverse ranging from initial analysis such as batch correction, and intermediate
analysis such as cell annotation, to downstream analysis such as differential expression,
as well as analysis pipelines and data (Supplementary Figure 4).
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The current landscape of benchmarking studies

We examined the landscape of benchmarking from benchmark-only papers and method
development papers. Table 1 and Supplementary Figure 5 show an overview of the
results from nine components of the survey. Figure 2 presents key criteria and the
percentage of benchmark-only and method development papers that met each criterion.
Interestingly, we observed a broadly similar landscape of characteristics between BOPs
and MDPs (Figure 2a-b, R = 0.8), despite these papers serving distinct purposes for the
research community. This similarity reveals that the general benchmarking challenges are
common in our community from both a review and development perspective.

Delving into the specific evaluation criteria, we start with the two fundamental components
of benchmarking: the methods chosen for benchmarking and the characteristics of the
datasets to which these methods are applied. We observed that, on average, BOPs
featured a more extensive evaluation of methods (median = 10 methods) compared to
MDPs (median = 5 methods). However, it is worth noting that it is often unclear why
certain methods were chosen, as less than half of all papers reported selection criteria of
the methods (50% in BOP; 33% in MDP). Expectedly, almost all papers used
experimental datasets (97% in BOP; 99% in MDP), with the median number of datasets
used being similar across the two paper types (median = 6 in BOP; median = 4 in MDP).
Synthetic datasets, often important in generating specific scenarios, are used more
prevalently in benchmark-only papers (60% in BOP; 45% in MDP), with the median
number of datasets also being higher in the benchmark-only paper (median = 9 in BOP;
median = 4 in MDP).

The performance of a method is multi-faceted and extends beyond accuracy
measurement.

We observed that a large proportion of papers from the category recognise downstream
biological application as an important method assessment (65% in BOP; 87% in MDP).
New biological discoveries were claimed by 28% of the method development papers (0%
in BOP). The performance of a method can also be context specific and it is important to
communicate the advantages and limitations of different methods. Applicability, which
refers to the suitability of a method for a specific task, was conducted in 58% of
benchmark-only papers and 29% of method development papers. Trade-off analysis,
which refers to the compromise between different aspects of a method, was performed in
41% of benchmark-only papers and 20% of method development papers. Stability of
methods is critical for reproducible research. However, we noted only a minority of papers
performed sensitivity analysis such as assessing the impact of data subsampling on
method performance. In terms of scalability, while a significant number of papers reported
speed (69% in BOP; 46% in MDP), only a minority of papers measured memory usage
(33% in BOP; 21% in MDP).

In terms of software availability, we observed the sharing of code is a common practice in
the single-cell field with almost 90% of method papers providing code and over 70% in
benchmark-only papers. The provision of curated datasets is less common, with less than
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50% of papers fulfilling this criterion. Whilst there is no requirement for studies to provide
interactive websites for accessing the results, we observed that four studies in
benchmark-only studies and nine studies in method development papers provided
websites.

The challenges of consistency in multiple benchmarking studies on a single topic
We observed a significant number of topics that have attracted multiple benchmarking
studies. Across the 26 topics covered in the benchmark-only papers, 16 of them (62%)
have more than one study (Supplementary Figure 3). However, when focusing on popular
topics with more than three studies, such as dimension reduction (n = 9), differential
expression (n = 9) and cell type/state identification (n = 7), we unexpectedly found a
limited number of overlaps in the methods evaluated across the multiple studies (Figure
3a, Supplementary Figure 6a). For example, in the nine differential expression
benchmarking studies, the majority of the methods (65%; 24/37) were only benchmarked
in one paper.

The lack of overlap in the evaluated methods raises the question of how to best
consolidate the knowledge across multiple benchmarking studies. Is it even possible to
derive consensus rankings for the methods? In parallel, effective consolidation is further
hampered by the different criteria and datasets used across the benchmark. Almost all
benchmark papers (93%) reported criteria-specific performance, while 77% of benchmark
papers reported dataset-specific performance (Figure 3b,c). The criteria and datasets
used by each benchmarking paper are different with less than 10% overlap in many of the
topics (Supplementary Figure 7, 8). For example, one might expect accuracy of cell type
classification to be a key criterion for all cell type/state identification papers. We found
each of these papers examined different measures of accuracy such as overall accuracy
and microF1, as well as different scenarios such as the effect of using different sizes of
reference data, the impact of feature selection and the impact of batch correction. The
combination of different scenarios and different measures resulted in only three out of the
total of 76 criteria (4%) being used in more than one paper among the seven cell
type/state identification papers. While the emphasis on criteria and dataset-specific
evaluations is valuable, a key question arises: how can we effectively synthesise
knowledge from multiple benchmarking studies to enhance our understanding?

Data diversity for comprehensive method evaluation

Next we focused on the choice of datasets in benchmarking evaluations. Surprisingly, the
average number of experimental datasets used in benchmark-only papers (6 + 28) is
comparable to that observed in method development papers (5 £ 43) (Table 1, Figure 4a),
with P-value = 0.53 under Welch Two Sample t-test. This observation poses questions on
whether the current benchmarking studies utilise enough datasets for a comprehensive
assessment, as method performance can vary across different datasets.

In addition to the number of datasets, the diversity of datasets, both experimental and
synthetic, is also an important factor for method evaluation. We found, irrespective of the
type of papers, a greater percentage of readers indicated that the experimental data used
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were diverse (83% in BOP and 85% in MDP), compared to synthetic data (62% in BOP
and 63% in MDP) (Table 1) (Figure 4b). One possibility is that despite a study generating
multiple synthetic datasets, they could have been derived from a limited set of
experimental data. However, synthetic data exhibited a broad range of diversity. In
experimental datasets, the diversity predominantly arose from various characteristics
inherent to the dataset, such as sequencing protocol and cell/tissue type (Figure 4c). In
contrast, the diversity in synthetic datasets can be carefully designed to encompass
specific scenarios that are not easily accessible in experimental datasets such as a
spectrum of sparsity levels. Incorporating both experimental and synthetic datasets can
offer a more comprehensive understanding of method performance across diverse
biological scenarios.

Unravelling temporal trends in benchmarking practices

We sought to understand how the landscape of benchmarking studies changes over time
(2017-2023) among our 245 papers by using numeric scores to represent selected criteria
(Supplementary Table 2) where a higher score indicated the paper has fulfilled a greater
number of criteria. We recognise that the year when a field first emerged would confound
criteria such as the number of methods evaluated in each year, and thus, we adjusted
publication year into a relative publication year (see Methods) (Figure 5a).

A notable finding is the trend of the number of methods evaluated across adjusted
publication years and the emerging challenge of ‘benchmarking fatigue’. The overall
scores of papers as well as many of the individual criteria such as the number of datasets
used remained stable over time (Figure 5b, Supplementary Figure 9). In contrast, both the
benchmark-only papers and method development papers revealed an increasing trend in
the number of methods compared across the years (Figure 5c). As the relative publication
year progressed from year 0 to year 7 within a field, the median number of methods
evaluated increased from 5 to 12 in benchmark-only papers. Whilst the increasing number
of methods reflects active development of the single-cell field, it also motivates
consideration of how to approach the ever-increasing number of methods in terms of
evaluation. Furthermore, we noted that over 40% of papers included more methods in
their published versions compared to their bioRxiv counterparts, irrespective of the
number of methods initially benchmarked in the bioRxiv version (Figure 5d), further adding
to this benchmark fatigue.

Discussion

This study performed a systematic literature search and analysed a total of 245 papers in
the single-cell literature space, consisting of 95 benchmark-only papers and 150 method
development papers. It extensively examines nine different aspects of evaluation,
including but not limited to the type of data used in the studies, number of methods
benchmarked, accuracy criteria, stability aspects, downstream analysis, capture of context
specific knowledge, communication aspect and the availability of resources. With the
evaluation of these papers, we uncover various challenges and opportunities for the
community to consider.
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We identified multiple areas for further improvement. For example, less than half of the
assessed papers reported selection criteria explaining why certain methods were included
in the benchmark. This underscores the need for greater transparency in reporting. We
noted only over 30% of papers in both paper categories assessed stability of method
performance. Stability is one of the three major principles underlying data science,
together with predictability and computability (Yu and Kumbier 2020). Unstable methods
create confusion and irreproducible results in research. In terms of scalability, the
evaluation of memory usage is an area requiring attention. As the size of single-cell data
continues to surge, with datasets reaching millions of cells and atlases containing tens of
millions of cells (M. Li et al. 2021; Rozenblatt-Rosen et al. 2017), memory is becoming a
key consideration in method selection. Interestingly, we note that while the availability of
data is often required in many journals, less than 50% of studies provide processed data,
with the rest of studies providing either no data or links to raw data. Data curation is a
time-consuming step in research and the accessibility and resusability of the data as
outlined by the FAIR Data Principles will benefit the scientific community (Wilkinson et al.
2016).

We noted several challenges in the current single-cell benchmarking field that necessitate
a joint community effort. One of the challenges is how to deal with the information
presented in multiple benchmarking studies. The limited overlap in methods and the
different conclusions of method performance driven by datasets and methods can confuse
applied researchers. To account for this challenge, one could perform meta-analysis or
combine the results from multiple studies. However, in the current single-cell
benchmarking field, the input and output of the methods are rarely made available and
researchers who want to extend from existing benchmarks would need to reconstruct the
benchmark from scratch (Sonrel et al. 2023). This situation calls for a collective effort from
all researchers for more transparency in result sharing and for the development of novel
approaches to create a consensus benchmarking framework that can be extended from
different methods, datasets and criteria. To take this one step further, the single-cell
community could establish a benchmarking consortium to define a set of guiding principles
for future benchmarking studies, including the deposition of data and results. In the clinical
field, for instance, the famous Cochrane Collaboration was established to provide
continuing guidelines and advice on systematic review (Higgins et al. 2011) and is
considered as a gold standard in the field.

We found that the median number of methods benchmarked in a study increases as the
field progresses. While this reflects the natural progression of the field, it can lead to
challenges such as benchmarking fatigue. A potential solution is a web-based system that
holds existing benchmarking results and allows researchers to incorporate new methods
into the existing results. This concept of “living benchmark” ideas has been adopted in
domains such as microarray probeset summary (Cope et al. 2004) and scRNA-seq
simulation methods (Cao, Yang, and Yang 2021). Notably, the “Open Problems in Single
Cell Analysis” website (https://openproblems.bio/) hosts a similar platform for several
popular areas such as batch correction and cell type annotation. Nevertheless, the
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number of datasets currently evaluated by the platform is limited, with typically around
three datasets in each area. Besides including more datasets, the system should ideally
enable new metrics or questions to be incorporated and existing methods to be evaluated
on the new metric. By joining community efforts, we believe such a system linking multiple
datasets with metrics and questions can effectively allow new benchmarking studies to
build on top of existing studies. This not only alleviates benchmarking fatigue by avoiding
repeated evaluation of methods that have been previously assessed, but also facilitates
integration of multiple benchmarking studies.

In conclusion, this extensive assessment on a collection of 245 papers not only enhances
our understanding of the current state of play in single-cell benchmarking but also
underscores the need for collective efforts within the bioinformatics community. The
survey result, made publicly available, is a valuable resource for the community for further
investigation. We hope this work sets the foundation and raises a call for collective action
from the single-cell community to set guidelines and advance benchmarking practices. We
envisage the formation of a benchmarking consortia or collaborations similar to the
Cochrane Collaboration will bring together experts from various single-cell areas and
enhance the future of single-cell benchmarking.

Methods

Design of the study

Survey Design

To have a structured way of collecting information on each article, we designed a survey
to contain multiple-choice and open-ended questions related to various aspects of journal
articles. Each question was accompanied by a detailed explanation to ensure the clarity of
guestion and quality of the response. This survey construction was achieved in a two-
stage approach.

Stage | - pilot study

Stage | is a pilot study. Prior to the full-scale data collection, a pilot study was conducted
with all authors. Authors read 17 single-cell papers published in renowned journals such
as Nature Biotechnology, including both benchmark-only papers and method development
papers to gather the metrics used in these papers. This stage is an iterative process
where multiple meetings were held to discuss the questions included in the survey and
update the survey. The final survey form included nine sections on various aspects
including data, method, accuracy criteria, scalability, stability, downstream analysis,
context specific discovery, communication and software. For a selected series of
guestions, that is, diversity of experimental dataset, diversity of synthetic datasets, types
of downstream analysis performed, the questions were initially designed for users to input
open text. Manual text analysis was then used to narrow these into categories and convert
the questions into multiple choices, such that it is both easier for the reader to respond
and easier for data cleaning. Users also had the option to type their response for
responses not included in the multiple choices.
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Stage Il - full study

In Stage Il we performed the full study. We gave a 1-hour presentation session to the
research group before people contributed, to ensure that people fully understood the
guestions. To ensure the survey result is not solely driven by the opinion of the authors of
this study, we invited members, who are mostly PhD students, in our group to voluntarily
contribute to the survey. For all benchmark-only papers, we ensured at least two readers
for each paper to counter any potential error or bias. Details for addressing any
inconsistency between two or more readers were given in the data processing Methods
sections.

Systematic selection of papers

Literature search

To perform a systematic literature search of papers, we used the following key index
terms including “single cell”, “single-cell”, “spatial transcriptomics”, “benchmark”,
“benchmarking”, “systematic evaluation”, “systematic comparison”, “comprehensive
evaluation” and “review” to search on PubMed. We restrict the time of publication to be
between 1/1/2017 to 31/3/2023. This results in a total of 563 papers that were published
since 2017. We manually screened all records to identify the relevant single-cell related

papers and excluded any pre-print papers.

Collection of benchmark-only papers

In addition to the 563 papers, we identified 62 papers from the research conducted by
Sonrel et al. (Sonrel et al. 2023) and a further three benchmark-only papers were
recommended by readers. After excluding duplicates, this produced 603 papers. We then
applied our filtering criteria on the time of publication and removed any pre-print papers on
this collection. Subsequently, each paper underwent a screening process, leading to a
final collection of 95 single-cell benchmark-only papers.

Collection of method development papers

From the 563 papers, we identified a total of 246 single-cell papers that proposed new
methods. We included these papers in our study as these papers also included an
evaluation of their methods with other methods. We randomly sampled 94 papers from the
246 papers to be read. We also received 56 recommendations from the readers. This
resulted in a final number of 150 method development papers included in this study. We
refer to this collection of papers as method development papers.

Data processing and statistical analysis

Data cleaning and processing

We performed data cleaning on the survey response in order to address errors and
inconsistencies. In particular, for all benchmark-only papers, each paper was read by at
least two readers and inconsistency could arise as a result. We examined the columns
corresponding to factual information and identified inconsistent responses. These columns
are “Paper category”, “Memory measured”, “Speed measured”, “Website”, “Data
availability”, “Types of data”, “Methods compared”, “Package availability”, “Number of
experimental datasets”, “Sensitivity analysis”, “Tuning”, “Number of synthetic datasets”,
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“Max number of cells”, and “Overall comparison”. Another reader then manually cleaned
the inconsistent values by reading the paper as well as the response by the two readers.
Invalid responses were removed.

We also ensured responses in each column were consistent with one another. For
example, if the answer to “Types of data” was “Both experimental and synthetic datasets”
were used for evaluation, we ensured the “Number of experimental datasets” and
“Number of synthetic datasets” were filled with the corresponding information from the
paper. The final cleaned survey response is publicly available at
https://qgithub.com/SydneyBioX/sc_bench_benchmark as a CSV file.

Curation of additional variables

To extend the type of analysis possible, we manually curated further variables of interest.
The following variables are created by reading the abstract of each paper: 1) the data
type, ie, the types of single-cell omics data, 2) the broader topic type, we classified the
papers into the following five categories: data, initial analysis, intermediate analysis,
downstream analysis and analytical pipelines, 3) the finer topic type, we defined the
specific task or purpose of the papers, such as classification, clustering, doublet detection,
etc. Additionally, where there is a bioRxiv version of the published papers, we curated the
number of methods compared in the bioRxiv version.

Temporal analysis

To quantitatively assess the trends in the benchmarking landscape across years, we
transformed specific criteria into the range from 0 to 1 (Supplementary Table 2). The
scores from each criterion were aggregated to generate an overall score for each paper,
where a higher score indicates a greater fulfilment of the criteria.

We noted that certain criteria such as the number of methods compared can be
confounded by the time when the field thrives. For example, it is not fair to compare the
number of methods benchmarked in a spatial deconvolution paper with the number of
methods benchmarked in scRNA-seq deconvolution papers despite them both being
published in the same year. Spatial omics were introduced at a much later time than
scRNA-seq and the number of methods available differ significantly.

To account for this confounding effect, we converted the publication year into what we
termed as “dynamic publication year”. In detail, we utilised the single-cell RNA-seq tool
website (Zappia and Theis 2021) which collects the publications on single-cell tools, the
categorisation of the tools and the publication year. We calculated the year when each
category had at least 5 papers, which we termed as year 0. We then subtract the
publication year of the 245 papers by year 0 to create the dynamic publication year. For
example, for a topic with five papers published in 2020, a benchmarking paper published
on that topic in 2023 is then considered as being published in year 3. This thus effectively
adjusts for the difference in time when each field was introduced.
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Backmatter

Code and data availability
Code and anonymised survey result for reproducing the results of this study is publicly
available at https://github.com/SydneyBioX/sc_bench_benchmark.
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Figures and Tables

Tables

Table 1: Summary of key findings from the survey.

For the criterion “downstream analysis”, we removed the papers classified under the
broad category as “downstream analysis” in the calculation. The reason is that we are only
interested if the paper performed downstream analysis if the method itself is not a
downstream analysis method. For the criterion “recommendation”, we did not calculate
this criterion for method development papers. The reason is that we assume method
papers would recommend their own proposed method and this criterion is not relevant.

Benchmarki | Criteria Explanation Key findings for Key findings for
ng aspects benchmark-only method development
papers (BOP) papers (MDP)
Paper Paper Number of studies in [ N =95 N =150
category category benchmark-only
papers and in
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method
development papers
Data Types of The types of data Experimental: 35 Experimental: 81
data the study used to (37%) (54%)
perform method Synthetic: 3 (3%) Synthetic: 1 (1%)
evaluation. Whether | Both: 57 (60%) Both: 68 (45%)
they used
experimental
dataset, or synthetic
datasets, or both.
Number of | Number of 6+ 28 5143
experiment | experimental
al datasets | dataset used
(median * sd)
Number of [ Number of synthetic |9 + 2579 4+710
synthetic dataset used
datasets (median + sd)
Diversity of [ Whether the Yes: 75 (83%) Yes: 123 (85%)
experiment | experimental No: 14 (15%) No: 20 (14%)
al data dataset is Not sure: 2 (2%) Not sure: 2 (1%)
considered diverse
(Papers that use
synthetic datasets
only are excluded
from the counting)
Diversity of [ Whether the Yes: 36 (62%) Yes: 15 (63%)
synthetic synthetic dataset is | No: 14 (24%) No: 9 (34%)
data considered diverse | Not sure: 8 (14%) Not sure: 1 (3%)
(Papers that use
experimental
datasets only are
excluded from the
counting)
Methods Number of [ Number of methods |10+ 8 4+4
methods benchmarked
(median * sd)
Inclusion of [ Whether the study Yes: 47 (50%) Yes: 49 (33%)
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performed
parameter tuning of
the methods, or
used default
parameter settings

(22%)
Default setting: 74
(78%)

selection mentioned about No: 45 (47%) No: 93 (62%)
criteria selection criteria of | Not sure: 3 (3%) Not sure: 8 (5%)
the methods
Accuracy Variability | Whether the study Yes: 64 (67%) Yes: 87 (58%)
of score shown variability of | No: 31 (33%) No: 63 (42%)
scores (for example,
in terms of boxplot)
Overall Whether the study Yes: 41 (43%) Yes: 46 (31%)
compariso | shown overall No: 54 (57%) No: 104 (69%)
n comparison figure or
table of all evaluated
methods
Scalability Speed Whether speed of Yes: 65 (69%) Yes: 69 (46%)
measured | the methods was No: 30 (32%) No: 81 (54%)
measured
Memory Whether memory Yes: 31 (33%) Yes: 32 (21%)
measured | usage of the No: 64 (67%) No: 118 (79%)
methods was
measured
Max If either speed or 10,000 * 5,944,397 33,611 + 409,162
number of | memory usage was
cells measured, what was
the maximum
number of cells
tested (median * sd)
Stability Sensitivity | Whether sensitivity | Yes: 33 (35%) Yes: 36 (24%)
analysis analysis was No: 62 (65%) No: 114 (76%)
performed, for
example, by
subsampling the
data and examine
the impact on
performance
Tuning Did the study Parameter tuning: 21 Parameter tuning: 21

(14%)
Default setting: 129
(86%)
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lab validation

Not sure: 2 (2%)

Downstream | Downstrea | Whether the study Yes: 46 (65%) Yes: 97 (87%)
m analysis | examined No: 23 (32%) No: 13 (12%)
downstream Not sure: 2 (3%) Not sure: 1 (1%)
analysis using the
output produced
from the methods
Context Prior Whether the Yes: 23 (24%) Yes: 62 (41%)
specific knowledge | methods capture No: 64 (67%) No: 78 (52%)
confirmation any prior knowledge | Not sure: 8 (8%) Not sure: 10 (7%)
/discovery
Discovery | Whether the No: 94 (99%) Yes: 34 (23%)
methods claimed Not sure: 1 (1%) No: 108 (72%)
any new discovery Not sure: 8 (5%)
Wet lab Whether the study Yes: 2 (2%) Yes: 2 (1%)
validation | performed any wet | No: 93 (98%)

No: 147 (98%)
Not sure: 1 (1%)

Communicat | Recomme | Whether the study Yes: 82 (87%) Not applicable
ion ndation provided any No: 10 (11%)
recommendation of | Not sure: 3 (3%)
the best methods
Applicabilit | Whether the study Yes: 55 (58%) Yes: 43 (29%)
y examined No: 37 (39%) No: 100 (67%)
applicability of the Not sure: 3 (3%) Not sure: 7 (5%)
methods, for
example, certain
methods being
applicable for
certain tasks
Trade-offs | Whether the study Yes: 28 (41%) Yes: 11 (20%)
examined trade-offs | No: 39 (57%) No: 41 (72%)
of the methods Not sure: 1 (1%) Not sure: 5 (9%)
Future Whether the study Yes: 54 (57%) Yes: 79 (53%)
directions | suggested any No: 39 (41%) No: 69 (46%)
future studies Not sure: 2 (2%) Not sure: 2 (1%)
Software Website Whether the study Yes: 4 (4%) Yes: 9 (6%)
produced a website | No: 91 (96%) No: 141 (94%)
hosting the results
Data Whether apart from | Yes: 46 (48%) Yes: 61 (41%)
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availability | providing the No: 49 (52%) No: 89 (59%)
accession code, the
study provided the
curated data
available for direct
download

Package Whether the code or | Yes: 67 (71%) Yes: 134 (89%)
availability | package is available | No: 28 (30%) No: 16 (11%)

Figures

a b c
Survey phase 1 survey Survey phase 2
Pilot study Final form Full study

Freliminaiy
—  survey form

Re-design survey
=)
;

Figure 1. Schematic overview of the design of the survey.

The survey was designed in a two-stage process. a. During the pilot study stage, a
preliminary survey was designed that incorporated insights from 17 benchmarking papers.
The survey was distributed to participants to collect feedback for the final survey in an
iterative form. b. The final survey covered nine categories of evaluation, including data,
method, accuracy criteria, scalability, stability, downstream analysis, context specific
discovery, communication and software. c. In the full study stage, the participants
reviewed a total of 245 papers, 95 from benchmark-only papers and 150 from method
development papers, which provided the data for the analysis of this study.
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Figure 2. Percentage of criterion fulfilment.

a. The percentage of papers that fulfilled each criterion. The x-axis indicates benchmark-
only papers and y-axis indicates method development papers. Note that the
“recommendation” criterion is considered not applicable for method development papers
and is therefore given a score of 0. The criteria “downstream analysis” is calculated based
only on the papers that belong to the analysis category of “data”, “initial analysis” and
“intermediate analysis”. b. Ranking of the criteria in benchmark-only paper and new
method development paper, ordered by the percentage of papers that fulfilled each

criterion.
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Figure 3. Inspecting consistency across multiple benchmarking studies.

a. Both the upset plot and Venn diagram show the number of common methods evaluated
across different benchmarking papers within each topic. Each paper is denoted by the
PMID number. b. Number of papers reporting dataset-specific performance of methods. c.
Number of papers reporting criteria-specific performance of methods.
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Figure 4. Usage of datasets in benchmark-only and method development papers.
a. Distribution of the number of experimental and synthetic datasets in benchmark-only
and method development papers. Vertical line indicates the median number of dataset
used. b. Proportion of papers with experimental and synthetic datasets that are
considered to be diverse. c. Detail of the diversity in experimental and synthetic datasets,
ordered by the proportion of the datasets in each diversity category. The total proportion
may exceed 1 as one dataset can exhibit multiple types of diversity.
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Figure 5. Temporal trends of selected benchmarking practices.

a. Number of papers in adjusted publication year, stratified by their actual publication year.
b. Overall score of each paper over adjusted publication years. c. Number of experimental
datasets used in each paper over adjusted publication year. d. Trend of number of
methods evaluated in each paper over adjusted publication year. e. Number of methods
evaluated in bioRxiv and published versions of the papers. The percentage above the
diagonal line indicates the proportion of papers where the number of methods is greater in
the published version. The percentage below indicates the proportion of papers where the
number of methods is equal in the published and bioRxiv version.
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