
The current landscape and emerging challenges of 
benchmarking single-cell methods 
 
Yue Cao1,3,4,+, Lijia Yu1,2,3,4+, Marni Torkel1,3,4, Sanghyun Kim1,3,4, Yingxin Lin1,3,4, Pengyi 
Yang1,2,3,4, Terence P Speed5, Shila Ghazanfar1,3,4$, Jean Yee Hwa Yang1,3,4$* 
 

1 School of Mathematics and Statistics, University of Sydney, Sydney, Australia 
2 Computational Systems Biology Group, Children’s Medical Research Institute, University 
of Sydney, Westmead, Australia 
3 Sydney Precision Data Science Centre, University of Sydney, NSW 2006, Australia 
4 Charles Perkins Centre, University of Sydney, Sydney, Australia 
5 Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia 
+  Equal contribution 
*Correspondence (jean.yang@sydney.edu.au)  
 
Abstract 
With the rapid development of computational methods for single-cell sequencing data, 
benchmarking serves a valuation resource. As the number of benchmarking studies 
surges, it is timely to assess the current state of the field. We conducted a systematic 
literature search and assessed 245 papers, including all 95 benchmark-only papers from 
the search and an additional 150 method development papers containing benchmarking. 
This collective effort provides the most comprehensive quantitative summary of the 
current landscape of single-cell benchmarking studies. We examine performances across 
nine broad categories, including often ignored aspects such as role of datasets, 
robustness of methods and downstream evaluation. Our analysis highlights challenges 
such as how to effectively combine knowledge across multiple benchmarking studies and 
in what ways can the community recognise the risk and prevent benchmarking fatigue. 
This paper highlights the importance of adopting a community-led research paradigm to 
tackle these challenges and establish best practice standards.  
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Introduction  
Single-cell sequencing has gained tremendous popularity in recent years and there has 
been an explosion of computational methods for analysing single-cell data since 2017. 
Within the domain of single-cell RNA-sequencing (scRNA-seq) alone, there are now over 
1500 tools that have been recorded at www.scrna-tools.org (Zappia and Theis 2021). The 
exponential growth in single-cell RNA-sequencing tools presents applied scientists with a 
double-edged sword, as highlighted by a recent Nature paper (Dance 2022): a wealth of 
choices for data analysis, yet an overwhelming challenge in navigating through an ever-
growing and complex array of methodologies. 
 
To address the complexities of selection among the multitude of single-cell RNA-
sequencing tools, the research community has placed a considerable emphasis on 
benchmarking. This is evident not only through numerous individual efforts to publish 
benchmark papers on various topics  (You et al. 2021; Luecken et al. 2021; Mereu et al. 
2020; Tian et al. 2019; H. Li et al. 2023) but also through the emergence of community-
focused initiatives, such as the “Open Problems in Single-Cell Analysis” 
(https://openproblems.bio/), a web portal for hosting various single-cell analysis tasks such 
as cell-cell communication and spatial decomposition.  
 
In the broader bioinformatics community, qualitative guidelines have been suggested to 
ensure high quality benchmarking. Notably, Weber and colleagues (Weber et al. 2019) 
proposed ten essential guidelines based on their experiences in computational biology. 
Further, Mangul’s group (Mangul et al. 2019) reviewed 25 studies across various topics in 
computational omics research and proposed principles that enhance the reproducibility 
and transparency of results. Currently, it remains unclear to what extent various research 
communities have embraced established benchmarking practices. In light of the rapid 
advancement of methodologies and the acknowledged significance of benchmarking 
within the single-cell research field, this field stands out as a good exemplar to explore the 
present state of benchmarking practices and help understand gaps that necessitate 
community attention. Recently, Sonrel and colleagues provided the first paper (Sonrel et 
al. 2023) that quantitatively reviewed a collection of 62 single-cell benchmarking papers. 
They emphasised the technical aspects of the single-cell benchmark works and 
highlighted the need for code reproducibility, interoperability and extensibility. However, 
due to the multifaceted nature of the single-cell field encompassing not only technical 
aspects but also other considerations such as methodology, dataset and biological 
context, there is a need for a more comprehensive evaluation that takes account of the 
wider aspects of the single-cell field.  
  
To achieve a quantitative understanding of the current landscape in single-cell 
benchmarking, we embarked on an extensive review. This involved conducting a 
systematic literature search for single-cell papers published between 1/1/2017 to 
31/3/2023 via a PRISMA strategy (Page et al. 2021). The final collection includes 245 
papers. This includes every benchmark-only paper in single-cell research (n = 95), where 
each paper is read by two different readers at least, along with a set of 150 method 
development papers that incorporate benchmarking elements, representing a collective 
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human effort over approximately 270 hours. We designed a two-stage survey with nine 
sections such as study design and downstream evaluation metric, each aligning with a 
crucial aspect of benchmarking to gather key information from each paper and asked 
participants in the research group to fill in the survey (Methods). In total, more than 70 
variables were collected. Through this systematic approach, we provide a comprehensive 
overview of the current state of play in single-cell benchmarking and raise awareness 
among the computational community regarding the challenges and opportunities.  
 
 
Results 
A comprehensive study design to evaluate single-cell benchmarking studies 
To examine the current landscape of single-cell benchmarking studies systematically, we 
employed a two-stage process. In the first stage, we designed a pilot study, where we 
carefully read 17 selected benchmarking studies and identified all evaluation strategies 
presented in those studies (Figure 1a). Next, we categorised all these strategies into nine 
separate sections representing information relating to datasets, methods, accuracy 
criteria, scalability, stability, downstream analysis, context specific discovery, 
communication and software (Figure 1b).  We then designed a survey with multiple 
choices and open-ended questions that facilitate the capture of all nine aspects of 
evaluations associated with a given benchmarking study.  The finalised survey was given 
to volunteer participants who then reviewed and recorded the information on each paper 
as survey response (Figure 1c).  
 
We performed a systematic literature search using key terms such as “single-cell”, 
“systematic evaluation”, “benchmark” (Supplementary Figure 1, 2). We followed the 
PRISMA flow diagram to systematically record the selection process, including the 
inclusion and exclusion criteria. We intentionally included both benchmark-only papers 
(BOP) and method development papers (MDP) with a benchmarking component. We 
acknowledge that method development papers often include a benchmarking section to 
illustrate the effectiveness of their proposed methods. By including both the BOP and 
MDP papers, we are able to present a more comprehensive overview of the 
benchmarking practice in single-cell research.  
 
In total, 31 readers contributed to the reading with a total of 356 survey responses 
(Supplementary Table 1). This corresponds to a total of 245 unique papers including 95 
benchmark-only papers and 150 method development papers (Supplementary Figure 3), 
where all benchmark-only papers were read at least by two readers and their consensus 
was taken. The collection of papers involves 9 different technologies including single-cell 
RNA-seq (scRNA-seq), single-cell genomics, single-cell ATAC-seq (scATAC-seq), single-
cell multiomics, spatial transcriptomics (ST) and spatial imaging. The benchmarked topics 
are diverse ranging from initial analysis such as batch correction, and intermediate 
analysis such as cell annotation, to downstream analysis such as differential expression, 
as well as analysis pipelines and data (Supplementary Figure 4).   
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The current landscape of benchmarking studies 
We examined the landscape of benchmarking from benchmark-only papers and method 
development papers. Table 1 and Supplementary Figure 5 show an overview of the 
results from nine components of the survey. Figure 2 presents key criteria and the 
percentage of benchmark-only and method development papers that met each criterion. 
Interestingly, we observed a broadly similar landscape of characteristics between BOPs 
and MDPs (Figure 2a-b, R = 0.8), despite these papers serving distinct purposes for the 
research community. This similarity reveals that the general benchmarking challenges are 
common in our community from both a review and development perspective.  
 
Delving into the specific evaluation criteria, we start with the two fundamental components 
of benchmarking: the methods chosen for benchmarking and the characteristics of the 
datasets to which these methods are applied. We observed that, on average, BOPs 
featured a more extensive evaluation of methods (median = 10 methods) compared to 
MDPs (median = 5 methods). However, it is worth noting that it is often unclear why 
certain methods were chosen, as less than half of all papers reported selection criteria of 
the methods (50% in BOP; 33% in MDP). Expectedly, almost all papers used 
experimental datasets (97% in BOP;  99% in MDP), with the median number of datasets 
used being similar across the two paper types (median = 6 in BOP; median = 4 in MDP). 
Synthetic datasets, often important in generating specific scenarios, are used more 
prevalently in benchmark-only papers (60% in BOP;  45% in MDP), with the median 
number of datasets also being higher in the benchmark-only paper (median = 9 in BOP; 
median = 4 in MDP).  
 
The performance of a method is multi-faceted and extends beyond accuracy 
measurement.  
We observed that a large proportion of papers from the category recognise downstream 
biological application as an important method assessment (65% in BOP; 87% in MDP). 
New biological discoveries were claimed by 28% of the method development papers (0% 
in BOP). The performance of a method can also be context specific and it is important to 
communicate the advantages and limitations of different methods. Applicability, which 
refers to the suitability of a method for a specific task, was conducted in 58% of 
benchmark-only papers and 29% of method development papers. Trade-off analysis, 
which refers to the compromise between different aspects of a method, was performed in 
41% of benchmark-only papers and 20% of method development papers. Stability of 
methods is critical for reproducible research. However, we noted only a minority of papers 
performed sensitivity analysis such as assessing the impact of data subsampling on 
method performance. In terms of scalability, while a significant number of papers reported 
speed (69% in BOP; 46% in MDP), only a minority of papers measured memory usage 
(33% in BOP; 21% in MDP).  
 
In terms of software availability, we observed the sharing of code is a common practice in 
the single-cell field with almost 90% of method papers providing code and over 70% in 
benchmark-only papers. The provision of curated datasets is less common, with less than 
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50% of papers fulfilling this criterion. Whilst there is no requirement for studies to provide 
interactive websites for accessing the results, we observed that four studies in 
benchmark-only studies and nine studies in method development papers provided 
websites.  
 
The challenges of consistency in multiple benchmarking studies on a single topic 
We observed a significant number of topics that have attracted multiple benchmarking 
studies. Across the 26 topics covered in the benchmark-only papers, 16 of them (62%) 
have more than one study (Supplementary Figure 3). However, when focusing on popular 
topics with more than three studies, such as dimension reduction (n = 9), differential 
expression (n = 9) and cell type/state identification (n = 7), we unexpectedly found a 
limited number of overlaps in the methods evaluated across the multiple studies (Figure 
3a, Supplementary Figure 6a). For example, in the nine differential expression 
benchmarking studies, the majority of the methods (65%; 24/37) were only benchmarked 
in one paper.  
 
The lack of overlap in the evaluated methods raises the question of how to best 
consolidate the knowledge across multiple benchmarking studies. Is it even possible to 
derive consensus rankings for the methods? In parallel, effective consolidation is further 
hampered by the different criteria and datasets used across the benchmark. Almost all 
benchmark papers (93%) reported criteria-specific performance, while 77% of benchmark 
papers reported dataset-specific performance (Figure 3b,c). The criteria and datasets 
used by each benchmarking paper are different with less than 10% overlap in many of the 
topics (Supplementary Figure 7, 8). For example, one might expect accuracy of cell type 
classification to be a key criterion for all cell type/state identification papers. We found 
each of these papers examined different measures of accuracy such as overall accuracy 
and microF1, as well as different scenarios such as the effect of using different sizes of 
reference data, the impact of feature selection and the impact of batch correction. The 
combination of different scenarios and different measures resulted in only three out of the 
total of 76 criteria (4%) being used in more than one paper among the seven cell 
type/state identification papers. While the emphasis on criteria and dataset-specific 
evaluations is valuable, a key question arises: how can we effectively synthesise 
knowledge from multiple benchmarking studies to enhance our understanding? 
 
Data diversity for comprehensive method evaluation  
Next we focused on the choice of datasets in benchmarking evaluations. Surprisingly, the 
average number of experimental datasets used in benchmark-only papers (6 ± 28) is 
comparable to that observed in method development papers (5 ± 43) (Table 1, Figure 4a), 
with P-value = 0.53 under Welch Two Sample t-test. This observation poses questions on 
whether the current benchmarking studies utilise enough datasets for a comprehensive 
assessment, as method performance can vary across different datasets.  
  
In addition to the number of datasets, the diversity of datasets, both experimental and 
synthetic, is also an important factor for method evaluation. We found, irrespective of the 
type of papers, a greater percentage of readers indicated that the experimental data used 
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were diverse (83% in BOP and 85% in MDP), compared to synthetic data (62% in BOP 
and 63% in MDP) (Table 1) (Figure 4b). One possibility is that despite a study generating 
multiple synthetic datasets, they could have been derived from a limited set of 
experimental data. However, synthetic data exhibited a broad range of diversity. In 
experimental datasets, the diversity predominantly arose from various characteristics 
inherent to the dataset, such as sequencing protocol and cell/tissue type (Figure 4c). In 
contrast, the diversity in synthetic datasets can be carefully designed to encompass 
specific scenarios that are not easily accessible in experimental datasets such as a 
spectrum of sparsity levels. Incorporating both experimental and synthetic datasets can 
offer a more comprehensive understanding of method performance across diverse 
biological scenarios.  
 
Unravelling temporal trends in benchmarking practices  
We sought to understand how the landscape of benchmarking studies changes over time 
(2017-2023) among our 245 papers by using numeric scores to represent selected criteria 
(Supplementary Table 2) where a higher score indicated the paper has fulfilled a greater 
number of criteria. We recognise that the year when a field first emerged would confound 
criteria such as the number of methods evaluated in each year, and thus, we adjusted 
publication year into a relative publication year (see Methods) (Figure 5a).  
 
A notable finding is the trend of the number of methods evaluated across adjusted 
publication years and the emerging challenge of ‘benchmarking fatigue’. The overall 
scores of papers as well as many of the individual criteria such as the number of datasets 
used remained stable over time (Figure 5b, Supplementary Figure 9). In contrast, both the 
benchmark-only papers and method development papers revealed an increasing trend in 
the number of methods compared across the years (Figure 5c). As the relative publication 
year progressed from year 0 to year 7 within a field, the median number of methods 
evaluated increased from 5 to 12 in benchmark-only papers. Whilst the increasing number 
of methods reflects active development of the single-cell field, it also motivates 
consideration of how to approach the ever-increasing number of methods in terms of 
evaluation. Furthermore, we noted that over 40% of papers included more methods in 
their published versions compared to their bioRxiv counterparts, irrespective of the 
number of methods initially benchmarked in the bioRxiv version (Figure 5d), further adding 
to this benchmark fatigue.  
 

Discussion 

This study performed a systematic literature search and analysed a total of 245 papers in 
the single-cell literature space, consisting of 95 benchmark-only papers and 150 method 
development papers. It extensively examines nine different aspects of evaluation, 
including but not limited to the type of data used in the studies, number of methods 
benchmarked, accuracy criteria, stability aspects, downstream analysis, capture of context 
specific knowledge, communication aspect and the availability of resources. With the 
evaluation of these papers, we uncover various challenges and opportunities for the 
community to consider.    
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We identified multiple areas for further improvement. For example, less than half of the 
assessed papers reported selection criteria explaining why certain methods were included 
in the benchmark. This underscores the need for greater transparency in reporting. We 
noted only over 30% of papers in both paper categories assessed stability of method 
performance. Stability is one of the three major principles underlying data science, 
together with predictability and computability (Yu and Kumbier 2020). Unstable methods 
create confusion and irreproducible results in research. In terms of scalability, the 
evaluation of memory usage is an area requiring attention. As the size of single-cell data 
continues to surge, with datasets reaching millions of cells and atlases containing tens of 
millions of cells (M. Li et al. 2021; Rozenblatt-Rosen et al. 2017), memory is becoming a 
key consideration in method selection. Interestingly, we note that while the availability of 
data is often required in many journals, less than 50% of studies provide processed data, 
with the rest of studies providing either no data or links to raw data. Data curation is a 
time-consuming step in research and the accessibility and resusability of the data as 
outlined by the FAIR Data Principles will benefit the scientific community (Wilkinson et al. 
2016).  
 
We noted several challenges in the current single-cell benchmarking field that necessitate 
a joint community effort. One of the challenges is how to deal with the information 
presented in multiple benchmarking studies. The limited overlap in methods and the 
different conclusions of method performance driven by datasets and methods can confuse 
applied researchers. To account for this challenge, one could perform meta-analysis or 
combine the results from multiple studies. However, in the current single-cell 
benchmarking field, the input and output of the methods are rarely made available and 
researchers who want to extend from existing benchmarks would need to reconstruct the 
benchmark from scratch (Sonrel et al. 2023). This situation calls for a collective effort from 
all researchers for more transparency in result sharing and for the development of novel 
approaches to create a consensus benchmarking framework that can be extended from 
different methods, datasets and criteria. To take this one step further, the single-cell 
community could establish a benchmarking consortium to define a set of guiding principles 
for future benchmarking studies, including the deposition of data and results. In the clinical 
field, for instance, the famous Cochrane Collaboration was established to provide 
continuing guidelines and advice on systematic review (Higgins et al. 2011) and is 
considered as a gold standard in the field.  
 
We found that the median number of methods benchmarked in a study increases as the 
field progresses. While this reflects the natural progression of the field, it can lead to 
challenges such as benchmarking fatigue. A potential solution is a web-based system that 
holds existing benchmarking results and allows researchers to incorporate new methods 
into the existing results. This concept of “living benchmark” ideas has been adopted in 
domains such as microarray probeset summary (Cope et al. 2004) and scRNA-seq 
simulation methods (Cao, Yang, and Yang 2021). Notably, the “Open Problems in Single 
Cell Analysis” website (https://openproblems.bio/) hosts a similar platform for several 
popular areas such as batch correction and cell type annotation. Nevertheless, the 
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number of datasets currently evaluated by the platform is limited, with typically around 
three datasets in each area. Besides including more datasets, the system should ideally 
enable new metrics or questions to be incorporated and existing methods to be evaluated 
on the new metric. By joining community efforts, we believe such a system linking multiple 
datasets with metrics and questions can effectively allow new benchmarking studies to 
build on top of existing studies. This not only alleviates benchmarking fatigue by avoiding 
repeated evaluation of methods that have been previously assessed, but also facilitates 
integration of multiple benchmarking studies.  
 
In conclusion, this extensive assessment on a collection of 245 papers not only enhances 
our understanding of the current state of play in single-cell benchmarking but also 
underscores the need for collective efforts within the bioinformatics community. The 
survey result, made publicly available, is a valuable resource for the community for further 
investigation. We hope this work sets the foundation and raises a call for collective action 
from the single-cell community to set guidelines and advance benchmarking practices. We 
envisage the formation of a benchmarking consortia or collaborations similar to the 
Cochrane Collaboration will bring together experts from various single-cell areas and 
enhance the future of single-cell benchmarking.  
  
 
Methods 
Design of the study   
Survey Design 
To have a structured way of collecting information on each article, we designed a survey 
to contain multiple-choice and open-ended questions related to various aspects of journal 
articles. Each question was accompanied by a detailed explanation to ensure the clarity of 
question and quality of the response. This survey construction was achieved in a two-
stage approach.  
 
Stage I - pilot study 
Stage I is a pilot study. Prior to the full-scale data collection, a pilot study was conducted 
with all authors. Authors read 17 single-cell papers published in renowned journals such 
as Nature Biotechnology, including both benchmark-only papers and method development 
papers to gather the metrics used in these papers. This stage is an iterative process 
where multiple meetings were held to discuss the questions included in the survey and 
update the survey. The final survey form included nine sections on various aspects 
including data, method, accuracy criteria, scalability, stability, downstream analysis, 
context specific discovery, communication and software. For a selected series of 
questions, that is, diversity of experimental dataset, diversity of synthetic datasets, types 
of downstream analysis performed, the questions were initially designed for users to input 
open text. Manual text analysis was then used to narrow these into categories and convert 
the questions into multiple choices, such that it is both easier for the reader to respond 
and easier for data cleaning. Users also had the option to type their response for 
responses not included in the multiple choices. 
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Stage II - full study 
In Stage II we performed the full study. We gave a 1-hour presentation session to the 
research group before people contributed, to ensure that people fully understood the 
questions. To ensure the survey result is not solely driven by the opinion of the authors of 
this study, we invited members, who are mostly PhD students, in our group to voluntarily 
contribute to the survey. For all benchmark-only papers, we ensured at least two readers 
for each paper to counter any potential error or bias. Details for addressing any 
inconsistency between two or more readers were given in the data processing Methods 
sections.  
 

Systematic selection of papers  
Literature search 
To perform a systematic literature search of papers, we used the following key index 
terms including “single cell”, “single-cell”, “spatial transcriptomics”, “benchmark”, 
“benchmarking”, “systematic evaluation”, “systematic comparison”, “comprehensive 
evaluation” and “review” to search on PubMed. We restrict the time of publication to be 
between 1/1/2017 to 31/3/2023. This results in a total of 563 papers that were published 
since 2017. We manually screened all records to identify the relevant single-cell related 
papers and excluded any pre-print papers.  
 
Collection of benchmark-only papers  
In addition to the 563 papers, we identified 62 papers from the research conducted by 
Sonrel et al. (Sonrel et al. 2023) and a further three benchmark-only papers were 
recommended by readers. After excluding duplicates, this produced 603 papers. We then 
applied our filtering criteria on the time of publication and removed any pre-print papers on 
this collection. Subsequently, each paper underwent a screening process, leading to a 
final collection of 95 single-cell benchmark-only papers.  
 
Collection of method development papers  
From the 563 papers, we identified a total of 246 single-cell papers that proposed new 
methods. We included these papers in our study as these papers also included an 
evaluation of their methods with other methods. We randomly sampled 94 papers from the 
246 papers to be read. We also received 56 recommendations from the readers. This 
resulted in a final number of 150 method development papers included in this study. We 
refer to this collection of papers as method development papers.  
 
Data processing and statistical analysis 
Data cleaning and processing  
We performed data cleaning on the survey response in order to address errors and 
inconsistencies. In particular, for all benchmark-only papers, each paper was read by at 
least two readers and inconsistency could arise as a result. We examined the columns 
corresponding to factual information and identified inconsistent responses. These columns 
are “Paper category”, “Memory measured”, “Speed measured”, “Website”, “Data 
availability”, “Types of data”, “Methods compared”, “Package availability”, “Number of 
experimental datasets”, “Sensitivity analysis”, “Tuning”, “Number of synthetic datasets”, 
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“Max number of cells”, and “Overall comparison”. Another reader then manually cleaned 
the inconsistent values by reading the paper as well as the response by the two readers. 
Invalid responses were removed.  
 
We also ensured responses in each column were consistent with one another. For 
example, if the answer to “Types of data” was “Both experimental and synthetic datasets” 
were used for evaluation, we ensured the “Number of experimental datasets” and 
“Number of synthetic datasets” were filled with the corresponding information from the 
paper. The final cleaned survey response is publicly available at 
https://github.com/SydneyBioX/sc_bench_benchmark as a CSV file.  
 
Curation of additional variables 
To extend the type of analysis possible, we manually curated further variables of interest. 
The following variables are created by reading the abstract of each paper: 1) the data 
type, ie, the types of single-cell omics data, 2) the broader topic type, we classified the 
papers into the following five categories: data, initial analysis, intermediate analysis, 
downstream analysis and analytical pipelines, 3) the finer topic type, we defined the 
specific task or purpose of the papers, such as classification, clustering, doublet detection, 
etc. Additionally, where there is a bioRxiv version of the published papers, we curated the 
number of methods compared in the bioRxiv version. 
 
Temporal analysis 
To quantitatively assess the trends in the benchmarking landscape across years, we 
transformed specific criteria into the range from 0 to 1 (Supplementary Table 2). The 
scores from each criterion were aggregated to generate an overall score for each paper, 
where a higher score indicates a greater fulfilment of the criteria.  
  
We noted that certain criteria such as the number of methods compared can be 
confounded by the time when the field thrives. For example, it is not fair to compare the 
number of methods benchmarked in a spatial deconvolution paper with the number of 
methods benchmarked in scRNA-seq deconvolution papers despite them both being 
published in the same year. Spatial omics were introduced at a much later time than 
scRNA-seq and the number of methods available differ significantly.  
 
To account for this confounding effect, we converted the publication year into what we 
termed as “dynamic publication year”. In detail, we utilised the single-cell RNA-seq tool 
website (Zappia and Theis 2021) which collects the publications on single-cell tools, the 
categorisation of the tools and the publication year. We calculated the year when each 
category had at least 5 papers, which we termed as year 0. We then subtract the 
publication year of the 245 papers by year 0 to create the dynamic publication year. For 
example, for a topic with five papers published in 2020, a benchmarking paper published 
on that topic in 2023 is then considered as being published in year 3. This thus effectively 
adjusts for the difference in time when each field was introduced.  
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Backmatter  

Code and data availability  
Code and anonymised survey result for reproducing the results of this study is publicly 
available at https://github.com/SydneyBioX/sc_bench_benchmark. 
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Figures and Tables 

 
Tables 
 
Table 1: Summary of key findings from the survey.  
For the criterion “downstream analysis”, we removed the papers classified under the 
broad category as “downstream analysis” in the calculation. The reason is that we are only 
interested if the paper performed downstream analysis if the method itself is not a 
downstream analysis method. For the criterion “recommendation”, we did not calculate 
this criterion for method development papers. The reason is that we assume method 
papers would recommend their own proposed method and this criterion is not relevant.  
 

Benchmarki
ng aspects  

Criteria  Explanation Key findings for 
benchmark-only 
papers (BOP) 

Key findings for 
method development 
papers (MDP)  

Paper 
category 

Paper 
category  

Number of studies in 
benchmark-only 
papers and in 

N = 95 N = 150 
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method 
development papers  

Data Types of 
data 

The types of data 
the study used to 
perform method 
evaluation. Whether 
they used 
experimental 
dataset, or synthetic 
datasets, or both.  

Experimental: 35 
(37%) 
Synthetic: 3 (3%) 
Both: 57 (60%) 

Experimental: 81 
(54%)  
Synthetic: 1 (1%) 
Both: 68 (45%) 

 Number of 
experiment
al datasets 

Number of 
experimental 
dataset used 
(median ± sd)  

6 ± 28 5 ± 43 

 Number of 
synthetic 
datasets 

Number of synthetic 
dataset used 
(median ± sd)  
  

9 ± 2579 4 ± 710 

 Diversity of 
experiment
al data 

Whether the 
experimental 
dataset is 
considered diverse 
(Papers that use 
synthetic datasets 
only are excluded 
from the counting)  

Yes: 75 (83%) 
No: 14 (15%) 
Not sure: 2 (2%) 

Yes: 123 (85%) 
No: 20 (14%) 
Not sure: 2 (1%) 

 Diversity of 
synthetic 
data 

Whether the 
synthetic dataset is 
considered diverse 
(Papers that use 
experimental 
datasets only are 
excluded from the 
counting)  
 

Yes: 36 (62%) 
No: 14 (24%) 
Not sure: 8 (14%) 

Yes: 15 (63%) 
No: 9 (34%) 
Not sure: 1 (3%) 

Methods Number of 
methods 

Number of methods 
benchmarked 
(median ± sd)  
 

10 ± 8 4 ± 4 

 Inclusion of Whether the study Yes: 47 (50%) Yes: 49 (33%) 
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selection 
criteria  

mentioned about 
selection criteria of 
the methods 

No: 45 (47%) 
Not sure: 3 (3%) 

No: 93 (62%)  
Not sure: 8 (5%) 

Accuracy Variability 
of score 

Whether the study 
shown variability of 
scores (for example, 
in terms of boxplot) 

Yes: 64 (67%) 
No: 31 (33%)  

Yes: 87 (58%) 
No: 63 (42%) 

 Overall 
compariso
n 

Whether the study 
shown overall 
comparison figure or 
table of all evaluated 
methods  

Yes: 41 (43%) 
No: 54 (57%) 

Yes: 46 (31%) 
No: 104 (69%) 

Scalability Speed 
measured 

Whether speed of 
the methods was 
measured 

Yes: 65 (69%) 
No: 30 (32%)  

Yes: 69 (46%) 
No: 81 (54%) 

 Memory 
measured  

Whether memory 
usage of the 
methods was 
measured  

Yes: 31 (33%) 
No: 64 (67%) 

Yes: 32 (21%) 
No: 118 (79%)  

 Max 
number of 
cells 

If either speed or 
memory usage was 
measured, what was 
the maximum 
number of cells 
tested (median ± sd)  

10,000 ± 5,944,397 33,611 ± 409,162 

Stability  Sensitivity 
analysis  

Whether sensitivity 
analysis was 
performed, for 
example, by 
subsampling the 
data and examine 
the impact on 
performance 

Yes: 33 (35%) 
No: 62 (65%)  

Yes: 36 (24%) 
No: 114 (76%) 

 Tuning  Did the study 
performed 
parameter tuning of 
the methods, or 
used default 
parameter settings 

Parameter tuning: 21 
(22%) 
Default setting: 74 
(78%)  

Parameter tuning: 21 
(14%) 
Default setting: 129 
(86%)  
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Downstream Downstrea
m analysis 

Whether the study 
examined 
downstream 
analysis using the 
output produced 
from the methods 

Yes: 46 (65%) 
No: 23 (32%)  
Not sure: 2 (3%)  

Yes: 97 (87%)  
No: 13 (12%)  
Not sure: 1 (1%) 
 

Context 
specific 
confirmation
/discovery 

Prior 
knowledge  

Whether the 
methods capture 
any prior knowledge 

Yes: 23 (24%) 
No: 64 (67%)  
Not sure: 8 (8%)  

Yes: 62 (41%) 
No: 78 (52%) 
Not sure: 10 (7%) 

 Discovery Whether the 
methods claimed 
any new discovery 

No: 94 (99%)  
Not sure: 1 (1%)  

Yes: 34 (23%) 
No: 108 (72%) 
Not sure: 8 (5%) 

 Wet lab 
validation 

Whether the study 
performed any wet 
lab validation 

Yes: 2 (2%) 
No: 93 (98%) 
Not sure: 2 (2%)  

Yes: 2 (1%） 

No: 147 (98%) 
Not sure: 1 (1%) 

Communicat
ion  

Recomme
ndation  

Whether the study 
provided any 
recommendation of 
the best methods 

Yes: 82 (87%) 
No: 10 (11%)  
Not sure: 3 (3%) 

Not applicable 

 Applicabilit
y 

Whether the study 
examined 
applicability of the 
methods, for 
example, certain 
methods being 
applicable for 
certain tasks 

Yes: 55 (58%) 
No: 37 (39%) 
Not sure: 3 (3%) 

Yes: 43 (29%) 
No: 100 (67%)  
Not sure: 7 (5%) 

 Trade-offs Whether the study 
examined trade-offs 
of the methods 

Yes: 28 (41%) 
No: 39 (57%) 
Not sure: 1 (1%) 

Yes: 11 (20%)  
No: 41 (72%)  
Not sure: 5 (9%) 

 Future 
directions 

Whether the study 
suggested any 
future studies  

Yes: 54 (57%) 
No: 39 (41%)  
Not sure: 2 (2%)   

Yes: 79 (53%) 
No: 69 (46%) 
Not sure: 2 (1%) 

Software Website  Whether the study 
produced a website 
hosting the results 

Yes: 4 (4%) 
No: 91 (96%)  

Yes: 9 (6%) 
No: 141 (94%)  

 Data Whether apart from Yes: 46 (48%)  Yes: 61 (41%)  
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availability  providing the 
accession code, the 
study provided the 
curated data 
available for direct 
download 

No: 49 (52%)  No: 89 (59%)  

 Package 
availability 

Whether the code or 
package is available  

Yes: 67 (71%)  
No: 28 (30%)  

Yes: 134 (89%)  
No: 16 (11%)  

 
 
 

 
 
Figures  
 

 
Figure 1. Schematic overview of the design of the survey.  
The survey was designed in a two-stage process. a. During the pilot study stage, a 
preliminary survey was designed that incorporated insights from 17 benchmarking papers. 
The survey was distributed to participants to collect feedback for the final survey in an 
iterative form. b. The final survey covered nine categories of evaluation, including data, 
method, accuracy criteria, scalability, stability, downstream analysis, context specific 
discovery, communication and software. c. In the full study stage, the participants 
reviewed a total of 245 papers, 95 from benchmark-only papers and 150 from method 
development papers, which provided the data for the analysis of this study. 
 

 

s. 
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Figure 2. Percentage of criterion fulfilment.  
a. The percentage of papers that fulfilled each criterion. The x-axis indicates benchmark-
only papers and y-axis indicates method development papers. Note that the 
“recommendation” criterion is considered not applicable for method development papers 
and is therefore given a score of 0. The criteria “downstream analysis” is calculated based 
only on the papers that belong to the analysis category of “data”, “initial analysis” and 
“intermediate analysis”. b. Ranking of the criteria in benchmark-only paper and new 
method development paper, ordered by the percentage of papers that fulfilled each 
criterion.  
  
  

 

d 
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Figure 3. Inspecting consistency across multiple benchmarking studies.  
a. Both the upset plot and Venn diagram show the number of common methods evaluated 
across different benchmarking papers within each topic. Each paper is denoted by the 
PMID number. b. Number of papers reporting dataset-specific performance of methods. c. 
Number of papers reporting criteria-specific performance of methods.  
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Figure 4. Usage of datasets in benchmark-only and method development papers.  
a. Distribution of the number of experimental and synthetic datasets in benchmark-only 
and method development papers. Vertical line indicates the median number of dataset 
used. b. Proportion of papers with experimental and synthetic datasets that are 
considered to be diverse. c. Detail of the diversity in experimental and synthetic datasets, 
ordered by the proportion of the datasets in each diversity category. The total proportion 
may exceed 1 as one dataset can exhibit multiple types of diversity.  
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Figure 5. Temporal trends of selected benchmarking practices.  
a. Number of papers in adjusted publication year, stratified by their actual publication year. 
b. Overall score of each paper over adjusted publication years. c. Number of experimental 
datasets used in each paper over adjusted publication year. d. Trend of number of 
methods evaluated in each paper over adjusted publication year. e. Number of methods 
evaluated in bioRxiv and published versions of the papers. The percentage above the 
diagonal line indicates the proportion of papers where the number of methods is greater in 
the published version. The percentage below indicates the proportion of papers where the 
number of methods is equal in the published and bioRxiv version. 
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