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Summary 

We previously reported that vision specifies Layer 2/3 (L2/3) glutamatergic cell-type identity in 
the primary visual cortex (V1). Using unsupervised clustering of single-nucleus RNA-sequencing 
data, we identified molecularly distinct L2/3 cell types in normal-reared (NR) and dark-reared 
(DR) mice, but the two sets exhibited poor correspondence. Here, we show that classification of 
cell types was confounded in DR by vision-dependent gene programs that are orthogonal to 
gene programs underlying cell-type identity. A focused clustering analysis successfully matches 
cell types between DR and NR, suggesting that cell identity-defining gene programs persist 
under vision deprivation but are overshadowed by vision-dependent transcriptomic variation. 
Using multi-tasking theory we show that L2/3 cell types form a continuum between three cell- 
archetypes. Visual deprivation markedly shifts this distribution along the continuum. Thus, dark-
rearing markedly influences cell states thereby masking cell-type-identities and changes the 
distribution of L2/3 types along a transcriptomic continuum. 
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Introduction 

Early sensory experiences influence the development of neural circuitry throughout the 
mammalian brain133. In the primary visual cortex (V1), visual experience is required to establish 
the circuitry for binocular vision4,5. This vision-dependent development of binocular circuits 
occurs in mice after eye-opening and is most prominent between postnatal days (P) 21 and 35, 
a developmental window known as the critical period4,6,7. Classically, the influence of early 
visual experience has not been examined at the level of the many cell types that form the 
building blocks of V1 circuitry. To address this gap, we previously performed single-nucleus 
RNA-seq (snRNA-seq) in normal- and dark-reared (NR, DR) mice at key time points spanning 
the critical period (Figure 1A)8. Using computational methods, we reconstructed the postnatal 
maturation of V1 cell types in NR mice and compared these profiles with DR mice. This enabled 
us to identify the cell types and gene expression programs that were impacted by vision. For the 
majority of cell types, DR had little impact on molecular identity. However, DR had a 
pronounced effect on glutamatergic cell types in the supragranular layers (L) 2/3/4. L2/3 
glutamatergic neurons could be grouped into three clusters (A, B and C), which occupied three 
adjacent sublayers within L2/3 (upper, middle and lower, respectively). In DR mice, however, we 
found three different transcriptomic clusters (1, 2 and 3) with little correspondence to types A, B 
and C in NR. These transcriptomic changes were mirrored by altered spatial organization of 
type-specific gene markers and functional defects, suggesting that visual deprivation during the 
critical period selectively disrupted L2/3 cell type identities.  
 
To gain deeper understanding of the lack of correspondence between L2/3 cell types in NR and 
DR, we revisited our published dataset using different computational approaches. Our results 
reaffirm importance of vision for L2/3 maturation, while clarifying the nature of vision-deprivation 
induced changes in genes and cell types.  We show that DR markedly alters L2/3 
transcriptomes, but in gene expression space, the predominant vision-dependent changes are 
along an axis that is orthogonal to L2/3 cell type-specific signatures. In an unbiased clustering, 
this orthogonal program masked cell-type identities. A focused analysis, however, shows that 
cell identity signatures are preserved in DR and are masked by vision-dependent gene 
programs that dominate the transcriptomic variance. Importantly, the recovery of consistent cell 
types in both conditions provided a foundation to precisely investigate the cell type-specific 
effects of vision deprivation. First, visual deprivation differentially impacted the transcriptomes of 
types B and C more than type A, and blurred the distinctions between types A and B. Second, 
we detect a higher frequency of type A cells at the expense of type B cells in DR. These vision-
dependent effects can be clearly understood using a framework that treats L2/3 cells as a 
transcriptomic continuum rather than discrete cell types. By invoking a recently proposed 
framework known as multi-tasking theory9, we show that L2/3 cells represent a genuine 
continuum bounded by three <archetypes= (A, B and C), with visual deprivation altering the 
distribution of L2/3 cells along this continuum. Taken together, these results highlight the role of 
sensory experience during the critical period in shaping the continuous variation within a 
subclass of cortical neurons. 

Results 

Identification of L2/3 cell types in DR mice 

In sc/snRNA-seq analysis, cell types are determined by clustering cells based on their 
expression patterns of highly variable genes (HVGs)10312. By independently clustering snRNA-
seq data from NR and DR mice, we previously reported that adult V1 L2/3 glutamatergic 
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neurons comprise three types. We labeled these types A, B and C in NR and 1, 2 and 3 in DR. 
In each case, these groupings were supported by the expression of hundreds of type-specific 
genes. Intriguingly, however, the three DR types showed little transcriptomic correspondence 
with the three NR types.  
 
Types A, B and C in NR mice were distinguished by 286 genes (Table S1) whose expression 
patterns were consistent at the three time points following the onset of the critical period (P21, 
P28 and P38) (Figure 1B, Figure S1A). We term these L2/3 type-identity genes. However, 
these identity genes were not expressed in a type-specific fashion across types 1, 2 and 3 in DR 
mice (Figure 1B, Figure S1A). This lack of correspondence was seen among L2/3 
glutamatergic neuron types, and to a lower extent, among L4 glutamatergic neurons8. However, 
this was not the case for deep layer glutamatergic (L5/6) types, GABAergic types, and non-
neuronal types, wherein types mapped 1:1 between NR and DR8. Furthermore, these changes 
were partially reversible during the critical period. In mice that were exposed to 8 hours of light 
following one week of dark rearing (dark-light, DL), L2/3/4 transcriptomic clusters mapped well 
to NR types.  
 
To understand the lack of correspondence of L2/3 types between NR and DR, we hypothesized 
that rather than completely abolishing type-specific programs, DR induces transcriptomic 
changes that mask type-specific signals. To assess this possibility, we performed a <focused= 
clustering of L2/3 neurons using only the identity genes (n=286; Table S1). As a control, 
applying this procedure in NR and DL mice yielded clusters that mapped well to the HVG-based 
clusters reported previously8 (Figure S1B,D; 90% similarity in NR and 78% similarity in DL). In 
DR, however, focused clusters diverged from HVG-based clusters (Figure S1C; <50% 
agreement). Unlike the HVG-based clusters, the focused clusters in DR mapped 1:1 with the 
NR types (A, B, C), and retained NR type-specific signatures (Spearman correlation = 0.91; 
Figure 1C-D, Figure S1E). To reflect this correspondence, we named the three focused 
clusters in DR as A9, B9 and C9. Together, this suggests that the co-expression patterns of L2/3 
identity genes found in NR are preserved in DR.  

DR-induced transcriptomic variation masked L2/3 cell type identities 

To characterize the full set of gene expression programs that underlie transcriptomic variation 
among L2/3 glutamatergic neurons in NR and DR, we performed Principal Component Analysis 
(PCA) using a set of HVGs (n=6,360) (Methods). We focused on the top four principal 
components (PCs), which exhibited a clear spectral gap from the rest of the modes (Figure 
S2A). PC1 and PC2 separated cells based on sample and rearing condition (Figure 1E). DR 
cells exhibited greater variation than NR cells along PC1 and PC2, which also separated HVG-
based clusters 1, 2 and 3, rather than focused types A, B, and C (Figure S2B-C). By contrast, 
PC3 and PC4 separated cells based on focused cluster identity in both NR and DR (Figure 1F). 
This suggests that despite not being the dominant mode of variation, type-specific signals are 
highly consistent between NR and DR. 
 
Gene ontology analysis showed that PC3 and PC4 were enriched for genes associated with cell 
adhesion, axon guidance, and chemical synaptic transmission (Figure 1G; Figure S2D), which 
may contribute to differences in neuronal cell-type identity. By contrast, genes driving PC1 and 
PC2 were enriched in protein modification and dephosphorylation (Figure 1H, Figure S2E) as 
well as immediate-early genes13, which may reflect shifts in cell state associated with 
experience-induced changes in activity (Figure S2G). Consistent with gene ontology, we found 
PC1 and PC2 genes have less than 1% overlap (1/200 genes in common; odds ratio = 0.1, 
p=0.002; Fisher exact test using HVGs as background) with the type-identity genes, whereas 
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PC3 and PC4 genes have >55% overlap (114/200 genes in common; odds ratio = 46, p<10-10) 
(Figure S2F). In summary, PC1 and PC2 represent cell state differences, and PC3 and PC4 
capture differences in cell type identity. 
 
The PCA results provide insight into the discordance of HVG-based clusters between NR and 
DR in L2/3. For NR, HVGs overlapped largely with genes driving PC3 and PC4, while HVGs for 
DR overlapped with genes driving PC1 and PC2. The focused clustering emphasized genes 
driving PC3 and PC4, enabling the identification of consistent types between the two conditions.  
The discordance in HVG-based clustering is specific to L2/3 glutamatergic neurons, as this 
procedure identifies consistent cell types between NR and DR for all other subclasses, as noted 
in our prior results8.  
 

DR differentially impacted L2/3 cell types and blurred distinctions between them  

We next examined visual deprivation-induced changes in gene expression. A differential gene 
expression analysis between NR and DR within matched types (A vs A9; B vs B9; C vs C9) 
identified 70 vision-dependent genes in type A, 391 genes in type B, and 305 genes in type C 
(Fold change >2 and FDR <0.05; Figure 2A; Figure S3A-B). Types B and C displayed about 
seven-fold more vision-dependent genes than type A even when each type was downsampled 
to contain the same number of cells (Figure S3C). Among vision-dependent genes, 10% 
(55/525) overlapped with the identity genes (Table S1) and among identity genes, 20% (55/286) 
were vision-dependent (Figure 2B). The 55 identity genes that were vision-dependent fell into 
five groups (Figure 2C-D). Two groups corresponded to B- (n=5; Group 1) and C-specific 
(n=21; Group 2) genes whose expression levels were down-regulated in DR. Two groups 
contained B- (n=5; Group 5) and C-specific (n=4; Group 4) genes up-regulated in DR. Unlike B- 
and C-specific genes, A-specific genes were only present in in one group (n=20, Group 3), 
which were up-regulated in type B cells, but did not change in type-A cells. Overall, type-A cells 
were largely unaffected by DR (Figure S3D), type C cells lost some of their specific features, 
and type-B cells acquired A-like features accompanied by a change in B-like features.  

These changes at the gene expression level were accompanied by a marked shift in the 
proportion of cells assigned to each of the three types between NR and DR. The proportion of 
type-B cells decreased from ~50% in NR to ~35% in DR, while type-A cell abundance increased 
from ~25% to ~40% (Figure 2E; Figure S3E). The proportion of type C was relatively 
unaffected. Together, these results indicate that DR differentially impacted L2/3 types B and C, 
and blurred the distinctions between types A and B.  

L2/3 cell types are organized along a transcriptomic continuum bounded by three 

archetypes 

While the grouping into types A, B and C is a convenient framework for NR mice, it may not fully 
capture the changes occurring under DR conditions. We previously reported that L2/3 cell types 
form a continuum characterized by the graded expression of hundreds of genes8. This 
continuum organization is also evident when L2/3 cells are ordered by diffusion pseudotime 
(DPT)14 calculated based on the 286 identity genes (Figure 3A; Figure S4). We hypothesized 
that treating L2/3 cells as a continuum, rather than discrete types, may provide clearer insight 
into the effects of visual deprivation. 
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First, to gain confidence that L2/3 cells are indeed continuously organized, we applied multi-
tasking theory9, a framework to analyze transcriptomic continuums (Methods). According to this 
theory, a continuous distribution of cells in the space of genes are bounded by a polygon. The 
vertices of the polygon represent archetypes, and cells that form the continuum are mixtures of 
the archetypes. Indeed, L2/3 neurons form a continuum bounded by a triangle, whose vertices 
represent the A, B, and C archetypes (Figure 3B). Shuffling gene expression values across all 
cells, irrespective of type, no longer fits a triangle and all cells collapse towards the center 
(p<0.001; t-ratio test) (Figure 3C, Figure S5A,B,D). 
  
It is well known that snRNA-seq data is affected by multiple sources of noise. We developed a 
computational procedure to distinguish between two scenarios: a genuine continuum vs. 
discrete types that are seemingly continuous due to noise in the data. In this procedure, we 
compute PCA embeddings after shuffling expression values independently for each gene within 
each cluster (Figure 3D; Figure S6A-D). We first tested this approach via simulation. When 
applied to clusters that span a continuum, the shuffling procedure splits continuums into discrete 
clusters as long as noise levels in the data are low to intermediate (Figure S6E). In contrast, 
when the clusters are already discrete it has no effect regardless of noise level (Figure S6F). 
Therefore, if L2/3 cells were comprised of discrete clusters that appeared continuous because 
of noise, this procedure should have no effect. However, in contrast to this, and consistent with 
the continuum scenario, we found that applying this shuffling procedure to our data splits L2/3 
cells into three distinct clusters (Figure 3D; Figure S5C). This result supports our view that L2/3 
cells form a genuine transcriptomic continuum rather representing discrete types that appear 
continuous because of noisy data.  

DR redistributed B-like cells to A-like cells  

That L2/3 cells form continuous rather than discrete types clarifies how vision regulates their 
transcriptomic organization. L2/3 transcriptomes from both NR and DR mice occupied similar 
triangular regions bound by the same three archetypes in PC space. Individual cells, however, 
distributed differently between conditions with a shift away from the archetype B towards A in 
DR (Figure 3E-F). These trends were robust across biological replicates (Figure S7A-C). An 
optimal transport analysis15,16 from NR to DR predicted a redistribution of cells from archetype B 
towards A, and less movement for cells already located near archetypes A and C (Figure 3G). 
Moreover, we found that the distributions of cells at P28 and P38 NR were more closely related 
to each other than they were to the distributions at P28 and P38 DR (Figure 3H). Finally, the 
distribution of cells in DL mice were similar to that seen in NR (Figure S7D-E). Taken together, 
these results indicate that the transcriptional programs defining types A, B and C cells are 
plastic, such that cells can <move= to proximal regions in the transcriptomic continuum in a 
vision-dependent manner.  
 
In summary, dark-rearing disrupted L2/3 glutamatergic cell types along a transcriptomic 
continuum. It caused a major redistribution of cell type-specific gene expression programs, such 
that cells moved away from archetypical B-like programs towards A-like programs. This is 
consistent with the results that type-A identity genes were up-regulated in type-B cells in DR.  

Discussion 

We previously showed that L2/3 glutamatergic cells can be categorized into three transcriptomic 
cell-types (types A, B and C). Surprisingly, dark-reared cell-types (types 1, 2 and 3) whose gene 
expression signatures substantially differed from types A, B and C. Here, we reanalyzed our 
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transcriptomic data to look deeper into the effect of vision on gene expression and to define 
relationships between types identified under DR and NR conditions.  
 
Analyses presented in this study reaffirm the vision-dependent development of L2/3 cell types in 
the primary visual cortex while clarifying how visual deprivation alters transcriptional programs. 
We found that gene programs underlying cell type-identity and those activated by dark rearing 
are largely orthogonal. The deprivation-induced state changes were large enough to mask the 
distinctions between L2/3 types. A focused clustering that only considered the 286 <identity= 
genes defined in NR successfully identified corresponding types in DR. We leveraged this 
correspondence to delineate the influence of vision on the L2/3 cell type continuum. Thus, in 
some circumstances a focused approach may reveal important features of gene expression not 
picked up by unsupervised methods.  
 
The transcriptional diversity of L2/3 cells is a continuum, and partitioning this continuum into 
three discrete types is a crude approximation. Using multi-tasking theory, we showed that the 
distribution of L2/3 cells in gene expression space was bounded by a triangle with vertices 
representing archetypes A, B and C. L2/3 cells span the continuum in between these 
archetypes. Dark-rearing redistributes cells within the continuum, which shifts cells away from 
the B-archetype, closer to A. This change is consistent with our previously reported results from 
smFISH experiments, which showed that dark-rearing leads to an extended domain of A-type 
marker (Cdh13) expression, accompanied by a reduction in cells positive for a B-type marker 
(Trpc6). In addition, DR leads to a decrease in the expression of C-type genes, without shifting 
the identity of C-like cells specifically towards A or B. Taken together, these results support the 
idea that vision is required to maintain the proper distribution of cells in the continuum bounded 
by archetypes A, B and C.  
 
How a transcriptomic continuum is created among L2/3 glutamatergic neurons in V1 over 
development remains an outstanding question. Here, we show that vision is required to maintain 
the proper arrangement of cells along the continuum. A more detailed analysis of gene 
expression programs and signaling pathways over development in the presence and absence of 
normal vision will be key to identifying the order of molecular events that give rise to the 
observed continuum in V1 neurons. 
 
The presence of a continuum, which is sculpted by vision raises an important question: what 
role does a continuum play in the proper function of V1? Multitasking Theory, developed in the 
context of ecology and tissue biology of liver and intestines9,17, suggests that transcriptomic 
continuums aid the division of labor among cells in a tissue responsible for multiple functions. 
For continuums bound by a polygon, cells close to each vertex (archetype) are specialized for a 
particular function, while cells in the middle are <generalists=, that can perform multiple functions 
at the cost of being sub-optimal for any single function. When gradients in gene expression 
space are also correlated with position, this can create spatial domains within a tissue, each of 
which is suited for a unique complement of functions. Consistent with this idea, transcriptomic 
continuums have recently been found to be a common trait in the mammalian brain, and they 
are often correlated with spatial and physiological continuums18325. In particular, the 
physiological and morphological features of L2/3 neurons in binocular V1 vary as a continuum 
along the pial-ventricular axis26. It has also been shown that L2/3 neurons in V1 project their 
axons to neighboring higher visual areas in a complex non-random fashion27. Together, these 
findings suggest that vision controls the function and connectivity of L2/3 glutamatergic neurons 
in V1 by conferring upon them a continuum of cell type identities. As L2/3 neuron types have 
selectively expanded in the primate cortex, continuums of cell types may be particularly well 
suited to change by experience and in this way contribute to the complexity of cortical circuitry.  
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Figures 

 

Figure 1. Dark-rearing-induced transcriptomic variations orthogonal to L2/3 cell-

type-specific programs masked cell-type identities.  

A. Normal- and dark-rearing (NR and DR) paradigm employed in Cheng et al., 20228. B-C. 
Gene expression profiles (n=286 identity genes; Table S1) of L2/3 glutamatergic neuron types 
under NR and DR. Clustering in DR was performed based on transcriptome-wide highly variable 
genes (HVG-based clusters; panel B) or the signatures of L2/3 identity genes found in NR 
(focused clusters; panel C). D. Pairwise Spearman9s correlation coefficients between NR and 
DR types based on L2/3 identity genes. E-F. PCA embeddings of P28 NR and DR 
transcriptomes colored by condition and sample (E) and by types (F). PC1 and PC2 separate 
conditions and samples, while PC3 and PC4 separate based on L2/3 type identity. G-H. Gene 
ontology (GO) analysis showing biological processes enriched in top 100 PC3 and PC4 genes 
(G) and in top 100 PC1 and PC2 genes (H). GO terms with FDR < 1e-4 are shown.  
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Figure 2. Dark-rearing differentially impacted L2/3 types and blurred the 

distinction between them.  

A. Number of vision-dependent genes in each L2/3 type. B. Overlap between vision-dependent 
genes and identity genes. C-D. Expression profiles of genes that were vision-dependent and in 
Table S1. Expression was quantified as the z-scored expression level per gene across all 
samples (C), and as log2 fold change with respect to the mean expression level in NR (D). E. 
The relative abundance of type A cells (top panel) and type B cells (bottom panel) among L2/3 
glutamatergic neurons in NR and DR. * represents p<0.05.  
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Figure 3. Dark-rearing shifted cells along the transcriptomic continuum of L2/3 

cell types.  

A. Expression profiles of L2/3 type-specific genes (n=286) across all L2/3 glutamatergic 
neurons (n=4,044; P28NR). Expression was quantified as z-scored, log- and size-normalized 
counts from scRNA-seq. Cells were ranked by diffusion pseudotime, and colored by type 
identity (annotation bar, bottom). B. PCA embedding (PC1 and PC2 based on identity genes) of 
L2/3 glutamatergic neurons (n=4,044; P28NR). Cells are colored by type. The triangular bound 
were inferred using the published framework9 (see Methods). C-D. Same as (B) after shuffling 
each gene independently across all cells (C), and after shuffling each gene independently 
across cells within each type (D), respectively. The gray lines represent triangular fits using 80% 
of cells, randomly downsampled 10 times independently. E. Cell density within PC1 and PC2 
space for NR (left) and DR (right). F. Boxplot showing the proportion of cells nearest to each 
archetype under NR and DR. G. Optimal transport from the NR to DR distribution. H. Pairwise 
Jensen-Shannon distances between the type frequency distribution among samples. 
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Supplemental Figures 

 

Figure S1. (Related to Figure 1) A focused clustering approach identifies 

consistent L2/3 types in NR and DR.   

A. Expression profiles of L2/3 type-specific genes for HVG-based clusters. B-D. Confusion 
matrix of HVG-based clusters vs focused clusters for NR (B), DR (C) and DL (D). E. Same as 
(A) but for focused clusters.  
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Figure S2. (Related to Figure 1) PCA and Gene Ontology analyses revealed 
orthogonal components of transcriptomic variations.  

A. Fraction of total variance captured within the top 10 principal components (PCs) in P28NR 
and P28DR L2/3 cells. B-C. PC embeddings of P28NR and P28DR cells colored by sample and 
condition, by focused cluster (B), and by HVG-based cluster for DR cells (C). D-E. Gene 
ontology (GO) analysis showing significantly enriched (adjusted p-value < 0.05) biological 
processes for PC3/PC4 genes (D) and PC1/PC2 genes (E), respectively. F-G. Barplots showing 
the number of genes overlapping between PC genes and type-specific genes (F), and between 
PC genes and immediate early genes curated by a previous study13 (G).  
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Figure S3. (Related to Figure 2) The differential impact of dark-rearing on L2/3 
type-specific genes.  

A. Volcano plots highlighting vision-dependent genes for each L2/3 type. B. Upset plot showing 
the overlap between vision-dependent genes across L2/3 types. C. Numbers of total vision-
dependent genes (left), up-regulated (middle), and down-regulated DEGs (right) in DR after 
downsampling each L2/3 type to equal number of cells (n=100 per type per sample). Error bar 
shows standard error of the mean (SEM) derived from 20-time repeated downsampling. D. 
Upset plot showing the overlap between vision-dependent identity genes across L2/3 types. E. 
Relative abundance of type L2/3 A, B, C cells among L2/3 glutamatergic neurons by sample 
and rearing conditions. NR, normal rearing; DR, dark rearing; DL, dark light. 
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Figure S4. (Related to Figure 3) The L2/3 transcriptomic continuum across time 

and conditions. 

A. Expression profiles of L2/3 type-specific genes for individual cells. Top: Gene expression 
profiles. Bottom: cells colored by HVG-based and focused clustering as indicated. Cells were 
ordered by diffusion pseudo-time for each condition (see Methods).  
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Figure S5. (Related to Figure 3) Data shuffling disrupted the geometry of the L2/3 

transcriptomic continuum.  

A. Upper panel: expression profiles of L2/3 type-specific genes (n=286) across all L2/3 
glutamatergic neurons (n=4,044; P28NR). Expressions were quantified as z-scored, log- and 
size-normalized counts from scRNA-seq. Cells were ranked by diffusion pseudotime, and 
colored by type assignment (focused type). Lower panel: PCA embeddings (PC1 and PC2) of 
L2/3 glutamatergic neurons. Cells were colored by type. The triangular bound represents the 
Principal Convex Hull. B. Same as (A) but after shuffling each gene independently across all 
cells. C. Same as (A) but after shuffling each gene independently across cells within each type. 
D. T-ratios for the data and shuffled data (n=1,000; shuffled across all cells). T-ratio is the ratio 
between the area of the convex hull and that of the principal convex hull (triangular fit).  
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Figure S6. (Related to Figure 3) A data shuffling procedure that split a continuum 

while preserving discrete types.  

A-B. Expression profiles (gene by cell) for simulated continuums (A) and simulated discrete 
types (B) each with varying degrees of noise level (parameterized by epsilon; see Methods). 
Expression was quantified as z-scores. C-D. PCA embeddings (PC1 and PC2) of simulated 
continuums (C) and simulated discrete types (D). Cells were colored by type. E-F. Same as (C-
D) but after shuffling each gene independently across all cells within each type. Shuffling genes 
within a cluster splits a continuum into separate clusters when noise is low (epsilon = 0.2 ~ 0.4). 
The same procedure has no effect on discrete types whatsoever. 
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Figure S7. (Related to Figure 3) Dark-rearing shifted cells along the 

transcriptomic continuum of L2/3 cell types.  

A. PCA embeddings (PC1 and PC2 based on type-identity genes) of L2/3 glutamatergic 
neurons. Cells were colored by type. The vertices of the triangular bound represents 
archetypes. B. Cell density within PC1 and PC2 space for each condition and biological 
replicate. C. Barplot showing the proportion of cells nearest to each archetype for each 
biological sample. D. Pairwise Jensen-Shannon distances between samples of different rearing 
conditions. E. Cumulative percentage of cells as a function of the distance to archetype A (left) 
and archetype B (right).  
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Supplemental Tables 

Table S1. L2/3 type identity genes (n=286), in which 55 were up- or down-regulated in dark 
reared mice.  

Methods 

DR sample preparation  

Although no new mouse experiments were performed in this study, we briefly describe the 
protocol for dark rearing mice that was employed previously8to generate the datasets analyzed 
here. Mice were dark reared starting post-natal day 21 (P21), which marks the beginning of the 
ocular dominance critical period. Prior to P21, mice were reared in cages in a room with a 12-
hour light/dark cycle. At P21, mouse cages were moved to a separate room and placed inside a 
dark-box lined on the inside and the outside with a black rubberized fabric with edges sealed by 
tape and fabric to avoid any light entry. Mice were dark reared in this setup for 7 days (P28DR 
group) or 14 days (P38DR group). During this period, any handling of the cages was performed 
in the dark with room lights off, door crevices sealed from exterior light, and in dim red light, 
which is invisible to the mice. At the end of dark-rearing, mouse cages were taken out of the 
dark-box, wrapped in black-rubberized fabric, and immediately transported to an adjacent room 
for euthanization. Mice were placed inside a plexiglass chamber with isoflurane gas for 
anesthetization, followed by euthanasia. During this period mice were exposed to ambient light 
for a maximum of 2 minutes. 

snRNA-seq data acquisition and normalization 

Cell-by-gene count matrices from the previous study were downloaded from Gene Expression 
Omnibus (GEO) with the accession number GSE1909408. Cell type labels for HVG-based 
clusters were downloaded from the associated Github repository 
https://github.com/shekharlab/mouseVC. Raw count matrices were normalized as described 
before. Transcript counts within each cell were rescaled to sum up to 10,000. A pseudo-count of 
1 was added to the normalized transcript counts for each gene within each cell, followed by 
log10-transformation. For PCA and clustering, log10-transformed counts were z-scored across 
cells for each gene. Both NR and DR samples were processed in the same way, and we did not 
apply any of the commonly used batch integration techniques (e.g. 28,29) in our analyses.   
 
We also reproduced the differential expression analysis from the previous study to identify L2/3 
identity genes (n=286) listed in Table S1. Briefly, the expression of each gene was compared in 
one type versus others. We used the function tl.rank_genes_groups from the Scanpy package 
with the following criteria to identify a gene as DE: a) FDR < 0.05 with Wilcoxon rank-sum test; 
b) fold increase > 2 in one type compared with the two other types combined, and c) the gene 
was expressed in > 30% cells in the up-regulated type.  

Selection of highly variable genes (HVGs) 

The raw count matrices have n=53,801 genes to start with, including both protein-coding and 
non-coding genes. We considered only the n=21,222 genes that had non-zero counts in more at 
least 10 L2/3 glutamatergic neurons in P28 mice, combing both NR and DR samples. Of these, 
we selected a subset as highly variable genes based on the following procedure: 
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- For each gene, we computed the ratio of the variance and the mean of the normalized 

expression counts. Under a Poisson distribution, variance-mean ratio is expected to be 

one. Indeed, the variance-mean ratio is overall stable across orders of magnitude 

difference in mean expressions.  

- To select highly variable genes with different baseline (mean) expressions, we grouped 
genes into decile-bins according to mean expression level, and for each bin we selected 
the top 30% genes with the most variance-mean ratio. 6,360 genes were selected, and 
most (270/286) L2/3 type-specific genes were included. 

 

Focused clustering 

We used K-means clustering with the python package sklearn and the function 
sklearn.cluster.Kmeans to cluster L2/3 glutamatergic neurons, using the z-scored expression 
values of L2/3 type-specific genes (n=286; Table S1) as features. We applied K-means 
clustering with K=3 on each sample separately, including P28NR, P28DR, P28DL, P38NR, and 
P38DR. For each sample, the resulting three clusters were readily matched with types A, B, C in 
P28NR based on the Spearman correlation coefficient across genes (scipy.stats.spearmanr). 
Therefore, the three clusters in each sample were independently named as types A, B, C 
(focused types).  

Principal component analysis (PCA) 

PCA was perfomed on each condition separately (P28NR, P28DR, and so on) using z-scored 
HVGs as features using python package sklearn and its function sklearn.decomposition.PCA. In 
addition, we applied PCA combining both P28NR and P28DR samples together.  We evaluated 
the similarity between two PCA eigenvectors �! and �" as the absolute value of their dot product 

("�! ç �""). As the eigenvectors are orthonormal, this value is bounded between 0 and 1.  

 
To characterize the L2/3 continuum via multi-tasking theory and changes due to visual 
deprivaion (Figure 3), we applied PCA combining all conditions (P28NR, P28DR, P28DL, 
P38NR, P38DR) using z-scored L2/3 type-specific genes (n=286; Table S1) as features. 
Focusing on L2/3 type-specific genes and combining all conditions allowed us to study the L2/3 
continuum in a consistent representation across all conditions. 

Gene ontology (GO) analysis 

We used the web-based tool EnrichR: https://maayanlab.cloud/Enrichr/ for GO analysis. All 
enrichment analyses were performed by comparing a gene list of interest with the default 
background gene set. Top 10 enriched GO terms of Biological Process that were statistically 
significant with adjusted p-value < 0.05 were shown.  

Identification of differentially expressed genes (DEGs) between NR and DR 

In scRNA-seq analysis, it is common to treat individual cells as samples in statistical tests for 
identifying DEGs. Often, however, this approach leads to many statistically significant genes as 
even modest effect sizes can appear unlikely (low p-values) under the <no effect= null 
hypothesis owing large cell numbers. Therefore, as a conservative measure to compare 
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changes between NR and DR, we chose to regard the biological samples, rather than single 
cells, as independent data points.   
 
We compared NR vs DR across independent biological samples, with each condition having 4 
independent biological samples: P28 rep1, P28 rep2, P38 rep1 and P38 rep2. Raw counts from 
cells of the same types and samples were aggregated to produce pseudo-bulk profiles. We only 
considered genes with mean expression (in counts per million transcripts; CPM) > 10 in at least 
one type in either NR or DR. We performed independent sample t-test (scipy.stats.ttest_ind) on 
the pseudo-bulk profiles between NR and DR for each subclass. The resulting p-values were 
adjusted by the Benjamini-Hochberg procedure to calculate the false discovery rate (FDR). 
Effect sizes were quantified as the log2 fold change (in CPM) in DR compared with NR. DEGs 
were defined as those with ��� < 0.05 and |log# ��| > 1.  

Pseudotime analysis 

We computed a diffusion embedding of L2/3 cells to understand their continuous organization. 
We first computed the top 50 PCs using z-scored L2/3 identity genes, and used these reduced 
dimensional coordinates to generate a k-nearest-neighbor (k=50) graph between cells. The 
graph was built using the function Scanpy.pp.neighbors. Next, we generated a diffusion map14 
using Scanpy.tl.diffmap with default parameters. We assigned the cell with the smallest PC1 as 
the root cell, and then ran diffusion pseudotime using Scanpy.dpt with default parameters. As a 
result, each cell was assigned a pseudo-temporal coordinate, and cells were ranked by the 
increasing order of pseudotime.  
 
Next, we then ranked L2/3 type-identity genes according to their expression along the 
pseudotime coordinates. We defined the pseudotime of a gene (�$) as the weighted average of 

cell pseudotime, 

�$ = 4�$%�%
%

	, 
where �% is the pseudotime of the cell (�), and �$% is the weight of the cell � contributing to the 

gene �. The weight of a gene sums to one and is defined by expression level,   

�$% = �$%&
3 �$%&	%& 		. 

where �$% is the size and log normalized expression. Gene pseudotime is defined at P28NR and 

is kept fixed across different time points and conditions to give a consistent representation for 
comparisons between conditions.   

Analysis of transcriptomic gradients using multi-tasking theory 

We used the python package py_pcha: https://github.com/ulfaslak/py_pcha to fit a triangular 

boundary to L2/3 transcriptomes in PC1 and PC2 space that was reduced from n=286 L2/3 

type-specific genes. The algorithm infers a triangular boundary by fitting a principal convex hull 

from the data. We chose parameters delta=0 and noc=3. The same procedure was applied to 

each condition separately and to shuffled data.  

 

We evaluated the significance of the triangular fit by t-ratio test as proposed by the multi-tasking 

theory9. T-ratio is the ratio between the area of the convex hull of the data and that of the 

principal convex hull (the triangular bound in our case). We calculated the area of the convex 
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hull using the python package scipy and its function scipy.spatial.ConvexHull. We tested the 

significance of the observed t-ratio by comparing it to t-ratios of shuffled data by permuting each 

gene independently across all cells. P-value was computed based on 1000 shuffles. 

Simulations of gradients and discrete types 

First, we describe our procedure to simulate transcriptomic continuums. Let cells and genes be 
ranked, such cells with a particular ranking express genes with a similar ranking . Let � be an 

integer that represents the cell ranking, which goes from 1 to �%, with �% denoting the total 
number of cells. Let � be an integer that represents the gene ranking, which goes from 1 to �$, 

with �$ denoting the total number of genes. We then use �! = !
'!

 and �" = "
'"

 to represent the 

normalized rankings such that both the gene rankings and cell rankings go from 0 to 1. We 
consider a model where the expected expression level of gene � in cell � is a Gaussian such 
that: 

�!" = �()
#$%#&

'
*
(

	, 
 

where � denotes the level of noise. Gene counts are then drawn from a scaled Poisson 
distribution parametrized by �!":  

�!" > � ç �������I�!"J. 
 
For our simulation, we chose �$ 	= 60, �% = 600, � = 100, with different � values between 0.1 

and 1. Random numbers were generated using the python package numpy.random. 
 
Second, for simulating discrete types, we assumed a model wherein each type is distinguished 

by a set of <marker= genes. Let � be a cell and �(�) be the cell type it belongs to. Let � be a gene 
and �(�) be the cell type of which it is a marker. The expected expression level of gene � in cell � 
was modeled by a binary matrix: 

�!" = N1			��	�(�) = �(�)
�			��	�(�) b �(�), 

where � denotes the amount of leaky expression, i.e., the level of noise. � takes values between 
0 and 1. The larger � is, the noisier the types are. The actual count matrix was drawn from a 
scaled Poisson distribution parametrized by �!", 
 

�!" > � ç �������I�!"J. 
 
We simulated three discrete types (A, B, C), each with 20 marker genes and containing 200 

cells, with different � values between 0.1 and 1. To assign an order between types, among the 
20 marker genes, 6 were shared between neighboring types, such that 6 type-A markers were 
also expressed in type B, and 6 type-B markers were also expressed in type C, and so on.  

Quantification of cell redistribution in DR 

To visualize the cell density distribution in PC1 and PC2 space, we used the python package 
seaborn.histplot. We confirmed that the distributions were robust with respect to a range of bin-
widths, and chose bin-widths of 1~1.5 for visualization. We used the Jensen-Shannon (JS) 
divergence, a symmetric metric to characterize the difference between two probability 
distributions, to measure the level of similarity between cell-density distributions within the L2/3 
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continuum in different rearing conditions and time points. This metric was calculated using the 
python package scipy and its function scipy.spatial.distance.jensenshannon. 
 
Optimal transport analysis was performed using the python package POT: 
https://pythonot.github.io/. The program computes the optimal transport map connecting the 
empirical distributions of NR cells and DR cells in PC1 and PC2 space16,30. The inputs were cell 
coordinates in PC1 and PC2 space for NR and DR respectively. We first computed pairwise 
distance matrix between NR and DR cells using ot.dist following default parameters. We then 
used ot.emd to calculate the transport map. The result is a matrix whose elements denote 
transport couplings between each pair of NR and DR cells, which is a proxy for their 
transcriptomic correspondence. We visualized this result by a coarse-grained vector field as 
follows. First, PC1 and PC2 space were meshed into 15-by-15 bins. Each 2D bin was 
represented by an arrow, where the length of the arrow represents the mean moving directions 
and magnitudes of all local cells (vector mean), and the darkness of the arrow represents the 
relative number of cells it represents.  

Data and code availability 

- All data was downloaded from GEO with the accession number GSE190940. 
- Code to reproduce L2/3 type specific genes (Table S1, n=286) was obtained from the 

GitHub repository: https://github.com/shekharlab/mouseVC 
- Code to reproduce the figures in the manuscript was deposited in the following GitHub 

repository: https://github.com/FangmingXie/vision_and_visctx  
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