

1 **Pathogen-microbiome interactions and the virulence of an entomopathogenic fungus**

2
3 Matthew R. Kolp,^{1,2} Yazmin de Anda Acosta,¹ William Brewer,¹ Holly L. Nichols,^{1,3} Elliott B. Goldstein,¹
4 Keertana Tallapragada,^{1,4} & Benjamin J. Parker ^{1,*}

5
6
7 ¹ Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA

8 ² Richard A. Gillespie College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, 37752, USA

9 ³ Current Address: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA

10 ⁴ Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 38996, USA

11
12 * Corresponding author: bjp@utk.edu, +1 865 974 9818

13
14 ORCIDs: MRK: 0000-0001-5025-8497; YdAA: 0000-0002-6933-0142; WB: 0000-0003-4250-6862;
15 HLN: 0000-0003-2158-1767; EBG: 0000-0001-7651-0486; KT: 0000-0001-5825-6445; BJP: 0000-0002-
16 0679-4732

18 ABSTRACT

19
20 Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated
21 with fungi are essential for pathogen virulence. In other systems, host associated microbiomes confer
22 resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus called
23 *Pandora neoaphidis* in the context of both host and pathogen microbiomes. Aphids host several species
24 of heritable bacteria, some of which confer resistance against *Pandora*. We first found that spores that
25 emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and
26 did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome
27 of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial
28 community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we
29 used an experimentally transformed symbiont of aphids to show that *Pandora* can acquire host-
30 associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-
31 pathogen interactions and illustrate the importance of the broader microbiological context in studies of
32 fungal pathogenesis.

33 INTRODUCTION

34

35 Fungal pathogens interact with hosts within complex communities of other microbes, and bacteria have
36 been shown to influence host-pathogen dynamics in several ways. Host-associated bacteria can confer
37 protection against fungi (e.g. in insects (1, 2), crustaceans (3), plants (4), reptiles (5), and humans (6, 7)).
38 In turn, there is increasing evidence that fungal pathogens are also hosts to bacterial communities that
39 can affect the severity of disease (i.e. virulence). For example, the fungal pathogen *Rhizopus oryzae*,
40 which causes rice seedling blast, relies on toxin-producing bacteria that live within the fungus to
41 successfully infect hosts (8). In contrast, a study of *Fusarium oxysporum* showed that a community of
42 surface bacteria limited the ability of a fungal isolate to infect its plant host, and removal of the bacteria
43 restored virulence (9). Recent studies suggest that the capacity to associate with bacteria is likely
44 widespread among fungi (10-12), and therefore, studying how bacteria shape host-fungal pathogen
45 interactions is critical (13).

46 The order Entomophthorales (phylum Entomophthoromycota, Humber) includes hundreds of species
47 of fungi that are pathogenic to insects (14-16) (and in some isolated cases, humans (17)). These fungi
48 play important roles in the population dynamics of insect hosts and could potentially serve as effective
49 biocontrol agents (18, 19). Infectious fungal spores invade new hosts, and fungi then multiply as hyphal
50 bodies within an insect. Hyphae then produce structures called conidiophores that penetrate and
51 elongate through the cuticle of a host surface and then forcefully release asexual spores called conidia
52 (20). Much about the biology of the Entomophthorales is unknown, including whether these fungi typically
53 associate with bacteria.

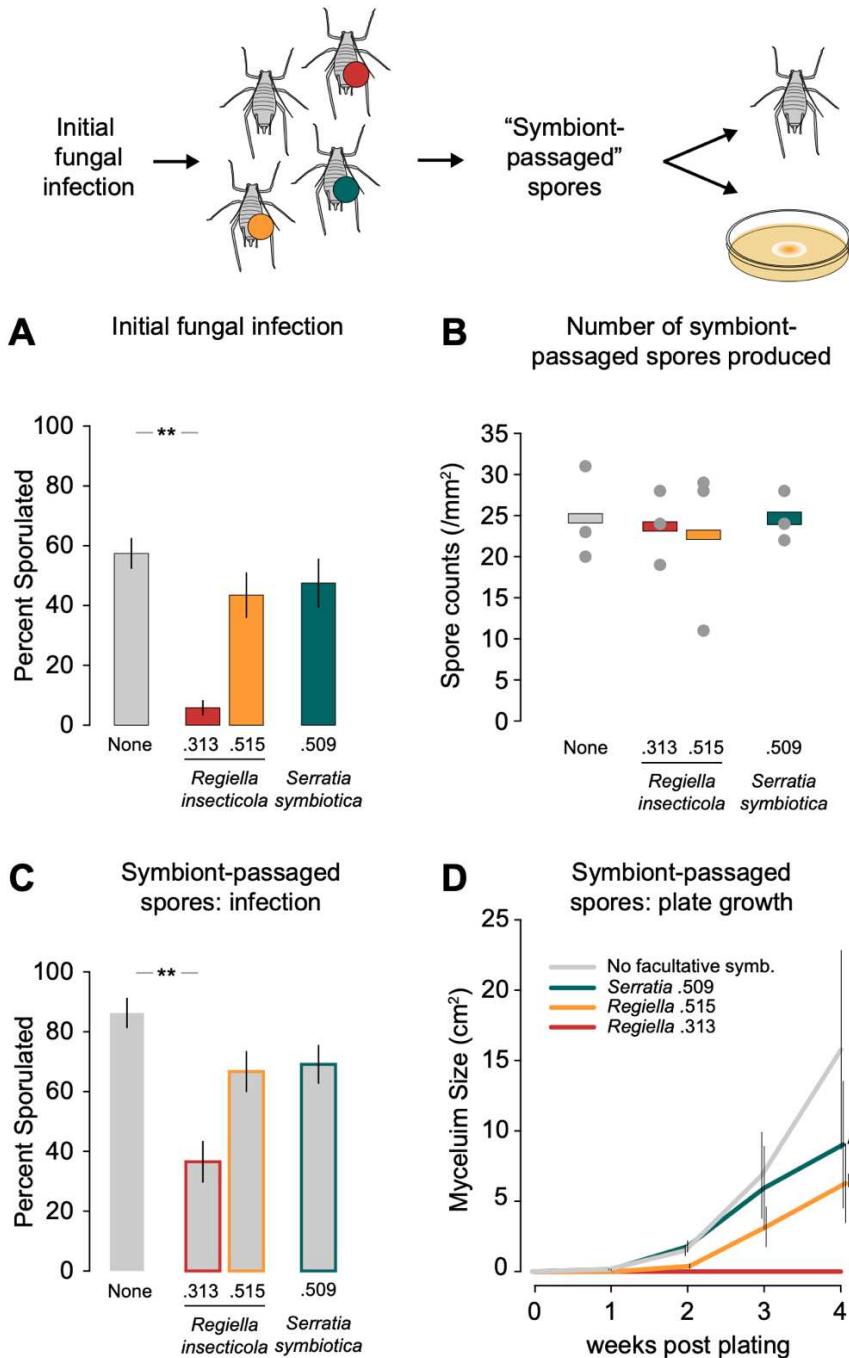
54 *Pandora neoaphidis* (Remaudière and Hennebert; hereafter '*Pandora*') is an important species of
55 Entomophthorales that infects aphids (Hemiptera: Aphidoidea) and plays a role in the population
56 dynamics of these crop pests (21-24). Previous studies have found that natural isolates of *Pandora* infect
57 aphids at different rates (25, 26), but little is known about the factors shaping the virulence of this
58 pathogen. However, a recent study used RFLP markers and microscopy to show that there are bacteria
59 associated with *Pandora* and that microbial communities varied across isolates with different levels of
60 virulence against hosts (27). From working with this pathogen in the lab, we have also observed that
61 *Pandora* isolates rapidly lose virulence after subculturing on solid media. This is a phenomenon referred
62 to as 'degeneration,' which is typical of species in the Entomophthorales (28). We hypothesized that
63 changes in fungal microbiomes could be associated with degeneration in the lab.

64 After infecting a host, *Pandora* encounters a community of aphid-associated bacteria. These
65 microbes include several species of 'facultative' bacteria that are not required for host survival but have
66 different phenotypic effects on hosts (29). Several distantly related species of bacterial symbionts,
67 including *Regiella insecticola*, confer protection to aphids against *Pandora* (30-32) (but not against a
68 generalist species in the order Entomophthorales (33)). However, the protection is not perfect and

69 pathogens are able to overcome symbiont-mediated protection in both lab infections and in the field (34).
70 It is unknown if protective symbionts have any effect on fungal pathogens after infection. But, because
71 aphids reproduce asexually in the summer and are typically surrounded by genetically identical offspring,
72 any effects of aphid symbionts on fungal virulence against subsequent hosts could have important
73 effects on disease dynamics in this system.

74 We studied the virulence of *Pandora* in the context of the wider bacterial community associated with
75 both the aphid and fungal pathogen. We first measured whether fungal spores emerging from an aphid
76 differ in virulence depending on the host's microbiome. Spores emerging from aphids harboring a
77 protective facultative symbiont were less virulent against subsequent hosts and did not grow when
78 cultured on plate media. We then used 16S amplicon sequencing to characterize the bacterial
79 microbiome of *Pandora*. We cultured fungal spores on plate media, quantified changes in virulence over
80 subsequent plating, and found that the bacterial microbiome associated with *Pandora* mycelium is stable
81 across multiple plate passages despite the loss of virulence. When we re-infected aphids with spores
82 produced in culture, we found that *Pandora* regained virulence, but the bacterial community was still
83 largely unchanged. Finally, we used an experimental manipulation to show that fungal spores can
84 acquire bacteria from aphids during infection. Together our results highlight the importance of the wider
85 bacterial community context for animal host–fungal pathogen interactions.

86
87


88 RESULTS

89

90 We tested the effects of the protective bacterial symbiont *Regiella insecticola* on the virulence and
91 growth of the fungal pathogen *Pandora neoaphidis*. We used a panel of genetically identical aphid lines
92 that each harbored a facultative symbiont or no facultative symbiont (control). This included two strains of
93 *Regiella insecticola*, one that confers strong protection against *Pandora* (strain .313) and one which
94 confers little to no protection (strain .515) (35). We also included aphids harboring *Serratia symbiotica*
95 (strain .509) which is not protective against fungal pathogens (29). We confirmed that symbiont
96 background influences the percent of exposed aphids that produced a sporulating cadaver ($F(3) = 23.8$,
97 $p < 0.0001$; Figure 1A). This effect was driven by the 'protective' strain of *Regiella* (strain .313) that
98 decreased the percent of aphids that died and produced sporulating cadavers compared to symbiont-
99 free controls (strain .313, $z = -6.6$, $p < 0.001$). The other two symbionts had no effect on fungal
100 protection.

101 Next, we collected the aphid cadavers resulting from fungal infections of each of these lines, induced
102 cadavers from each line to produce *Pandora* spores, and counted the spores produced by each cadaver.
103 Symbiont background had no effect on the number of spores produced by cadavers (ANOVA, $F(3,8) =$
104 0.067, $p = 0.98$; Figure 1B). To test the virulence of these 'symbiont-passaged' spores, we used them to

105 infect symbiont-free aphids. We found that the cadaver's symbiont background explained the virulence of
106 symbiont-passaged spores towards symbiont-free aphids ($F(3) = 9.70$, $p < 0.0001$; Figure 1C).
107 Specifically, spores passaged through aphids harboring 'protective' *Regiella* strain .313 were less virulent
108 against subsequent hosts spores passaged through symbiont-free aphids (strain .313, $z = -4.8$, $p <$
109 0.001). We found no effect of the other two symbiont strains (strain .515, $z = -2.3$, $p = 0.058$; strain .509,
110 $z = -2.1$, $p = 0.094$). We also plated symbiont-passaged spores on media and found that symbiont
111 background influenced mycelium growth on plates (Generalized Linear Mixed Model, symbiont $\chi^2 = 31.7$,
112 $df = 3$, $p < 0.0001$). In this assay, passing through a host harboring either strain of *Regiella* significantly
113 decreased fungal growth when compared to spores produced by symbiont-free aphids (strain .313: $z =$
114 5.8 , $p < 0.001$; strain 515: $z = 3.4$, $p = 0.0036$). After 4 weeks of observation, there was no growth from
115 spores exposed to aphids with *Regiella* strain .313 (Figure 1D).



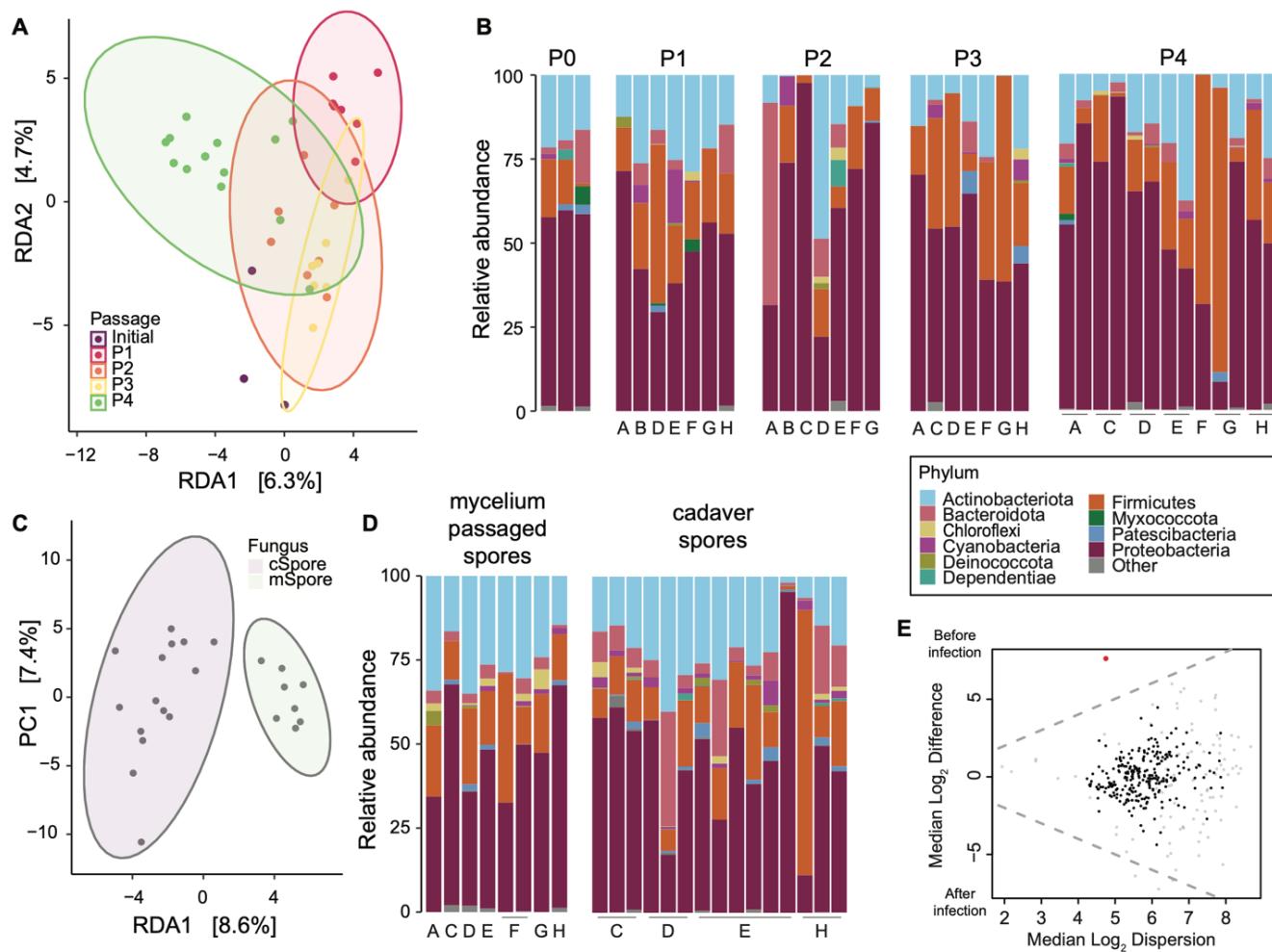
116

117 **Figure 1: Effect of aphid facultative symbiont on fungal virulence and plate growth.** An illustration of the
118 experimental design is shown along the top of the figure. **A:** Percent of aphids that became infected with *Pandora*
119 and produced a sporulating cadaver in the initial fungal infection. Facultative symbionts in each aphid line are
120 shown along the bottom of the figure. The error bars show +/- one standard error, and statistical significance (**; p
121 < 0.01) is shown along the top. This initial fungal infection was used to produce ‘symbiont passed spores’ that
122 emerged from infected aphids (i.e., cadavers) with different facultative symbiont backgrounds. **B:** Mean number of
123 ‘symbiont passed’ spores that emerged from cadavers (gray dots) produced in the initial infection as quantified
124 under a light microscope per mm². **C:** The percent of symbiont-free aphids that became infected when exposed to
125 symbiont-passaged spores from each treatment. **D:** Mean size of mycelium growth from symbiont-passaged spores
126 plated on media. The y-axis shows mycelium size (cm²), and the x-axis shows the number of weeks post initial
127 plating. Statistically significant groups determined by post-hoc analysis were identified at four weeks post plating
128 and are shown to the right of the figure. Error bars show +/- one standard error.

129 Anecdotally, we have noticed that *Pandora* isolates rapidly lose virulence toward aphids after
130 culturing the fungus on solid media. Our next objective was to determine if this loss in virulence is
131 associated with changes in *Pandora*'s bacterial microbiome, and to determine whether host infection
132 changes the associated bacterial community. An important methodological detail of this study is that we
133 are not able to precisely control the dose of spores that are produced during an infection. Instead, we
134 performed a 'low-dose' assay by exposing experimental aphids to sporulating fungus for one hour, or a
135 'high-dose' infection for five hours, and we then quantified the number of spores used in the infections.
136 The *Pandora* spores used to inoculate the initial plate culture were highly virulent against symbiont-free
137 aphids at a low-dose infection (1-hour infection; 18 spores/mm²; 96.7% of aphids infected; Figure 2A).
138 We used some of these spores to establish a panel of plated cultures of *Pandora*, and we grew each
139 isolate on solid media. After 1 month, we transferred small pieces of mycelium to fresh plates.

140 After two of these plate passages, spores produced in culture failed to infect any aphids at the low-
141 dose infection (1-hour infection; 15 – 43 spores/mm²; 0% infected; Figure 2B). Spores produced in
142 parallel by cadavers from aphid passaging were still virulent against hosts (1-hour infection; 26
143 spores/mm²; 85% infected; Figure 2B). We then repeated the infection with a high-dose (5-hour infection;
144 542 – 764 spores/mm²) and found that the high-dose of spores produced from culture plates was able to
145 infect hosts (88% - 100% infected; Figure 2C). However, after four plate passages, virulence of spores
146 produced from culture plates was further reduced with the high-dose assay (5-hour infection; 165 – 554
147 spores/mm²; 3% - 39% infected; Figure 2D). Of the few cadavers produced from this infection
148 experiment, we found that the spores that emerged from this infection had, to some extent, regained
149 virulence. After passaging through an aphid, spores were again able to infect aphids at the low spore
150 dose (1 hour infection 27 – 152 spores/mm²; 0% - 60% infected; Figure 2E).

151


152 **Figure 2: Aphid infections during the plate passaging experiment.** An illustration of the experimental design
153 and sample collection is shown along the top of the figure. **A:** Percent of symbiont-free aphids that became infected
154 and produced a sporulating cadaver at a low spore dose infection using spores produced from an aphid cadaver.
155 Spores were also used to inoculate initial plates for the plate passaging experiment. **B:** Percent of aphids that
156 became infected at a low spore dose after 2 plate passages. The spore doses for each plate passaging replicate
157 line are shown along the top of the figure. Plate replicate line (letters) is shown along the bottom of the figure, with
158 the average of each shown with a different colored bar. An infection with *Pandora* maintained through re-infesting
159 aphids (i.e., cadaver stock aphids) instead of culturing on plates is shown to the right of the figure. **C&D:** Aphid
160 infections using high-dose assay of *Pandora* spores at 2 plate passages and 4 plate passages, respectively. **E:**
161 Aphid infection with spores from aphid cadavers produced from plate passaging *Pandora* using the low-dose assay.

162 During the plate passaging and infection experiments (Figure 2), we collected samples for 16S amplicon
163 sequencing. We included mycelium cuttings from replicate plate lines at each passage: the initial cultures
164 through the fourth plate passage. We also sampled spores produced from the fourth plate passage just
165 before aphid infection (Figure 2D) and the spores produced from re-infected aphids that did not require a
166 high-dose of spores to successfully infect symbiont-free aphids (Figure 2E). Sequencing yielded 12,536
167 OTUs after removing non-bacterial reads. We removed OTUs from our dataset that were not present in
168 at least three samples with more than ten sequence reads, leaving 369 OTUs after thresholding (86% of

170 the 1,395,421 total reads were retained). We used these data to address two questions about the
171 microbial communities associated with *Pandora*.

172 First, we analyzed the community of bacteria associated with fungal mycelium at each of the four
173 plate passages. Bacterial richness did not change during plating ($F_{4,31} = 2.51$, $p = 0.061$). Further, we
174 found no difference in alpha diversity across plates as measured by Shannon ($p = 0.2798$) and Simpson
175 ($p = 0.4447$) diversity measures. Community composition did shift during subculturing *Pandora* (Figure
176 3A; $F_{2,24} = 1.54$, $p < 0.002$), and the stage of plate passage explained 16% of the variation in bacterial
177 community composition ($R^2 = 16.1\%$). However, we found no evidence that any individual OTUs differed
178 between any of the plate passages based on differential abundance testing. Our analysis also included a
179 block effect for the line of plate subculture (e.g., line A-H for plate passage 1-4), which explained more
180 (23%) of the community wide variance. Taxonomically, mycelium samples of *Pandora* were associated
181 with four main phyla of bacteria, which made up 97% of 16S reads (Figure 3B): Proteobacteria (55.6% of
182 reads), Firmicutes (20.9%), Actinobacteriota (15.1%), and Bacteroidota (4.7%) (Figure 3B).

183 We then compared the bacterial community associated with *Pandora* spores before (plate-passaged
184 'mycelium' spores) and after aphid re-infection ('cadaver' spores). To do this, we induced mycelium to
185 produce spores after the four plate passages by placing mycelium cuttings on TWA. We used these
186 spores to infect aphids and compared them to the spores that emerged from successfully infected
187 aphids. We found that the richness ($F_{1,21} = 0.06$, $p = 0.81$) and diversity (Shannon – $F_{1,21} = 1.18$, $p =$
188 0.29; Simpson – $F_{1,21} = 0.98$, $p = 0.33$) did not change after re-infection of the host (Figure 3C).
189 Community composition of bacteria associated with spores did change with aphid re-infection (Figure 3D;
190 $F_{1,21} = 1.89$, $p < 0.001$), with spore sample type explaining 8.4% of the variation in community
191 composition. Furthermore, only one OTU (OTU 27; Proteobacteria, Neisseraceae [uncultured]) changed
192 in abundance with aphid infection after implementing a Benjamini-Hochberg correction. This taxon
193 became less abundant with host infection (Figure 3E). Of the main four bacterial phyla associated with
194 *Pandora* mycelium, Bacteroidota increased from an average relative abundance of 2.8% in spores
195 generated after plate passaging to an average of 9.4% in spores collected after re-infecting aphids. The
196 other three main phyla changed only slightly in their relative abundances (Proteobacteria ($mSpore_{mean} =$
197 57% vs. $cSpore_{mean} = 47\%$), Actinobacteriota (26% vs. 21%), and Firmicutes (19% vs. 17%)).

198

199 **Figure 3: 16S analysis of Pandora-associated bacterial communities. A.** Adonis permutation and constrained
200 ordinations (CAP Euclidean) plot by plate passaging. Redundancy analysis for bacterial communities from monthly
201 plate passage (P# by color) of *Pandora* through laboratory culturing on Petri plates containing 'ESMAY' media. **B.**
202 Phylum-level bar plots of taxonomy change by plate passaging. Taxonomic barplots for bacteria associated with
203 mycelium across plate passage (P#) of *Pandora* through laboratory culturing on Petri plates containing 'ESMAY'
204 media. Each sample from a replicate line is represented by a single bar with the relative abundance (non-CLR
205 transformed data) of the top 10 phyla. **C.** Adonis permutation and constrained ordinations (CAP Euclidean) plot by
206 spore type. Redundancy analysis for bacterial communities associated with spores collected from the fourth plate
207 passage (mSpores) and those generated after reinfecting aphids (cSpores) with mSpores. **D.** Phylum-level bar
208 plots of taxonomy change by spore type. Taxonomic barplots for bacteria associated with spores collected from the
209 fourth plate passage (mSpores) and those generated after reinfecting aphids (cSpores) with mSpores. Each
210 sample from a replicate line is represented by a single bar with the relative abundance (non-CLR transformed data)
211 of the top 10 phyla. **E.** Differential abundance plot. Effect plot showing the relationship between Difference and
212 Dispersion for all OTUs included in analysis (n=369). The red dot (OTU 27; Proteobacteria, Neisseraceae)
213 represents a differentially abundant OTU (Welch's test); grey dots are abundant, but not differentially abundant;
214 black are rare, but not significantly rare.

215

216 We next used an experimental approach to test whether pathogens can acquire specific host-associated
217 bacteria from aphids during infection. We chose a microbe found in the aphid gut that can be genetically
218 manipulated in the lab and grown *in vitro* (36-38). We were able to transform *Serratia symbiotica* strain
219 CWBI 2.3T using mini-Tn7 site-directed transposon insertion. Transformed bacteria were able to grow on
220 plates of Trypticase Soy Broth/Agar (TSB) with zeocin (InvivoGen). In this experiment, we infected

221 aphids with *Pandora* (from cadaver stock aphids) and then injected them with transformed *Serratia*.
222 Control aphids were injected with transformed *Serratia* but were not exposed to *Pandora*. All aphids died
223 between 4-6 days after injection. Dead aphids from the control and cadavers produced from *Pandora*
224 infection were then placed over liquid media to sporulate, which was then spread plated on replicate
225 plates of TSB + zeocin for 48 hours at 27°C. No plates from control aphids grew bacterial colonies;
226 however, *Pandora* spores from infected aphids successfully transferred the transformed *Serratia* to
227 plates at varying CFUs (Figure 4).

228
229 **Figure 4: Fungal acquisition of host-associated bacteria.** An illustration of the experimental design is
230 shown starting on the left. The figure on the far right shows the number of CFUs resulting from control
231 and *Pandora*-infected aphids spread-plated on replicate plates of TSB + zeocin after 48 hours. Each
232 replicate is shown with a grey point, and means are shown with a black bar.

233 DISCUSSION:

234

235 Aphid facultative symbionts confer protection against specialist fungal pathogens in the family
236 Entomophthorales (30-33). We found that when a fungal pathogen is able to overcome this protection
237 and infect a host (which occurs in both the lab and field (34, 35, 39)), the pathogen suffers reduced
238 virulence against subsequent hosts. Specifically, we found that spores that emerged from aphids
239 harboring a protective strain of *Regiella insecticola* were less virulent against subsequent hosts, and
240 these protective *Regiella*-passaged spores did not grow on plates in the lab. Asexual, reproductive
241 female aphids are typically surrounded by genetically identical offspring harboring the same heritable
242 bacteria. The additional protective effects of *Regiella* that we uncovered likely benefit an aphid lineage
243 even if the symbiont fails to protect an individual aphid. This finding has important implications for our
244 understanding of aphid population dynamics, and for our understanding of the evolution of symbiont-
245 mediated protection against pathogens and parasites (40).

246 Pathogenic fungi commonly lose virulence and experience morphological changes when cultured on
247 artificial media (termed 'degeneration' (28)). This phenomenon is a concern for the study of
248 entomopathogens in the lab and for the use of fungal pathogens in biocontrol and other applications
249 (reviewed in 28). We quantified degeneration of *Pandora neoaphidis* on media. We showed that plate
250 culturing of *Pandora* in the lab is associated with a loss of virulence towards aphids, with pathogen
251 spores unable to infect hosts at low doses after two plate passages. After four plate passages, *Pandora*
252 virulence was further reduced at high dose infections. *Pandora* spores regained virulence after re-
253 infection of the aphid host. These findings are relevant to the potential use of *Pandora* as a biocontrol
254 agent (18, 19, 41, 42), and suggest that additional research into entomopathogen degeneration is
255 needed before these biocontrol microbes could be grown at scale for use in agricultural pest
256 management.

257 We hypothesized that changes in *Pandora*'s bacterial microbiome could explain degeneration
258 (reduced virulence) on plate media. Contrary to our expectations, changes in fungal virulence do not
259 appear to be associated with changes in the bacterial microbiome. Instead, we found that richness and
260 diversity of the bacteria associated with *Pandora* changed very little during plate passaging and re-
261 infection experiments. While the total community composition of these bacteria was influenced by the
262 number of plate passages and through reintroduction of the pathogen to its host, most of the variance in
263 these models was not explained by these factors. In fact, by including a block effect of replicate plate line
264 in our plate passaging experiment, we found that the plate line explained a greater percentage of the
265 variation in community composition in *Pandora* cultures. This also suggests that *Pandora* is getting a
266 portion of its bacterial microbiome from its parental subculture, rather than the environment. Together our
267 results suggest that a change in the bacterial microbiome of *Pandora* is not the specific epigenetic
268 mechanism driving the loss of virulence observed in the lab. Future work should investigate alternative,

269 loss-of-virulence mechanisms in entomopathogenic fungi, including the roles of mycoviruses (43), DNA
270 methylation, or alterations in karyotype (chromosome polymorphisms) (28).

271 In certain fungal taxa, the importance of bacteria in pathogenesis is more apparent. For example, a
272 bacteria (*Burkholderia rhizoxinica*) secretes a toxic virulence factor for the fungus (*Rhizopus*
273 *microsporus*) against its plant host (8). When removed of this bacterium, the fungus is no longer
274 pathogenic. Our preliminary characterization of bacteria associated with *Pandora* did not reveal any
275 specific OTUs that explained loss or reacquisition of virulence towards aphids. Thus, it seems unlikely
276 that any bacterial microbiome members of *Pandora* are impacting virulence towards its host. Instead, the
277 microbiome of *Pandora* may be compromised of “hitch-hiking” bacteria (11) with expanded niches to
278 increase survival after aphid infection. More research would be needed to determine what roles bacteria
279 are playing in *Pandora*’s biology. We showed that the bacterial microbiome of *Pandora* is composed of
280 four main phyla: Proteobacteria, Firmicutes, Actinobacteriota, and Bacteroidota. A key limitation of our
281 study is that we used only one *Pandora* genotype to test the relationship between virulence and the
282 pathogen’s microbiome. We know that the pathogen genotype and the aphid symbiont genotype can
283 interact to influence disease (35). Isolating additional fungal lines from natural populations could help
284 identify ‘core’ bacterial taxa found across multiple fungal lineages.

285 Many entomopathogenic fungi emerge from their insect host’s body cavity where they encounter
286 hemolymph, gut, and cuticle microbial associates. We last showed that *Pandora* acquired
287 experimentally-injected gut bacteria in aphids that were viable after pathogen infection and dispersal
288 from the host. We used a genetically modified gut symbiont of aphids engineered to encode for antibiotic
289 resistance, and we demonstrated that we could culture this bacterium by plating fungal spores that
290 emerged from an infected aphid. Our expectation is that transformed *Serratia* were transferred to media
291 on the surface of *Pandora* spores. A previous study of the bacteria associated with *Pandora* suggested
292 that some microbes can also be found inside *Pandora* cells (demonstrated through Fluorescence in situ
293 hybridization and confocal microscopy (44)). Whether bacteria are encapsulated by *Pandora* during
294 infection, or bacteria are attached superficially as their host becomes infected and dies, or both, is
295 unknown. Current research suggests that fungi can associate with bacterial symbionts of animal and
296 plant hosts in non-specific ways, and that these interactions are products of stress and environmental
297 conditions (45). One interesting possibility is that bacteria associated with aphids could be transferred via
298 *Pandora* to new aphid hosts.

299 Our study demonstrates two new ways that host microbiomes influence fungal pathogens: the
300 microbiomes of infected hosts can influence virulence against subsequent infections, and hosts and fungi
301 can potentially share bacterial taxa. Although we found no apparent link between the pathogen
302 microbiome and virulence or growth in culture, we identified a relatively stable consortium of bacteria that
303 associate with *Pandora*. Our results yield important considerations for future studies of *Pandora*

304 *neoaphidis* and other fungal entomopathogens, how microbes shape pathogen evolution, and for the
305 potential use of fungi in insect biocontrol.

306 METHODS:

307

308 **Fungal isolate:** We isolated a strain of a fungal pathogen that we visually identified as *Pandora*
309 *neoaphidis* (referred to here as P18) from an unwinged adult pea aphid feeding on *Vicia* sp. in May of
310 2019 in Knoxville, TN, USA. We brought live aphids into the lab and harbored them on lab-grown *Vicia*
311 *faba* (var: Windsor) plants at 20°C. We maintained aphids at ambient humidity (lab conditions), which
312 causes entomopathogen-infected aphids to produce a dry 'resting cadaver' that does not release spores.
313 We then selected a single resting cadaver and placed it on 2% tap water agar (TWA) overnight, which
314 induces the cadaver to release spores (20). We established the fungus in the lab using two methods:
315 culturing on plated media and aphid passaging (see below).

316

317 **Pandora plate culturing:** We collected P18 spores using a sterile pipette tip from around the infected
318 cadaver and inoculated the center of a Petri dish 10 cm² containing 'ESMAY' media (1% yeast extract,
319 1% peptone, 1.5% agar, 4% maltose, and 2 egg yolks per 100mL media). We grew plates wrapped in
320 Parafilm in the dark at 20°C. *Pandora* mycelium grew at 20°C on a plate for one month, at which point
321 fungal mycelium was transferred to new plates by cutting approximately 1 cm² squares of mycelium,
322 removing fungus from the media, and placing it on a fresh plate. We noted the parental line of each
323 subculture through the four plate passages.

324

325 **Molecular species confirmation for strain P18:** We confirmed the identification of P18 as *Pandora*
326 *neoaphidis* using PCR amplification and sequencing. We cut a 1 cm² piece of fungal mycelium from plate
327 growth and extracted DNA using phenol-chloroform with an ethanol precipitation. We performed PCR
328 using previously published primers and conditions (PnITS_F:
329 GAATAGATTGTCTTATAACTACGTGTAGA and PnITS_R: ACCAGAGTACCAAGCATATCC); 30s at
330 98°C followed by 30 cycles at 98°C for 30s, 61°C for 20s, and 72°C for 2 min, with a final extension at
331 72°C for 7 min. (19). Following PCR, we sequenced the amplicon via Sanger sequencing in the forward
332 and reverse direction. We used BLASTN to show that the resulting consensus sequence had 100%
333 sequence similarity to published sequences for *Pandora neoaphidis* (e.g. HQ677587.1).

334

335 **Pandora passaging through aphids:** We maintained *Pandora* isolate P18 in 'aphid culture' by serially
336 passaging it through healthy aphid individuals and storing the dried resting cadavers at 4°C. We reared
337 pea aphids from the LSR1-01 genotype (originally collected near Ithaca, NY in 1991 from *Medicago*
338 *sativa*) (46). We confirmed the absence of any secondary symbionts using PCR (47), and subsequently
339 maintained this aphid line in the lab on *Vicia faba* at 16L:8D at 20°C. From the initial P18 cadaver
340 collected in the field, we inverted the sporulating cadaver over LSR1-01 adult aphids. We then moved
341 exposed aphids to *V. faba* plants covered by unvented cages for 48 hours to keep aphids under
342 relatively high humidity, and then moved aphids to new plants with a vented cup cage in an incubator
343 with low relative humidity. Starting on the fourth day after exposure to P18, aphids began to produce new
344 resting cadavers, which we collected until day 8 post-exposure. Resting cadavers were stored at 4°C
345 along with packets of Silica gel for up to a month. We repeated this infection experiment each month to
346 generate new cadavers for long-term maintenance of a P18 in the lab.

347

348 **Aphid symbiont effects on pathogen virulence:** We used a panel of LSR1-01 aphids with different
349 facultative symbionts to investigate if aphid symbionts affect the pathogen's virulence in subsequent
350 infections. The panel included a protective strain of *Regiella* (.313), a strain of *Regiella* from another
351 aphid species (*Myzus persicae*) identified in previous work (35) that does not confer protection in pea
352 aphids (strain .515, (48)), and a strain of *Serratia symbiotica* (strain .509) isolated from pea aphids from
353 Knoxville in 2019. *S. symbiotica* is not known as a protective symbiont of pea aphids against fungal
354 pathogens (28). For the experimental infection of LSR1-01 with these different symbionts and a no-
355 symbiont control (Figure 1), we performed a fungal infection on the panel, and collected dried cadavers
356 resulting from successful infections. We then grew new LSR1-01 (symbiont-free) aphids and exposed
357 them to 'symbiont-passaged' spores from cadavers from the initial fungal infection.

358 To perform the fungal infections, we took cadavers that were stored at 4°C and placed them on 2%
359 TWA plates overnight to induce sporulation. 10-day-old adult aphids were placed at the bottom of an
360 infection chamber: a PVC tube (5cm x 3.2cm) painted on the inside with fluon (Insect-A-Slip, BioQuip
361 Products, Inc. product #2871A) to prevent aphids from crawling up the chamber. A single sporulating
362 cadaver was placed at the top of each chamber facing down to allow spores to shower onto the aphids
363 (20). For each experiment, fungus is rotated among the infection chambers every few minutes to ensure
364 an equal dose of spores across chambers. After infection, aphids were then placed on new *V. faba*
365 plants. Each plant was assigned a random number to ensure data collection was blind to treatment.
366 Vented cages were covered with parafilm "M" to increase humidity. After two days, aphids were moved to
367 new *V. faba* plants in unvented cages at ambient humidity. We recorded aphid survival and signs of
368 sporulation (i.e. cadavers) for eight days until aphids ceased to show new signs of sporulation.

369 We analyzed aphid infection data using Generalized Linear Models (GLMs) with a quasibinomial
370 error and logit link function implemented in R v.4.2.2. The sporulation status of each aphid was modeled
371 as a binomial outcome, and symbiont was included as a fixed effect. In the initial infection, we also
372 included experimental replicate as a fixed effect. Minimal models were derived by removing the fixed
373 effects and performing model comparisons using ANOVA and F-tests. Post-hoc analyses comparing
374 levels within symbiont were performed using the 'multcomp' package. Spore production was analyzed
375 using a one-way ANOVA with symbiont background as the explanatory factor after checking for normality
376 using the aov function in R v.4.2.2. Plate growth was analyzed using a linear mixed effects model
377 implemented using the 'lme4' package in R v.4.2.2. Symbiont background and timepoint were included
378 as fixed effects, and plate replicate was included as a random effect in the model; the model structure
379 accounted for the paired nature of the analysis by including the random effect of plate. Minimal models
380 were derived by removing the effect of symbiont and then timepoint, and models were compared using
381 ANOVA and chi-squared tests. Post-hoc comparisons analyzing the effect of symbiont were performed
382 using the 'multcomp' package.

383 **Virulence of spores from mycelium and from cadavers:** To assess the effects of repeatedly
384 subculturing *Pandora* on virulence, we performed experimental infections of aphids using spores
385 generated from cultured mycelium. For the assay, we cut ~1 cm² plugs of mycelia from the leading edge
386 of each P18 culture and placed each plug on separate 2% TWA plates to induce sporulation.

387 We performed two versions of this assay, one that exposed aphids to a 'low' spore dose (1 hour of
388 exposure), and one that exposed aphids to a 'high' spore dose (5 hours of exposure). This is because we
389 are not able to precisely control the number of spores produced by a mycelium plug. We quantified each
390 spore dose for each experimental group by counting spores by including an infection chamber containing
391 only a glass cover slip in the rotation. We visualized each glass cover slip under a compound microscope
392 after the infection and counted the number of *Pandora* spores in three random 1mm² fields of vision,
393 averaging these values for each measurement. We carried out these infections using the initial plate
394 isolate, after two rounds of plate passaging, and after four rounds of plate passaging. At two rounds of
395 passaging, we carried out both a low and a high dose infection, and we also included spores produced
396 by aphid cadavers that had been maintained in LSR-01 adult aphids (see above). At four rounds of
397 passaging, we performed only the high dose assay.

398 After the fourth plate passage of P18, we re-introduced P18 to healthy adult aphids with spores from
399 mycelium plugs (Figure 2). From this infection, we collected dried aphid cadavers and stored them at
400 4°C. We used some of these dried cadavers to infect aphids to measure virulence. We used other
401 cadavers to generate spores for 16S sequencing.

402 **DNA extraction and 16S sequencing of *Pandora*:** For mycelium samples, we cut a 1 cm² piece of the
403 leading edge of the fungal culture and stored it at -80°C. For spore samples, we placed mycelium or a
404 resting cadaver on 2% TWA inverted over a microcentrifuge tube with lysis buffer. After 24 hours of
405 sporulation, the tube was vortexed to suspend spores and stored at -20°C. We extracted total genomic
406 DNA from *Pandora* using phenol-chloroform with an ethanol precipitation and stored the samples at -
407 20°C. We included a negative control extraction on molecular grade water. We quantified sample DNA
408 using an ND1000 spectrophotometer (NanoDrop Technologies), standardized DNA to 7.5 ng/μL, and
409 PCR-amplified from these samples using primer pairs 341F/785R that target the 16S V3 and V4 region

412 (49). PCR reactions included Kapa high-fi master mix at 1X, primers at 200nM each, 20ng gDNA, and
413 molecular grade water. PCR conditions were 95°C for 3 min, 34 cycles of 95°C for 30s, 58°C for 30s,
414 and 72°C for 30s, followed by 72°C for 5 min. We purified the PCR product with Agencourt Ampure XP
415 beads and indexed each sample with a unique combination of forward and reverse Nextera XT v2, set A
416 indexes (Illumina) using Kapa HiFi master mix (Roche) in a reduced-cycle PCR. We again purified the
417 indexed PCR product with Agencourt Ampure XP beads, and visualized and quantified the final libraries
418 for quality control (using an Agilent Bioanalyzer). The libraries were sequenced at a final loading
419 concentration of 4 pM using 275 paired-end reads on an Illumina MiSeq instrument with version 3
420 reagents and 10% PhiX spike-in on an Illumina MiSeq at the University of Tennessee Genomics Core.
421

422 **Pandora mycelium and spore 16S analysis:** We analyzed bacterial communities associated with
423 fungal mycelium and spores via 16S sequence data using Mothur (v. 1.38) (5) following the MiSeq
424 standard operating protocol (6). First, we removed reads with ambiguous bases and mapped reads to
425 the V3/V4 region of the SILVA reference database (positions 1044 through 43116 in database v. 138.1;
426 www.arb-silva.de), accepting alignments with >99% similarity. Next, we removed chimeric reads using
427 vsearch within mothur and reads that aligned to DNA from chloroplast, mitochondria, archaea, and
428 eukaryotes. We removed sequences found in the negative control from all other samples and determined
429 OTUs using “dist.seqs” and “cluster” commands. Taxonomy of each OTU was assigned using the
430 ‘classify.otu’ command. Raw sequence data are available through the Sequence Read Archive with
431 BioProject ID: PRJNA1054062. Relative abundance of taxonomic groups, richness (Chao1), and
432 diversity indices (Shannon and Inverse Simpson) were calculated before the removal of OTUs not
433 observed ≥10 times in ≥3 samples due to their diminishing utility in analyses and potential to be
434 sequencing artifacts (50-52). 86% of reads remained after thresholding. Counts of OTUs were
435 normalized via a centered-log-ratio (CLR) transformation using the ALDEx2 package (53, 54).

436 We fit a linear model for each alpha diversity metric to test the similarity of mycelium cultures and
437 spores. We assessed community composition by permutational multivariate analysis of variance
438 (PERMANOVA) and constrained partial redundancy analysis (RDA) with the condition of log(reads)
439 added to remove the effect of variable read depth in each sample. For mycelium samples, we included
440 the plate line as a block effect. For PERMANOVA, we used the adonis2 function from the vegan package
441 (55) to model between-sample Aitchison distances (54). The RDA was fit and visualized using an
442 ordination plot of the significant constrained axes (RDA) or unconstrained axes (Principal Components).
443 The CLR-transformed abundance of each genus was modeled to test responses to *Pandora* plate
444 passage number and spore type. Across both models and where appropriate, p-values were adjusted to
445 correct for multiple comparisons using a Benjamini-Hochberg correction.
446

447 **Transposon insertion using mini-Tn7 into *Serratia symbiotica*:** We obtained isolate CWBI 2.3T of
448 *Serratia symbiotica* (NCBI tax id: 138074) from the DSMZ-German Collection of Microorganisms and Cell
449 Cultures. This species was originally isolated from the black bean aphid *Aphis fabae* (37) and can be
450 cultured on Trypticase Soy Broth (TSB) or Agar (TSA) at 27°C. We grew microbes harboring the mini-
451 Tn7 plasmid and the pTns2 transposition components on LB (56, 57). We grew *S. symbiotica* in 5mL of
452 TSB for two days and then spun cells down at 4000rpm for 10m at 4°C. We removed the supernatant
453 and added 1mL of 300nM sucrose solution, vortexed the mixture, and then centrifuged again for 5
454 minutes. We repeated this wash step a second time, and then resuspended the cells into 300mL of
455 300nM sucrose. We standardized the mini-Tn7 plasmid and the pTns2 transposition components to
456 50ng/mL and then added 2mL of Tn7 and 6.9mL of pTns2 to the two treatment samples. The mix was
457 vortexed and then electroporated. We then incubated the samples at 27°C with shaking for 16 hours and
458 plated 10mL on TSA with zeocin for 3-4 days until colony growth was observed (36, 38, 56).
459

460 ***Serratia* gut infection and fungal infection:** For *S. symbiotica* injections, we grew transformed bacteria
461 in TSB with zeocin, and then spun the cells for 10m at 4000rpm and washed the cells with PBS,
462 repeating this procedure three times. We then normalized to an OD of 1, and diluted 100-fold in pH 7
463 adjusted Buffer A (25 nM KCl, 10nM mgCl 2, 250 nM Sucrose & 35 nM Tris-HCl) (38). We used a
464 Femtojet injector (Eppendorf) to inject recipient aphids with 1mL each, after which aphids were housed
465 on plants in cages as described above.

466 ACKNOWLEDGEMENTS: Sequencing was carried out at the University of Tennessee of Knoxville Genome
467 Sequencing Facility. This work was supported by US National Science Foundation (NSF) Grant IOS-
468 2152954 to BJP, and NSF Grant DBI-2109440 to MRK. BJP is a Pew Scholar in the Biomedical
469 Sciences, supported by The Pew Charitable Trusts.
470
471 DATA AVAILABILITY: Data has been included as a supplementary file. Raw sequence data from the MiSeq
472 run have been uploaded to the NCBI Sequence Read Archive (SRA) with BioProject ID: PRJNA1054062
473 and BioSample IDs: SAMN38882051-SAMN38882110.
474
475 AUTHOR CONTRIBUTIONS: Conceptualization: HLN & BJP; Formal analysis: MRK, WB, & BJP. Funding
476 acquisition: MRK & BJP; Investigation: YdAA, WB, HLN, EGB, KT; Writing – original draft: BJP. Writing –
477 review & editing: MRK, BJP. All authors approved the final version of the manuscript.

478 REFERENCES:

479

480 1. Miller DL, Smith EA, Newton ILG. A Bacterial Symbiont Protects Honey Bees from Fungal
481 Disease. *mBio*. 2021;12(3):e0050321.

482 2. Hong S, Sun Y, Chen H, Wang C. Suppression of the insect cuticular microbiomes by a fungal
483 defensin to facilitate parasite infection. *ISME J*. 2023;17(1):1-11.

484 3. Gil-Turnes MS, Hay ME, Fenical W. Symbiotic marine bacteria chemically defend crustacean
485 embryos from a pathogenic fungus. *Science*. 1989;246(4926):116-8.

486 4. Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Metraux JP, L'Haridon F. The microbiome of
487 the leaf surface of *Arabidopsis* protects against a fungal pathogen. *New Phytol*. 2016;210(3):1033-43.

488 5. Bunker ME, Elliott G, Heyer-Gray H, Martin MO, Arnold AE, Weiss SL. Vertically transmitted
489 microbiome protects eggs from fungal infection and egg failure. *Anim Microbiome*. 2021;3(1):43.

490 6. Hogan DA, Vik A, Kolter R. A *Pseudomonas aeruginosa* quorum-sensing molecule influences
491 *Candida albicans* morphology. *Mol Microbiol*. 2004;54(5):1212-23.

492 7. Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial-fungal interactions. *Nat Rev
493 Microbiol*. 2010;8(5):340-9.

494 8. Partida-Martinez LP, Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin
495 production. *Nature*. 2005;437(7060):884-8.

496 9. Minerdi D, Moretti M, Gilardi G, Barberio C, Gullino ML, Garibaldi A. Bacterial ectosymbionts and
497 virulence silencing in a *Fusarium oxysporum* strain. *Environ Microbiol*. 2008;10(7):1725-41.

498 10. Hoffman MT, Arnold AE. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal
499 endophytes. *Appl Environ Microbiol*. 2010;76(12):4063-75.

500 11. Venkatesh N, Greco C, Drott MT, Koss MJ, Ludwikoski I, Keller NM, et al. Bacterial hitchhikers
501 derive benefits from fungal housing. *Curr Biol*. 2022;32(7):1523-33 e6.

502 12. Carter ME, Carpenter SCD, Dubrow ZE, Sabol MR, Rinaldi FC, Lastovetsky OA, et al. A TAL
503 effector-like protein of an endofungal bacterium increases the stress tolerance and alters the
504 transcriptome of the host. *Proc Natl Acad Sci U S A*. 2020;117(29):17122-9.

505 13. Kobayashi DY, Crouch JA. Bacterial/Fungal interactions: from pathogens to mutualistic
506 endosymbionts. *Annu Rev Phytopathol*. 2009;47:63-82.

507 14. Humber RA. Entomophthoromycota: A New Overview of Some of the Oldest Terrestrial Fungi.
508 Biology of Microfungi. Fungal Biology 2016. p. 127-45.

509 15. Humber RA. *Entomophthoromycota*: a new phylum and reclassification for entomophthoroid
510 fungi. *Mycotaxon*. 2012;120(1):477-92.

511 16. Gryganskyi AP, Humber RA, Smith ME, Miadlikowska J, Wu S, Voigt K, et al. Molecular
512 phylogeny of the Entomophthoromycota. *Mol Phylogenet Evol*. 2012;65(2):682-94.

513 17. Vilela R, Mendoza L. Human Pathogenic Entomophthorales. *Clin Microbiol Rev*. 2018;31(4).

514 18. Fournier A, Widmer F, Enkerli J. Assessing winter-survival of *Pandora neoaphidis* in soil with
515 bioassays and molecular approaches. *Biological Control*. 2010;54(2):126-34.

516 19. Fournier A, Enkerli J, Keller S, Widmer F. A PCR-based tool for the cultivation-independent
517 monitoring of *Pandora neoaphidis*. *J Invertebr Pathol*. 2008;99(1):49-56.

518 20. Hajek AE, Papierok B, Eilenberg J. Methods for study of the Entomophthorales. In: Lacey LA,
519 editor. Manual of Techniques in Invertebrate Pathology. Yakima, Washington, USA: IP Consulting
520 International; 2012.

521 21. Scorsetti AC, Humber RA, García JJ, Lastra CCL. Natural occurrence of entomopathogenic fungi
522 (Zygomycetes: Entomophthorales) of aphid (Hemiptera: Aphididae) pests of horticultural crops in
523 Argentina. *BioControl*. 2006;52(5):641-55.

524 22. Nielsen C, Hajek AE, Humber RA, Bresciani J, Eilenberg J. Soil as an environment for winter
525 survival of aphid-pathogenic Entomophthorales. *Biological Control*. 2003;28(1):92-100.

526 23. Smith AH, Lukasik P, O'Connor MP, Lee A, Mayo G, Drott MT, et al. Patterns, causes and
527 consequences of defensive microbiome dynamics across multiple scales. *Mol Ecol*. 2015;24(5):1135-49.

528 24. Eilenberg J, Saussure S, Ben Fekih I, Jensen AB, Klingen I. Factors driving susceptibility and
529 resistance in aphids that share specialist fungal pathogens. *Curr Opin Insect Sci*. 2019;33:91-8.

530 25. Saussure S, Westrum K, Roer Hjelkrem A-G, Klingen I. Effect of three isolates of *Pandora*
531 *neoaphidis* from a single population of *Sitobion avenae* on mortality, speed of kill and fecundity of
532 *S. avenae* and *Rhopalosiphum padi* at different temperatures. *Fungal Ecology*. 2019;41:1-12.

533 26. Shah PA, Clark SJ, Pell JK. Assessment of aphid host range and isolate variability in *Pandora*
534 *neoaphidis* (Zygomycetes: Entomophthorales). *Biological Control*. 2004;29(1):90-9.

535 27. Chen C, Chen X, Xie T, Louis Hatting J, Yu X, Ye S, et al. Diverse bacterial symbionts of insect-
536 pathogenic fungi and possible impact on the maintenance of virulence during infection. *Symbiosis*.
537 2016;69(1):47-58.

538 28. Butt TM, Wang C, Shah FA, Hall R. Degeneration of Entomogenous Fungi. In: Eilenberg J,
539 Hokkanen HMT, editors. *An Ecological and Societal Approach to Biological Control*: Springer; 2006. p.
540 213-26.

541 29. Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal
542 transfer of ecologically important traits. *Annu Rev Entomol*. 2010;55:247-66.

543 30. Scarborough CL, Ferrari J, Godfray HC. Aphid protected from pathogen by endosymbiont.
544 *Science*. 2005;310(5755):1781.

545 31. Lukasik P, van Asch M, Guo H, Ferrari J, Godfray HC. Unrelated facultative endosymbionts
546 protect aphids against a fungal pathogen. *Ecol Lett*. 2013;16(2):214-8.

547 32. Parker BJ, Spragg CJ, Altincicek B, Gerardo NM. Symbiont-mediated protection against fungal
548 pathogens in pea aphids: a role for pathogen specificity? *Appl Environ Microbiol*. 2013;79(7):2455-8.

549 33. Inchauregui RA, Tallapragada K, Parker BJ. Aphid facultative symbionts confer no protection
550 against the fungal entomopathogen *Batkoia apiculata*. *Plos One*. 2023;18(5).

551 34. Hrcek J, McLean AH, Godfray HC. Symbionts modify interactions between insects and natural
552 enemies in the field. *J Anim Ecol*. 2016;85(6):1605-12.

553 35. Parker BJ, Hrcek J, McLean AHC, Godfray HCJ. Genotype specificity among hosts, pathogens,
554 and beneficial microbes influences the strength of symbiont-mediated protection. *Evolution*.
555 2017;71(5):1222-31.

556 36. Elston KM, Perreau J, Maeda GP, Moran NA, Barrick JE. Engineering a Culturable *Serratia*
557 *symbiotica* Strain for Aphid Paratransgenesis. *Appl Environ Microbiol*. 2020.

558 37. Foray V, Grigorescu AS, Sabri A, Haubrue E, Lognay G, Francis F, et al. Whole-Genome
559 Sequence of *Serratia symbiotica* Strain CWBI-2.3T, a Free-Living Symbiont of the Black Bean Aphid
560 *Aphis fabae*. *Genome Announc*. 2014;2(4).

561 38. Perreau J, Patel DJ, Anderson H, Maeda GP, Elston KM, Barrick JE, et al. Vertical Transmission
562 at the Pathogen-Symbiont Interface: *Serratia symbiotica* and Aphids. *Mbio*. 2021;12(2).

563 39. Rothacher L, Ferrer-Suay M, Vorburger C. Bacterial endosymbionts protect aphids in the field
564 and alter parasitoid community composition. *Ecology*. 2016;97(7):1712-23.

565 40. Brownlie JC, Johnson KN. Symbiont-mediated protection in insect hosts. *Trends Microbiol*.
566 2009;17(8):348-54.

567 41. Zhou X, Feng M-G. Improved sporulation of alginate pellets entrapping *Pandora nouri* and millet
568 powder and their potential to induce an aphid epizootic in field cages after release. *Biological Control*.
569 2010;54(2):153-8.

570 42. Hesketh H, Alderson PG, Pye BJ, Pell JK. The development and multiple uses of a standardised
571 bioassay method to select hypocrealean fungi for biological control of aphids. *Biological Control*.
572 2008;46(2):242-55.

573 43. Kotta-Loizou I. Mycoviruses and their role in fungal pathogenesis. *Curr Opin Microbiol*.
574 2021;63:10-8.

575 44. Osaka R, Ichizono T, Kageyama D, Nomura M, Watada M. Natural variation in population
576 densities and vertical transmission rates of a *Spiroplasma* endosymbiont in *Drosophila hydei*. *Symbiosis*.
577 2013;60(2):73-8.

578 45. Bonfante P, Venice F, Lanfranco L. The mycobiota: fungi take their place between plants and
579 bacteria. *Curr Opin Microbiol*. 2019;49:18-25.

580 46. International Aphid Genomics C. Genome sequence of the pea aphid *Acyrtosiphon pisum*. *PLoS*
581 *Biol*. 2010;8(2):e1000313.

582 47. Henry LM, Peccoud J, Simon JC, Hadfield JD, Maiden MJ, Ferrari J, et al. Horizontally
583 transmitted symbionts and host colonization of ecological niches. *Curr Biol*. 2013;23(17):1713-7.

584 48. Hansen AK, Vorburger C, Moran NA. Genomic basis of endosymbiont-conferred protection
585 against an insect parasitoid. *Genome Res.* 2012;22(1):106-14.

586 49. Lee BY, Brown ST, Cooley PC, Zimmerman RK, Wheaton WD, Zimmer SM, et al. A computer
587 simulation of employee vaccination to mitigate an influenza epidemic. *Am J Prev Med.* 2010;38(3):247-
588 57.

589 50. Kuczynski J, Liu Z, Lozupone C, McDonald D, Fierer N, Knight R. Microbial community
590 resemblance methods differ in their ability to detect biologically relevant patterns. *Nat Methods.*
591 2010;7(10):813-9.

592 51. Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, et al. Unusual biology across a
593 group comprising more than 15% of domain Bacteria. *Nature.* 2015;523(7559):208-11.

594 52. Reitmeier S, Hitch TCA, Treichel N, Fikas N, Hausmann B, Ramer-Tait AE, et al. Handling of
595 spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling. *ISME
596 Commun.* 2021;1(1):31.

597 53. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the
598 analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing
599 and selective growth experiments by compositional data analysis. *Microbiome.* 2014;2:15.

600 54. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are
601 Compositional: And This Is Not Optional. *Front Microbiol.* 2017;8:2224.

602 55. Oksanen J, Blanchet FG, Friendly M, Roeland Kindt, Legendre P, McGlinn D, et al. *vegan: Community
603 Ecology Package.* 2.5-6 ed: CRAN.R-project.org; 2019. p. Ordination methods, diversity
604 analysis and other functions for community and vegetation ecologists.

605 56. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, et al. A Tn7-based
606 broad-range bacterial cloning and expression system. *Nat Methods.* 2005;2(6):443-8.

607 57. Choi KH, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example
608 *Pseudomonas aeruginosa*. *Nat Protoc.* 2006;1(1):153-61.

609