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Super-resolution and single-molecule microscopy are increas-
ingly applied to complex biological systems. A major challenge
of this approach is that fluorescent puncta must be detected in
the low signal, high noise, heterogeneous background environ-
ments of cells and tissue. We present RASP, Radiality Anal-
ysis of Single Puncta, a bioimaging-segmentation method that
solves this problem. RASP removes false positive puncta that
other analysis methods detect, and detects features over a broad
range of spatial scales: from single proteins to complex cell phe-
notypes. RASP outperforms the state-of-the-art in precision
and speed, using image gradients to separate Gaussian-shaped
objects from background. We demonstrate RASP’s power by
showing it can extract spatial correlations between microglia,
neurons, and «a-synuclein oligomers in the human brain. This
sensitive, computationally efficient approach enables fluores-
cent puncta and cellular features to be distinguished in cellular
and tissue environments with a sensitivity down to the level of
the single protein.
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Introduction

Developments in super-resolution and single-molecule
fluorescence microscopy methods continue to push the
boundaries of what researchers can observe in complex
biological systems. Recent examples include Moon et al.,
who used a combined super-resolution and spectral imaging
approach to uncover the heterogeneity of live mammalian
cells with ~30nm spatial resolution, finding chemical
polarity differences in organelle and cellular membranes
due to differing cholesterol levels.(1) Deguchi et al. were
able to observe single 8 nm substeps of the motor protein
kinesin-1 as it “walked” on microtubules in living cells
using the super-resolution technique MINFLUX.(2) More
recently, Reinhardt er al. have used a DNA barcoding
method to push the spatial resolution of super-resolution to
the Angstrbm level for biomolecules in whole intact cells, as
well as to resolve the distance between single bases in the
DNA backbone.(3) This begins to close the gap between the
length scales of super-resolution microscopy and structural

biology—opening up the possibility that precise structural
understanding could be brought to live cells and complex
tissues. All these methods, at their core, rely on the detection
of single fluorescent spots, or puncta. Much effort has thus
been put into detecting single fluorescent puncta even when
such a signal is extremely weak.

As well as identification of single fluorescent puncta, it
is advantageous to simultaneously detect the large-scale
surrounding cellular context, for example in complex tissues.
This enables researchers to both interrogate single molecules,
such as proteins, DNAs or RNAs, as well as to understand
their interaction and localisation within their environments.
Single-molecule fluorescence in-situ hybridisation (sm-
FISH), a technique that enables the visualisation of RNAs
in their real biological environments, is in essence based on
this principle—RNAs are detected as single bright fluorecent
puncta, and the cellular or sub-cellular environment is
imaged concurrently.(4) smFISH has hugely improved our
understanding of RNA localisation and tracking, and is one
of the suite of techniques relied on by large scale mapping
programmes such as the Allen brain atlas project.(5) To
give but a few examples, Shaffer et al. showed that human
melanoma cells can display transcriptional variability at
the single-cell level using smFISH, and that this variability
was a predictor of which cells would resist drug treatments
in cancer.(6) Weidemann et al. were able to use smFISH
to show that the stochastic variation of gene expression
was less than might be expected from simple statistical
arguments, suggesting that eukaryotes have optimised gene
expression to ensure reliable cellular functions.(7) Zhang et
al. have created a spatially resolved “cell atlas” of the mouse
primary motor cortex (300,000 cells) using a smFISH-based
technology.(8) More recently, Zhao et al. have shown that
by combining smFISH and the use of fluorescent reporter
proteins they could quantify RNA and proteins in whole
plants with sub-cellular resolution.(9)

There exists an underlying challenge in all of these classes
of experiments: the accurate detection of and compensation
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Fig. 1. RASP enables accurate fluorescent puncta detection beyond the state-of-the-art. a) An illustration of a conventional feature detection strategy composed of a
feature enhancement step, e.g. a Difference-of-Gaussians filter(10), to accentuate differences between the desired feature signal, and background and a thresholding step,
such as Otsu’s method(11), that converts a feature-enhanced image to a binary mask. b) In the presence of structured background, objects below the diffraction limit cannot
be precisely detected by conventional feature detection strategies. RASP, an added selection step, distinguishes symmetric puncta, thus eliminating false positives. Elements

of this Figure were created with BioRender.com.

for background. In most conventional single-molecule and
super-resolution experiments, sample choice and/or prepara-
tion typically is chosen to minimise unwanted background
signal. Background in this context is the combination
of unwanted photons, whether from emitters or scatter-
ers, and/or camera readout noise not related to the target
molecules/process of interest. In experiments where the only
photons should be from the single molecules of interest,
the signal-to-background ratio can be on the order of 3—10
or more.(12) Importantly such an experiment’s background
level would be effectively homogeneous, arising from dark
counts on the detector and scattering from the solvent, in the
best case.(12) Thus any analysis on images taken in such a
single-molecule experiment are conceptually simple: bright
fluorescent puncta arise from a single fluorophores on top of
a homogeneous background. Such an approach has had great
success in the single-molecule literature, being a frequent
key step in data analysis.(13) In more complex samples such
as cellular and tissue samples (packed with intra- and/or
extra-cellular constituents) a large variety of molecules
and structures can also autofluoresce, i.e. emit light after
excitation with the same laser used to excite a fluorescently
labelled sample—this was shown elegantly by Aubin(14),
and exploited as a means to image cellular processes by
Konig et al.(15), among many others.(16) It is this spatially
variant autofluorescence that causes a (conventional) simple
thresholding approach to fail. The reason it fails is that
the autofluorescence is related to the concentration of the
water, proteins, lipids and nucleic acids that, among other
things, make up the intra- and extra-cellular components.
These molecules are not heterogeneously distributed spa-
tially, and thus different areas of the cells and tissue slices
will autofluoresce in a highly heterogeneous way.(17)
This creates to what we will herein refer to as structured
background, after Mockl et al.(18), in the images of interest.

The effect of this structured background compounds the
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difficulty of doing single-molecule microscopy in cell
specimens and tissue samples because a new approach to
spot identification is needed. Hoogendoorn et al. studied
this, and found that structured background can cause suffi-
ciently large artefacts in super-resolution microscopy that
they defeat the purpose of doing it in the first place.(19)
Their solution was to use a temporal median filter—their
interest was in single-molecule localisation microscopy
methods such as dSTORM and PALM, where the signals of
interest (blinking fluorophores) are on for very few frames
at a time. Thus using a temporal median filter disregards
background contributions that are on for many frames,
while keeping contributions from the single molecules. Ma
et al. used a similar concept in their WindSTORM image
processing program(20), specifically that of “extreme value
based emitter recovery”, with their approach being more
robust to denser emitter populations than the temporal
median filter.(21) Both methodologies assume fluorescence
intermittency, or blinking, of fluorophores, and thus in
experiments without blinking will fail. Mockl et al. trained
a deep neural network to subtract structured background
from microscopy images,(18) however training such a neural
net to anticipate large autofluorescent objects (from our
experience imaging human brain tissue, such objects can
occupy ~500x 500 pixels?) could be laboriously long. In
their implementation, training on 12x 12 pixel? images took
approximately 1h, thus scaling up to a 512x512 pixel?
image would suggest weeks of training. Another suite of
approaches to get around the effect of autofluorescence
are hydrogel-based tissue transformation technologies,
which are applicable to tissues but not to live cells. These,
broadly speaking—for a detailed recent review see Choi et
al.(22)—aim to engineer tissue physiochemical properties
while preserving cellular and molecular spatial context.
Tissue properties that can be engineered include optical
transparency(23) and tissue size(24). These methods are
undoubtedly powerful; however depending on the tissue can

RASP: Optimal single fluorescent puncta detection in complex cellular backgrounds


https://doi.org/10.1101/2023.12.18.572148
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.18.572148; this version posted December 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

be complex to execute and time-intensive. For example, the
OPTIClear protocol, optimised for human brain materials,
can in total take from days to months from protocol begin-
ning to imaging, dependent on the tissue.(25)

Furthermore, high-throughput imaging is increasingly
needed to answer biological questions.(26) This is due to
the statistics needed to uncover small, biologically relevant
effects—in the previously discussed example of Zhang et
al., images of 300,000 cells were needed in their smFISH
experiment to have the statistics necessary to firmly establish
biological conclusions.(8) In order to develop a similar
picture of the whole mouse brain, the same group recently
imaged approximately 7 million cells using FISH.(27)
Therefore, contemporary biology increasingly requires com-
putationally efficient processes to match the increasing large
data sets. In images of complex systems, traditional feature
detection is able to accurately determine cell boundaries from
single images containing structured background, Fig. la.
However, this is only half the battle. In detecting fluorescent
puncta, structured background can appear extremely similar
to a diffraction-limited spot, Fig. 1b. How do we, with
high precision and efficiency, distinguish between a false
positive and a true positive in this context? Futhermore,
once detected, can we use this single puctum information
to determine relative spatial statistics (i.e. density, extent of
clustering etc.) within segmented cell boundaries?

Inspired by the work of Parthasarathy(28), whose central in-
sight was that the intensity of any imaged particle is radially
symmetric about its centre, as well as by the SRRF(29, 30)
and SOFI(31) techniques, we reasoned that using a metric
based on the radial symmetry of a detected spot may en-
able us to reject false positive spots detected due to struc-
tured background. Based on Parthasarathy’s further demon-
stration that such an approach was computationally efficient,
we also reasoned that our use of the radial symmetry would
be fast, thus compatible with high-throughput imaging. We
thus think for structured background, our approach should be
optimal. We term our approach RASP (Radiality Analysis
of Single Puncta), and show, using simulations and exper-
iment, that it enables the fast rejection of false positives
in images containing structured background, and that this
should enable more precise correlations between cellular lo-
cations and fluorescent puncta in future work. We hope that
this approach, integrated into experiments such as single-
molecule FISH, protein co-localization experiments, and tis-
sue imaging, can improve repeatability and reliability of
high-throughput imaging-based datasets.

Results and Discussion

Fluorescence images of tissue and cells can be described as
being composed of three distinct components: signal, aut-
ofluorescence, and detector noise (Fig. 2a). A true positive
punctum, i.e. the signal we wish to detect, is composed of
all three components (Fig. 2b)—a false positive is composed
only of autofluorescence and detector noise. The difficulty
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arises in that true and false positives can look extremely sim-
ilar. To address this challenge, we propose RASP, which, in
essence, is a filtering step after puncta detection where false
positives and true positives are distinguished based on their
radial symmetry, or “radiality”. We quantified the radiality
of individual puncta using two metrics: steepness (Fig. 2¢)
and integrated gradient (Fig. 2d). Steepness is defined as the
mean ratio between intensity values at the local maximum
(Imax) and all pixels contained within a ring of pixels 2 pix-
els away from the local maximum, (I Six 1) Where k represents

the k*P pixel in the set of pixels at radius 2 pixels distance
(Fig. 2¢). The value of 2 pixels away was chosen to, in our
implementation, correspond to the outer radius of a single
fluorescent punctum. This value is calculated using equation
1,

n

1 Tinax
Steepness = — Z Izﬂa ®
n k=1 " pixel

where n is number of pixels. The integrated gradient is the
sum of gradient values (G’;ixel) from all pixels contained
within a ring of pixels 2 pixels away from the local maxi-
mum, where k represents the k*" pixel (Fig. 2d). To compute
this, the gradient field G(x,y) is first calculated from the orig-

inal image I(x,y) using equation 2,

G(x,y) =I(x,y) = I(x+1,y+1) (2)

and then the integrated gradient is calculated using equation
33

n
Integrated Gradient = Z Gf’ixel . 3)
k=1

Subsequently, the steepness and integrated gradient values
of the detected spots are used to filter out false positives,
using a decision boundary (Fig. 2e)—which we determine
using negative control experiments, discussed further in what
follows.

We first evaluated RASP in an ideal scenario, without any
structured background, i.e. a situation where both RASP and
existing state-of-the-art codes should perform well. To do
this we imaged bright, 100nm diameter fluorescent beads
(0.1 um Tetraspeck Micropheres, Thermo Fisher) excited
with 488 nm light using an epifluorescence microscope (‘Mi-
croscope 2’°, Section A). Five different fields of view (FoVs)
were imaged, with each FoV containing 100 frames of 10 ms
per frame. This on average leads to ~75 photons per punc-
tum in one frame, meaning we can generate images of very
low photon flux to relatively high (~7,500 photons per punc-
tum after averaging 100 frames) photon flux. The conversion
from counts to photons can be found in methods section D.
We then used these data to evaluate the code’s performance
under different contrast-to-noise ratios (CNRs). The CNR is
an image quality metric, defined as the contrast between the
signal maximum (S ) and background (Sg) divided by the
standard deviation of the background (o),
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Fig. 2. RASP distinguishes puncta by steepness and integrated gradient. a) Images of complex samples are composed of signal, detector noise, and autofluorescence,
which reduces detectability of the signal of interest. b) The measured pixel intensities for True positives (TPs) are the summation of detector noise, autofluorescence, and
signal, whereas false positives (FPs) arise from autofluorescence and detector noise only. ¢) A pictorial representation of the steepness calculation procedure using equation
1. d) A pictorial representation of the integrated gradient calculation procedure using equations 2 and 3. e) FPs and TPs plotted by their steepness and integrated gradient,
separable by a decision boundary. f) and g). Images of 100 nm diameter fluorescent beads were recorded with differing exposure times to capture low (10 ms) and high (1s)
contrast-to-noise ratios. Peaks were identified using RASP, ThunderSTORM, and PeakFit. h) An illustration of possible error types: False Positives (FP) are points wrongly
detected, and False Negatives (FN) are undetected correct points. i). Jaccard index comparison of RASP, ThunderSTORM, and PeakFit for 5 different fields-of-view where
the ground truth was determined from the highest CNR image. Elements of this Figure were created with BioRender.com.
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The CNR was controlled by integrating different numbers
of frames from a static fluorescent bead sample, thereby
achieving different CNR levels from an identical FoV.
We conducted performance comparisons between RASP
(methods section E for an overview of the spot detec-
tion algorithm), PeakFit(32) (methods section F), and
ThunderSTORM(33) (methods section G). PeakFit was
chosen as it has been shown, for images that are not too
densely filled with fluorescenct puncta, to perform the best
in a recent test of single-molecule spot-detection codes.(34)
ThunderSTORM was selected as it is one of the most
widely used spot identification codes. Two example images
illustrating low (Fig. 2f) and high (Fig. 2g) CNR regimes
are shown, where the functional output from all three
codes at high CNR show 100% coincidence. Thus, these
detection locations served as our ground truth positions for
the characterisation of code performance at lower CNR. The
Jaccard index (Fig. 2h), the true detected locations divided
by the size of the union of detected locations and ground
truth locations, was measured at a range of CNR values.
Sensitivity and precision were also measured, and these
are shown in the SI, Fig. S1. Notably, RASP performed as
well as PeakFit here i.e. as well as the state-of-the-art. This
experiment thus shows that RASP performs well at detecting
puncta in images without structured background.

4 | bioRxiv Fu et al.

We now discuss how to use RASP to reject the false posi-
tives that arise when imaging complex systems. RASP im-
plements this filter as a decision boundary, Fig. 2e, which
is generated using the negative control images that are taken
routinely as part of any experiment. We have tested RASP
using an exemplar of a complex system containing structured
background, specifically FFPE human brain slices from pa-
tients with advanced Parkinson’s Disease, stained with pri-
mary and secondary antibodies for a-synuclein and multiple
cell types (see methods, Section B.1). These samples rep-
resent exemplars of samples containing complex, structured
background, and also of the sample types that quantitative
microscopy increasingly studies—samples where the spatial
organisation of proteins, and/or single RNA/DNA molecules,
relative to cells is of great interest. Thus doing accurate cellu-
lar segmentation and accurate puncta detection these samples
is vital. Negative control images here were brain slices con-
taining no primary antibody (but still stained with secondary
antibody), imaged using the same microscope (Microscope 3,
Section A). In order to determine the decision boundary, the
steepness and integrated gradient values of spots detected in
the negative control images were used—these detected spots
can be assumed to be false positives (Fig 3a). The steep-
ness and integrated gradient values for these spots (Fig. 3b)
are then used to calculate a decision boundary. Boundaries
are determined for steepness and integrated gradient sepa-
rately (Fig. 3¢), and are typically set to be at top 5% in the
two dimensions separately. This parameter is user-controlled
parameter however, and can be made more stringent at the
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steepness and integrated gradient values for the peaks in a). ¢) Determination of a decision boundary based on the steepness and integrated gradient for all detected puncta.
d) Filtered puncta within the decision boundary. e) Negative control brain images with two zoomed-in regions. f) Real brain images with added simulated diffraction-limited
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with added simulated puncta.

penalty of losing some true positives. Applying this deci-
sion boundary to the same negative control data resulted in
Fig. 3d.

To illustrate the implementation of such a trained boundary,
and its ability in distinguishing between true and false
positives, we added simulated diffraction-limited puncta
to real negative control brain images, and used RASP to
analyse these new ‘“real+simulated” images. The simulated
diffraction-limited puncta (o = 1.4, CNR = 8.7) were first
run through a Poisson random number generator, to simulate
shot noise, and then added onto the negative control image
(Fig. 3f, see methods section C). RASP’s feature enhance-
ment and spot detection process, detailed in section E, was
then applied to these images. Analogous to previous steps
(Fig. 2b), the steepness and integrated gradient values for
all detected locations were calculated. Subsequently, the
boundary established earlier using negative control images
(Fig. 3¢) was applied (Fig. 3g). The resultant filtered puncta
locations showed excellent coincidence with the simulated
locations (Fig. 3h), showing the power of RASP in removing
false positives and keeping true positives. More detailed
validation of this boundary selection method is shown in the
SI, Fig. S2. As an aside, we also provide an accurate method,
alongside RASP, to estimate intensity and background per
detected puncta in structured background data, with a greater
computational efficiency compared to the typical Gaussian
fitting method—in our case, we find a ~360x speed-up
relative to Gaussian fitting, see section S9 for further details.

To compare the performance of RASP to the state-of-the-art
in detecting puncta in images with structured background,
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i.e. images of cells or tissue, we imaged primary and
secondary antibody stained FFPE human brain slices from
Parkinson’s Disease patients at advanced stages of the
disease. Specifically we stained for a-synuclein, a protein
responsible for the pathological hallmarks of Parkinson’s
disease—aggregates of this protein are found in human brain
regions at different sizes depending on disease severity.(35)
In particular, oligomeric aggregates that are smaller than
the diffraction limit of light have been heavily implicated in
disease pathology,(36, 37) with Emin et al. recently finding
small, sub-100 nm oligomeric species found in Parkinson’s
disease brains to be far more toxic than the larger aggregates
typically found in control brains.(38) More recently, Matsui
et al. demonstrated that a novel phosphorylation of the
a-synuclein protein led to oligomer formation, and that this
led to cell death and neurodegeneration in their zebrafish
models.(39) This thus motivates the finding of puncta in
images stained for a-synuclein, as these puncta report on
the presence of small, oligomeric species that are otherwise
difficult to detect and pathologically significant.

We imaged these FFPE human brain slices with Microscope
1 or Microscope 3 (Section A) to detect oligomeric aggre-
gates of a-synuclein. We randomly selected 20 negative
control images, from a pool of 136, and used these in the
same procedure as shown before (Fig. 3¢) to determine the
decision boundary for the RASP filtering. We then applied
this boundary to the remaining negative control images
(Fig. 4a and d) to further demonstrate how well RASP
performed. As is clearly visible in Fig. 4a and d, RASP
far outperforms PeakFit and ThunderSTORM in rejection
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Fig. 4. RASP outperforms traditional spot detection in images with structured background. a) and d) Negative control FFPE brain slice imaged in widefield and
confocal imaging modes, respectively, with two zoomed-in sections illustrating false positives from PeakFit, ThunderSTORM, and RASP. NB that these two different imaging
modes correspond to two different microscopes. b) and e) a-synuclein-antibody stained FFPE brain slice imaged in widefield and confocal imaging modes, respectively, with
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modes, respectively, of PeakFit, ThunderSTORM, and RASP on real images of negative control FFPE brain slices with simulated puncta added. 136 real brain images with
simulated puncta added were used for the characterisation of each of the widefield and confocal imaging modes. Elements of this Figure were created with BioRender.com.

of false positives from the negative control images. In
fact, PeakFit and ThunderSTORM heavily overlabel the
negative control images and the structured background,
which RASP’s filtering step avoids. This same boundary
then was applied to images of FFPE brain slices stained
for a-synuclein (Fig. 4b and Fig. 4e). Notably, Thunder-
STORM and PeakFit exhibited greater susceptibility to
structured background and large features within the images,
meaning that these codes will always over-label an image
of a complex system and thus detect a large number of
false positives. By contrast, more than 90% of the puncta
detected by RASP were colocalized with puncta detected by
ThunderSTORM and PeakFit, while rejecting the false pos-
itives from larger objects and structured background. This
shows that RASP simultaneously preserves the detection
sensitivity and significantly increases the precision of true
puncta detection. A gallery of true positive and false positive
images, highlighting that it is the combination of steepness
and integrated gradient that is necessary to distinguish the
true and the false positives, from a-synuclein-antibody
stained FFPE human brain slices is shown in Fig. S4.

To validate the performance of RASP on images with
structured background and large features, we used images
from both Microscopes 1 and 3 (Section A) of FFPE brain
slices containing no primary antibody, but still stained with
secondary antibody, with added simulated diffraction-limited
puncta (see Section C). Validation using images of primary
and secondary stained FFPE brain slices was deemed to
be both too subjective and too labour-intensive for manual
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annotation, given the substantial number of puncta across
multiple images. To mitigate these challenges, we utilised
136 biologically negative control images from both widefield
and confocal imaging. For each negative control image, we
added 4 or 30, dependent on if the image was widefield or
confocal, randomly oriented large aggregates, drawn from a
library of manually selected large aggregates from widefield
and confocal images. Additionally, 400 or 1600, depen-
dent on if the image was widefield or confocal, randomly
distributed diffraction-limited puncta were overlaid on the
widefield and confocal images, the number of which was
determined to match real aggregate density. Then, a series
of simulated images were generated with the puncta at the
same positions but with different intensities, yielding a range
of CNRs from 2 to 12.

For high CNR widefield images, the Jaccard index reached
95.0% £ 0.5%, 82.1% £ 1.9%, and 65.0% =+ 0.4% for
RASP, ThunderSTORM, and PeakFit, respectively (Fig. 4c).
For high CNR confocal images, the Jaccard index was 97.8%
+ 0.2%, 83.7% £+ 1.9%, and 68.7% =+ 0.18% for RASP,
ThunderSTORM, and PeakFit, respectively (Fig. 4f). Graphs
showing precision and sensitivity can be found in Fig. S3.
This shows that RASP outperforms two state-of-the-art
codes when it comes to precisely and sensitively detecting
puncta in structured background environments: essential for
high-throughput imaging needed in modern biological ex-
periments. Further, within 136 negative control images, the
number of false positives detected was 53 £ 42, 1278 £ 497,
and 1716 £+ 41 for RASP, ThunderSTORM, and PeakFit,

RASP: Optimal single fluorescent puncta detection in complex cellular backgrounds
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Fig. 5. Correlation analysis between cell and fluorescent puncta. a) Inside cell ratio (ICR) calculation between cells and detected puncta, the number of inside locations
divided by total number of locations. b) Inside cell ratio (ICR) between cells and a random distribution, also called as complete spatial randomness (CSR) data, with the
same number of locations as the puncta. ¢) Formula for calculating colocalization likelihood between cell and puncta. d) and i) Overlapping detected neurons and microglia
locations, respectively, with the original image. e) and j) Detected puncta locations in the original image. f) and k) Inside puncta (red) and outside puncta (yellow) based on
cell locations. g) and 1) Colocalization likelihood distribution with 20 images used. h) and m) Colocalization likelihood distribution with 20,000 images used. Elements of this

Figure were created with BioRender.com.

respectively (Fig. S3). This demonstrates RASP’s capacity
to effectively distinguish true puncta from false positives
while maintaining a similar sensitivity performance, as at
high CNRs the sensitivity of all three codes is identical.
Therefore, RASP can precisely detect fluorescent puncta in
the presence of structured backgrounds in images of real,
complex, biological systems. Furthermore, as RASP is a
filtering method, by calculating the steepness and integrated
gradient, and using the same decision boundary, for the
ThunderSTORM and PeakFit detected puncta, there is a
significant increase in precision with minimal decrease in
sensitivity for both ThunderSTORM and PeakFit (Fig. S5
and Fig. S6). This serves to further highlight that the
RASP filtering step, being computationally efficient and
data-driven, is a general step that can be added after more
sophisticated spot identification codes and other codes in
the future. This shows it is a detection method that should
heavily speed up analysis of high-throughput protein, DNA
and RNA colocalisation experiments that seek to answer
biological questions that require large statistics.

Finally, we demonstrate that RASP’s high precision, sen-
sitivity and computational speed enables a high-throughput
analysis of the correlation between various neuronal cell
types and a-synuclein aggregates in the human brain di-
rectly, which could aid our understanding of the important
role of a-synuclein in cellular toxicity—a role that remains
incompletely understood.(40) To measure these correlations,
we initially eliminated all out-of-focus images using an
automated procedure shown in Fig. S7 and described in
Section S6, then analysed the remaining images. For the
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diffraction-limited aggregates, the inside cell ratio (ICR) was
computed as the ratio between number of puncta inside the
cell over the total number of puncta per FoV (Fig. 5a). The
positions of these puncta were then randomised, which we
refer to as “complete spatial randomness” data (CSR). The
ICR with respect to cell locations was then calculated for
this CSR data (Fig. 5b). This then enables us to calculate a
quantity we refer to as the colocalisation likelihood—the
ratio between the ICR of real puncta locations and the ICR of
randomised puncta locations (Fig. 5¢). This likelihood, once
a sufficient amount of CSR data have been compared to, see
Fig. S9, provides a measure of if we are more likely to find
an a-synuclein aggregate inside or outside of a particular
cell type in comparison to a random distribution.

RASP’s high-throughput nature enabled us to conduct a like-
lihood analysis for neurons and microglia, utilising 135,000
images from three Parkinson’s disease (PD) cases in the
ACG for each cell type, covering dimensions of 3.96 mm
x 3.96 mm x 12pum per patient—approximately 750 GB of
image data. In the case of randomly selecting 20 field-of-
views, the colocalization likelihood derived from CSR data,
was 1.00 & 0.02 for microglia and 1.01 4 0.01 for neurons,
while derived from aggregate data it was 0.97 £ 0.33 for
microglia and 1.39 + 0.35 for neurons (Fig. 5g). However
it is clear from examining the histograms in Fig. 5g and 1
that we are not sufficiently sampling our colocalization like-
lihood space—the histograms are sparse, and it is unclear if
the mean and standard deviations are genuine or as a result
of low amounts of data. As RASP enables high-throughput
data analysis, analysing the entirety of the 135,000 images
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shows that as we include more data, the mean value from
aggregates data converged, while that from the CSR data re-
mained constant. Specifically, the likelihood from CSR data
was 1.00 4= 0.02 for microglia and 1.00 £ 0.01 for neurons,
whereas for aggregates data, it was 0.94 &+ 0.24 for microglia
and 1.43 4 0.23 for neurons (Fig. 5Sh and m). Itis also clear in
Fig. Sh and m that these standard deviations and means are
truly representative of the data—we are no longer sparsely
sampling our colocalization likelihood and thus we have en-
abled robust biological conclusions. The results that neurons
are more likely to contain a-synuclein aggregates align with
findings from other papers that aggregates are more likely to
be inside neurons, and aligns with the hypothesis that it is in
neurons that these aggregates grow.(40—42) Importantly we,
for the first time and enabled by RASP, can observe these
correlations between aggregates smaller than the diffraction
limit and neurons in human brain slices.

Conclusions

We have in this work introduced RASP, a method that uses
steepness and gradient information of isolated fluorescent
puncta to increase the precision of puncta detection in
microscopy experiments without a loss of sensitivity. The
method relies on the symmetrical shape of a fluorescent
punctum in order to reject other detected puncta that are not.
Our hope is that by improving this false positive rejection,
RASP can form a valuable step that increases analysis reli-
ability in high-throughput biological experiments involving
the imaging of complex cellular systems. We also demon-
strate that RASP does not require laborious simulation or
additional experiments to work effectively: the discriminator
that rejects false positives is learned from negative control
data that would be taken as part of a typical experiment.

We have demonstrated that RASP performs well on both im-
ages without structured background (Fig. 2) and that RASP’s
true/false positive rejection boundary, learned from negative
control data, reliably distinguishes between true and false
positives in situations with structured background (Fig. 3).
We show that it outperforms state-of-the-art puncta detection
codes in images with structured background (Fig. 4) and
thus, for analysis of these images, provides a valuable tool
to enhance the precision of puncta detection with no loss
in sensitivity. As RASP’s filtering step comes after an
initial detection of puncta in an image, we have also shown
that it improves the precision of puncta detection, with no
sensitivity loss, when combined with other puncta detection
codes (Figs. S5 and S6). This, coupled with its computa-
tional efficiency—it requires approximately 30% of the time
required by ThunderSTORM to process a 1200 x 1200 pixel?
image in our tests—demonstrate that RASP can be a simple
filtering step added to analysis of high-throughput imaging
data to improve analysis precision. We also note that these
experiments have been conducted across multiple instrument
types, widefield and spinning-disk confocal microscopes
(Fig. 4), and thus that RASP should be generally applicable
across fluorescence imaging—only negative control images
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are needed.

Understanding biological systems increasingly demands the
extraction of the most information from the fewest images of
the largest area, at the highest feasible resolution. We show,
in Fig. 5, that RASP enables this—we were able to use this
code to determine the likelihood of finding a protein aggre-
gate colocalised with a cell across 135,000 images, enabling
biological conclusions from large datasets. This highlights
RASP’s relevance for protein/RNA/cell colocalisation exper-
iments, such as FISH, where large numbers of cells are in-
creasingly needed to be imaged to understand biological ef-
fects. To image 300,000 cells(8) or 7 million cells(27) in tis-
sues demands strategies that can quickly, using single images,
distinguish between structured background and real fluores-
cent puncta we wish to analyse. We show that RASP adds a
tool to do this that does not require laborious sample prepara-
tion or time-intensive simulations for background reduction.
We anticipate its use in high-throughput single-molecule ex-
periments, and also that in the future the implementation
of more advanced decision boundaries will improve RASP’s
performance.

Methods

A. Optical Setups. Experiments were performed on one
of three microscopes; two widefield single-molecule micro-
scopes (herein called ‘Microscope 1’ and ‘Microscope 2’) or
a spinning-disk confocal microscope (‘Microscope 3°).

‘Microscope 1’ is a bespoke widefield fluorescence micro-
scope, with the illumination entering the microscope body
through the back illumination port, and has been described
before.(43) For completeness, the excitation path combined
a 488 nm laser (iBeam-SMART, Toptica), and the 561 nm
laser (LaserBoxx, DPSS, Oxxius). Each laser beam was
circularly polarized using quarter-wave plates, collimated,
and expanded to minimize field variation. These beams were
aligned and focused on the back focal plane of the objective
lens (100x Plan Apo TIRF, NA 1.49 oil-immersion, Nikon)
to enable highly inclined and laminated optical sheet (HILO)
illumination. Fluorescence emission was collected using
the same objective and separated from the excitation light
by a dichroic mirror (Di01-R405/488/561/635, Semrock).
Emission filters were used to further filter the emitted light
(FF01-520/44-25 + BLPO1-488R for 488 nm excitation,
LP02-568RS-25 + FF01-587/35-25 for 561 nm excitation,
Semrock). The filtered fluorescence light was expanded
(1.5x) and projected onto an electron-multiplying charge-
coupled device (EMCCD, Evolve 512 Delta, Photometrics)
operating in frame transfer mode with an electron multipli-
cation gain of 250 ADU/photon.

‘Microscope 2’ is a widefield fluorescence microscope
(Eclipse Ti-E, Nikon), with the illumination entering the
microscope body through the back illumination port, similar
to a microscope described before in Bruggeman et al.(44)
Specifically in Bruggeman et al. it was described as Mi-
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croscope 3. The beams from five lasers (Cobolt C-FLEX
combiner with 405, 488, 515, 561 and two 638 nm lasers,
free space) were coupled into a square-core multi-mode fiber
(05806-1 Rev. A, CeramOptec) with a free space fiber launch
system (KT120/M, Thorlabs). Speckles from the fiber were
removed using a vibration motor, in a manner similar to the
design of Lam et al.(45) These beams were then focused to
a spot in the back focal plane of an oil immersion objective
(Plan Apo, 100x 1.49 NA oil, Nikon) using an achromatic
doublet lens (AC254-200-A, Thorlabs). This lens and a mir-
ror were mounted on a linear translation stage (XR25C/M,
Thorlabs) to allow manual adjustment of the beam emerging
from the objective and switch between EPI, HILO and TIRF
illumination. The multi-mode fiber used for imaging negated
the need for a quarter-wave plate as it achieved a highly
randomized polarisation at the sample plane. For imaging of
the Tetraspeck beads, fluorescence was filtered by a dichroic
beamsplitter (Di03-R405/488/532/635-t1, Semrock) and
emission filters (BLPO1-635R, Semrock). The fluorescence
was focused on an sSCMOS camera (Prime 95B, Teledyne
Photometrics). A 4f system consisting of two achromatic
lenses (AC254-075-A-ML and AC254-075-A-ML, Thor-
labs) was included in the emission path, resulting in a total
system magnification of 100x and thus virtual pixel size of
110x110nm?. The microscope PC was a Dell Opti-Plex
7070 Mini Tower running on Windows 10 (64 bit), with an
Intel 19-9900 processor and 32 GB RAM.

‘Microscope 3’ is a spinning disk confocal microscope (3i
intelligent imaging). The microscope was equipped with
a 200mW, 488 nm laser (LuxX) and a 150mW, 561 nm
laser (OBIS). These lasers were housed in a beam combiner
(3i intelligent imaging), which focused them into an opti-
cal fiber which sent the illumination light into a field flat-
tener (Yokogawa-Uniformizer for CSUW). The excitation
light was then passed into a spinning disk unit (50 um sized
pinholes, Yokogawa CSU-W1 T2 Single Molecule Spinning
Disk Confocal, SoRa Dual Microlens Disk) and then the mi-
croscope body (Zeiss Axio Observer 7 Basic Marianas™
Microscope with Definite Focus 3) using a dichroic mitror
(FF01-440/521/607/700, Semrock). The fluorescence is fil-
tered using either a FF01-525/45-25-STR filter (Semrock) in
the case of 488 nm excitation or a FF02-617/73-25-STR filter
(Semrock) in the case of 561 nm excitation. The fluorescence
is then focused onto one of two SCMOS cameras (Prime 95B,
Teledyne Photometrics). The objective lens was a Zeiss oil
immersion objective (Alpha Plan-Apochromat 100x/1.46 NA
Oil TIRF Objective, M27). The microscope was controlled
using a PC (Dell-Acquisition Workstation 310R) and Slide-
Book software produced by the manufacturer (3i intelligent
imaging).

B. Sample Preparation.

B.1. FFPE Human Brain Slices. Formalin-fixed paraffin-
embedded (FFPE) tissue sections were obtained from the cin-
gulate cortex (see tables 2 and 3) and cut to 8 um thickness.
FFPE sections were baked at 37 °C for 24 hours followed by

Fuetal. | RASP: Optimal single fluorescent puncta detection in complex cellular backgrounds

60 °C overnight. Sections were deparaffinized in xylene, and
rehydrated using graded alcohols. Non-specific binding was
blocked with 1% bovine serum albumin (BSA) solution in
PBS for 30 minutes. The tissue was then pressure cooked
in citrate buffer at pH 6 for 10 minutes. Tissue sections
were incubated with primary antibodies; anti-phosphorated
a-synuclein (ab184674, Abcam, 1:500; ab59264, Abcam,
1:200) ; Microtubule-Associated Protein 2 (ab254143, Ab-
cam, 1:500); ionized calcium-binding adapter molecule 1
(Wako — 019-19741, FujiFilm, 1:1000) for 1h at room tem-
perature. The sections were then washed three times for five
minutes in PBS followed by the corresponding AlexaFluor
secondary antibodies (anti-mouse 568—A11031, Thermo
Fisher, anti-rabbit 568—A11011, Thermo Fisher, anti-mouse
488—A11001, Thermo Fisher, anti-rabbit 488—A11008,
Thermo Fisher, all at 1:200) for an additional hour at room
temperature in the dark. Sections were then washed three
times for five minutes again in PBS and incubated in Sudan
Black (0.1% for 10 minutes, 199664-25G, Sigma Aldrich).
Removal of Sudan Black occurred with three washes in
30% ethanol (E7148-500ML, Sigma Aldrich) before mount-
ing with Vectashield+ (Vector Labs, H-1900) and coverslip-
ping (VWR, 50 mmx24 mm #1 thickness, Catalogue Num-
ber 48404-453) for imaging. Sections were stored at 4 °C
until imaging was completed.

B.2. TetraSpeck Experiments. Glass coverslips (Fisher Sci-
entific, 12373128, #1 thickness 22 mmx 50 mm) were plasma
cleaned for 30 min (Ar plasma cleaner, PDC-002, Harrick
Plasma). An imaging chamber was created on the coverslips
using Frame-seal slide chambers (9x9 mmz, SLF0201, Bio-
rad) and coated with 0.01 % w/v poly-L-lysine (PLL, P4707,
Sigma-Aldrich). After removing excess PLL and washing
with filtered (0.02 um syringe filter, Whatman, 6809-1102)
PBS, a 1:625 stock dilution of 0.1 um diameter TetraSpeck
Microspheres (TetraSpeck™ Microspheres, 0.1 um, fluores-
cent blue/green/orange/dark red, Thermo Fisher, Catalogue
number T7279) was added. These were then imaged on Mi-
croscope 2, with 488 nm excitation. The power density at the
sample plane was 100 uW-cm ™2 for 488 nm excitation.

C. Simulation. Simulations were used to add simulated
diffraction-limited aggregates (puncta) and large aggregates
to real negative control data. This real negative control data
formed the structured background, and was made up of 136
images of FFPE human brain slices where no primary an-
tibody was added, but secondary antibody was still present.
These images thus should contain only autofluorescence and
detector noise (Fig. 2). For large aggregates images from
Parkinson’s Disease patients FFPE brain slices stained for a-
synuclein were analysed by hand. Regions-of-interest (ROIs)
containing large aggregates from these images were cropped,
and these cropped ROIs were saved to a “large aggregate li-
brary”. 100 manual selections were made from these images
and added to the large aggregate library. For the diffraction-
limited aggregates, a blank image with the same size as a
negative control image was initially generated. 2D Gaussian-
distributed spots g(x,y) with the same intensity (A) per spot
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(o = 1.4 for confocal imaging and o = 1.2 for widefield imag-
ing) were then added in a grid-like arrangement onto this
blank image. The shape of these spots was simulated using

X2+y2>

€))

g(X7y) :A~exp < 0_2

The sigma value was determined by taking images using the
protocol of Section B.2 but on Microscope 1 and Microscope
3 described in A. The 561 nm laser was used for excitation,
the same excitation wavelength used for imaging aggregates
in human brain tissue. A binary mask was generated along-
side a simulated spot image to denote the position and area
covered by each spot. This binary mask was generated using
Otsu’s thresholding method(11) applied to the simulated spot
image. This process was repeated by changing the intensity
per spot and each simulated spot images at different intensity
were saved in the diffraction-limited spot library.

To add large aggregates onto the background (i.e. negative
control images), a randomly cropped ROI was chosen from
the large aggregate library. Otsu’s threshold was then ap-
plied to the ROI determining the position of aggregate (1 in
the resultant binary mask) and background (0 in the resultant
binary mask). The binary mask was converted to a distance
matrix by the bwdist function in the MATLAB for each back-
ground pixel. The function calculates the euclidean distance
between a background pixel to its nearest aggregate pixel.
Subsequently, a sigmoid function c(x,y) was calculated using
the following equation,

1

T o—adtoy ©

c(x,y) =
where d(x,y) is the value in the distance matrix, a was 10 for
the simulation, and c(x,y) was the resulting correction value
for each pixel. The ROI, Irpo1(X,y), was then multiplied by
the correction value c(x,y) from equation 6 to minimize the
structured background in the cropped image while only keep-
ing the signal from the large aggregate.

Ilarge(x7y) = IROI(Xay) ! C(X7Y) (7)

Large(X,y) was zero-padded to be the same size as the nega-
tive control image. The zero-padding length was random in
each direction add the large aggregate to a random position
within the image. For diffraction-limited aggregates, a sim-
ulated spot image Isimu_spot(X,y) with a specified intensity
was first run through a Poisson random number generator to
generate a more realistic simulation, Ispot(X,y).

Ispot (X7 Y) = POiS{Isimu_spot (X7 Y)} 3

Finally, the simulated image Isimulation(X,y) Was generated
by adding the background image I,z (X,y), the simulated spot
image with Possion noise Ispot(X,y) and large aggregate im-
age Ijarge(X,y) together using

Limulation (X7 Y) = Ibg (X7 Y) + Ispot (X, Y) + Ilargo (X, Y)-
9
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The background per diffraction-limited aggregate was deter-
mined by the mean value of the background covered by this
aggregate (i.e. the area of 1s on the binary mask per aggre-
gate). The sum intensity was determined by the sum value
of the simulated spot image covered by this aggregate, and
the CNR was determined by the difference between the sig-
nal maximum and the mean of the background, which was
then divided by the standard deviation of the background, as
described in equation 4. Finally, any diffraction-limited ag-
gregates overlaid with large aggregates were deleted.

D. Camera gain calibration. To convert the pixel value
to photons in a sSCMOS camera, we recorded a series
of image sequences at 7 different intensity levels (1000
frames per intensity level) with uniform illumination, in-
cluding one level at no illumination for the calculation of
camera offset. For every pixel, the mean and variance
were calculated across the 1000 frames, generating 7 dif-
ferent variance and mean values corresponding to the 7
non-zero illumination intensities. The camera offset per
pixel was determined as the mean pixel value in the non-
illuminated frame. The camera gain per pixel, expressed
in photoelectrons per count, was determined by calculat-
ing the slope between the 7 variance and mean values per
pixel, and subtracting the non-illuminated frame offset.(46)
The code used for this analysis is available on GitHub at
https://github.com/TheLeeLab/cameraCalibrationCMOS.

E. Puncta detection method with RASP filtering. Im-
ages underwent a high-pass kernel, obtained through the dif-
ference between the original image and a Gaussian-blurred
image (o = 1.4,,4), followed by a Laplacian-of-Gaussian(47)
(LoG) kernel (o = 2;,4), which is the 2nd spatial derivative
of a 2D Gaussian distribution, for spot feature enhancement.
Thresholding involved selecting the top 5% brightest pixels
from the processed image, converting them to 1, while the re-
maining 95% were assigned a value of 0. For each object in
the binary mask, the steepness and integrated gradients were
calculated from the original image. Next all binary objects
were filtered by their steepness and integrated gradient, with
a boundary determined from a negative control image. The
code was run on a Dell precision 3650 PC with an Intel i9-
11900 processor and 80 GB RAM.

F. Analysis of data using PeakFit. The PeakFit macro(32)
was used for batch processing data, utilizing a ‘Circular
Gaussian 2D’ for spot detection in both bead and brain im-
ages. Camera gain was set to be 1 and offset was set to be
0. In the bead experiment, a ‘single mean filter’ with ‘rela-
tive smoothing’ set at 1.4 and default parameters for ‘search
width’, ‘border width’, and ‘fitting width’ was utilized. De-
fault settings for ‘shift factor’ and ‘signal strength’ were ap-
plied, with the ‘minimum photons’ set to 10, and the ‘mini-
mum and maximum width factors’ set to 0.54 and 2, respec-
tively. For brain images, a ‘difference Gaussian filter’ was
employed with ‘smoothing’ parameters set at 0.7 and 2.5 for
‘smoothing2’. The Spot Finder, core component of PeakFit,
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was employed to manually select the acceptance ratio of de-
tected spots. Spots with the top 3.5% intensity were used in
the widefield imaging simulation, while those with the top
5% intensity were used in the confocal imaging simulation.
The code was run on a Dell precision 3650 PC with an Intel
19-11900 processor and 80 GB RAM.

G. Analysis of data using ThunderSTORM. The Thun-
derSTORM macro(33) was used for batch processing of the
data. Spot detection in both bead and brain images involved
a ‘wavelet filter (B-Spline)’ with scale 2.0 and order 3, fol-
lowed by ‘non-maximum suppression’. For bead data, a
threshold of 1.1 times the standard deviation of ‘wave.F1’
was applied. In simulated brain images in both widefield and
confocal imaging modes, a threshold of 0.6 times the stan-
dard deviation of ‘wave.F1’ was utilized. No estimator or
renderer was employed in this process. The code was run on
a Dell precision 3650 PC with an Intel 19-11900 processor
and 80 GB RAM.

H. Protocols.io. Detailed protocols can also be found in
support of this study on protocols.io. Specifically:

e Tetraspeck Experiments:
dx.doi.org/10.17504/protocols.io.4r3122br411y/v2

* FFPE Human Brain Slices:
dx.doi.org/10.17504/protocols.io.5qpvorpbbv4o/v2

|. Data and Code Availability. Codes and data in support
of this study can be found in the following locations:

* RASP code: https://doi.org/10.5281/zenodo.10246120
(version used in this paper) and
https://github.com/binfu0728/R ASP-A-new-method-
for-single-puncta-detection-in-complex-cellular-
backgrounds (GitHub repository, updating version)

e Raw Data supporting Figure 5: Data was
deposited to the Image Data  Resource
(https://idr.openmicroscopy.org) under accession
number idr0155.

e Raw Data supporting all other Figures:

https://doi.org/10.5281/zenodo.10246120
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Supplementary Note S1: Precision and sensitivity for bead detection
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Fig. S1. Precision and sensitivity curve for bead detection. a) Averaged number of locations detected from 5 different field-of-views at no signal (i.e. laser off) for RASP,
ThunderSTORM, and PeakFit. b) Sensitivity comparison of RASP, ThunderSTORM, and PeakFit for 5 different field-of-views where the ground truth was determined from the
highest CNR image. ¢) Precision comparison of RASP, ThunderSTORM, and PeakFit for 5 different field-of-views where the ground truth was determined from the highest
CNR image.

In addition to the Jaccard index, we present additional metrics—sensitivity, precision, and the number of false positives in the
absence of signal, to provide a more comprehensive evaluation of RASP’s performance in sub-diffraction bead detection, in the
absence of structured background. For the number of false positives in the absence of signal, Fig. Sla, the best performance
would be as few false positives detected as possible. RASP, ThunderSTORM, and PeakFit detected 4.0 &+ 0.46, 11.0 & 3.37,
and 2.21 + 1.54 false positives per FoV respectively. RASP perfoms similarly to PeakFit in this case. For sensitivity (Fig. S1b),
the curves from RASP, ThunderSTORM, and PeakFit overlap from low CNR to high CNR, indicating that the three codes have
the same sensitivity. However, for precision (Fig. S1¢), ThunderSTORM finds higher numbers false positives in the absence
of signal, thus it performs less effectively compared to RASP and PeakFit at low CNR. Taken together, these show that RASP
performs as well as state-of-the-art puncta detection codes in the case of no structured background.
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Supplementary Note S2: Validation of boundary selection method
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Fig. S2. Validation for the boundary selection method. a) Detected locations in a negative control (i.e. background only) image from the sub-diffraction bead experiment.
b) Decision boundary in the steepness and integrated dimension for all detected locations, accepting 5% false positives in each dimension separately. c) False positives
remaining after implementing the decision boundary. 6 detected locations are left, which are recorded as the expected number of false positives (FPs) based on the current
background and decision boundary. d) Detected locations with CNR = 5.5. A comparison with ground truth locations identifies 6 detected locations as false positives, recorded
as the experimental number of FPs. e) The decision boundary of accepting 5% to 30% FP in two dimensions seperately. f) The equation for calculating the percentage error
between experimental FPs and expected FPs. g) The percentage error between expected FPs and experimental FPs by changing the percentage of FP accepted in each
dimension from 5% to 30%. Elements of this Figure were created with BioRender.com.

FPs in detection are mainly due to background (structured and unstructured). By comparing the FPs after applying the deci-
sion boundary on negative control images with those in single-bead or complex tissue images, we validate the reliability of
the boundary selection method (i.e. the reliability of the sensitivity and precision predicted based on the decision boundary).
Initially, the steepness and integrated gradient were computed for detected locations (Fig. S2a) within a negative control image,
representing background-only conditions. A boundary, allowing 5% accepted FPs in each dimension, was imposed (Fig. S2b),
and the remaining FPs were considered the expected background FPs (Fig. S2¢). This boundary was then applied to sub-
diffraction bead data within a CNR range of 3.5 to 9, the same the CNR range as in Fig. 2i. The number of experimental FPs
was recorded, and the error was computed as the percentage difference between the expected and experimental FPs, divided by
the expected number of FPs (Fig. S2e). The sub-diffraction bead data underwent the same procedure but employing different
decision boundaries allowing 10%, 15%, 20%, 25%, and 30% accepted FPs. Fig. S2f presents the resulting percentage error
between the expected and experimental numbers of FPs with different decision boundaries used. This convergence toward zero
as CNR increases shows the reliability of the precision and sensitivity anticipated from the decision boundary.
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Supplementary Note S3: Precision and sensitivity in FFPE human brain slices
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Fig. S3. Precision and sensitivity curve for images from FFPE human brain slices. a) Averaged number of locations detected from 136 different field-of-views at no signal
(i.e. only structured background from negative control) for RASP, ThunderSTORM, and PeakFit. b) The sensitivity comparison among RASP, ThunderSTORM, and PeakFit
for 136 different field-of-views where the ground truth was determined from the simulated positions of puncta. ¢) The precision comparison among RASP, ThunderSTORM,
and PeakFit for 136 different field-of-views where the ground truth was determined from the simulated positions of puncta.

In addition to the Jaccard index, we present additional metrics—sensitivity, precision, and the number of detected false positives
on the negative control images, to provide a more comprehensive evaluation of RASP’s performance in images containing
structured background. The number of false positives detected in negative control images by RASP, ThunderSTORM, and
PeakFit were 53 £ 42, 1278 + 497, and 1716 =+ 41 respectively for confocal imaging FoV (Fig. S3a) and 12 + 12,431 + 184,
and 427 + 18 respectively for widefield imaging FoV (Fig. S3d). RASP detects significantly fewer false positives compared
to PeakFit and ThunderSTORM. At high CNR (Fig. S3b and Fig. S3e), the sensitivity curves from RASP, ThunderSTORM
and PeakFit overlap, indicating these codes are equally sensitive. At high CNR (Fig. S3¢ and Fig. S3f), RASP (98.0% =+ 0.6%
for confocal and 95.9% + 1.2% for widefield) outperforms ThunderSTORM (83.0% =+ 3.9% for confocal and 83.8% =+ 1.5%
for widefield) and PeakFit (68.0% + 0.4% for confocal and 65.1% + 1.2% for widefield) in terms of precision. RASP thus
effectively increases precision without sacrificing sensitivity.
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Supplementary Note S4: Gallery of puncta detected by RASP
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Fig. S4. Gallery of true positive detections and false positive detections from RASP. a) The gallery of detected true positives (TPs) from RASP with steepness and

integrated gradient. b) The gallery of removed false positives (FPs) from RASP with steepness and integrated gradient.
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Supplementary Note S5: RASP with ThunderSTORM and PeakFit
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Fig. S5. Applying RASP to ThunderSTORM. a) and e) The number of puncta detected in 136 negative control images using ThunderSTORM with (+RS) and without
(-RS) detected puncta being accepted or rejected using RASP’s boundary filter in widefield and confocal imaging modes, respectively. b) and f) The Jaccard index for
ThunderSTORM -RS and +RS for widefield imaging and confocal imaging, respectively. ¢) and g) The sensitivity for ThunderSTORM -RS and +RS for widefield imaging and
confocal imaging, respectively. d) and h) The precision for ThunderSTORM -RS and +RS for widefield imaging and confocal imaging, respectively.
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Fig. S6. Applying RASP to PeakFit. a) and e) The number of puncta detected in 136 negative control images using PeakFit with (+RS) and without (-RS) detected puncta
being accepted or rejected using RASP’s boundary filter in widefield and confocal imaging modes, respectively. b) and f) The Jaccard index for PeakFit -RS and +RS for
widefield imaging and confocal imaging, respectively. ¢) and g) The sensitivity for PeakFit -RS and +RS for widefield imaging and confocal imaging, respectively. d) and h)
The precision for PeakFit -RS and +RS for widefield imaging and confocal imaging, respectively.
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RASP, as a filtering technique for detected spots (Fig. 3), can be used to filter puncta detected by ThunderSTORM and PeakFit,
thereby increasing their detection precision whilst maintaining their sensitivity. Initially, the steepness and integrated gradient
values were calculated for all spots obtained through ThunderSTORM and PeakFit in widefield and confocal imaging from
the dataset shown in Fig. 4. Then, the decision boundary established for RASP in Fig. 4 was applied directly to results from
ThunderSTORM and PeakFit.

At high CNR, for ThunderSTORM, the filtering procedure results in an increase in the Jaccard index (90.2% =+ 4.2% for
widefield and 96.9% =+ 0.6% for confocal) compared to the original Jaccard index without RASP’s filtering procedure (81.3%
+ 4.5% for widefield and 83.4% + 2.3% for confocal), Fig. S5b and f. The enhancement in the Jaccard index primarily arises
from an increase in precision: 93.9% =+ 2.0% for widefield and 97.1% =+ 0.6% for confocal with RASP filtering, compared to
82.4% =+ 4.3% for widefield and 83.5% =+ 2.3% for confocal without RASP filtering (Fig. S5d and h).

Similar improvements were observed for PeakFit, where the filtered locations show a higher Jaccard index (90.5% =+ 1.8%
for widefield and 94.5% =+ 0.8% for confocal) in comparison to the Jaccard index (64.4% =+ 1.6% for widefield and 68.2% +
0.4% for confocal) without filtering (Fig. S6b and f). The majority of the improvement observed in the Jaccard index was due
to improved precision: 92.4% =+ 2.3% for widefield and 68.3% =+ 0.4% for confocal with RASP filtering and 64.4% + 1.6%
for widefield and 94.6% =+ 0.8% for confocal without RASP filtering (Fig. S5d and h).

Applying the decision boundary from RASP to both ThunderSTORM and PeakFit detected spots demonstrated minimal impact
on sensitivity (Fig. S5c and g and Fig. S6¢ and g). This observation suggests that RASP effectively filters false positives without
compromising sensitivity. Hence, this shows that RASP is capable of efficiently refining true positive spot detections whilst
maintaining sensitivity, rendering it compatible with other single molecule detection methods and codes.
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Supplementary Note S6: Rejecting out-of-focus images
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Fig. S7. Image gradients efficiently select in-focus slices using DBSCAN. a). Intensity field of images within a Field of View (FoV). b). Gradient field derived from
images, computed as the difference between the original image and a pixel-shifted version in both the x and y directions. ¢). Focus scores represented as the logarithm of
the summed gradient field for each image within the chosen FoV, as well as the definition of the epsilon value. d). Distribution of epsilon values obtained from 18 FoVs. The
threshold value was determined by the first quartile value of the distribution. e). Evaluation of in-focus filtering accuracy using various focus scoring metrics in comparison
with human labelling. 25 FoVs were manually labelled by 4 different people. f). Application of in-focus filtering on 25 FoVs (17 images per FoV and 425 images in total) from
5 different imaging locations.

We have developed a strategy to distinguish between out-of-focus and in-focus images by introducing a focus score based on
image gradient field to quantify blurriness. The gradient profile was determined by calculating the difference between the
original image and a shifted version with a horizontal and vertical shift of 1 pixel (Fig. S7b). Subsequently, the focus score
was computed as the logarithm of the summed gradient. Since different fields of view (FoVs) contain varying content, the
absolute values of focus scores varied across different FoVs. Therefore, local classification, performed per FoV, proved to
be more effective than global classification. Additionally, the image sharpness experiences the most significant change at the
boundary between in-focus and out-of-focus states (Fig. S7¢), which can be effectively described by the difference in focus
scores. This aligns with the concept of DBSCAN,(48) where the difference in focus scores can be used as the search radius for
connected clusters (epsilon) (Fig. S7¢). Therefore, a local DBSCAN procedure was applied to differentiate between in-focus
and out-of-focus images within each specific FoV.

To determine the epsilon value, human annotated images of half in-focus FoVs were used as a starting point. Then, to reduce
subjective standards for the half in-focus image among different people, the two images immediately preceding and following
the labelled image were examined. Within these 5 images, the image with the minimum second derivative of the focus score
was recorded as the transition image between in-focus and out-of-focus. Epsilons were determined from a set of 18 randomly
selected FoVs, each captured from brain samples comprising 17 axial scans with a 500 nm step per axial scan. These samples
were prepared as in Section B.1. Since epsilon represents the minimal separation distance between clusters, the first quartile
value was selected, Fig. S7d.

The determined epsilon value was then applied to another 25 randomly selected FoVs in the same dataset. The results were
subsequently compared against annotations from 4 different people for validation. Accuracy was assessed by calculating the
ratio of true positives to the number of images per FoV. To account for the subjective standard from human annotations, we
introduced a tolerance parameter, defined as the number of false positives accepted as true positives around the annotated
transition image. The DBSCAN on the gradient scoring matrix performed the best with an accuracy of 98.4% =+ 3.1% with
a tolerance of 1 (Fig. S7e). Additionally, we evaluated alternative matrices(49) with their specific epsilon values. The focus
scores based on the summed Fourier domain exhibited slightly less in accuracy (97.8% =+ 3.3%). Also, the accuracy with
tolerance = 1 from summed intensity is 97.4% =+ 3.0%, variance is 92.5% =+ 12.6%. The high accuracy with different scoring
matrices also shows the effectiveness of DBSCAN in the in-focus image classification.
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Furthermore, for the 25 FoVs used in the testing, we applied applied RASP to detect diffraction-limited puncta. The number
of detected diffraction-limited puncta before (top) and after (bottom) in-focus filtering (Fig. S7f) showed that the results were

affected by out-of-focus images, which our procedure can successfully reject.
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Supplementary Note S7: Diffraction-limited area threshold decision
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Fig. S8. Calibration of the diffraction-limited puncta size on an image with 100 nm fluorescent beads. a) Images of 100 nm fluorescent beads were recorded with
100 ms exposure time (Section B.2) b) Zoom-in of a single bead. ¢) The cumulative density function of the detected area from the RASP with the same parameter used in the
sub-diffraction beads experiment and the brain tissue experiment, with the threshold area value (27, for a diffraction limited object. Elements of this Figure were created
using Biorender.com.

For post-filtering analysis, it is necessary to precisely and rapidly distinguish diffraction-limited puncta in an image from any
puncta that are larger than the diffraction limit. Diffraction-limited puncta should be approximately identical, however various
factors such as out-of-focus elements, optical aberrations, structured background, and other sources of noise (e.g. shot noise and
read noise) introduce variability and cause different areas to be detected by RASP. In order to characterize the area associated
with diffraction-limited puncta, we imaged 100 nm beads (Fig. S8a) from 5 different FoVs on Microscope 3 in Section A and
analysed these images using RASP. Specifically, we used the same parameters from the sub-diffraction bead experiments shown
in Fig. 2 and the brain tissue experiments shown in Fig. 4. The cumulative density function for detected spot area (Fig. S8c)
was used to select a threshold (27,x) that includes 95% of all data. This threshold then was then applied to classify detected
puncta into diffraction-limited and non-diffraction-limited categories.
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Supplementary Note S8: Colocalization likelihood distribution iteration number
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Fig. S9. Colocalization likelihood distribution iteration number. a) and f) Overlapping detected neurons and microglia locations with the original image. b) and g).
Detected puncta locations with the original image. ¢) and h) Inside puncta (red) and outside puncta (yellow) based on cell locations. d) and i) Colocalization likelihood
distribution with 40 iterations used. e) and j) Colocalization likelihood distribution with 40 iterations used.

The inside cell ratio (ICR) represents the ratio of puncta inside a cell to the total number of puncta. In the context of the dataset
illustrated in Fig. 5, the ICR was computed for both the a-synuclein data and the complete spatial randomness (CSR) data.
The CSR dataset has the same number of points as the a-synuclein but is characterized by a uniform distribution across the
field-of-view (FoV). To assess the correlation between the aggregate data and random distribution, the CSR data underwent
multiple iterations to establish both upper and lower bounds. In our study, we employed 40 iterations per Field-of-View (FoV)
for this purpose. To validate our use of 40 iterations, we compared the results with those obtained using 400 iterations per FoV
on the same set of images. With 40 iterations (Fig. S9d and i), the colocalization likelihood for aggregate data was 0.97 + 0.33
for microglia and 1.39 &£ 0.35 for neurons. For the CSR data, the colocalization likelihood was 1 £ 0.02 for microglia and 1.01
#+ 0.01 for neurons. Comparatively, with 400 iterations (Fig. S9e and j), the likelihood was 0.94 £ 0.24 for microglia and 1.43
=+ 0.23 for neurons in the aggregate data, and 1.01 + 0.04 for microglia and 1.00 & 0.02 for neurons in the CSR data. The
results between 40 iterations and 400 iterations were nearly identical, except for a slightly higher standard deviation observed
in the CSR data for the microglia case. Consequently, we are confident that 40 iterations were sufficient here.
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Supplementary Note S9: Intensity and background estimation validation
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Fig. S10. Graph-based intensity and background estimation for diffraction-limited puncta. a) An image of 100 nm fluorescent beads. Background is calculated by
averaging the red pixels within the image. The intensity is calculated by summing white pixels after subtracting the estimated background value from each pixel. b) The
comparison between using a symmetric 2D Gaussian function and nonlinear least squares fitting and the graph-based method for measuring intensity and background of
sub-diffraction beads. Two different exposure time with the same laser power were used, 10ms and 100 ms, to test the performance at different CNRs. ¢) Comparison
between using 2D Gaussian fitting and the graph-based method to determine the intensity and background in images of FFPE brains taken using widefield imaging. d)
Comparison between using 2D Gaussian fitting and the graph-based method to determine the intensity and background in images of FFPE brains taken using confocal
imaging.

To accurately and efficiently determine the intensity and background of fluorescent puncta in a large dataset, we developed a
graph-based method quantifying the intensity and the background from pixel values directly instead of fitting a 2D Gaussian
model to the data. For the graph-based method, firstly, for each detected puncta from RASP, the centroid was recorded. Next, a
disk-shaped binary mask with a radius of 5, was generated (Fig. S10a). For the background calculation, the pixel values (5B},)
that are 1, away from the mask are averaged. Subsequently, for the intensity calculation, pixel values (/) in the disk-shaped
mask are summed after subtraction of the calculated background value using

1 n
b —
ackground - Z By (10)
k=1
n
Lirue = Z (I, — background). (11)
k=1

We firstly validated this method in a sub-diffraction bead experiment where the effect from the structured background is
minimal. The 100 nm beads were prepared by the same protocol mentioned in B.2 but imaged on Microscope 3 with 561 nm
laser. Two different exposure time with the same laser power (10 ms and 100 ms) were used for testing the accuracy of
the graph-based method under low and high CNR case. The result from the graph-based estimation was compared with to
fitting the detected spots with a symmetric 2D Gaussian function using nonlinear least squares fitting, a common method for
estimating the intensity and background in single-molecule data. For the intensity estimation (Fig. S10b), the graph-based
estimation yielded a slightly lower estimated value (1387 £ 899 for 100 mW and 605 £ 326 for 10 mW) compared to the 2D
Gaussian fitting result (1410 4= 951 for 100 mW and for 610 £ 332 for 10 mW). For the background estimation (Fig. S10b), the
two methods yielded similar distributions (Graph-based: 202 4 8.9 for 100mW and 134 4 2.8 for 10 mW, and 2D Gaussian:
201 + 8.5 for 100mW and 133 4+ 2.7 for 10 mW).

We then validated this method using images of FFPE antibody-stained human brain tissue, i.e. an image of a complex sample
containing structured background. The data used are the same as the data in Fig. 4 where the simulated puncta and large features
were added to real negative control brain images. The calculation of the ground truth intensity and the background is discussed
in Section C. The estimated intensity and background values determined by graph-based method and the 2D Gaussian fitting
were compared over the CNR range where RASP performs well. The error to the ground truth data was calculated using
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o |estimation — ground truth| (12)
ITOr = .
ground truth

For the widefield data (Fig. S10c), the graph-based estimation (18.5% =+ 5.0% on average) gave similar results to the 2D
Gaussian fitting (18.9% =+ 4.8% on average) in the intensity estimation. The error in background determination was low for
both methods: 0.7% =+ 0.01% on average for the graph-based estimation and 1.15% =+ 0.17% on average for the 2D Gaussian
fitting. Similar behaviour was found for the confocal data (Fig. S10d), with the graph-based estimation (8.4% + 4.7% on
average) giving similar results to the 2D Gaussian fitting (8.7% =+ 5.0% on average) in the intensity estimation. Again, the error
in the background determination was low for both methods: 0.71% =+ 0.08% on average for the graph-based estimation and
1.28% =+ 0.06% on average for the 2D Gaussian fitting. The graph-based method performs similarly to the 2D Gaussian fitting
method in images with and without structured background. However, the time required for the graph-based method (9.5 ms
per image with 1600 puncta) is far less compared to the 2D Gaussian fitting method (3.4 s per image with 1600 puncta) in
MATLAB on ai9-11900K CPU and 80GB RAM PC, which makes this method superior for large datasets.
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Supplementary Note S10: RRID Table

Table 1. RRID/CAS Table

Item Catalog ID  Stock concentration  Dilution factor ~ Concentration used (mg/ml) RRID/CAS
rabbit polyclonal to c-synuclein (phospho S129) AB59264 1 mg/ml 1:200 0.005 AB_2270761
mouse monoclonal (psyn/81A) to a-synuclein (phospho S129) AB184674 1 mg/ml 1:500 0.002  AB_2819037
Antibody, IBA1 Wako — 019-19741 1.1 mg/ml 1:1000 0.0011 AB_839504
Antibody, MAP2 ab254143 1 mg/ml 1:500 0.002 AB_2936822
Antibody, Alexafluor 568 goat anti-mouse — A11031 A11031 2 mg/ml 1:200 0.01 AB_144696
Antibody, Alexafluor 568 goat anti-rabbit — A11011 Al11011 2 mg/ml 1:200 0.01 AB_143157
Antibody, Alexafluor 488 goat anti- rabbit — A11008 A11008 2 mg/ml 1:200 0.01 AB_143165
Antibody, Alexafluor 488 goat anti-mouse — A11001 A11001 2 mg/ml 1:200 0.01 AB_2534069
Methylated Spirit IMS005 - - - 64-17-5
Xylene XYL005 - - - 1330-20-7
Methanol 8222835000 - - - 67-56-1
Ethanol E7148-500ML - - - 64-17-5
Hydrogen Peroxide 23615.261 - - - 7722-84-1
PBS tablets 18912014 - - - 7647-14-5
VECTASHIELD+ PLUS Antifade Mounting Medium H-1900-10 - - - AB_2336789
Tri-sodium Citrate (for antigen retrieval) 27830.294 - - - 6132-04-03
Citric Acid (for antigen retrieval) C/6200/53 - - - 5949-29-1
Sudan Black (Concentrate) 199664-25G - - - 4197-25-5
Tetraspeck beads T7279 - - - -
Frame-seal slide chambers SLF0201 - - - -
Poly-L-lysine P4707 - - - 25104-18-1
0.02 um syringe filters 6809-1102 - - - -
Imagel - - - - SCR_003070
MATLAB - - - - SCR_001622
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Supplementary Note S11: Patient Information Table

Table 2. Patient Information Table. Brain Bank for all patients was Imperial, region was Cingulate Cortex in all cases and all patients had pathalogical diagnosis of Parkinson’s
Disease. “Post Moterm Interval.

Case Age Sex Onset Duration PMI® Confounding pathology  Braak score (c-syn)  Braak score (tau) Thal score (amyloid beta)
PD0969 73 M 66 7 24 - 3 1 3
PD0822 81 M 64 17 22 - 4 2 -
PD0596 85 M 70 15 16 - 4 2 -
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Supplementary Note S12: Staining Plan Table

Table 3. Staining Plan Table. All tissue was Formalin-Fixed Paraffin-Embedded (FFPE) and pressure-cooked before staining. Sudan Black was added to tissue post staining.
For further details see section B.1.

Case Primary antibody 1 Secondary antibody 1 Primary antibody 2 Secondary antibody 2 Sudan Black
PD0969 IBA1, Rabbit  Anti-Rabbit Alexa Fluor 488  Anti-phosphorated a-synuclein, Mouse ~ Anti-Mouse Alexa Fluor 561 +
PD0822 IBAIL, Rabbit  Anti-Rabbit Alexa Fluor 488  Anti-phosphorated a-synuclein, Mouse  Anti-Mouse Alexa Fluor 561 +
PD0596 IBA1, Rabbit Anti-Rabbit Alexa Fluor 488 Anti-phosphorated a-synuclein, Mouse  Anti-Mouse Alexa Fluor 561 +
PD0969 MAP2, Mouse  Anti-Mouse Alexa Fluor 488 Anti-phosphorated a-synuclein, Rabbit Anti-Rabbit Alexa Fluor 561 +
PD0822 MAP2, Mouse  Anti-Mouse Alexa Fluor 488 Anti-phosphorated a-synuclein, Rabbit Anti-Rabbit Alexa Fluor 561 +
PD0596 MAP2, Mouse  Anti-Mouse Alexa Fluor 488 Anti-phosphorated «-synuclein, Rabbit Anti-Rabbit Alexa Fluor 561 +
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