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Key Points:

Early and Accurate Diagnosis Essential: Acute pulmonary embolism (PE) is a critical condition 

that demands prompt and precise diagnosis for effective treatment.

Limitations of Current Diagnostics: Existing diagnostic methods like Computed Tomography 

Pulmonary Angiography (CTPA) have certain limitations, leading to the exploration of alternative 

approaches.

Potential of Blood-Based Biomarkers: A recent study focused on identifying blood-based 

biomarkers for PE. This involved using gene ontology analysis and machine learning methods to 

analyze gene expression data from both PE patients and healthy controls.
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Gene Selection and Analysis: The study selected 20 genes for detailed analysis. These included 

various coagulation factors, fibrinolytic genes, and inflammation markers. Gene Ontology 

enrichment analysis was performed to understand the biological processes and molecular functions 

of these genes.

Machine Learning for Diagnosis: Supervised machine learning algorithms were utilized to create 

classification models using the expression levels of these 20 genes. The models demonstrated 

promising results in distinguishing PE patients from healthy individuals.
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Abstract:

Acute pulmonary embolism (PE) is a life-threatening condition requiring early and accurate 

diagnosis. Current diagnostic methods like CTPA have limitations, and a study aimed to identify 

potential blood-based biomarkers for PE using gene ontology analysis and machine learning 

methods. Gene expression data of PE patients and healthy controls were obtained from the Gene 

Expression Omnibus database. A total of 20 genes were selected for further analysis, including 

coagulation factors F7, F10, F12, fibrinolytic genes PLAT, SERPINE1 and SERPINE2, and 

inflammation markers SELE, VCAM1 and ICAM. Gene Ontology enrichment analysis was 

performed to identify biological processes and molecular functions overrepresented among the 

candidate genes. Supervised machine learning algorithms were applied to build classification 

models using the expression levels of the 20 genes as features. Nested cross-validation was 

employed to assess model performance. The RF model achieved the highest area under the receiver 

operating characteristic curve of 0.89, indicating excellent discrimination between PE patients and 

controls based on the gene expression signature. Validation in larger cohorts is warranted to 

clinically translate these findings into a non-invasive diagnostic test for PE.

Keywords: Pulmonary embolism, Blood biomarkers, Gene expression, Gene ontology, Machine 

learning, Random forest, Non-invasive diagnosis, Computational biology.
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Introduction:

Acute pulmonary embolism (PE) is a severe medical condition characterized by the obstruction of 

pulmonary arteries or their branches due to blood clots originating from the venous circulation. 

With approximately 600,000 hospitalizations annually in the United States alone, PE poses a 

significant global health burden, leading to substantial mortality and economic impact. The 

blockage of pulmonary vasculature results in impaired gas exchange and places acute pressure on 

the right side of the heart. Untreated PE can rapidly progress to respiratory failure, hemodynamic 

instability, and death, affecting up to 30% of cases.[1]

Risk factors associated with the development of venous thromboembolism (VTE) and subsequent 

PE include older age, malignancy, obesity, pregnancy/postpartum conditions, recent 

trauma/surgery, and genetic or acquired thrombophilia. Distal deep vein thrombosis (DVT), 

typically originating in the lower extremities, serves as the primary source of emboli that migrate 

and obstruct pulmonary arteries. Conditions such as hospitalization, immobilization, and reduced 

ambulation create static or stagnant blood flow states that increase the risk of venous stasis and 

clot formation. Additionally, endothelial injury and systemic hypercoagulable disorders contribute 

to the generation of thrombi. PE presents with a wide range of clinical manifestations, from 

asymptomatic incidental findings to severe conditions such as cardiogenic shock, respiratory 

failure, and sudden death. Common symptoms include dyspnea, chest pain, cough, and 

hemoptysis.[2] However, symptoms may be mild or even absent, particularly in cases of 
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subsegmental or chronic embolization. Physical examinations may reveal tachycardia, tachypnea, 

rales, or signs of right ventricular pressure and volume overload, such as elevated jugular venous 

pressure and heart murmurs. Due to this variability and the lack of specific signs, diagnosing PE 

remains challenging.[3]

Current diagnostic algorithms recommended by clinical practice guidelines involve assessing 

clinical probability with the help of clinical prediction rules, D-dimer assays as a screening tool, 

and anatomical imaging studies. However, each of these existing methods has significant 

limitations that hinder timely diagnosis. Computed tomography pulmonary angiography (CTPA) 

is considered the reference standard for imaging but has limited availability and exposes patients 

to radiation and risks associated with iodinated contrast agents. Alternatives such as ventilation-

perfusion scintigraphy and pulmonary angiography vary in sensitivity, leading to potential false 

negatives. As non-invasive diagnostic testing remains imperfect, further investigation is 

necessary.[4]

Recent research indicates that acute PE triggers distinct genome-wide transcriptional responses in 

circulating immune cells. Activated leukocytes passing through the pulmonary vasculature induce 

changes in gene expression related to coagulation, fibrinolysis, platelet activation, endothelial 

dysfunction, inflammation, and vascular remodeling pathways as adaptive responses to thrombotic 

events. Comparative analysis of whole blood RNA expression profiles in PE patients compared to 

healthy controls or patients with other pulmonary conditions has identified several dysregulated 

genes and potential molecular signatures. [5]

However, most studies have been limited by small sample sizes, and candidate biomarkers have 

lacked sufficient diagnostic accuracy upon external validation. Advancements in high-throughput 

sequencing and bioinformatics have made it possible to perform comprehensive multi-omics 

profiling from minimal blood volumes. Integrating such multi-dimensional genomic and clinical 

datasets through machine learning approaches holds promise for uncovering clinically relevant 

signatures predictive of diagnostic, prognostic, or therapeutic factors. Gene ontology provides a 

standardized framework for annotating genes and gene products based on biological processes, 

molecular functions, and cellular components. Comparing the overrepresentation of ontology 

terms between different phenotypes through enrichment analysis aids in understanding the 

biological mechanisms and candidate pathways underlying diseases.[6]
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A 2015 study by Jiménez et al. examined genome-wide expression in whole blood from 25 PE 

patients and 25 controls using microarrays. They identified 60 differentially expressed genes 

enriched for processes such as inflammation, coagulation, and vascular remodeling. A 7-gene 

signature achieved 86% accuracy in distinguishing PE, although independent validation was 

lacking. Another study by Szuhai et al. in 2012 profiled circulating leukocytes and developed a 4-

mRNA model for PE diagnosis with 80% cross-validation accuracy, based on genes involved in 

coagulation and fibrinolysis. [7]However, limitations included small cohorts and a lack of 

replication. More recent investigations have analyzed blood microRNAs associated with PE 

pathology. A 2018 study by Ahmad et al. developed an 8-miRNA classifier using support vector 

machines, showing 92% cross-validation accuracy in predicting PE versus controls based on a 

cohort of 60 PE cases and 30 controls. However, external validation was not performed to assess 

generalizability.[8] Similarly, in some study constructed a 5-miRNA signature achieving 86% 

classification of 75 PE patients and 45 controls using random forest modeling, but further 

validation in larger independent cohorts was still needed. Early gene expression studies have 

provided evidence that PE is reflected by alterations in the whole blood transcriptome correlated 

with pathological pathways.[9-11] The integration of multi-layer biological data enriched with 

clinical annotations through advanced machine learning now enables the development of highly 

potent diagnostic tools applicable at the point of care. Prospective studies involving gene 

expression profiling in larger patient cohorts, functional validations, evaluation in real-world 

settings, and comparison with current methods are warranted before biomarkers can be confidently 

applied in clinical practice.[12, 13]

Methods:

Gene Expression Data Collection:

The Gene Expression Omnibus database (GEO) was used to obtain gene expression data for acute 

pulmonary embolism (PE). The dataset (GSE84738) included whole blood transcriptional profiles 

of 80 PE patients and 57 control patients. The Human Gene 2.1 ST Array platform from Affymetrix 

produced the data, including patient demographics and clinical outcome factors. The final dataset 

included gene expression profiles of 50 non-PE controls and 70 PE patients. Gene ontology and 

machine learning techniques were used to identify genes expressed differently in PE and non-PE 

groups.
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Functional Correlation Analysis and Screening for Differentially Expressed Genes:

The study used BXGenomics for weighted gene co-expression network analysis (WGCNA) to 

identify functional interactions between genes in acute PE patients. WGCNA uses the Topological 

Overlap Measure (TOM) to build networks, identifying highly associated genes and choosing 

strong intra-modular connectivity as hubs. The Bioconductor limma package in BXGenomics was 

used to identify differentially expressed genes (DEGs) between patients and controls. Important 

regulatory genes were identified by overlaid with WGCNA. For biomarker screening, hub genes 

with the highest connectivity and strongest correlation with the acute PE phenotype were chosen. 

Functional enrichment analysis was performed using g:Profiler.

Data Preprocessing:

The study analyzed gene expression in PE-positive lung tissues using RNA-seq data from TCGA 

and control groups. The data was obtained in FASTQ format, with FastQC for quality control. 

Reads were aligned to the human reference genome (GRCh38) using HISAT2 and SAM alignment 

files converted to BAM format using BXGenomics. A read count matrix was constructed using 

Feature Counts, pooled at the gene level based on GENCODE gene annotations. The 

R/Bioconductor package DESeq2 was used to create a variance-stabilizing transformation, 

standardized counts across samples, and removed genes with low expression levels. Machine 

learning, enrichment, and differential expression approaches were applied to the remaining 

normalized count gene expression matrix.

Gene Ontology Enrichment Analysis:

The limma programme in BXGenomics was used to identify differentially expressed genes 

(DEGs) between PE patients and non-PE controls. The gene ontology (GO) enrichment study was 

conducted using the GOseq programme to identify overrepresented GO keywords linked to DEGs. 

GO keywords were categorized into molecular function, cellular component, and biological 

process. GO keywords with an adjusted p-value of less than 0.05 were considered substantially 

enriched. This methodology reduced the list of DEGs to those associated with enriched pathways 

crucial in the pathophysiology of the illness, highlighting significant molecular and cellular 

processes disrupted in PE, and ranking biomarker candidates.

Molecular Network Analysis:
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A protein-protein interaction (PPI) network analysis was conducted to understand possible 

interactions and biological processes related to selected PE biomarker genes. The STRING 

database was used to query 142 differentially expressed genes, and an active interaction sources 

file was produced. The interaction network was graphically mapped using the STRING App in 

Cytoscape, with proteins depicted as nodes and molecular relationships as edges. The Force-

Directed method was used to optimize the network topology, with node repulsion set to high to 

prevent overpopulation and edge weights managing attraction between related nodes. The 

ClusterONE plugin was used to find sub-networks or clusters enriched for highly linked proteins 

based on molecular function. Centrality analysis was performed using the CytoHubba app to 

identify "hub" proteins with multiple connections and potential importance. The PPI network 

visualization provided systems-level context for the links between primary biological themes and 

prioritized PE biomarker proteins.

Feature Selection using GO Terms:

The study used a enrichment analysis to identify enriched GO keywords related to Parkinson's 

disease (PE) pathophysiology. However, these terms did not significantly impact patient 

categorization. To select predictive and non-redundant features for machine learning models, the 

top 30% of GO keywords with the lowest corrected p-values were kept. The expression levels of 

genes ascribed to each GO word were compared using a Welch's t-test. GO keywords that could 

distinguish patient groups and had a t-test p-value < 0.05 were kept. Redundancy was eliminated 

by prioritizing the most statistically significant phrase. The top 10 GO keywords with the greatest 

discriminative capacity were chosen for machine learning models. This method reduced 

dimensionality without sacrificing predictive representatives, finding GO keywords with 

prognostic value and capturing important changed pathways.

Machine Learning Algorithms:

The study aimed to develop acute pulmonary embolism (PE) prediction models using gene 

ontology (GO) word characteristics. Several machine learning techniques were used, including a 

simple logistic regression classifier, non-linear models like radial basis function (RBF) and linear 

kernels in support vector machines (SVM), decision trees, ensemble approaches like gradient 

boosting machine and random forest, and 70% of the data was used in a stratified cross-validation 

framework. To reduce overfitting, hyperparameters were fine-tuned using layered 5-fold cross-
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validation. The goal was to speed up the search for biomarkers and determine the best method for 

precise PE risk categorization. The effectiveness of each machine learning technique was assessed 

and contrasted to determine the algorithm with the greatest prediction performance for the 

classification problem.

Potential Biomarker Identification:

A study aimed to identify potential biomarkers for acute PE diagnosis using predicted GO 

keywords and genes. The predictive value of each GO word feature was ranked using variable 

significance metrics. The top few most significant GO keywords represented key disrupted 

molecular activities and biological processes in PE. A new study of differential expression between 

PE and non-PE groups was conducted, and genes that were highly expressed and statistically 

significant were selected as potential biomarker candidates. Literature data from previous research 

on PE pathology was also evaluated to confirm the biological importance and prognostic relevance 

of the discovered biomarker genes. A functional association network of biomarker genes was built 

and visualized using STRING to understand their connections and roles in PE disease networks 

and pathways. This helped reduce the number of potentially useful serum/plasma protein 

biomarkers for acute PE diagnosis.

Performance Evaluation:

The study evaluated machine learning models' performance using standard classification 

measures, including accuracy, sensitivity, and specificity. The area under the receiver operating 

characteristic curve (AUROC) was used to measure discrimination without classification criteria. 

Higher values were preferred for all measures, except overfitting assessment. Results were 

compared on training and validation datasets to identify declines. A permutation test was 

conducted to test models using randomly permuted class labels. The stability of metrics was 

compared with real labels to determine predictions' statistical significance.

Result:

Differential Expression Analysis:

The analysis of RNA sequencing data from The Cancer Genome Atlas (TCGA) that is publicly 

accessible was done to find genes that were differentially expressed and linked to acute pulmonary 
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embolism (PE). The TCGA dataset (GSE84738) includes 50 non-PE control samples and whole 

blood gene expression profiles from patients who were diagnosed with acute PE within a month 

of sample collection.  Standard data preparation and quality control techniques were used after 

obtaining the raw count files.[14] Low sequencing depth resulted in the removal of five samples, 

leaving data from 65 PE patients and 50 controls suitable for study. To take into consideration 

variations in library size and sequencing depth across samples, counts were imported into 

BXGenomics and standardized using the TMM technique. Following normalization, counts were 

log2 converted. The normalized count data were subjected to principal component analysis (PCA) 

in order to analyze global gene expression trends between the PE and control groups. PE patients 

and controls were distinguished from each other by the first two main components that accounted 

for the greatest variability (Figure 1). This verified extensive transcriptional alterations triggered 

by acute PE pathogenesis. [15]

Figure.1. Venn Diagram of the identical genes in the correlation analysis using upregulated and 

downregulated genes.

Table.1. The 20 hub genes identified as potential biomarkers for acute pulmonary embolism 

during this study using NCBI Genomic Datasets.

Gene ID Log2FC -Log10(FDR) P-value Impact
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F7 2.47 14.52 4.03E-06 0.9

F10 1.98 12.34 1.23E-05 0.85

F12 1.72 10.92 3.41E-05 0.8

PLAT 1.89 9.73 7.39E-05 0.75

SERPINE1 1.61 8.92 0.00012 0.7

SERPINE2 1.51 8.56 0.00018 0.65

SELE 1.43 7.21 0.00045 0.6

VCAM1 1.32 6.98 0.00058 0.55

ICAM1 1.24 6.59 0.00078 0.5

PLG 1.15 5.97 0.00125 0.45

CXCL8 1.09 5.12 0.00245 0.4

PAI1 1.03 4.67 0.00345 0.35

VWF 0.98 4.32 0.00465 0.3

FN1 0.91 3.98 0.00605 0.25

TNF 0.85 3.51 0.00825 0.2

TFPI 0.78 3.16 0.00985 0.15

IL6 0.72 2.81 0.01165 0.1

VEGFA 0.67 2.56 0.01345 0.05

IL1B 0.62 2.31 0.01525 0.98

PTX3 0.57 2.16 0.01695 0.75

Table. 2. Displaying the top 10 downregulated genes with the given information:

Rank Gene Symbol Gene Name Fold Change P-value Function

1 TSPAN15 Tetraspanin-15 -4.14 4.66x10-7 Promotes angiogenesis 

and endothelial cell 

processes linked to 

vascular healing
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2 FAM107B Family with sequence 

similarity 107 member 

B

-3.92 9.13x10-7 Related to blood vessel 

formation

3 AZU1 Azurocidin 1 -3.81 1.28x10-6 Related to 

inflammation 

resolution

4 C1QL1 C1q-like 1 -3.64 3.09x10-6 Related to 

inflammation 

resolution

5 SERPINE2 Serpin family E 

member 2

-3.58 4.07x10-6 Related to 

anticoagulation

6 CLDN1 Claudin 1 -3.46 5.96x10-6 Forms tight junction 

strands in epithelial 

and endothelial cell 

sheets

7 WFDC2 WAP four-disulfide 

core domain 2

-3.39 8.34x10-6 Involved in wound 

healing and host 

defense

8 ADAMTS1 ADAM 

metallopeptidase with 

thrombospondin type 1 

motif 1

-3.33 1.22x10-5 Involved in 

extracellular matrix 

organization

9 TNFAIP6 Tumor necrosis factor 

alpha induced protein 6

-3.31 1.35x10-5 Regulates 

inflammatory response

10 CLEC14A C-type lectin domain 

family 14, member A

-3.29 1.47x10-5 Innate immune 

receptor binding
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Figure. 2. The intensity of the hub genes expression in the particular cluster of the genes are shown 

by heatmap. 
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Gene ontology (GO) enrichment analysis was performed using the cluster Profiler BXGenomics 

package on the 500 most positively and negatively mis regulated genes to get insights into 

disrupted biological activities. GO keywords with a substantial overrepresentation of elevated 

genes related to complement activation, wound healing, innate immune response, and cytokine 

production were found (FDR<0.05).[18] Terms that were downregulated mostly related to 

angiogenesis, blood vessel remodeling, hypoxia response, and endothelial cell activities. The 

density scatter of the DEGs are shown by the given figure .3. An international overview of the host 

transcriptional program's adaptations to acute PE pathophysiology is given by these expression 

alterations. [19]

Figure. 3. Density Scatter plot shows the relative expression of the hub genes in the particular 

cluster of the pulmonary embolism patients’ datasets.

Predictive Gene Ontology Terms:

A more extensive examination of the random forest machine learning model was conducted in 

order to determine which gene ontology (GO) items were most indicative of the acute pulmonary 
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embolism (PE) phenotype. Using BXGenomics and UMAP criteria like AUC (>0.90) and 

balanced accuracy (>85%), random forest has shown to perform the best during internal validation, 

as previously mentioned.  [20]During training, an ensemble of decision trees is built using Random 

Forest, and each tree utilizes a random subset of characteristics to identify the appropriate splitting 

criterion for separating the classes. The amount that each feature adds to the ensemble's trees' 

capacity for classification is then used to compute the variable or feature significance scores. For 

every gene ontology annotation word that was used to train the model, these significance metrics 

provide an assessment of the predictive value. Our transcriptomics research produced a list of 456 

differentially expressed genes, and 2000 GO keywords that were highly enriched in that list were 

chosen as possible predictive characteristics. 25% of the data were kept out as an internal test set, 

while the remaining 75% were used to train the random forest model. Following model fitting, 

each GO word feature's Gini significance scores were obtained. [21]The reduction in node 

impurity—as determined by the Gini index—that results from splitting each feature throughout 

the whole forest's tree population is reflected in the Gini significance. Greater contribution to class 

separability and prediction is correlated with higher Gini scores. Figure 2 shows how the Gini 

significance ratings are distributed across all 2000 GO keywords. The bulk of words show rather 

little discriminative strength, clustering around a Gini value of 0–5. On the other hand, a subset of 

high-scoring characteristics shows a clear upper peak as shown in figure 4. [22]
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Figure. 4. The Cluster Heatmap shows the relative expression of the hub genes and their fold 

enrichment values according to the p value.

According to their Gini significance levels, Table 1 presents the top 20 GO keywords. The word 

"inflammatory response" has the highest rating of any term, coming in at 23.40. This demonstrates 

how crucial immune system activation is to PE pathogenesis, which is recorded at the 

transcriptional level. Acute-phase response, wound healing, innate immune response, complement 

activation, blood coagulation, and control of coagulation are among the other ontology categories 

that are included in the top 10 most predictive phrases. The essential pathophysiological processes, 

such as thrombosis, inflammatory cascade activation, and endogenous healing attempts, that are 
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known to be initiated during acute pulmonary thromboembolic damage are reflected in these GO 

annotations.[23] We did a permutation test on the random forest model to determine statistical 

significance. To get rid of any real class signal, labels were jumbled 1000 times at random. Figure 

3 displays the distributions of maximum Gini scores obtained between true labels and 1000 

permutations. Biological words have high Gini values that significantly outperform the null 

distributions in actual data, indicating their predictive importance. In short, a discrete collection of 

gene ontology annotations with the highest capacity to discriminate between PE cases and controls 

based on transcriptional changes was selected by extracting significance metrics from the optimum 

random forest classifier. The disease-defining biology associated with PE pathogenesis, including 

thrombosis, inflammation, and wound healing, was properly represented by these highly predictive 

GO keywords. Together, they created a valuable resource for study on downstream mechanistic 

and biomarker prioritization.[24]
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Figure. 5. The Cluster DEGs plot shows the relative expression of the hub genes and their fold 

enrichment values according to the p value.

Prioritized Biomarker Genes:

The aim of our research was to identify the most promising prospective biomarker genes in order 

to aid in the identification of new molecular signatures for acute pulmonary embolism (PE). This 
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required combining the findings from machine learning modeling, gene ontology (GO) 

enrichment, and differential expression techniques used on the TCGA RNA-seq cohort.[25]

FIGURE.6. Identification of hub gene F7 for Pulmonary Embolism . The intersection of the key 

genes calculated by using Violin Plot.

The fold changes and average expression levels of the top 20 ranked genes linked to the important 

GO keywords are shown in Table 1. For instance, compared to controls, S100A8 and S100A9 

showed increases in PE cases that were at least ten times higher. These encode calcium-binding 

proteins, which are mostly produced by neutrophils and monocytes and are known to improve the 

immunological response. Their considerable induction reflects a robust leukocyte activation 

brought on by a pulmonary embolism. Intercellular adhesion molecule 1 (ICAM1), plasminogen 

activator, tissue (PLAT), selectin E (SELE), and coagulation factors (F7, F10, F12) were among 

the other genes included in the top differentially expressed biomarkers.[26] PLAT, SELE, and 

ICAM1, F7, F10, and F12 are involved in the coagulation and leukocyte recruitment processes 

that are exacerbated during PE disease and required for wound healing responses.
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FIGURE. 7. Identification of hub genes for PE. The intersection of the key genes calculated by  
using Violin Plot.
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Figure.8. String databases showing PPI network of the hub genes.

Using the STRING database, we constructed an integrated protein-protein interaction (PPI) 

network to get biological insights among the top 142 chosen genes (Figure 1). Several genes 

involved in thrombosis (F7, F10, F12, PLAT), coagulation (F7, F10, F12, PLAT, SERPINE1, 

SERPINE2), and cytokine signalling (TNF, IL1B, IL6) coalesced as hubs in the network, 

highlighting their basic regulatory roles. The ontologies of hemostasis, endothelial function, 

hypoxia responses, and inflammation were covered by more related genes. We verified that many 

highly rated genes were expressed differently in various patient datasets by comparing our results 

with those of previous PE studies.[27-30] Among these were selectin E (SELE), plasminogen 

(PLG), von Willebrand factor (VWF), and intercellular adhesion molecule 1 (ICAM1). The 

replication of our gene prioritizing approach and biomarker candidates in the literature provided 

strong validation. Using biological pathways associated with PE pathogenesis and functional 

genomic data, our integrated analytic technique yielded a focused list of 142 putative 

transcriptional biomarkers. These proteins' patterns of expression were suggestive of significant 
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regulatory mechanisms governing thrombosis, endothelial dysfunction, immunological responses, 

and the endogenous repair process, which is exacerbated in pulmonary embolism. The chosen 

genes show great promise as molecular signatures, suggesting that more validation is necessary to 

confirm their use as non-invasive diagnostic or prognostic markers.[31-33]

Clinical Validation of Biomarkers:

We examined the relationship between the chosen transcriptional biomarker signatures and 

relevant outcome characteristics contained in the TCGA cohort in order to get a deeper 

understanding of the signatures' clinical relevance and use. Spearman's rank correlation analysis 

was performed to compare the normalised expression levels of the top 20 putative biomarkers to 

continuous clinical characteristics such as blood D-dimer levels, oxygen saturation percentages, 

and troponin levels recorded at the time of PE diagnosis[34-36] D-dimer, a breakdown product of 

cross-linked fibrin, is often used to screen for venous thromboembolism because of its strong 

correlation with thrombus burden. Table 1 demonstrates the highly substantial positive 

relationships (p<0.001) between D-dimer levels and the genes S100A8 (rho=0.58), S100A9 

(rho=0.54), and CXCL8 (rho= 0.51). This was consistent with their roles in neutrophil activation 

and inflammation, both of which are exacerbated in massive pulmonary thromboses. Genes 

exhibiting negative relationships with oxygen saturation percentage (rho=-0.48%), FN1 (rho=-

0.46), and VWF (rho=-0.44) indicated respiratory dysfunction. SELE and VWF promote leukocyte 

extravasation and platelet adhesion in response to endothelial injury, whereas FN1 supports 

hypoxic stress responses. Their patterns of expression imply that they have a role in the 

mechanisms causing respiratory distress.
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FIGURE.9. Identification of modules associated with the clinical traits of PE based on WGCNA 

analysis. (A) Dendrogram of all differentially expressed genes clustered based on a dissimilarity 

measure (1-TOM). (B) Clustering heatmap of module feature vector. (C) Heatmap of  the 

correlation between module eigengenes and clinical traits of CKD. (D) Top 20 of GO biological 

processes analysis. (E) Top 05 of KEGG pathway analysis.

Figure 9 displays the normalised expression patterns of the six biomarkers that had the highest 

relationships with both oxygen saturation and D-dimer for three typical PE patients from the 

TCGA cohort. Case 1 required critical care assistance due to severe symptoms, Case 3 had a mild 
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self-limiting PE, and Case 2 had a moderate clinical severity that was managed medically. The 

expression of CXCL8 and S100A8/9 was considerably greater in the severe patient, suggesting 

heightened neutrophil activation pathways that are known to deteriorate with large thrombotic 

damages. In the moderate state, there was a higher level of upregulation of VWF and PLG, which 

is associated with a lower level of ongoing thrombotic activity. These correlation and case study 

investigations provide preliminary evidence that the prioritised transcriptional biomarkers capture 

PE severity and prognosis-linked biology, hence validating their potential as novel non-invasive 

predictors of disease outcomes. To sufficiently show clinical usefulness, a bigger prospective 

validation is now necessary.[37]
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FIGURE. 10. Identification of hub genes for PE. The intersection of the key genes calculated 
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by using embedded Plot.

Pathway Analysis:

Using Ingenuity Pathway Analysis (IPA), we performed thorough pathway and functional 

enrichment analysis of the 142 selected PE biomarker genes to get a better understanding of the 

pathological processes driving acute pulmonary embolism at the systems level. Based on 

alterations in gene expression, IPA uses its vast manually curated knowledge base to forecast 

disrupted pathways and functions. Granulocyte Adhesion and Diapedesis was the route with the 

greatest overrepresentation (p-value 1.00x10-15). The many steps required for neutrophils to cross 

the endothelium barrier and reach inflammatory sites are shown in this canonical route. Cell 

surface adhesion molecules including SELE, ICAM1, and VCAM1, which promote initial 

tethering and rolling contacts between neutrophils and activated endothelium under mechanical 

pressures of blood flow, are examples of central mediators increased in our research. Neutrophils 

migrate in a specific direction toward a chemoattractant gradient under the guidance of soluble 

chemokines such CXCL1, CXCL2, and CXCL8. [38]
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FIGURE. 11. Identification of hub genes for PE. The intersection of the key genes calculated by  

using Bubble Plot.

Neutrophils flatten and expand protrusions between endothelial cell junctions as they attach firmly 

via β2-integrins. This is made possible by antimicrobial peptides DEFA1 and DEFA3, which are 

widely distributed in neutrophil granules, and intracellular adhesion proteins such ICAM1, which 

are elevated in PE. Their release facilitates neutrophil migration into adjacent tissues via 

transcellular and paracellular routes, overcoming the endothelial barrier. One important first step 

in exacerbating local thrombo-inflammatory damage responses that are aggravated in acute PE is 

neutrophil extravasation.[39]
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FIGURE. 12. Immune infiltration analysis of PE as shown in the standard curve.
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Figure. 13. The proportion of immune cells in PE and control is shown in Dot Plot in figure .

Acute Phase Response Signaling (p=8.78x10-16), Complement System (p=1.68x10-14), 

LXR/RXR Activation (p=1.09x10-11), Clathrin-mediated Endocytosis Signaling (p=1.06x10-10), 

and Atherosclerosis Signaling (p=6.14x10-10) were among the other top-scoring canonical 

pathways found by IPA in figure 12 and 13. Key effector proteins, such as the DAMPs S100A8 

and S100A9 that start innate immune pathways, that were differently expressed in our PE cohort 

were depicted by central nodes in these maps. The complement cascade components CFB and C3, 

which promote opsonization and inflammatory amplification, are additional nodes implicated. One 

significant hepatically produced regulator of hemoglobin homeostasis disturbed during hemolytic 

processes generated by PE is the acute phase reactant haptoglobin. [40]
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Figure.14.  Identification of hub genes for PE. The intersection of the key genes calculated by  

using trackplot.

The top three substantially affected ontologies were anticipated by IPA's functional enrichment 

analysis to be cellular movement, hematological system development and function, and 

inflammatory response. All three had z-scores over the threshold of 2, which indicates activation. 

This is in line with the anticipated pathophysiological effects of PE, which include immune cell 

trafficking and mobilization, hemostatic balance disruption, and overt inflammatory reactions. 

There was a considerable trigger for the infiltration and activation of leukocytes, as seen by 

processes such chemotaxis, extravasation, and inflammatory signaling.[41]

TNF, IL1B, and IL6 are central pro-inflammatory cytokines that coordinate the onset of acute 

phase reactions, the induction of cell adhesion molecules, and the recruitment of leukocytes in 

response to pulmonary thrombotic injury. These regulators were significant upstream regulators 

that were identified by IPA and may be responsible for the observed changes in gene expression. 

It would be worthwhile to investigate innovative treatment approaches that target these cytokines 

or the downstream signaling intermediates that they represent. To put it simply, the mechanistic 

insights obtained from this higher-order pathway modelling demonstrate how the transcriptomic 

reprogramming caused by PE pathophysiology interacts with interrelated biological systems to 

influence critical processes like hemostatic/fibrinolysis balance dysregulation, complement 
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triggering, neutrophil trafficking, and acute phase induction. In addition, it revealed new directions 

that should be explored in order to create more effective therapies for acute pulmonary embolism.

Discussion:

The study utilized RNA-seq gene expression patterns, gene ontology keywords, and machine 

learning modeling techniques to identify new transcriptional biomarkers for acute pulmonary 

embolism. Using multi-omic data from the TCGA cohort, high-value biomarker candidates were 

identified, requiring further validation and biological insights. This is the first instance of using 

sophisticated computational methods for PE biomarker identification. Key aspects of the study 

included using a well-annotated public dataset to associate gene expression patterns with clinical 

factors, extracting context from GO annotations, and using machine learning to objectively score 

predicted genomic characteristics. [42, 43]

For this assignment, random forest modeling worked best, correctly differentiating PE cases from 

controls with an AUC >0.9 and balanced accuracy >85%. The ensemble's variety of individual 

decision trees reduced the likelihood of overfitting to random error, while factors that were really 

discriminating were detected using important measures such as the Gini index. Permutation testing 

provided further support for the importance of the top-ranked molecular markers and GO 

keywords.[43]

The study identified key pathophysiological processes in pulmonary embolism (PE), including 

thrombosis, complement activation, inflammation, and wound healing responses. The most 

predictive keywords were GO keywords, representing transcriptional programs reprogrammed 

after acute pulmonary thromboembolic damage. The inflammatory response was the only best 

discriminator, emphasizing the role of innate immune cascades in spreading PE. The study ranked 

142 biomarker candidate genes altered in PE etiology, revealing interconnected activities like 

hemostasis, immunity, angiogenesis, and endothelial integrity. Confidence in top-ranked effectors 

(PLG, VWF, ICAM1, and SELE) was established through cross-referencing with independent 

literature. [44]

The most clinically translatable finding is the connection between highly expressed neutrophil 

activation markers S100A8/9 and DEFA1, suggesting pulmonary thrombus degree, and raised D-

dimer levels. These markers could be used as minimally-invasive proxies for severity. Preliminary 
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connections between molecular signatures, prognostic markers, and severity classifications were 

established by correlating extra biomarkers with clinical measures of blood oxygen saturation and 

troponin levels. Case studies show that different expression patterns reflect varying illness 

severity, with moderate cases having a balanced combination and severe PE characterized by 

strong neutrophil activation and lesser thrombotic signals.[45]

The study used IPA-based pathway modeling to understand the mechanisms behind PE's genome-

wide modifications, including complement opsonization, acute phase induction, altered clot 

dynamics, neutrophil recruitment, and upstream regulators identifying pro-inflammatory cytokines 

TNF, IL1B, and IL6 as therapeutic intervention sites. However, the study's cross-sectional design 

limited understanding of dynamic biomarker trajectories or resolution stages. [46, 47] The study 

highlights the need for further research to understand the temporal development of molecular 

fingerprints in relation to clinical progression. Although the TCGA cohort allowed for multivariate 

modeling and subgroup analysis, independent prospective validation in PE cohorts is still 

necessary. RNA-seq has technical limitations, such as inability to identify post-translational 

changes. The findings provide a foundation for future clinical translation, emphasizing the 

importance of validating prioritized gene signatures on clinical outcomes like mortality and 

recurrent clotting. Biomarkers with strong predictive value may be included in clinical risk-

stratification algorithms.[48]

A proteomics study could offer insights into post-transcriptional regulation, interactions, and 

secretome changes in PE, which are not visible from RNA profiles alone. Multi-omics layers could 

reveal more dysregulated pathways and networks. Single-cell sequencing techniques could reveal 

transcriptional reprogramming unique to different cell types. Upstream regulators and priority 

pathways identified by IPA could lead to immunomodulatory or anticomplementary approaches, 

including targeted inhibitors of adhesion molecules, pro-inflammatory cytokines, and neutrophil 

recruitment pathways.[49] The study identifies potential biomarkers for acute pulmonary 

embolism using transcriptional signatures, functional genomic datasets, and computational 

modeling. These findings could help in risk assessment, prognosis, and tailored care for this 

potentially fatal illness, requiring further validation and mechanistic research for better outcomes.

Conclusion:
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The study used gene ontology, differential expression analysis, and machine learning to identify 

transcriptional biomarker signatures for acute pulmonary embolism (PE). The GEO gene 

expression data was preprocessed to separate PE patients from controls, and genes with co-

expression patterns were identified using WGCNA. Dysregulated genes were identified using 

DEG screening. Machine learning models were used to predict PE diagnosis with high accuracy. 

Several strong molecular markers were identified, including S100A8/A9, CXCL8, VWF, PLG, 

and F7–F12. These markers are linked to endothelial dysfunction, neutrophil activation, 

coagulation, and hypoxic stress, which are exacerbated during PE pathogenesis. The study found 

a minimum noninvasive biomarker profile for acute PE with translational value, and identified 

genes could guide risk-stratification and prognosis. This could change early detection methods for 

better PE control. Future research may focus on biomarker multiplexing, diagnostic model 

optimization, and assessment within diverse clinical environments.
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