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Key Points:

Early and Accurate Diagnosis Essential: Acute pulmonary embolism (PE) is a critical condition

that demands prompt and precise diagnosis for effective treatment.

Limitations of Current Diagnostics: Existing diagnostic methods like Computed Tomography
Pulmonary Angiography (CTPA) have certain limitations, leading to the exploration of alternative

approaches.

Potential of Blood-Based Biomarkers: A recent study focused on identifying blood-based
biomarkers for PE. This involved using gene ontology analysis and machine learning methods to

analyze gene expression data from both PE patients and healthy controls.
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Gene Selection and Analysis: The study selected 20 genes for detailed analysis. These included
various coagulation factors, fibrinolytic genes, and inflammation markers. Gene Ontology
enrichment analysis was performed to understand the biological processes and molecular functions

of these genes.

Machine Learning for Diagnosis: Supervised machine learning algorithms were utilized to create
classification models using the expression levels of these 20 genes. The models demonstrated

promising results in distinguishing PE patients from healthy individuals.
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Abstract:

Acute pulmonary embolism (PE) is a life-threatening condition requiring early and accurate
diagnosis. Current diagnostic methods like CTPA have limitations, and a study aimed to identify
potential blood-based biomarkers for PE using gene ontology analysis and machine learning
methods. Gene expression data of PE patients and healthy controls were obtained from the Gene
Expression Omnibus database. A total of 20 genes were selected for further analysis, including
coagulation factors F7, F10, F12, fibrinolytic genes PLAT, SERPINE1 and SERPINE2, and
inflammation markers SELE, VCAMI1 and ICAM. Gene Ontology enrichment analysis was
performed to identify biological processes and molecular functions overrepresented among the
candidate genes. Supervised machine learning algorithms were applied to build classification
models using the expression levels of the 20 genes as features. Nested cross-validation was
employed to assess model performance. The RF model achieved the highest area under the receiver
operating characteristic curve of 0.89, indicating excellent discrimination between PE patients and
controls based on the gene expression signature. Validation in larger cohorts is warranted to

clinically translate these findings into a non-invasive diagnostic test for PE.

Keywords: Pulmonary embolism, Blood biomarkers, Gene expression, Gene ontology, Machine

learning, Random forest, Non-invasive diagnosis, Computational biology.
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Introduction:

Acute pulmonary embolism (PE) is a severe medical condition characterized by the obstruction of
pulmonary arteries or their branches due to blood clots originating from the venous circulation.
With approximately 600,000 hospitalizations annually in the United States alone, PE poses a
significant global health burden, leading to substantial mortality and economic impact. The
blockage of pulmonary vasculature results in impaired gas exchange and places acute pressure on
the right side of the heart. Untreated PE can rapidly progress to respiratory failure, hemodynamic
instability, and death, affecting up to 30% of cases.[1]

Risk factors associated with the development of venous thromboembolism (VTE) and subsequent
PE include older age, malignancy, obesity, pregnancy/postpartum conditions, recent
trauma/surgery, and genetic or acquired thrombophilia. Distal deep vein thrombosis (DVT),
typically originating in the lower extremities, serves as the primary source of emboli that migrate
and obstruct pulmonary arteries. Conditions such as hospitalization, immobilization, and reduced
ambulation create static or stagnant blood flow states that increase the risk of venous stasis and
clot formation. Additionally, endothelial injury and systemic hypercoagulable disorders contribute
to the generation of thrombi. PE presents with a wide range of clinical manifestations, from
asymptomatic incidental findings to severe conditions such as cardiogenic shock, respiratory
failure, and sudden death. Common symptoms include dyspnea, chest pain, cough, and

hemoptysis.[2] However, symptoms may be mild or even absent, particularly in cases of
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subsegmental or chronic embolization. Physical examinations may reveal tachycardia, tachypnea,
rales, or signs of right ventricular pressure and volume overload, such as elevated jugular venous
pressure and heart murmurs. Due to this variability and the lack of specific signs, diagnosing PE

remains challenging.[3]

Current diagnostic algorithms recommended by clinical practice guidelines involve assessing
clinical probability with the help of clinical prediction rules, D-dimer assays as a screening tool,
and anatomical imaging studies. However, each of these existing methods has significant
limitations that hinder timely diagnosis. Computed tomography pulmonary angiography (CTPA)
is considered the reference standard for imaging but has limited availability and exposes patients
to radiation and risks associated with iodinated contrast agents. Alternatives such as ventilation-
perfusion scintigraphy and pulmonary angiography vary in sensitivity, leading to potential false
negatives. As non-invasive diagnostic testing remains imperfect, further investigation is

necessary.[4]

Recent research indicates that acute PE triggers distinct genome-wide transcriptional responses in
circulating immune cells. Activated leukocytes passing through the pulmonary vasculature induce
changes in gene expression related to coagulation, fibrinolysis, platelet activation, endothelial
dysfunction, inflammation, and vascular remodeling pathways as adaptive responses to thrombotic
events. Comparative analysis of whole blood RNA expression profiles in PE patients compared to
healthy controls or patients with other pulmonary conditions has identified several dysregulated

genes and potential molecular signatures. [5]

However, most studies have been limited by small sample sizes, and candidate biomarkers have
lacked sufficient diagnostic accuracy upon external validation. Advancements in high-throughput
sequencing and bioinformatics have made it possible to perform comprehensive multi-omics
profiling from minimal blood volumes. Integrating such multi-dimensional genomic and clinical
datasets through machine learning approaches holds promise for uncovering clinically relevant
signatures predictive of diagnostic, prognostic, or therapeutic factors. Gene ontology provides a
standardized framework for annotating genes and gene products based on biological processes,
molecular functions, and cellular components. Comparing the overrepresentation of ontology
terms between different phenotypes through enrichment analysis aids in understanding the

biological mechanisms and candidate pathways underlying diseases.[6]


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.18.572107; this version posted December 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A 2015 study by Jiménez et al. examined genome-wide expression in whole blood from 25 PE
patients and 25 controls using microarrays. They identified 60 differentially expressed genes
enriched for processes such as inflammation, coagulation, and vascular remodeling. A 7-gene
signature achieved 86% accuracy in distinguishing PE, although independent validation was
lacking. Another study by Szuhai et al. in 2012 profiled circulating leukocytes and developed a 4-
mRNA model for PE diagnosis with 80% cross-validation accuracy, based on genes involved in
coagulation and fibrinolysis. [7]However, limitations included small cohorts and a lack of
replication. More recent investigations have analyzed blood microRNAs associated with PE
pathology. A 2018 study by Ahmad et al. developed an 8-miRNA classifier using support vector
machines, showing 92% cross-validation accuracy in predicting PE versus controls based on a
cohort of 60 PE cases and 30 controls. However, external validation was not performed to assess
generalizability.[8] Similarly, in some study constructed a 5-miRNA signature achieving 86%
classification of 75 PE patients and 45 controls using random forest modeling, but further
validation in larger independent cohorts was still needed. Early gene expression studies have
provided evidence that PE is reflected by alterations in the whole blood transcriptome correlated
with pathological pathways.[9-11] The integration of multi-layer biological data enriched with
clinical annotations through advanced machine learning now enables the development of highly
potent diagnostic tools applicable at the point of care. Prospective studies involving gene
expression profiling in larger patient cohorts, functional validations, evaluation in real-world
settings, and comparison with current methods are warranted before biomarkers can be confidently

applied in clinical practice.[12, 13]
Methods:

Gene Expression Data Collection:

The Gene Expression Omnibus database (GEO) was used to obtain gene expression data for acute
pulmonary embolism (PE). The dataset (GSE84738) included whole blood transcriptional profiles
of 80 PE patients and 57 control patients. The Human Gene 2.1 ST Array platform from Affymetrix
produced the data, including patient demographics and clinical outcome factors. The final dataset
included gene expression profiles of 50 non-PE controls and 70 PE patients. Gene ontology and
machine learning techniques were used to identify genes expressed differently in PE and non-PE

groups.
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Functional Correlation Analysis and Screening for Differentially Expressed Genes:

The study used BXGenomics for weighted gene co-expression network analysis (WGCNA) to
identify functional interactions between genes in acute PE patients. WGCNA uses the Topological
Overlap Measure (TOM) to build networks, identifying highly associated genes and choosing
strong intra-modular connectivity as hubs. The Bioconductor limma package in BXGenomics was
used to identify differentially expressed genes (DEGs) between patients and controls. Important
regulatory genes were identified by overlaid with WGCNA. For biomarker screening, hub genes
with the highest connectivity and strongest correlation with the acute PE phenotype were chosen.

Functional enrichment analysis was performed using g:Profiler.
Data Preprocessing:

The study analyzed gene expression in PE-positive lung tissues using RNA-seq data from TCGA
and control groups. The data was obtained in FASTQ format, with FastQC for quality control.
Reads were aligned to the human reference genome (GRCh38) using HISAT2 and SAM alignment
files converted to BAM format using BXGenomics. A read count matrix was constructed using
Feature Counts, pooled at the gene level based on GENCODE gene annotations. The
R/Bioconductor package DESeq2 was used to create a variance-stabilizing transformation,
standardized counts across samples, and removed genes with low expression levels. Machine
learning, enrichment, and differential expression approaches were applied to the remaining

normalized count gene expression matrix.
Gene Ontology Enrichment Analysis:

The limma programme in BXGenomics was used to identify differentially expressed genes
(DEGs) between PE patients and non-PE controls. The gene ontology (GO) enrichment study was
conducted using the GOseq programme to identify overrepresented GO keywords linked to DEGs.
GO keywords were categorized into molecular function, cellular component, and biological
process. GO keywords with an adjusted p-value of less than 0.05 were considered substantially
enriched. This methodology reduced the list of DEGs to those associated with enriched pathways
crucial in the pathophysiology of the illness, highlighting significant molecular and cellular

processes disrupted in PE, and ranking biomarker candidates.

Molecular Network Analysis:
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A protein-protein interaction (PPI) network analysis was conducted to understand possible
interactions and biological processes related to selected PE biomarker genes. The STRING
database was used to query 142 differentially expressed genes, and an active interaction sources
file was produced. The interaction network was graphically mapped using the STRING App in
Cytoscape, with proteins depicted as nodes and molecular relationships as edges. The Force-
Directed method was used to optimize the network topology, with node repulsion set to high to
prevent overpopulation and edge weights managing attraction between related nodes. The
ClusterONE plugin was used to find sub-networks or clusters enriched for highly linked proteins
based on molecular function. Centrality analysis was performed using the CytoHubba app to
identify "hub" proteins with multiple connections and potential importance. The PPI network
visualization provided systems-level context for the links between primary biological themes and

prioritized PE biomarker proteins.
Feature Selection using GO Terms:

The study used a enrichment analysis to identify enriched GO keywords related to Parkinson's
disease (PE) pathophysiology. However, these terms did not significantly impact patient
categorization. To select predictive and non-redundant features for machine learning models, the
top 30% of GO keywords with the lowest corrected p-values were kept. The expression levels of
genes ascribed to each GO word were compared using a Welch's t-test. GO keywords that could
distinguish patient groups and had a t-test p-value < 0.05 were kept. Redundancy was eliminated
by prioritizing the most statistically significant phrase. The top 10 GO keywords with the greatest
discriminative capacity were chosen for machine learning models. This method reduced
dimensionality without sacrificing predictive representatives, finding GO keywords with

prognostic value and capturing important changed pathways.
Machine Learning Algorithms:

The study aimed to develop acute pulmonary embolism (PE) prediction models using gene
ontology (GO) word characteristics. Several machine learning techniques were used, including a
simple logistic regression classifier, non-linear models like radial basis function (RBF) and linear
kernels in support vector machines (SVM), decision trees, ensemble approaches like gradient
boosting machine and random forest, and 70% of the data was used in a stratified cross-validation

framework. To reduce overfitting, hyperparameters were fine-tuned using layered 5-fold cross-
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validation. The goal was to speed up the search for biomarkers and determine the best method for
precise PE risk categorization. The effectiveness of each machine learning technique was assessed
and contrasted to determine the algorithm with the greatest prediction performance for the

classification problem.
Potential Biomarker Identification:

A study aimed to identify potential biomarkers for acute PE diagnosis using predicted GO
keywords and genes. The predictive value of each GO word feature was ranked using variable
significance metrics. The top few most significant GO keywords represented key disrupted
molecular activities and biological processes in PE. A new study of differential expression between
PE and non-PE groups was conducted, and genes that were highly expressed and statistically
significant were selected as potential biomarker candidates. Literature data from previous research
on PE pathology was also evaluated to confirm the biological importance and prognostic relevance
of the discovered biomarker genes. A functional association network of biomarker genes was built
and visualized using STRING to understand their connections and roles in PE disease networks
and pathways. This helped reduce the number of potentially useful serum/plasma protein

biomarkers for acute PE diagnosis.
Performance Evaluation:

The study evaluated machine learning models' performance using standard classification
measures, including accuracy, sensitivity, and specificity. The area under the receiver operating
characteristic curve (AUROC) was used to measure discrimination without classification criteria.
Higher values were preferred for all measures, except overfitting assessment. Results were
compared on training and validation datasets to identify declines. A permutation test was
conducted to test models using randomly permuted class labels. The stability of metrics was

compared with real labels to determine predictions' statistical significance.
Result:

Differential Expression Analysis:

The analysis of RNA sequencing data from The Cancer Genome Atlas (TCGA) that is publicly

accessible was done to find genes that were differentially expressed and linked to acute pulmonary
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embolism (PE). The TCGA dataset (GSE84738) includes 50 non-PE control samples and whole
blood gene expression profiles from patients who were diagnosed with acute PE within a month
of sample collection. Standard data preparation and quality control techniques were used after
obtaining the raw count files.[14] Low sequencing depth resulted in the removal of five samples,
leaving data from 65 PE patients and 50 controls suitable for study. To take into consideration
variations in library size and sequencing depth across samples, counts were imported into
BXGenomics and standardized using the TMM technique. Following normalization, counts were
log2 converted. The normalized count data were subjected to principal component analysis (PCA)
in order to analyze global gene expression trends between the PE and control groups. PE patients
and controls were distinguished from each other by the first two main components that accounted
for the greatest variability (Figure 1). This verified extensive transcriptional alterations triggered

by acute PE pathogenesis. [15]

PE Patients Controls

Figure.1. Venn Diagram of the identical genes in the correlation analysis using upregulated and

downregulated genes.

Table.1. The 20 hub genes identified as potential biomarkers for acute pulmonary embolism

during this study using NCBI Genomic Datasets.

Gene ID Log2FC -Log10(FDR) P-value Impact
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Rank ' Gene Symbol

F7

F10

F12

PLAT
SERPINE1
SERPINE2
SELE
VCAM1
ICAM1
PLG
CXCL8
PAIl1

VWF

FN1

TNF

TFPI

IL6
VEGFA
IL1B
PTX3

2.47
1.98
1.72
1.89
1.61
1.51
1.43
1.32
1.24
1.15
1.09
1.03
0.98
0.91
0.85
0.78
0.72
0.67
0.62
0.57

Gene Name

14.52
12.34
10.92
9.73
8.92
8.56
7.21
6.98
6.59
5.97
5.12
4.67
4.32
3.98
3.51
3.16
2.81
2.56
231
2.16

4.03E-06
1.23E-05
3.41E-05
7.39E-05
0.00012
0.00018
0.00045
0.00058
0.00078
0.00125
0.00245
0.00345
0.00465
0.00605
0.00825
0.00985
0.01165
0.01345
0.01525
0.01695

Fold Change

P-value

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0.98
0.75

Table. 2. Displaying the top 10 downregulated genes with the given information:

Function

1

TSPANI1S5

Tetraspanin-15

4.14

4.66x10-7

Promotes angiogenesis
and endothelial cell
processes linked to

vascular healing
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10

FAMI107B

AZUI

CIQLI1

SERPINE2

CLDNI1

WFDC2

ADAMTSI1

TNFAIP6

CLECI14A

Family with sequence
similarity 107 member

B

Azurocidin 1

Clg-like 1

Serpin family E
member 2

Claudin 1

WAP four-disulfide

core domain 2

ADAM

metallopeptidase  with
thrombospondin type 1
motif 1

Tumor necrosis factor
alpha induced protein 6
C-type lectin domain

family 14, member A

-3.92

-3.81

-3.64

-3.58

-3.46

-3.39

-3.33

-3.31

-3.29

9.13x10-7

1.28x10-6

3.09x10-6

4.07x10-6

5.96x10-6

8.34x10-6

1.22x10-5

1.35x10-5

1.47x10-5

Related to blood vessel

formation

Related to
inflammation
resolution

Related to
inflammation
resolution

Related to
anticoagulation
Forms tight junction
strands in epithelial
and endothelial cell
sheets

Involved in wound

healing and  host

defense

Involved in
extracellular  matrix
organization

Regulates

inflammatory response
Innate immune

receptor binding
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Figure. 2. The intensity of the hub genes expression in the particular cluster of the genes are shown

by heatmap.
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Gene ontology (GO) enrichment analysis was performed using the cluster Profiler BXGenomics
package on the 500 most positively and negatively mis regulated genes to get insights into
disrupted biological activities. GO keywords with a substantial overrepresentation of elevated
genes related to complement activation, wound healing, innate immune response, and cytokine
production were found (FDR<0.05).[18] Terms that were downregulated mostly related to
angiogenesis, blood vessel remodeling, hypoxia response, and endothelial cell activities. The
density scatter of the DEGs are shown by the given figure .3. An international overview of the host
transcriptional program's adaptations to acute PE pathophysiology is given by these expression

alterations. [19]

5000 -

4000 -

3000 -

geneN_cutoffl

2000 -

1000 -

celllistl

Figure. 3. Density Scatter plot shows the relative expression of the hub genes in the particular

cluster of the pulmonary embolism patients’ datasets.
Predictive Gene Ontology Terms:

A more extensive examination of the random forest machine learning model was conducted in

order to determine which gene ontology (GO) items were most indicative of the acute pulmonary
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embolism (PE) phenotype. Using BXGenomics and UMAP criteria like AUC (>0.90) and
balanced accuracy (>85%), random forest has shown to perform the best during internal validation,
as previously mentioned. [20]During training, an ensemble of decision trees is built using Random
Forest, and each tree utilizes a random subset of characteristics to identify the appropriate splitting
criterion for separating the classes. The amount that each feature adds to the ensemble's trees'
capacity for classification is then used to compute the variable or feature significance scores. For
every gene ontology annotation word that was used to train the model, these significance metrics
provide an assessment of the predictive value. Our transcriptomics research produced a list of 456
differentially expressed genes, and 2000 GO keywords that were highly enriched in that list were
chosen as possible predictive characteristics. 25% of the data were kept out as an internal test set,
while the remaining 75% were used to train the random forest model. Following model fitting,
each GO word feature's Gini significance scores were obtained. [21]The reduction in node
impurity—as determined by the Gini index—that results from splitting each feature throughout
the whole forest's tree population is reflected in the Gini significance. Greater contribution to class
separability and prediction is correlated with higher Gini scores. Figure 2 shows how the Gini
significance ratings are distributed across all 2000 GO keywords. The bulk of words show rather
little discriminative strength, clustering around a Gini value of 0—5. On the other hand, a subset of

high-scoring characteristics shows a clear upper peak as shown in figure 4. [22]
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Figure. 4. The Cluster Heatmap shows the relative expression of the hub genes and their fold

enrichment values according to the p value.

According to their Gini significance levels, Table 1 presents the top 20 GO keywords. The word
"inflammatory response" has the highest rating of any term, coming in at 23.40. This demonstrates
how crucial immune system activation is to PE pathogenesis, which is recorded at the
transcriptional level. Acute-phase response, wound healing, innate immune response, complement
activation, blood coagulation, and control of coagulation are among the other ontology categories
that are included in the top 10 most predictive phrases. The essential pathophysiological processes,

such as thrombosis, inflammatory cascade activation, and endogenous healing attempts, that are
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known to be initiated during acute pulmonary thromboembolic damage are reflected in these GO
annotations.[23] We did a permutation test on the random forest model to determine statistical
significance. To get rid of any real class signal, labels were jumbled 1000 times at random. Figure
3 displays the distributions of maximum Gini scores obtained between true labels and 1000
permutations. Biological words have high Gini values that significantly outperform the null
distributions in actual data, indicating their predictive importance. In short, a discrete collection of
gene ontology annotations with the highest capacity to discriminate between PE cases and controls
based on transcriptional changes was selected by extracting significance metrics from the optimum
random forest classifier. The disease-defining biology associated with PE pathogenesis, including
thrombosis, inflammation, and wound healing, was properly represented by these highly predictive
GO keywords. Together, they created a valuable resource for study on downstream mechanistic

and biomarker prioritization.[24]
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Figure. 5. The Cluster DEGs plot shows the relative expression of the hub genes and their fold

enrichment values according to the p value.
Prioritized Biomarker Genes:

The aim of our research was to identify the most promising prospective biomarker genes in order

to aid in the identification of new molecular signatures for acute pulmonary embolism (PE). This
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required combining the findings from machine learning modeling, gene ontology (GO)

enrichment, and differential expression techniques used on the TCGA RNA-seq cohort.[25]

FIGURE.6. Identification of hub gene F7 for Pulmonary Embolism . The intersection of the key

genes calculated by using Violin Plot.

The fold changes and average expression levels of the top 20 ranked genes linked to the important
GO keywords are shown in Table 1. For instance, compared to controls, SI0O0A8 and S100A9
showed increases in PE cases that were at least ten times higher. These encode calcium-binding
proteins, which are mostly produced by neutrophils and monocytes and are known to improve the
immunological response. Their considerable induction reflects a robust leukocyte activation
brought on by a pulmonary embolism. Intercellular adhesion molecule 1 (ICAMI), plasminogen
activator, tissue (PLAT), selectin E (SELE), and coagulation factors (F7, F10, F12) were among
the other genes included in the top differentially expressed biomarkers.[26] PLAT, SELE, and
ICAMI, F7, F10, and F12 are involved in the coagulation and leukocyte recruitment processes

that are exacerbated during PE disease and required for wound healing responses.
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F7. The horizontal line in the violin plot represents the median.
The red star represents the mean.
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FIGURE. 7. Identification of hub genes for PE. The intersection of the key genes calculated by
using Violin Plot.
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Figure.8. String databases showing PPI network of the hub genes.

Using the STRING database, we constructed an integrated protein-protein interaction (PPI)
network to get biological insights among the top 142 chosen genes (Figure 1). Several genes
involved in thrombosis (F7, F10, F12, PLAT), coagulation (F7, F10, F12, PLAT, SERPINEI,
SERPINE2), and cytokine signalling (TNF, IL1B, IL6) coalesced as hubs in the network,
highlighting their basic regulatory roles. The ontologies of hemostasis, endothelial function,
hypoxia responses, and inflammation were covered by more related genes. We verified that many
highly rated genes were expressed differently in various patient datasets by comparing our results
with those of previous PE studies.[27-30] Among these were selectin E (SELE), plasminogen
(PLG), von Willebrand factor (VWF), and intercellular adhesion molecule 1 (ICAM1). The
replication of our gene prioritizing approach and biomarker candidates in the literature provided
strong validation. Using biological pathways associated with PE pathogenesis and functional
genomic data, our integrated analytic technique yielded a focused list of 142 putative

transcriptional biomarkers. These proteins' patterns of expression were suggestive of significant
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regulatory mechanisms governing thrombosis, endothelial dysfunction, immunological responses,
and the endogenous repair process, which is exacerbated in pulmonary embolism. The chosen
genes show great promise as molecular signatures, suggesting that more validation is necessary to

confirm their use as non-invasive diagnostic or prognostic markers.[31-33]
Clinical Validation of Biomarkers:

We examined the relationship between the chosen transcriptional biomarker signatures and
relevant outcome characteristics contained in the TCGA cohort in order to get a deeper
understanding of the signatures' clinical relevance and use. Spearman's rank correlation analysis
was performed to compare the normalised expression levels of the top 20 putative biomarkers to
continuous clinical characteristics such as blood D-dimer levels, oxygen saturation percentages,
and troponin levels recorded at the time of PE diagnosis[34-36] D-dimer, a breakdown product of
cross-linked fibrin, is often used to screen for venous thromboembolism because of its strong
correlation with thrombus burden. Table 1 demonstrates the highly substantial positive
relationships (p<0.001) between D-dimer levels and the genes S100A8 (rho=0.58), S100A9
(tho=0.54), and CXCLS (rho= 0.51). This was consistent with their roles in neutrophil activation
and inflammation, both of which are exacerbated in massive pulmonary thromboses. Genes
exhibiting negative relationships with oxygen saturation percentage (rho=-0.48%), FN1 (rho=-
0.46), and VWF (rho=-0.44) indicated respiratory dysfunction. SELE and VWF promote leukocyte
extravasation and platelet adhesion in response to endothelial injury, whereas FN1 supports
hypoxic stress responses. Their patterns of expression imply that they have a role in the

mechanisms causing respiratory distress.
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FIGURE.9. Identification of modules associated with the clinical traits of PE based on WGCNA
analysis. (A) Dendrogram of all differentially expressed genes clustered based on a dissimilarity
measure (1-TOM). (B) Clustering heatmap of module feature vector. (C) Heatmap of the
correlation between module eigengenes and clinical traits of CKD. (D) Top 20 of GO biological
processes analysis. (E) Top 05 of KEGG pathway analysis.

Figure 9 displays the normalised expression patterns of the six biomarkers that had the highest
relationships with both oxygen saturation and D-dimer for three typical PE patients from the

TCGA cohort. Case 1 required critical care assistance due to severe symptoms, Case 3 had a mild


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.18.572107; this version posted December 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

self-limiting PE, and Case 2 had a moderate clinical severity that was managed medically. The
expression of CXCL8 and S100A8/9 was considerably greater in the severe patient, suggesting
heightened neutrophil activation pathways that are known to deteriorate with large thrombotic
damages. In the moderate state, there was a higher level of upregulation of VWF and PLG, which
is associated with a lower level of ongoing thrombotic activity. These correlation and case study
investigations provide preliminary evidence that the prioritised transcriptional biomarkers capture
PE severity and prognosis-linked biology, hence validating their potential as novel non-invasive
predictors of disease outcomes. To sufficiently show clinical usefulness, a bigger prospective

validation is now necessary.[37]
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FIGURE. 10. Identification of hub genes for PE. The intersection of the key genes calculated
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by using embedded Plot.
Pathway Analysis:

Using Ingenuity Pathway Analysis (IPA), we performed thorough pathway and functional
enrichment analysis of the 142 selected PE biomarker genes to get a better understanding of the
pathological processes driving acute pulmonary embolism at the systems level. Based on
alterations in gene expression, IPA uses its vast manually curated knowledge base to forecast
disrupted pathways and functions. Granulocyte Adhesion and Diapedesis was the route with the
greatest overrepresentation (p-value 1.00x10-15). The many steps required for neutrophils to cross
the endothelium barrier and reach inflammatory sites are shown in this canonical route. Cell
surface adhesion molecules including SELE, ICAMI1, and VCAMI1, which promote initial
tethering and rolling contacts between neutrophils and activated endothelium under mechanical
pressures of blood flow, are examples of central mediators increased in our research. Neutrophils
migrate in a specific direction toward a chemoattractant gradient under the guidance of soluble

chemokines such CXCL1, CXCL2, and CXCLS. [38]
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FIGURE. 11. Identification of hub genes for PE. The intersection of the key genes calculated by
using Bubble Plot.

Neutrophils flatten and expand protrusions between endothelial cell junctions as they attach firmly
via B2-integrins. This is made possible by antimicrobial peptides DEFA1 and DEFA3, which are
widely distributed in neutrophil granules, and intracellular adhesion proteins such ICAM1, which
are elevated in PE. Their release facilitates neutrophil migration into adjacent tissues via
transcellular and paracellular routes, overcoming the endothelial barrier. One important first step
in exacerbating local thrombo-inflammatory damage responses that are aggravated in acute PE is

neutrophil extravasation.[39]
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FIGURE. 12. Immune infiltration analysis of PE as shown in the standard curve.
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Figure. 13. The proportion of immune cells in PE and control is shown in Dot Plot in figure .

Acute Phase Response Signaling (p=8.78x10-16), Complement System (p=1.68x10-14),
LXR/RXR Activation (p=1.09x10-11), Clathrin-mediated Endocytosis Signaling (p=1.06x10-10),
and Atherosclerosis Signaling (p=6.14x10-10) were among the other top-scoring canonical
pathways found by IPA in figure 12 and 13. Key effector proteins, such as the DAMPs S100A8
and S100A9 that start innate immune pathways, that were differently expressed in our PE cohort
were depicted by central nodes in these maps. The complement cascade components CFB and C3,
which promote opsonization and inflammatory amplification, are additional nodes implicated. One
significant hepatically produced regulator of hemoglobin homeostasis disturbed during hemolytic

processes generated by PE is the acute phase reactant haptoglobin. [40]
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Figure.14. Identification of hub genes for PE. The intersection of the key genes calculated by
using trackplot.

The top three substantially affected ontologies were anticipated by IPA's functional enrichment
analysis to be cellular movement, hematological system development and function, and
inflammatory response. All three had z-scores over the threshold of 2, which indicates activation.
This is in line with the anticipated pathophysiological effects of PE, which include immune cell
trafficking and mobilization, hemostatic balance disruption, and overt inflammatory reactions.
There was a considerable trigger for the infiltration and activation of leukocytes, as seen by

processes such chemotaxis, extravasation, and inflammatory signaling.[41]

TNF, IL1B, and IL6 are central pro-inflammatory cytokines that coordinate the onset of acute
phase reactions, the induction of cell adhesion molecules, and the recruitment of leukocytes in
response to pulmonary thrombotic injury. These regulators were significant upstream regulators
that were identified by IPA and may be responsible for the observed changes in gene expression.
It would be worthwhile to investigate innovative treatment approaches that target these cytokines
or the downstream signaling intermediates that they represent. To put it simply, the mechanistic
insights obtained from this higher-order pathway modelling demonstrate how the transcriptomic
reprogramming caused by PE pathophysiology interacts with interrelated biological systems to

influence critical processes like hemostatic/fibrinolysis balance dysregulation, complement
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triggering, neutrophil trafficking, and acute phase induction. In addition, it revealed new directions

that should be explored in order to create more effective therapies for acute pulmonary embolism.
Discussion:

The study utilized RNA-seq gene expression patterns, gene ontology keywords, and machine
learning modeling techniques to identify new transcriptional biomarkers for acute pulmonary
embolism. Using multi-omic data from the TCGA cohort, high-value biomarker candidates were
identified, requiring further validation and biological insights. This is the first instance of using
sophisticated computational methods for PE biomarker identification. Key aspects of the study
included using a well-annotated public dataset to associate gene expression patterns with clinical
factors, extracting context from GO annotations, and using machine learning to objectively score

predicted genomic characteristics. [42, 43]

For this assignment, random forest modeling worked best, correctly differentiating PE cases from
controls with an AUC >0.9 and balanced accuracy >85%. The ensemble's variety of individual
decision trees reduced the likelihood of overfitting to random error, while factors that were really
discriminating were detected using important measures such as the Gini index. Permutation testing
provided further support for the importance of the top-ranked molecular markers and GO

keywords.[43]

The study identified key pathophysiological processes in pulmonary embolism (PE), including
thrombosis, complement activation, inflammation, and wound healing responses. The most
predictive keywords were GO keywords, representing transcriptional programs reprogrammed
after acute pulmonary thromboembolic damage. The inflammatory response was the only best
discriminator, emphasizing the role of innate immune cascades in spreading PE. The study ranked
142 biomarker candidate genes altered in PE etiology, revealing interconnected activities like
hemostasis, immunity, angiogenesis, and endothelial integrity. Confidence in top-ranked effectors
(PLG, VWF, ICAM1, and SELE) was established through cross-referencing with independent
literature. [44]

The most clinically translatable finding is the connection between highly expressed neutrophil
activation markers S100A8/9 and DEFA1, suggesting pulmonary thrombus degree, and raised D-

dimer levels. These markers could be used as minimally-invasive proxies for severity. Preliminary
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connections between molecular signatures, prognostic markers, and severity classifications were
established by correlating extra biomarkers with clinical measures of blood oxygen saturation and
troponin levels. Case studies show that different expression patterns reflect varying illness
severity, with moderate cases having a balanced combination and severe PE characterized by

strong neutrophil activation and lesser thrombotic signals.[45]

The study used IPA-based pathway modeling to understand the mechanisms behind PE's genome-
wide modifications, including complement opsonization, acute phase induction, altered clot
dynamics, neutrophil recruitment, and upstream regulators identifying pro-inflammatory cytokines
TNF, IL1B, and IL6 as therapeutic intervention sites. However, the study's cross-sectional design
limited understanding of dynamic biomarker trajectories or resolution stages. [46, 47] The study
highlights the need for further research to understand the temporal development of molecular
fingerprints in relation to clinical progression. Although the TCGA cohort allowed for multivariate
modeling and subgroup analysis, independent prospective validation in PE cohorts is still
necessary. RNA-seq has technical limitations, such as inability to identify post-translational
changes. The findings provide a foundation for future clinical translation, emphasizing the
importance of validating prioritized gene signatures on clinical outcomes like mortality and
recurrent clotting. Biomarkers with strong predictive value may be included in clinical risk-

stratification algorithms.[48]

A proteomics study could offer insights into post-transcriptional regulation, interactions, and
secretome changes in PE, which are not visible from RNA profiles alone. Multi-omics layers could
reveal more dysregulated pathways and networks. Single-cell sequencing techniques could reveal
transcriptional reprogramming unique to different cell types. Upstream regulators and priority
pathways identified by IPA could lead to immunomodulatory or anticomplementary approaches,
including targeted inhibitors of adhesion molecules, pro-inflammatory cytokines, and neutrophil
recruitment pathways.[49] The study identifies potential biomarkers for acute pulmonary
embolism using transcriptional signatures, functional genomic datasets, and computational
modeling. These findings could help in risk assessment, prognosis, and tailored care for this

potentially fatal illness, requiring further validation and mechanistic research for better outcomes.

Conclusion:
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The study used gene ontology, differential expression analysis, and machine learning to identify
transcriptional biomarker signatures for acute pulmonary embolism (PE). The GEO gene
expression data was preprocessed to separate PE patients from controls, and genes with co-
expression patterns were identified using WGCNA. Dysregulated genes were identified using
DEG screening. Machine learning models were used to predict PE diagnosis with high accuracy.
Several strong molecular markers were identified, including S100A8/A9, CXCL8, VWF, PLG,
and F7-F12. These markers are linked to endothelial dysfunction, neutrophil activation,
coagulation, and hypoxic stress, which are exacerbated during PE pathogenesis. The study found
a minimum noninvasive biomarker profile for acute PE with translational value, and identified
genes could guide risk-stratification and prognosis. This could change early detection methods for
better PE control. Future research may focus on biomarker multiplexing, diagnostic model

optimization, and assessment within diverse clinical environments.
References:

1. Al-Sharydah, A.M., A.H. Al-Abdulwahhab, and H.A. Abu AlOla, An enigmatic case presentation of
Budd-Chiari syndrome with pulmonary embolism: An unusual syndrome with an uncommon
complication. Int J Surg Case Rep, 2018. 48: p. 16-21.

2. Bauersachs, R.M., E. Lindhoff-Last, and A.M. Ehrly, [Ambulatory treatment of an acute pulmonary
artery embolism in fresh thigh vein thrombosis using low-molecular-weight heparin]. Dtsch Med
Wochenschr, 1999. 124(49): p. 1485-8.

3. Blaszyk, H. and J. Bjornsson, Factor V leiden and morbid obesity in fatal postoperative pulmonary
embolism. Arch Surg, 2000. 135(12): p. 1410-3.

4, Calabrese, C., et al., ACE Gene I/D Polymorphism and Acute Pulmonary Embolism in COVID19
Pneumonia: A Potential Predisposing Role. Front Med (Lausanne), 2020. 7: p. 631148.

5. Cao, Y., et al., RNA-sequencing analysis of gene expression in a rat model of acute right heart
failure. Pulm Circ, 2020. 10(1): p. 2045894019879396.

6. Chen, H., et al., miR-106b-5p modulates acute pulmonary embolism via NOR1 in pulmonary artery
smooth muscle cells. Int J Mol Med, 2020. 45(5): p. 1525-1533.

7. Fabro, A.T., et al., Circulating Plasma miRNA and Clinical/Hemodynamic Characteristics Provide

Additional Predictive Information About Acute Pulmonary Thromboembolism, Chronic
Thromboembolic Pulmonary Hypertension and Idiopathic Pulmonary Hypertension. Front
Pharmacol, 2021. 12: p. 648769.

8. Fayed, M., et al., Emergent Cesarean Delivery in a Patient With Freeman-Sheldon Syndrome
Complicated by Preeclampsia, Acute Pulmonary Embolism, and Pulmonary Edema: A Case Report.
Cureus, 2021. 13(12): p. e20802.

9. Guo, W.,, et al., Successful chemotherapy with continuous immunotherapy for primary pulmonary
endovascular epithelioid hemangioendothelioma: A case report. Medicine (Baltimore), 2023.
102(7): p. e32914.

10. Halliday, S.J., et al.,, A multifaceted investigation into molecular associations of chronic
thromboembolic pulmonary hypertension pathogenesis. JRSM Cardiovasc Dis, 2020. 9: p.
2048004020906994.


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.18.572107; this version posted December 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

11. Halvorsen, M., et al., Whole Exome Sequencing Reveals Severe Thrombophilia in Acute
Unprovoked Idiopathic Fatal Pulmonary Embolism. EBioMedicine, 2017. 17: p. 95-100.
12. Harada, N., et al., Acute osteomyelitis/septic pulmonary embolism associated with familial

infections caused by PVL-positive ST6562 MRSA-IVa, a presumptive variant of USA300 clone. 1JID
Reg, 2023. 8: p. 16-18.

13. in, E., F. Deveci, and D. Kaman, Assessment of heat shock proteins and endothelial dysfunction in
acute pulmonary embolism. Blood Coagul Fibrinolysis, 2016. 27(4): p. 378-83.

14. Kessler, T., et al., Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary
embolism. ) Transl Med, 2016. 14(1): p. 120.

15. Klajmon, A., et al., Fibrinogen 8 chain and FXIIl polymorphisms affect fibrin clot properties in acute
pulmonary embolism. Eur J Clin Invest, 2022. 52(4): p. e13718.

16. Kline, J.A., et al., Leukocyte expression of heme oxygenase-1 [hmox1] varies inversely with severity
of tricuspid regurgitation in acute pulmonary embolism. Thromb Res, 2015. 136(4): p. 769-74.

17. Kotwal, S., et al., Thrombophilic abnormalities in patients with or without pulmonary embolism
following elective spinal surgery: a pilot study. Hss j, 2013. 9(1): p. 32-5.

18. Lang, I.M., K.M. Moser, and R.R. Schleef, Elevated expression of urokinase-like plasminogen

activator and plasminogen activator inhibitor type 1 during the vascular remodeling associated
with pulmonary thromboembolism. Arterioscler Thromb Vasc Biol, 1998. 18(5): p. 808-15.

19. Leskeld, J., et al., Genetic Profile of Endotoxemia Reveals an Association With Thromboembolism
and Stroke. ) Am Heart Assoc, 2021. 10(21): p. e022482.

20. Li, S.Q., et al.,, Comparative proteomic study of acute pulmonary embolism in a rat model.
Proteomics, 2007. 7(13): p. 2287-99.

21. Li, Z., et al., Protective effect of breviscapine in acute pulmonary embolism rats via regulation of
MCP-1 and IL-13. ) Cell Mol Med, 2018. 22(12): p. 6405-6407.

22. Lin, C.K., et al., VEGF mediates fat embolism-induced acute lung injury via VEGF receptor 2 and the
MAPK cascade. Sci Rep, 2019. 9(1): p. 11713.

23. Liu, T.W,, F. Liu, and J. Kang, Let-7b-5p is involved in the response of endoplasmic reticulum stress

in acute pulmonary embolism through upregulating the expression of stress-associated
endoplasmic reticulum protein 1. IUBMB Life, 2020. 72(8): p. 1725-1736.

24, Lupi-Herrera, E., et al., Polymorphisms C677T and A1298C of MTHFR Gene: Homocysteine Levels
and Prothrombotic Biomarkers in Coronary and Pulmonary Thromboembolic Disease. Clin Appl
Thromb Hemost, 2019. 25: p. 1076029618780344.

25. Matthews, D.T. and A.R. Hemnes, Current concepts in the pathogenesis of chronic
thromboembolic pulmonary hypertension. Pulm Circ, 2016. 6(2): p. 145-54.

26. Miao, R., et al., Alteration of endothelial nitric oxide synthase expression in acute pulmonary
embolism: a study from bench to bioinformatics. Eur Rev Med Pharmacol Sci, 2017. 21(4): p. 827-
836.

27. Miao, R., et al., Microarray expression profile of circular RNAs in chronic thromboembolic
pulmonary hypertension. Medicine (Baltimore), 2017. 96(27): p. e7354.

28. Obeidat, N.M., et al., Thrombophilia-related genetic variations in patients with pulmonary

embolism in the main teaching hospital in Jordan. Saudi Med J, 2009. 30(7): p. 921-5.
29. Ou, M., et al., Overexpression of MicroRNA-340-5p Inhibits Pulmonary Arterial Hypertension
Induced by APE by Downregulating IL-18 and IL-6. Mol Ther Nucleic Acids, 2020. 21: p. 542-554.

30. Oyaizu, T., et al., Src tyrosine kinase inhibition prevents pulmonary ischemia-reperfusion-induced
acute lung injury. Intensive Care Med, 2012. 38(5): p. 894-905.
31. Ozturk, N., et al.,, The Evaluation of Serum Copeptin Levels and Some Commonly Seen

Thrombophilic Mutation Prevalence in Acute Pulmonary Embolism. Biochem Genet, 2016. 54(3):
p. 306-312.


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.18.572107; this version posted December 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

32. Razzaq, M., et al., An artificial neural network approach integrating plasma proteomics and
genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism. Sci Rep,
2021.11(1): p. 14015.

33. Reznik, E.V., et al., ST-elevation myocardial infarction, pulmonary embolism, and cerebral ischemic
stroke in a patient with critically low levels of natural anticoagulants. J Cardiol Cases, 2020. 21(3):
p. 106-109.

34. Ruiz, X.D. and C.M. Gadea, Familial Mediterranean fever presenting with pulmonary embolism.
Conn Med, 2011. 75(1): p. 17-9.

35. Sato, H., et al.,, Gene expression profiling in the lungs of phenylhydrazine-treated rats: the

contribution of pro-inflammatory response and endothelial dysfunction to acute thrombosis. Exp
Toxicol Pathol, 2015. 67(2): p. 205-10.

36. Siddiqui, S. and U. Falak, A Quest to Find the Aetiology of Pulmonary Embolism Beyond the
Common: A Case of Dyshypofibrinogenemia Presenting as Pulmonary Embolism. Cureus, 2023.
15(4): p. e37647.

37. Soylu, A., et al., Platelet glycoprotein Ibalpha gene polymorphism and massive or submassive
pulmonary embolism. ) Thromb Thrombolysis, 2009. 27(3): p. 259-66.

38. Tang, Z., et al., Gene Expression Profiling of Pulmonary Artery in a Rabbit Model of Pulmonary
Thromboembolism. PLoS One, 2016. 11(10): p. e0164530.

39. Wang, G., et al., Machine learning-based models for predicting mortality and acute kidney injury
in critical pulmonary embolism. BMC Cardiovasc Disord, 2023. 23(1): p. 385.
40. Wang, H., et al., Analysis on the pathogenesis of symptomatic pulmonary embolism with human

genomics. Int ) Med Sci, 2012. 9(5): p. 380-6.
41. Wang, L., et al., Effects of aspirin on the ERK and PI3K/Akt signaling pathways in rats with acute
pulmonary embolism. Mol Med Rep, 2013. 8(5): p. 1465-71.

42. Wang, Y., et al., [Clinical and genetic analysis of pulmonary embolism induced by a novel gene
mutation of the antithrombin I gene]. Zhonghua Jie He He Hu Xi Za Zhi, 2021. 44(12): p. 1085-
1089.

43. Xiao, H.L., et al., Association between ACE2/ACE balance and pneumocyte apoptosis in a porcine
model of acute pulmonary thromboembolism with cardiac arrest. Mol Med Rep, 2018. 17(3): p.
4221-4228.

44, Xiao, J., et al., MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute
pulmonary embolism. J Transl Med, 2011. 9: p. 159.

45. Zagorski, J., et al., Chemokines accumulate in the lungs of rats with severe pulmonary embolism
induced by polystyrene microspheres. J Immunol, 2003. 171(10): p. 5529-36.

46. Zagorski, J. and J.A. Kline, Differential effect of mild and severe pulmonary embolism on the rat
lung transcriptome. Respir Res, 2016. 17(1): p. 86.

47. Zagorski, J., et al., Transcriptional profile of right ventricular tissue during acute pulmonary
embolism in rats. Physiol Genomics, 2008. 34(1): p. 101-11.

48. Zhang, J.X., et al., Expression of tissue factor in rabbit pulmonary artery in an acute pulmonary

embolism model. World J Emerg Med, 2014. 5(2): p. 144-7.
49. Zhu, R,, et al., MicroRNA 449a can Attenuate Protective Effect of Urokinase Against Pulmonary
Embolism. Front Pharmacol, 2022. 13: p. 713848.


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/



https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

F7. The horizontal line in the violin plot represents the median.

Avg.
o The red star represents the mean. Norm.
g Count
v - "I' 2.2
o
0 e = . " 2.0
= S 3 o
S 8 S S 1.8
= o = =
= = o =
_II —l _II _II
O 0 © © Percent
Expr.

(binned)

@ ~
. =>80%

cell_type

|| CL_0000066
CL_0000084

|| CL_0000097

CL_0000235

cell type

® CL_0000066
@ CL_0000084
@ CL_0000097
@ CL_0000235

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.18.572107; this version posted December 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

i
I |

log2(Normalized Counts + 1)

-
i

CL_0000066 7

CL_0000084 |
CL_0000097
CL_00002357

cell_type


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

OL_0000066

1_0000097

CL_0C00235

OL_ 0000236

CL_OCDOTTL

bioRxiv preprint doi: https://do
(which was not certified by pe

CL_O00aF TS

available under aCC-BY 4.0 Internatio?!I license.

.0rg/10.1101/2023.12.18.572107; this version posted December 19, 2023. The copyright holder for this preprint
2r review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

F7
Fl1Q 4

F12 -
PLAT -
SERPINE]
SERPINEZ
SELE
VCAML |
Kaml 4

FH1 4
THF
TFM 4

CHCLA o

PTHI o

WEGFA 4
L15 4

T2

12
Bd

=14
T2

17
nd

=14
B G

=13
Id

=] 4
L]

Lk

5.0k

. ;
B

a5 4k

[0t
ik
Median expression
517 in groug
i ri


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

Disease Related

Drug_Target
] . crame

Kinase

Peptidase

GPCR

Transcnption_Facior

Membrane_Protein

JI0F
WIII
I |I|I*|

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.18.572107; this version posted December 19, 2023 The copyright holder for this preprint
(which was not certified by peer review) is #he=atithor/funder, who has granted bi licen isplay the preprint in perpetuity. It ismade
——available under aCC-BY 4.0 Inter licen —

i

SELE
WCAML

= — = = “mm =
— — ol —— Expression
— — — R —
— — —— — 3
e — = 6
m— — @ — —_— —
m—— — e e e — —— >
— | —_— E &
——— = — _
—— — E Stimulated
— —_ —— - E NO
— == @ — = = W YES
| T — E
_ —_— - @ — —_— = —
— — —— — - =
— - — e — T
= = = =—= = B
= E 2 = - (] 2] — LL EI: =] E- o om 3 -
3R s o3 fEfFEIFIE G
- : o = g
fri

SERPINE] |||
SERPINEZ2


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

5000

4000

3000

eneN cutoffl

< 2000 -

bioRxiv preprint doi: https://doi.org/10

D, 2023. The copyright holder for this preprint
(which was not certified by peer revie'

b display the preprint in perpetuity. It is made

1000 -

celllistl


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

UMAP_L 3wk _32

MAP_1 3wk _X2

bioRxiv preprint €o

Stimulated

a RO
a YES

WMAP_13wk_X1
F?

https://doi.org/10.1101/2023.12.1

25 %,
2.0 E

15 3

2807 t

(which was not certified by peer review) is the author/fénder, who

LiMaR 1 3wk X2

LUMAP_ 13wk M2 UMAR 13wk X2

LIMAP_L 3wk _p2

Fid

his version posted December 19, 2
has granted bioRxiv a license to di

35

30
-
25"
Eﬂlﬁ
1'55
1 The'c
Iaythep

Fi:

pyright holder for this preprint
eprint in perpetuity. It is made

availablg ungder aCC-BY 4.0 International license. l
a.0
UMAP_1 3wk _X1 UMAP_13vek X1 UMAP_ 13wk _X1
SERPINEL SERPINEZ SELE
L]
i 4
3
A 4 ; 3 ;
) .'- JI-l : 3 HI 2 N
oo, | :
--!‘ -..:h - 1
o A 1
a o
WMAP 13wk X1 UMEP_ 13wk _X1 UMAP 13wk_X1
AN PLG CxiLE
5 3.0
ﬁ &5 =
4
i 20 )
, i £
- 5 |
1 1 1
2
1 0%
a oo
UMAr 13wk X1 UMAP 13k _X1 UMAP 13wk X1
FN1 THF TFF
?
i ﬁ L 14&: 5
5 KT -
Eu - -er_q.—ji‘ " E' g el
‘B el L & ,,f;j
3 i| a - iy E|
- 1 .lﬂ t F ' 1
a o
UrAP 13wk XL UMAF L Iwk_X1
iL1E PTX3
5 [
1 o : -
i o N
5 3 ¥ * k “f’“‘
: = X Lo TR
ool = 3 -
& F
s 5 3
[ = =
F l 1
a v
UMAR 13wk X1 UMAF 13vk X1 UMAF 13wk X1

1o
R

2.0

15

LIMAR 13wk a2

Lo

0.5

0.0

B
UMAR 13wk a2

UMAP 13wk X3

UMAP_13wk_X1
WCAML

UIMAP 1 3wk_X1
VWF

. .
};.z

UMAP 1 3wk_X1
LG

F o

UMAP 13wk _X1

a5
EX]
25
20
1%
Lu
[
aa


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

Expressed

seuratz

bioRxiv preprint doi: http{
(which was not certified &

,
://doi.org/10.1101/2023.12.18.572107; this version posted December 19
y peer review) is the author/funder, who has granted bioRxiv a license to
available under aCC-BY 4.0 International license.

, _'h.'-r' o
] }%3:*1ih"e‘copyright hol
isplay the preprint in pg

Both
@ F10
@ lllb

None

er for this preprint
rpetuity. It is made

seuratl

Expressed

seurat2

-

L
g
e,

seuratl


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

Expressed

seuratz

bioRxiv preprint doi: https
(which was not certified 4

://doi.org/10.1101/2023.12.18.572107; this version posted December 19, 2023. The copyri
y peer review) is the author/funder, who has granted bioRxiv a license to display the prepri
2 available under aCC-BY 4.0 International license.

seuratl

Expressed

seurat2

seuratl

Both
None
® Serpinel
@ Vegfa

ht holder for this preprint
t in perpetuity. It is made

Both
None
@ Serpinel
@ Vegfa


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

Expressed

@ lil1b
MNone
o Plat

seuratz

bioRxiv preprint doi: httpg://doi.org/10.1101/2023.12.18.572107; this version posted December 19, 2023. The copyright holfler for this preprint
(which was not certified Hy peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in pgrpetuity. It is made
available under aCC-BY 4.0 International license.

seuratl

Expressed

' Both

@ F10

@ lI1b
None

seurat2

seuratl


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

0.40
0.35
0.30

W
~
o

0.20
0.15
0.10
0.05
-0.00

Tujzauidiagdy) Tl Tweop Ol Eauidiasymp 0Td  3eld Twed| juj eybap

pe)
£3
k2
tC
22
£05
sc
2e
2z
zc
&5
Oh
1

zdai NN

Tdai NN

Zdai sz NN

1dal sz NN

Zdau jonyuod

1daJs josyuod

Zdai g7

Tdai g€

Zdai gzl

Tdas gzl


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

0 we. rest 1 wa. rest 10 s, rest
125 125 1i5
130 100 LoD
E 75 = ri=]
# n é
54 4 %0 - ot sa{ @ 8 g 2
i : SH P d YT
2% Eigfggi 7% 2 8k 3 % 5235
0.0 2.5 5.0 7.5 (i X1] 2.5 5.0 7.5 (BN} 25 5.0 7.5
11 ws. rest 12 vs. rest 17 s, riest
125 125 125
1030 1 1040 1 LoD
-
o 7h 5 i
» i
w8 f 5y 3gzz| % {3 8 g i
bioRxiv preprint doi: https://doi.ord?ltallﬂlli)zill;lﬁ?ilo ; this v rsiongoﬁi@e&nieralg,zo 3..Ihe copyright holder rtﬁis reprint E £
(which was not certiffed by peer review) is the author/funder, vﬁ\ohas ranted bio alicehs todis aﬂthe prepfint in perpetui .Itﬁ &l § & %
available under aCC-BY 4.0 International license.
60 25 50 715 00 25 50 15 po0 25 50 15
14 ws, rest 15 v, rest L6 ws. rest
125 125 125
140 100 Lo
g 75 73 3
50 =0 § 50
- 5 o — = w oo = - - =
L R 251 '"g #E g" 75 = 282 .5z
3gz¥s§§iﬁé i3 Fasredd 3£553535:E
60 25 50 715 00 25 50 15 ao 2% %0 715
17 vs. rest 2 ws, fest E 3 vs. rest
175 125 m.ig%'i Ez=
sf28,4
104 4 100 4 100 EL R
L)
E 75 - 75 4 23 i)
) 3333 = -]
50 8 50 g E, : E ' § ~ &0
254-3-2 z 251 ol R E ¥ 3 25
e 3 & =
0.0 2.5 5.0 7.5 (1 L1] 2.5 5.0 7.5 Qoo 25 5.0 7.5
4 wo. pest 5 wa. pest 6 v rest
125 1 125 1 E 5 125
100 - wel —E § 2 3 s 100 =T
: " e a L] j E‘ E g = 2z - [l T - . .! o
= nEn 3 AL -
Ejs.pgliiiiiii 75 1 ?5i£fﬂil§fgj
20 =201 2]
25 25 i
60 25 50 75 00 25 50 715 a6 25 50 75
T e rest B ws. rest 4 s rest
125 + 125 o 125
a0 100 LoD
§ 75 = 5 75
= 3 -~ P
2235 o83
m.gii‘grﬂkuﬁi sod - 50
75 75 E E E é E g g E‘ iR 5 % % o £ i E 2
A 3 SEIS 583
00 2% S0 7% 00 2% S0 715 oo 25 S0 7%
raFkng Fning rarking



https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

IL25 replq4 - - - e Q @ o o - 4.1k
25repz24 + *+ +« + - @ - - ® © @ -
L33 rept{ + - - » o) - @ 0@ - 3.5k
L33rep2{ + - - » o @) - - @ 0@ - - 4.2k
NN NLEwcmepiqy * + * ¥ O °© o @ - 49 Fraction of cells
NMU_IL25 rep24 - - -+ © @) c o @ - 4 5k in group (%]
NMUrepl{ - - e - O - - @ o s © 0080

bioRxiv preprint doi: https:“bi‘“tb/]mmzbzs.12.18.572'107; this versiBn postéd Dedenber 19, 2023. The‘JyrigM holdet for thi preprint 4.6k = 1015202530

(which was not certified by peer reView) is the puthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

~pvailable under aCC:BY 4.0 International E“ense._ & s o 1k
control_repl © Mean expression
control_rep2 - = + @ - - Q = - 4.5k in group
I I r I I L] L] L] ] || 1] i || | I
= N T I = = = Ta) [13] L 0.00 0.25
o = =13 —_— [Pl
T £ 2EESEFET 9 S
a & v u ]
T @ -
uy

2.50 1 .
235

2.00- @

o
O | T o
ﬁ @
I @

%ul 50 .
— @

1.25 - &

&
[
1.00- ?
L
.I
0.75- ...
[ ]

0.50-

L] L ¥ L]

2 4 6 8 10 12 14
-Log10(FDR)


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

|
* Group

Group
I | -Log1O(FDR)
Impact
0.5 Log2FC

P—value

0

bioRxiv prepring doi: hifps://dgi.orf§ 7; this version posted D
(which was not [certifie der rgvie ho has granted bioRxi

Y 4.0 atio i _1

44!
LVT

60
90—HEO Y


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

Fi-

F10-

Fl12-
PLAT-
SERPINEI -
SERPINE2-
SELE-
VCAMI -
ICAMI1-
PLG-
CXCLSB-
PAll -

bioRxiv preprint doi: https://dw 101/202 18.57210
(which was not certified by pe&r révi is the authdr/funder, wRQ

FN 1 _ available under g€
TNF- O
TFPI- O
IL6- O
VEGFA- O
O

O

C

value

o © © © 9 9 © @ ©°o ©O

0

Q00000000000
O0O00OO0O0OOQOQOCOCO00

o

g version pogied Decembery®, 2023. The cojﬂlﬁwﬁlder for this preprint
as granted biORxiv a licenseo display the preprint in perpetuity. It is made
BY 4.0 International license

() 3
o 0

O

IL1IB-

o
o]
o
o
a
PTX3- 0

&
o -
& &


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

2,474

1.98 - A

1.724 ]
.89 -
1.61 -
1.51 -
1.434
1.324

1.24 4 A

bioRxiv preprint doi: https://doijorg/10.1101/2023.12.18.572107; this version posted December 19, 2023. The copyright holder for this preprint
(which was not certifieq b)] peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
B available under aCC-BY 4.0 International license.

1.09 4 @
1.03 1
(.98
0.91 -
(.85 -
0.78 4
0.72+
0.67 -
0.62 4
0.57 4

L =

10

15

[ ]

B 4+ =

connt

ICAMI
IL1B

L6

PAILL

PLAT

PLG

PTX3
SELE
SERPINE1
SERPINEZ
TFPI

TMNF
VCAMI
VEGFA
VWF


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

ILIH*’ _
PTX3A
veGFa{ @ S
ie{ @ =
TFPI [ =]
TNF 1 i =
FN1 & =
VWE - @

bioRxiv preprint doi: https://doi.ord?l&ill)ﬂ
(which was not certified by peer review) is tf

CXCLE 1

2023.12.18.572107; this vlm posted December 19, 2023. The copyright holder for this preprint

LTS TMade

PLG 4

ICAMI A

VCAMI o

SELE -

SERPINE2 -

SERPINE] -

60 kst (80| ko |co| pord o] ks (S0 ki o) Fed fe

PLAT -+
F12+
F10+ ®
F7+ , ! ! 1 -
0.5 1.0 1.5 2.0 2.5

~loga(pvalue)
0.4

.6
-0.8

-1.0

count


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

¥

oo -
0.67 I =]

0.72 4l [=]

0.75 =]

0.85 J [

0.91 1l [ ]

0.95 JIH [=] -logw(pvalue)
1.03 1 [Z] 5

1.0o 1 =]

115 =] i
P e , _ — HIl E

bioRxiv preprint doi: https://doi.org/10.110

]

] 20 4{) 60 il
Counts
. Le]
Mat
Sarpinel i T
Serpired || I Do bt ool ok et T T ) ik
veaml I il el ol W i i i
““"’“ﬂﬂWlnihlu (TTEN T | il el 0 el
Tl
Fnl I il |
Tr N o o s 11 0t 0 k] L
o Sl o OB Do oS |k o N o ) il e
0 bl 1 (0l o bl i bl M
Kega
N1k
g i 3 £ g £ £ g § g
0§ 0§ ; : : : :
E §

sample


https://doi.org/10.1101/2023.12.18.572107
http://creativecommons.org/licenses/by/4.0/

