

1 **A cautionary tale on organelle proteome prediction algorithms: limits and opportunities**

2

3 Sven B. Gould, Jonas Magiera, Carolina García García, Parth K. Raval

4 Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, 40225 Düsseldorf, Germany

5

6 **Abstract**

7 Mitochondria and plastids import thousands of proteins. Their experimental localisation remains a
8 frequent task, but can be resource-intensive or even impossible especially for species that are genetically
9 not accessible. Hence, hundreds of studies make use of (machine learning) algorithms that predict a
10 sub-cellular localisation based on a protein's sequence. Their reliability across evolutionary diverse
11 species is unknown. Here, we evaluate the performance of three commonly used algorithms (TargetP,
12 Localizer and WoLFPSORT) for four photosynthetic eukaryotes, for which experimental plastid and
13 mitochondrial proteome data is available. The match between algorithm-based predictions and
14 experimental data ranges from 75% to as low as 2%, with up to thousands of false positives being
15 predicted. Results depend on the algorithm used and the evolutionary distance between the training and
16 query species. Specificity, sensitivity and precision analysis underscore severe limitations outside the
17 training species and especially for plant mitochondria, for which the performance borders on random
18 sampling. The results highlight current issues associated with prediction algorithms and present an
19 opportunity for the next generation of protein localisation prediction tools that should train neural
20 networks on an evolutionary more diverse set of organelle proteins for optimizing their performance
21 and reliability.

22

23 **Keywords:** protein targeting, prediction algorithms, machine learning, mitochondria and plastid
24 proteomes

25

26 Correspondence: gould@hhu.de; raval@hhu.de

27

28 **Introduction**

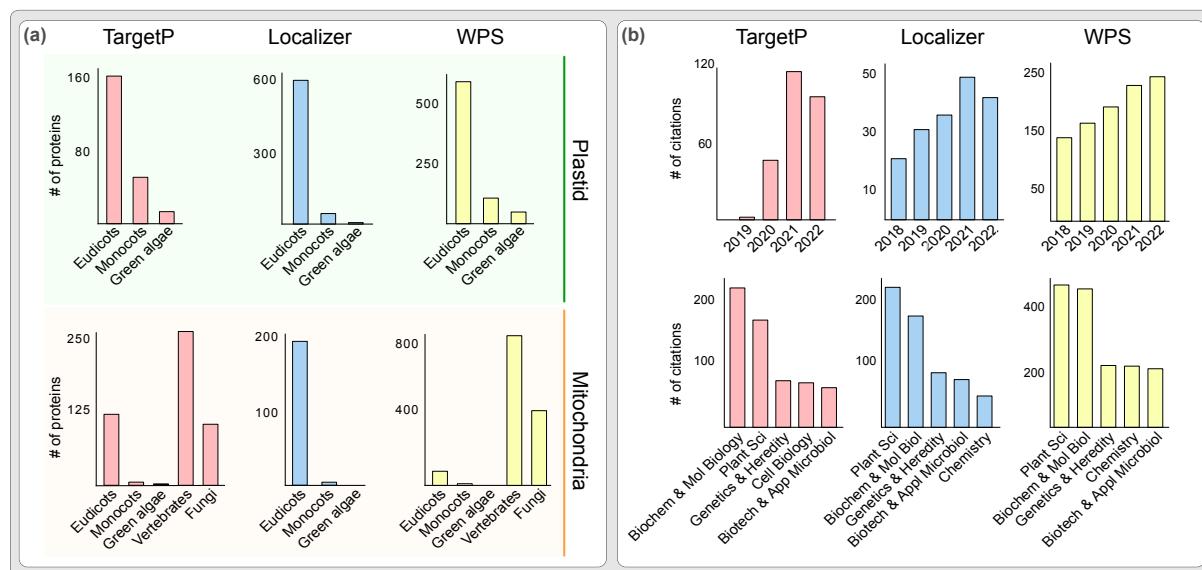
29 A plant encodes 20-30,000 proteins on average, of which many thousand are targeted to intracellular
30 membrane bound compartments after or during translation¹⁻³. The compartments owe their origins to
31 bacterial ancestors directly or indirectly⁴⁻¹². Mitochondria and plastids are of endosymbiotic origin and
32 have transferred a majority of their coding capacity to the nuclear genome in the course of their
33 transition from bacterium to organelle¹³⁻¹⁵. As a consequence, the vast majority of their proteins are
34 translated in the cytosol and need to be imported. Protein translocation-related components of
35 mitochondria such as TOM40, VDAC, TIM22, TIM23-PAM, OXA, SAM, HSP70, or the
36 mitochondrial pre-sequence protease are likely of alphaproteobacterial origin¹⁶⁻²², while many
37 components of the plastid import machinery such as TOC75, OEP80, TIC20, the TAT pathway and
38 also several signal processing peptidases are of cyanobacterial origin²³⁻³⁴. Despite their evolutionary
39 independent roots, the import machineries of mitochondria and plastids are united by principles of how
40 they recognize the vast majority of their cargo.

41 Cytosolically-translated proteins destined for the mitochondrial matrix or the plastid stroma, thousands
42 in sum, carry N-terminal targeting sequences (pNTS for plastid; mNTS for mitochondria) with broad
43 similarities and subtle differences. They concern the overall amino acid composition, processing
44 peptidases and translocation motifs, and an overall charge difference among the more N-terminal
45 region, in which mNTSs are enriched in arginine and pNTS are enriched in hydroxylated amino acids³⁵⁻
46 ³⁹. The subtle differences in NTS are still not fully understood, but determine whether a preprotein is
47 targeted to mitochondria, plastids, or in the case of dual targeted proteins to both compartments
48 simultaneously⁴⁰. Considering the many remaining obstacles of *in vivo* protein localisation (time,
49 resources, overexpression artefacts, impact of the tags on the cargo, or the simple unavailability of
50 transfection methods for non-model systems)⁴¹⁻⁴⁷, hundreds of studies rely on algorithms that depend
51 on the difference in NTS features for their localisation prediction. Furthermore, such prediction
52 algorithms are integral parts of widely used databases such as Phytozome⁴⁸ or they are nested inside
53 software packages such as InterProScan⁴⁹. Hence, the algorithms are often used routinely, sometimes
54 without a conscious decision to do so, and usually with a lack of knowledge on how reliable they work
55 outside of the species on which they were trained.

56 *In-silico* localisation prediction from amino acid sequences were implemented concomitant with our
57 understanding of cellular protein sorting⁵⁰⁻⁵⁴. Amino acid composition was used to differentiate between
58 intracellular and secreted proteins⁵⁵⁻⁵⁷, followed by the use of N-terminal features (e.g. charge and
59 hydrophobicity) for signal sequence detection and cleavage site identification^{52,58,59}. This channelled
60 into early prediction algorithms such as PSORT⁶⁰ that relied on a relatively simple set of ‘if and then’
61 rules to predict signalling peptides and secreted proteins in Gram negative bacteria. PSORT II, an early
62 formal expansion now including eukaryotic compartments⁶¹, incorporated a more sophisticated
63 technique of k-nearest neighbours (kNN), which searches the query against a database of proteins with
64 known localisations and assigns localisation of the nearest neighbours to the query. PSORTb^{62,63}
65 introduced machine learning to the pipelines by including support vector machines for accumulating
66 protein sequence features relevant to localisation. This culminated into WOLFPSORT (WPS from
67 here), one of the first sophisticated machine learning algorithms^{64,65}. The algorithm uses approximately
68 20 features of the query sequence to calculate feature vectors, closest neighbours of which from the
69 database are used for assigning a localization prediction. More recently, supervised machine learning
70 was included in a set of programs including Localizer and TargetP^{66,67}. Localizer is a classifier algorithm
71 trained to differentiate between N-terminal regions of known organellar and non-organellar proteins.
72 Using the boundary conditions computed from the training dataset, it classifies query proteins. TargetP
73 2.0 (TargetP from here) is a more sophisticated algorithm that utilises bidirectional neural networks and
74 multi-attention mechanisms on a network of interconnected, long short-term memory cells⁶⁷.

75 Apart from the training and sorting operations, the training datasets themselves also vary (Fig. 1a). WPS
76 for example used a database of 2004 (Uniprot v45.0), a time at which no genomes for bryophytes, ferns,
77 let alone streptophyte algae or multiple organelle proteomes were available. Its training dataset was
78 almost exclusively based on eudicot (for plastid) and animal (for mitochondria) sequences and the
79 proteins were selected based on their annotation from the gene ontology database (GO; evidence codes:
80 TAS, IDA, IMP; cut-off 12.4.2004). Two of these evidence codes (TAS and IMP) are indirect⁶⁸ and
81 when used as a starting point, prone to multiplying errors. Localizer was trained on several hundred
82 Viridiplantae organelle proteins from Uniprot (database until March 2016) and validated on the cropPal
83 dataset (barley, wheat, rice, maize) as well as Uniprot Viridiplantae organelle proteins that were added
84 between March and September of 2016. Of these Viridiplantae proteins, a vast majority was of eudicot
85 origin. TargetP used a relatively recent training data, including some green algal proteins, but still
86 leaning heavily towards eudicots.

87 To date, TargetP, Localizer and WolFSORT are among the algorithms with a superior reported
88 accuracy and over the years, they have been used abundantly across disciplines (Fig. 1b) but are rarely
89 benchmarked. Therefore, the impact of the skewed training on the performance and reliability of these
90 algorithms outside angiosperms are unexplored. We made use of available, experimentally verified
91 plant proteomes of mitochondria and plastids as well as protein clustering to investigate the reliability
92 of these algorithms across species ranging from algae to angiosperms. Our analysis brings forth
93 inadequacies of these algorithms, caused by a combination of their inherent *modus operandi*, a lack of
94 training on a diverse dataset, the complex biology of the plant cell and the evolutionary dynamic nature
95 of the plant organelles⁶⁹. Tracing the error sources allows to sketch an approach towards developing
96 better algorithms that are capable of serving the diversity of the plant kingdom.



97

98 **Fig. 1: Targeting prediction algorithms are frequently cited across disciplines and rely on a limited training**
99 **set. (a)** Taxonomic distribution of plastid and mitochondrial training datasets used for the three commonly used
100 **predictions tools TargetP, Localizer and WoLF PSORT (WPS). (b)** Distribution of citations across different
101 **disciplines for the three commonly used predictions tools TargetP, Localizer and WoLF PSORT (WPS) and for a**
102 **time period ranging from 2018 until 2022. Numbers according to the Web of Science.**

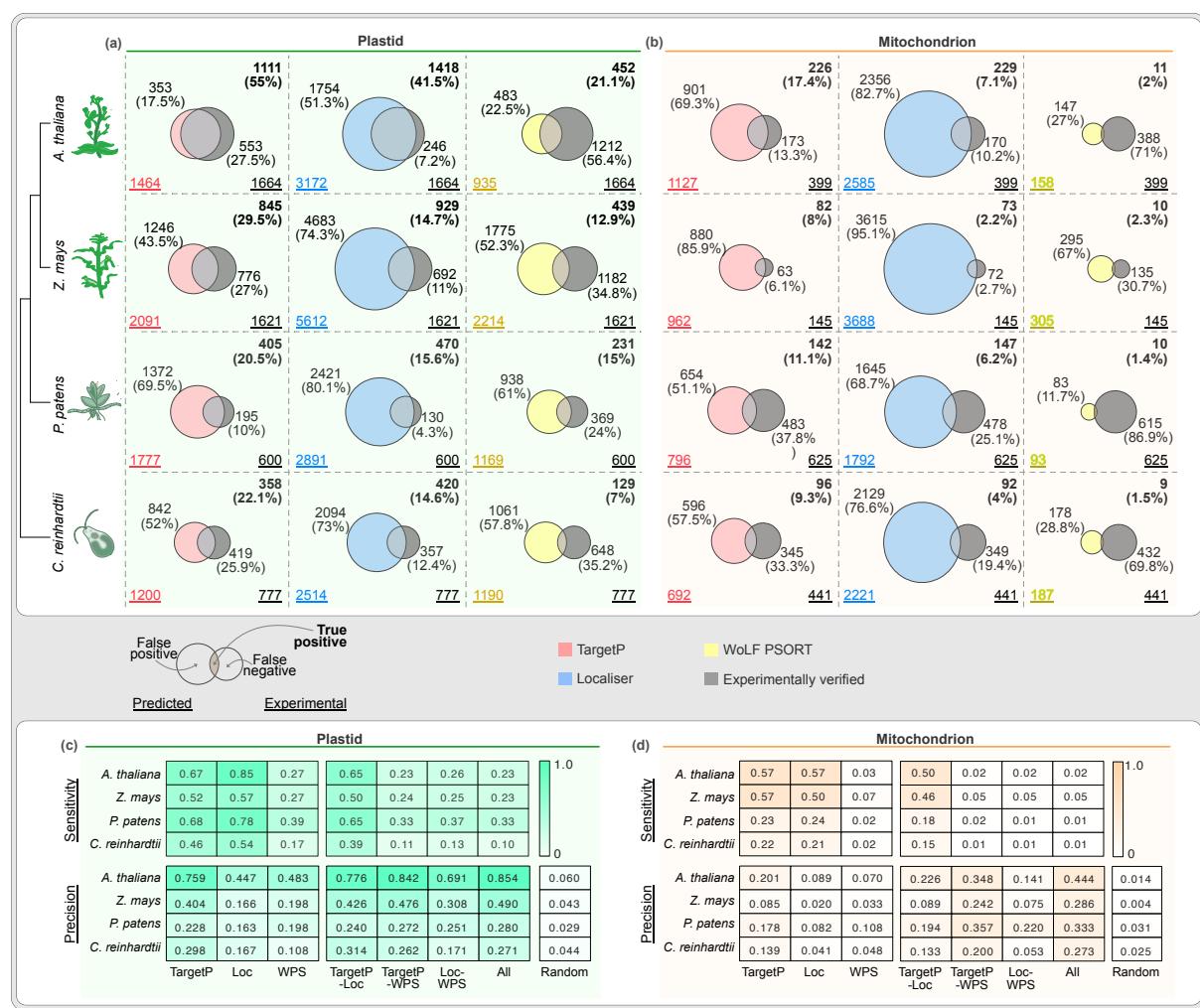
103

104

105 **Results**

106 **Algorithm performance declines with evolutionary distance from their training species**

107 At first, we compared the organelle proteomes predicted by the algorithms (the *in-silico* proteomes)
108 with those of experimentally verified organelle proteomes (the *in-vivo* proteomes). Across species, *in-*
109 *silico* proteomes comprise 3-15% of the proteins encoded within the genome of a given species, in
110 contrast to the *in-vivo* numbers that are below 5% (Fig. S1). Overlaps between *in-silico* and *in-vivo*
111 proteomes show a substantial false positive rate for all, except for the *in-silico* plastid proteome
112 predicted for *Arabidopsis* by TargetP (Fig. 2a,b). Localizer and WPS show larger fractions of false
113 positives than TargetP, especially for mitochondria (Fig. 2b). The smallest overlap between *in-silico*
114 and *in-vivo* proteomes are found for WPS. False negatives are generally predicted fewer on average
115 than false positives, but still to a substantial number (Fig. 2a,b). The sensitivity of TargetP and Localizer
116 are similar, above 0.5 for plastid (i.e., correctly identifying more than half of the plastid proteins) and
117 below 0.5 for mitochondria, whereas that of WPS is 0.3 or lower (Fig. 2c,d). Since 2-5% of the proteins
118 encoded in a nuclear genome have been localised to mitochondria or plastids (Fig. S1) *in-vivo* through
119 proteomics or tagging, a random sampling has a precision of 0.02-0.05; a perfect algorithm should have
120 a precision of or close to 1. Between these two theoretical extremes, established algorithms currently
121 perform closer to random sampling than to the best-case scenario, especially for mitochondria. The best
122 improvement over a random prediction is observed for TargetP on *Arabidopsis* data, which however
123 shifts ever closer to random the greater the evolutionary distance from *Arabidopsis* gets. Combinations
124 of algorithms also reflect similar trends, where TargetP and Localizer together perform marginally
125 better than the two individually, as previously reported⁷⁰, albeit confined to the angiosperm plastid (Fig.
126 2c). For mitochondria, the same combination captured less than 50% of verified proteins across species,
127 and any other combination captured less than 5% (Fig. 2d) due the poor performance of WPS. The
128 precision too, of all combinations, was high in *Arabidopsis*, but declined moving towards
129 *Chlamydomonas* and regardless of combination (Fig. 2c,d). To summarize, the predictions (for any
130 individual algorithm or any combination) are more reliable for angiosperms and with a rapidly declining
131 reliability with respect to algae and bryophytes (Fig. 2).



132

133 **Fig. 2: Performance of algorithms decline with increasing evolutionary distance from *Arabidopsis*.**
134 Comparison of predicted versus experimentally localised plastid (a) and mitochondrial (b) proteome numbers.
135 Each Venn diagram of the top panel shows an overlap between predicted (left circles) and experimentally verified
136 organelle proteomes (right circles, grey). The underscored numbers in the bottom corners show the total number
137 of predicted (bottom left) and experimentally confirmed proteins (bottom right). The numbers of proteins that
138 overlap (true positives) are provided in the top right corner in bold, while the numbers of non-overlapping ones
139 (false positives) are shown next to each circle. See also the key for the Venn diagrams on the bottom left.
140 Sensitivity, specificity and precision of individual algorithms and their combinations for plastid (c) and
141 mitochondria (d).
142

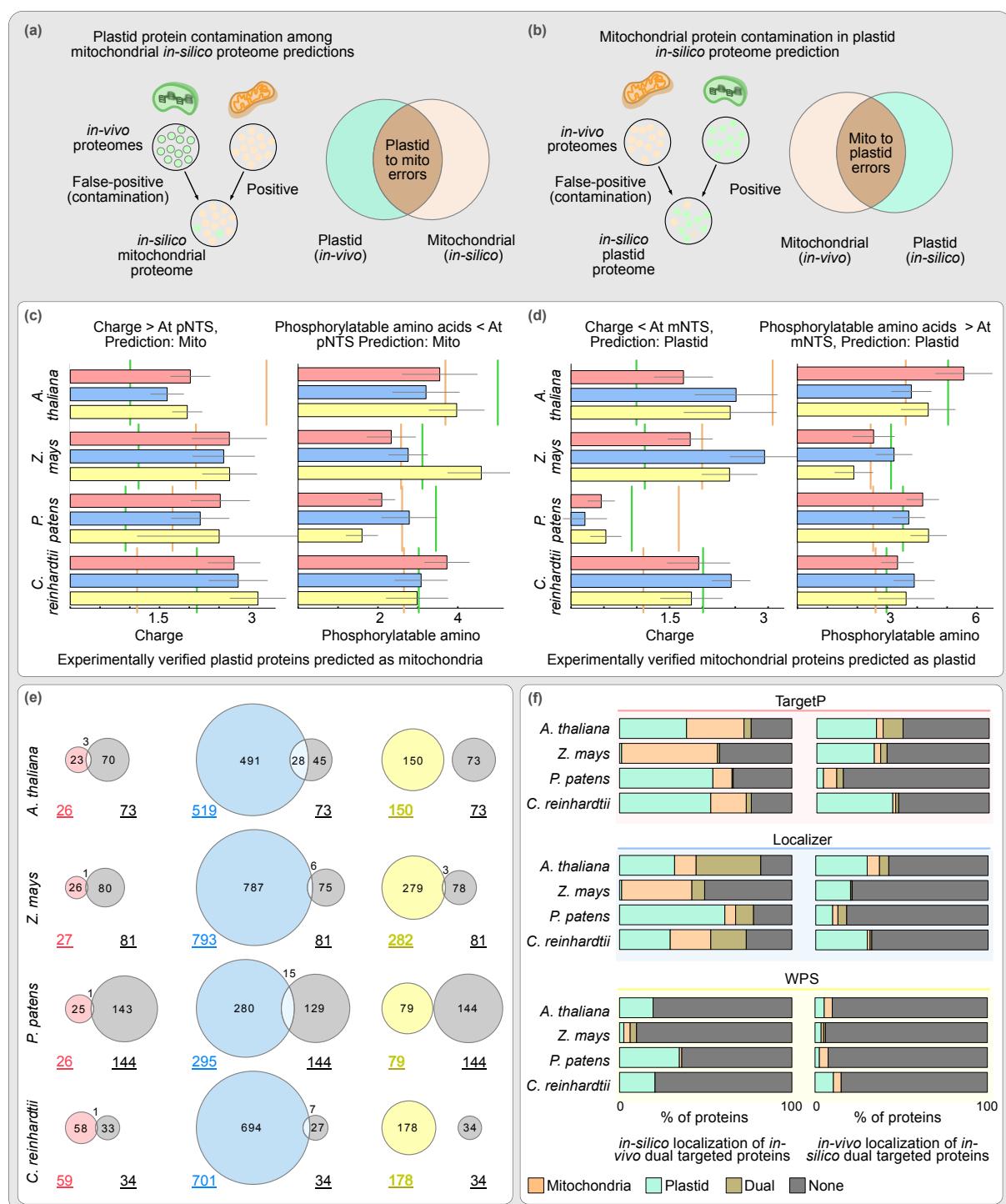
143 The training bias of algorithms causes *in-silico* cross-organelle contamination

144 One likely source of false positives is the errors between the two organelles, especially considering the
145 evolutionary similarities between them and their protein import machineries. For example, a plastid
146 protein can contaminate an *in-silico* mitochondrial proteome (Fig. 3a) or vice versa (Fig. 3b). Such
147 errors can be quantified by overlapping the *in-vivo* proteome of one organelle with the *in-silico*
148 proteome of the other: an overlap between the *in-vivo* plastid proteome and the *in-silico* mitochondrial
149 proteome, highlights those plastid proteins that “contaminated” the *in-silico* mitochondrial proteome
150 (Fig. 3a). We observed that on average about a hundred or more plastid proteins were found across the
151 four species in the *in-silico* mitochondrial proteomes (more frequently so with Localizer, in particular
152 for the bryophyte and alga, Fig. S2) and a smaller number of mitochondrial proteins were identified in
153 the *in-silico* plastid proteomes.

154 While N-terminal targeting sequences of plastid and mitochondrial proteins (pNTS and mNTS,
155 respectively) share similarities, an mNTS contains a statistically significant higher net positive charge,
156 while pNTSs contain a high number of serine and threonine residues among their first 20 amino acids³⁶.
157 It seems these differences became more pronounced later in plant evolution, since they are most striking
158 in the angiosperms (Fig. 3c,d, vertical green and orange lines) – this is a good time to remember that
159 more than 95% of discussed training datasets come from angiosperms (Fig. 1a). Algorithms are inclined
160 to sort NTSs based on these features and any NTS that deviates would be prone to an erroneous cross-
161 organelle prediction, declining the performance of the algorithm. Indeed, NTSs of plastid proteins that
162 showed a higher charge and/or a lower number of phosphorylatable amino acids than the average
163 *Arabidopsis* pNTS, were predicted to be mitochondrial (Fig. 3c) and NTSs of mitochondrial proteins
164 that showed a lower charge and/or higher number of phosphorylatable amino acids than the average
165 *Arabidopsis* mNTS were predicted to be plastid proteins (Fig. 3d). These differences underscored that
166 algorithms are trained to recognise and sort evolutionary late angiosperm NTSs, a bias that causes error
167 when they are faced with NTSs of algae and more ancient plant species.

168 The substantial number of cross-organelle prediction errors motivated us to investigate the predictability
169 of proteins that are *in vivo* targeted to both, plastid and mitochondria. More than hundred such dually
170 targeted proteins are identified in *Arabidopsis*⁴⁰, the plant proteomes of plastids and mitochondria
171 corroborate such numbers and that is how we treated all proteins that overlapped in the proteome
172 analyses. Algorithms can also predict the same protein to be plastid and mitochondria localised, either
173 explicitly (by listing both these compartments) or implicitly (by providing similar probability scores for
174 these two compartments). We considered such cases as predicted dual targeted proteins. *In-vivo* and *in-*
175 *silico* dual targeted proteins hardly overlap, with hundreds of false positive and false negatives (Fig.
176 3e). Except for maize, TargetP predicted most of the experimentally dual localized proteins (i.e. plastid
177 and mitochondrion) to be only plastid localized or not to be organellar at all (Fig. 3e,f). Localizer
178 performed better than the other two with respect to quantity, but at the substantial cost of hundreds of
179 false positives, and WPS failed to predict dual targeted proteins altogether. On the whole, all algorithms
180 perform poorly on this task, sorting experimentally dual targeted proteins to only the plastid or no
181 organelle at all, while also labelling non-organellar or plastid proteins falsely as being dual targeted
182 likely as a result of cross-organelle errors (Fig. 3a-d, Fig. S2).

183 In summary, a combination of training bias and the evolution of targeting sequences ever since the
184 origin of eukaryotes with mitochondria, culminates into cross-organelle errors which also affect the
185 predictability of the dual targeted proteins.



187

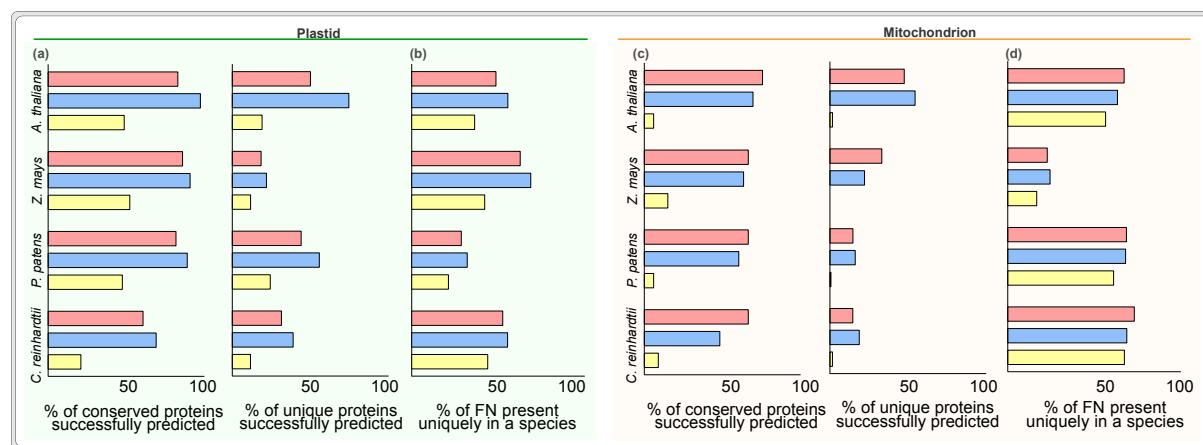
188 **Fig. 3: Cross-organelle errors in proteome prediction due to physio-chemical properties of the NTS.** Cross
 189 organelle prediction errors could be either because an *in-vivo* plastid protein is *in-silico* mitochondria localised
 190 (**a**) or *vice versa* (**b**). The overlaps between cross-organelle *in-vivo* and *in-silico* proteomes identifies these
 191 predictions errors. Analysis of the first 20 amino acids of pNTSs incorrectly predicted to be mitochondrial (**c**) and
 192 *vice versa* (**d**). Average charge and phosphorylatable amino acids for NTS from all verified organelle proteins of
 193 each species are indicated by vertical green (pNTS) and orange (mNTS) lines. Error bars indicate standard error
 194 of mean (N=4-331, Figure S2) (**e**) Overlap between predicted (left) and experimentally localised (right, in grey)
 195 dual targeted proteins. (**f**) Predicted (*in-silico*) intracellular locations of experimentally verified (*in-vivo*) dual
 196 targeted proteins (left column) and experimentally verified (*in-vivo*) intracellular locations of proteins that are
 predicted (*in-silico*) to be dual targeted (right column).

197

198 **Evolutionary dynamics and the diversity of organelles contribute to prediction inaccuracy**

199 The endosymbiotic organelles of algae and plants have been co-evolving for over a billion-years and
200 their proteomes continue to change and adapt^{69,71,72}. During plant terrestrialization for instance, the
201 plastid proteome of the algal ancestor expanded from a few hundred to that of the angiosperm plastid
202 housing about 1500 proteins⁶⁹. The algorithms predict there to be 1000 to 2000 plastid (and
203 mitochondrial) organellar proteins even outside of angiosperms, 25% or less of which appear to be true
204 positives (Fig. 2). Together with the general pattern of the prediction performance worsening with the
205 evolutionary distance to model angiosperms increasing, it prompted us to consider evolutionary
206 dynamics of organelle proteomes as another error source.

207 We clustered all proteins from the four species into protein families⁷³, filtered the experimentally
208 verified organelle protein families, and sorted them to be conserved (present in all four species) or to
209 be unique (present in only one species) (Fig. S3, Table S1). Around 150 protein families were found to
210 be conserved across all proteomes, whereas a few hundred were unique. TargetP and Localizer missed
211 around 30% of the conserved proteins, and WPS missed more (Fig. 4a). For the unique plastid proteins,
212 TargetP and Localizer performed well for *Arabidopsis* with declining success for the other species.
213 WPS missed more than 75% of the unique proteins across the species (Fig. 4a). For the conserved
214 mitochondrial protein families, Localizer and TargetP predicted 50-70% correctly, whereas WPS
215 missed more than 90% (Fig. 4c). For mitochondria-unique proteins, the success rate ranged from 20-
216 50% for Localizer and TargetP in *Arabidopsis* and other species, while WPS missed more than 90%
217 across the species (Fig. 4c). More than half of all protein missed out across the algorithms (i.e. false
218 negatives of Fig. 2), were present in only one of a given species (Fig. 4b,d) and likely missed because
219 of a lack of diverse training datasets. With the growing notion of organelle ‘pan-proteomes’, i.e.
220 organelle proteins present in selected species or organelle sub-types^{69,70,72,74-78}, our analysis shows that
221 algorithms are inadequate at capturing this pan-proteome or even the distant homologues of conserved
222 proteins. Training the future algorithms on these missed proteins from across (Fig. 2a-b) and within
223 species⁷⁹ would be the first step towards developing algorithms that can cover a larger span of
224 phylogenetic and intracellular (eg. organelle types) diversity.



225
226 **Fig. 4: Success rate of predicting unique versus conserved organelle proteins.** Success rate (sensitivity) of
227 predicting experimentally verified conserved and unique proteins for (a) plastids and (c) mitochondria. Percentage
228 of total plastid (b) and mitochondrial (d) false negatives explained by their unique presence in a given species.

229

230

231

232

233 **Discussion**

234 After its cytosolic translation, a plant protein needs to be targeted to the correct compartment if it is not
235 to remain in the cytosol. Machine learning algorithms are used abundantly to determine where proteins
236 are targeted, but they are trained on phylogenetically constrictive datasets (Fig. 1a). As a consequence,
237 the three algorithms evaluated here perform poorly outside of (model) angiosperms, especially for
238 mitochondrial cargo for which the targeting prediction is only slightly better than random sampling.
239 TargetP, the best performing among the three, has a fifty-fifty chance of sorting an algal plastid protein
240 correctly and twice the chance of predicting a false positive. For mitochondria, the error margins are
241 worse. For WPS, the most cited of the three analysed (Fig. 1b), the chances of a wrong prediction are
242 several times higher for plastid- and tens of times higher for mitochondrial proteins. Thus far, such
243 systematic error margins were unavailable and the outputs of these algorithms have been widely
244 accepted directly, across individual studies (Fig. 1b), as well as indirectly, as integral component of
245 widely used software packages and databases. These databases contain genomes from hundreds of
246 diverse species, including taxa with ecological and academic relevance^{80–86} such as on streptophyte
247 algae and bryophytes. Proteins from these newly accumulating genomes, however, continue to receive
248 their intracellular localisation annotation from the same set of algorithms and, on an average, 70–80%
249 of these predicted annotations might be unreliable. Algorithms trained on phylogenetically diverse
250 datasets would thus improve reliability of large datasets, while being equally useful to diverse areas of
251 fundamental and applied life sciences (Fig. 1b).

252 Reflecting on the sources of the prediction errors and in light of the evolutionary cell biology of plants,
253 allows us to sketch improvement strategies for the future algorithms. More than a billion years of co-
254 evolution has resulted in plastid and mitochondrial proteomes and their import machinery, nuances of
255 which affect the predictability of protein sorting. For instance, likely due to a selection pressure against
256 plastid mistargeting, mitochondrial protein import evolved specific receptors such as TOM20 and
257 TOM70^{87–91} that are unique to plant mitochondria and have binding sites for cargo that are different
258 from that of animal mitochondria^{92–94}. Such changes are likely to be reflected in plant mNTS as well,
259 but not accounted for by the algorithms that are hitherto trained almost exclusively on animal mNTSs
260 (Fig. 1a). Consequently, algorithms require a major upgrade to be able to predict plant mitochondrial
261 proteomes and training them on plant mitochondrial proteins is essential. The impact of organelle co-
262 evolution appears to be more pronounced in the angiosperms NTS (the training dataset), which evolved
263 features different from other clades, such as longer pNTSs and different physicochemical properties of
264 NTSs in general^{35,95–97}. However, the details of NTSs are mostly studied in a few angiosperms^{98–102} and
265 in league with the skewed training (Fig. 1a) compromises the performance of algorithms outside of
266 angiosperms. A better understanding of NTSs outside of angiosperm remains a bottleneck for
267 developing better algorithms, as much as it remains an uncharted territory in the field of protein import
268 evolution.

269 Some NTSs are ambiguous and identified equally well by the import machineries of mitochondria and
270 plastids. Although these dual targeted proteins are small in number, they play a key role in information
271 processing^{103,104} and have been theorized to reroute whole metabolic pathways¹⁰⁵. The process of dual
272 targeting appears to be conserved^{106,107}, rarely lost¹⁰⁶ and can arise by small changes in the NTS¹⁰⁸.
273 Therefore, it is likely to be common across species, although outside of the model systems, the
274 identification of dually targeted proteins is limited. Algorithms are unlikely to help for now, as they sort
275 dual targeted proteins usually only to plastids, sort plastid proteins to mitochondria as reported
276 previously¹⁰⁹, and falsely predict many plastid proteins to be dually localised. *In vitro* protein import
277 assays with purified organelles also localise many plastid proteins to plastid and mitochondria both,
278 which complicates the matter^{110–113}. Such *in vitro* and *in silico* errors on dual targeted proteins limit our
279 understanding of *in vivo* dual targeting mechanisms. Studying protein dual targeting outside of
280 angiosperms would elucidate general strategies of dual targeting. In the interim, explicitly training

281 algorithms on verified dual targeted proteins could help to identify targets for experimental
282 investigation.

283 Our understanding of cellular protein sorting is far from complete and even experimental approaches
284 do not escape contradictions⁴⁵⁻⁴⁷. Localisation prediction reliability, too, varies based on the subcellular
285 compartment in question, consider for instance the varying reliability for nucleus vs. endoplasmic
286 reticulum localized proteins¹¹⁴. Our analysis shows that reliability significantly declines when
287 phylogenetically diverse species come into play. This should motivate to plot common benchmarks for
288 other eukaryotes, while underscoring a need for major updates in prediction algorithms for plants.
289 Inclusion of data from diverse techniques into the training of algorithms has been attempted¹¹⁵ – the
290 inclusion of phylogenetically diverse species should be next. When doing so, and in the absence of
291 proteome data, one could commence with canonical and universally accepted organellar marker
292 proteins. Moreover, not all proteins are equally abundant in organelles, but they often contribute equally
293 to the training process of algorithms. It is conceivable that NTSs have evolved differences based on
294 protein abundance. Inclusion of relative abundance of proteins in the training process might improve
295 the predictions and reveal novel strategies of protein sorting. As advances in proteomics^{116,117},
296 genomics^{84,86,118-122}, and machine learning^{123,124} set a stage for future prediction algorithms, our analysis
297 serves as a reminder that considering evolutionary diversity is key to a better modelling of protein
298 sorting. One can tailor an algorithm for a given species¹²⁵ or a clade^{109,126}, but computational power and
299 AI-guided tools likely now make it possible to design a comprehensive prediction algorithm that can
300 serve evolutionarily diverse species and in addition help to better understand the mechanisms of protein
301 sorting in eukaryotic cells in more general.

302

303 **Methods**

304 *Algorithms*

305 All algorithms were installed on a local server supported by the ZIM at the HHU Düsseldorf. Full
306 proteomes were analyzed using TargetP 2.0 (<https://services.healthtech.dtu.dk/services/TargetP-2.0/>)
307 with the setting ‘pl’ (plant derived); with Localizer 1.0.4 (<https://localizer.csiro.au/software.html>) with
308 Python 2.7 and setting ‘-p’; WPS 0.2 (<https://github.com/fmaguire/WoLFPSort>) with setting ‘plant’.
309 The number of citations for each algorithm were retrieved from the web of science.

310 *Source genomes and organelle proteomes*

311 Genomes of all chloroplastida species were downloaded from Kyoto Encyclopedia of Genes and
312 Genomes (KEGG)¹²⁷. Experimental organelle proteomes were retrieved from published literature and
313 database as follows: *Chlamydomonas reinhardtii* (chlorophyte algae)^{128,129}, *Physcomitrium patens*
314 (bryophyte)¹³⁰, *Zea mays* (monocot)⁴², *Arabidopsis thaliana* (eudicot)⁴²

315 *Evaluation of algorithms*

316 We evaluated the performance in species from four diverse chloroplastida species. A protein present in
317 verified proteome and absent in prediction was categorised as false negative. A protein absent in verified
318 proteome and present in prediction was categorised as false positive. A protein present in both, verified
319 and experimental, proteome was categorised as true positive. Sensitivity (ie true positive rate) was
320 calculated as a ratio of true positive and true positive + false negative. Specificity (true negative rate)
321 was calculated as a ratio of true negative and true negative + false positive. Precision was calculated as
322 a ratio of true positive and all predictions. For a combinatorial approach, organelle proteomes were
323 predicted individual by each algorithm and proteins present in the prediction of both or all three
324 algorithms were filtered for further evaluation against experimental proteome. TargetP2.0 predicted
325 ‘thylakoid’ proteins as a category distinct from ‘chloroplast’ and therefore around 100 thylakoid

326 proteins were not included under ‘chloroplast predicted’ category. Inclusion of these proteins do not
327 change broad patterns by more than a few percentage (Fig S4, as compared to Fig 1a).

328 *Protein family clustering and annotation*

329 Whole proteomes of all species were clustered into protein families using Orthofinder version 2.5.4⁷³.
330 Source genomes of all species was taken from KEGG¹²⁷. Functional annotations were retrieved using
331 KOID annotated to each of the gene IDs.

332 *Analysis of N-terminal targeting sequences and prediction of the dual targeted proteins*

333 The first 20 amino acids of each protein were retrieved from the whole genome assemblies. Charge was
334 determined by assigning -1 to D,E; +1 to K,R; +0.5 to H and 0 to the rest of the amino acids. The total
335 number of serine and threonine were counted as phosphorylatable amino acids. The verified dual
336 targeted proteins were inferred from overlapping the experimental proteomes of mitochondria and
337 plastid for each species. TargetP sorts proteins to only one intracellular locations that gets the highest
338 probability. However, if probability of mitochondria and plastid both were above 0.35, we considered
339 that protein to be dually targeted. WPS and Localizer predicted more than one locations explicitly, and
340 hence proteins predicted as plastid and mitochondria, were labelled dually targeted.

341

342 **Author contributions**

343 SBG: Conceptualization, Project administration, Funding acquisition, Writing - original draft, review
344 and editing. JM: Software, Investigation, Data curation, Formal analysis CGG: Writing - original draft,
345 review and editing PKR: Conceptualization, Supervision, Experimental design, Methodology,
346 Investigation, Formal analysis, Visualization, Writing - original draft, review and editing

347

348 **Funding**

349 We thank the Deutsche Forschungsgemeinschaft (SFB 1208-2672 05415 and SPP2237-440043394)
350 for funding.

351

352 **Acknowledgments**

353 We acknowledge support from the high-performance computing cluster (HILBERT; ZIM at the HHU
354 Düsseldorf) and Michael R. Knopp from the Heinrich-Heine-University Düsseldorf. We also thank
355 William Martin for a discussion on including protein quantity as a parameter.

356

357 **References**

- 358 1. Wiedemann, N. & Pfanner, N. Mitochondrial Machineries for Protein Import and Assembly.
359 (2017) doi:10.1146/annurev.
- 360 2. Rochaix J. D. (2022). Chloroplast protein import machinery and quality control. *The FEBS journal*, **289**(22), 6908–6918. <https://doi.org/10.1111/febs.16464>
- 362 3. Gämmerdinger, M., & Deuerling, E. (2023). Cotranslational sorting and processing of newly
363 synthesized proteins in eukaryotes. *Trends in biochemical sciences*, S0968-0004(23)00258-X.
364 Advance online publication. <https://doi.org/10.1016/j.tibs.2023.10.003>

365 4. Gould, S. B., Garg, S. G. & Martin, W. F. Bacterial Vesicle Secretion and the Evolutionary
366 Origin of the Eukaryotic Endomembrane System. *Trends Microbiol* **24**, 525–534 (2016).

367 5. Raval, P. K., Garg, S. G., & Gould, S. B. (2022). Endosymbiotic selective pressure at the
368 origin of eukaryotic cell biology. *eLife*, **11**, e81033. <https://doi.org/10.7554/eLife.81033>

369 6. Archibald, J. M. Endosymbiosis and Eukaryotic Cell Evolution. *Current biology : CB*, **25**(19),
370 R911–R921. *Current Biology* Preprint at <https://doi.org/10.1016/j.cub.2015.07.055> (2015).

371 7. Keeling, P. J. The endosymbiotic origin, diversification and fate of plastids. *Philosophical
372 transactions of the Royal Society of London. Series B, Biological sciences*, **365**(1541), 729–
373 748. <https://doi.org/10.1098/rstb.2009.0103> (2010).

374 8. Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin.
375 *Philosophical Transactions of the Royal Society B: Biological Sciences* **370**, (2015).

376 9. Dacks, J. B. & Field, M. C. Evolution of the eukaryotic membrane-trafficking system: Origins,
377 tempo and mode. *J Cell Sci* **120**, 2977–2985 (2007).

378 10. Eliáš, M. Patterns and processes in the evolution of the eukaryotic endomembrane system.
379 *Molecular membrane biology*, **27**(8), 469–489. <https://doi.org/10.3109/09687688.2010.521201>
380 (2010).

381 11. Elliott, L., Moore, I. & Kirchhelle, C. Spatio-temporal control of post-Golgi exocytic
382 trafficking in plants. *J Cell Sci* **133**, (2020).

383 12. Gould, S. B. Membranes and evolution. *Current Biology* **28**, R381–R385 (2018).

384 13. Kelly, S. The economics of organellar gene loss and endosymbiotic gene transfer. *Genome
385 Biol* **22**, (2021).

386 14. Timmis, J. N., Ayliff, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer:
387 Organelle genomes forge eukaryotic chromosomes. *Nat Rev Genet* **5**, 123–135 (2004).

388 15. Green, B. R. Chloroplast genomes of photosynthetic eukaryotes. *Plant Journal* **66**, 34–44
389 (2011).

390 16. Hewitt, V., Alcock, F. & Lithgow, T. Minor modifications and major adaptations: the
391 evolution of molecular machines driving mitochondrial protein import. *Biochimica et
392 biophysica acta*, **1808**(3), 947–954. <https://doi.org/10.1016/j.bbamem.2010.07.019> (2011).

393 17. Hewitt, V., Lithgow, T. & Waller, R. F. Modifications and innovations in the evolution of
394 mitochondrial protein import pathways. in *Endosymbiosis* vol. **9783709113035** 19–35
395 (Springer-Verlag Wien, 2014).

396 18. Scotti, P. A. *et al.* YidC, the *Escherichia coli* homologue of mitochondrial Oxalp, is a
397 component of the Sec translocase. *EMBO Journal* **19**, 542–549 (2000).

398 19. Hennon, S. W., Soman, R., Zhu, L. & Dalbey, R. E. YidC/Alb3/Oxa1 family of insertases.
399 *Journal of Biological Chemistry* vol. **290** 14866–14874 Preprint at
400 <https://doi.org/10.1074/jbc.R115.638171> (2015).

401 20. Diederichs, K. A., Buchanan, S. K. & Botos, I. Building Better Barrels – β -barrel Biogenesis
402 and Insertion in Bacteria and Mitochondria. *Journal of Molecular Biology* vol. **433** Preprint at
403 <https://doi.org/10.1016/j.jmb.2021.166894> (2021).

404 21. Jiang, J. H., Tong, J., Tan, K. S. & Gabriel, K. From evolution to Pathogenesis: The link
405 between β -barrel assembly machineries in the outer membrane of mitochondria and Gram-

406 negative bacteria. *International Journal of Molecular Sciences* vol. **13** 8038–8050 Preprint at
407 <https://doi.org/10.3390/ijms13078038> (2012).

408 22. Moro, F., Fernández-Sáiz, V., Slutsky, O., Azem, A. & Muga, A. Conformational properties of
409 bacterial DnaK and yeast mitochondrial Hsp70: Role of the divergent C-terminal α -helical
410 subdomain. *FEBS Journal* **272**, 3184–3196 (2005).

411 23. Endow, J. K., Singhal, R., Fernandez, D. E. & Inoue, K. Chaperone-assisted post-translational
412 transport of plastidic type i signal peptidase 1. *Journal of Biological Chemistry* **290**, 28778–
413 28791 (2015).

414 24. Teixeira, P. F. & Glaser, E. Processing peptidases in mitochondria and chloroplasts. *Biochim
415 Biophys Acta Mol Cell Res* **1833**, 360–370 (2013).

416 25. Ziehe, D., Dünschede, B. & Schünemann, D. From bacteria to chloroplasts: Evolution of the
417 chloroplast SRP system. *Biological Chemistry* vol. **398** 653–661 Preprint at
418 <https://doi.org/10.1515/hsz-2016-0292> (2017).

419 26. Schein, A. I., Kissinger, J. C. & Ungar, L. H. *Chloroplast transit peptide prediction: a peek
420 inside the black box*. *Nucleic Acids Research* vol. **29** (2001).

421 27. Chen, Y., Soman, R., Shanmugam, S. K., Kuhn, A. & Dalbey, R. E. The role of the strictly
422 conserved positively charged residue differs among the gram-positive, gram-negative, and
423 chloroplast YidC homologs. *Journal of Biological Chemistry* **289**, 35656–35667 (2014).

424 28. Day, P. M., Potter, D. & Inoue, K. Evolution and targeting of omp85 homologs in the
425 chloroplast outer envelope membrane. *Front Plant Sci* **5**, (2014).

426 29. Knopp, M., Garg, S. G., Handrich, M. & Gould, S. B. Major Changes in Plastid Protein Import
427 and the Origin of the Chloroplastida. *iScience* **23**, 100896 (2020).

428 30. Paila, Y. D. *et al.* Multi-functional roles for the polypeptide transport associated domains of
429 Toc75 in chloroplast protein import. *Elife*. Mar 21;5:e12631 (2016)

430 31. Richardson, L. G. L. & Schnell, D. J. Origins, function, and regulation of the TOC-TIC
431 general protein import machinery of plastids. *Journal of Experimental Botany* vol. **71** 1226–
432 1238 Preprint at <https://doi.org/10.1093/jxb/erz517> (2020).

433 32. Berks, B. C. The twin-arginine protein translocation pathway. *Annual Review of Biochemistry*
434 vol. **84** 843–864 Preprint at <https://doi.org/10.1146/annurev-biochem-060614-034251> (2015).

435 33. New, C. P., Ma, Q. & Dabney-Smith, C. Routing of thylakoid lumen proteins by the
436 chloroplast twin arginine transport pathway. *Photosynthesis Research* vol. **138** 289–301
437 Preprint at <https://doi.org/10.1007/s11120-018-0567-z> (2018).

438 34. Robinson, C. & Bolhuis, A. Tat-dependent protein targeting in prokaryotes and chloroplasts.
439 *Biochimica et Biophysica Acta - Molecular Cell Research* vol. **1694** 135–147 Preprint at
440 <https://doi.org/10.1016/j.bbamcr.2004.03.010> (2004).

441 35. Ge, C., Spånnning, E., Glaser, E. & Wieslander, Å. Import determinants of organelle-specific
442 and dual targeting peptides of mitochondria and chloroplasts in arabidopsis thaliana. *Mol Plant*
443 **7**, 121–136 (2014).

444 36. Garg, S. G. & Gould, S. B. The Role of Charge in Protein Targeting Evolution. *Trends Cell
445 Biol* **26**, 894–905 (2016).

446 37. Bhushan, S., Kuhn, C., Berglund, A. K., Roth, C. & Glaser, E. The role of the N-terminal
447 domain of chloroplast targeting peptides in organellar protein import and miss-sorting. *FEBS
448 Lett* **580**, 3966–3972 (2006).

449 38. Lee, D. W. *et al.* Molecular Mechanism of the Specificity of Protein Import into Chloroplasts
450 and Mitochondria in Plant Cells. *Mol Plant* **12**, 951–966 (2019).

451 39. Schleiff, E. & Becker, T. Common ground for protein translocation: Access control for
452 mitochondria and chloroplasts. *Nat Rev Mol Cell Biol* **12**, 48–59 (2011).

453 40. Carrie, C. & Small, I. A reevaluation of dual-targeting of proteins to mitochondria and
454 chloroplasts. *Biochim Biophys Acta Mol Cell Res* **1833**, 253–259 (2013).

455 41. Nesvizhskii, A. I. A survey of computational methods and error rate estimation procedures for
456 peptide and protein identification in shotgun proteomics. *Journal of Proteomics* vol. **73** 2092–
457 2123 Preprint at <https://doi.org/10.1016/j.jprot.2010.08.009> (2010).

458 42. Sun, Q. *et al.* PPDB, the Plant Proteomics Database at Cornell. *Nucleic Acids Res* **37**, (2009).

459 43. Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N. & Millar, A. H. SUBA4: The
460 interactive data analysis centre for Arabidopsis subcellular protein locations. *Nucleic Acids Res*
461 **45**, D1064–D1074 (2017).

462 44. Hooper, C. M., Castleden, I. R., Aryamanesh, N., Jacoby, R. P. & Millar, A. H. Finding the
463 Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop
464 Proteins with Annotated Locations (cropPAL). *Plant Cell Physiology* (2015)
465 doi:10.4225/23/556.

466 45. Lisenbee, C. S., Karnik, S. K. & Trelease, R. N. Overexpression and mislocalization of a tail-
467 anchored GFP redefines the identity of peroxisomal ER. *Traffic* **4**, 491–501 (2003).

468 46. Jeong, K., Kim, S. & Bandeira, N. False discovery rates in spectral identification. *BMC
469 Bioinformatics* **13 Suppl 16**, (2012).

470 47. van Wijk, K. J. & Baginsky, S. Plastid proteomics in higher plants: Current state and future
471 goals. *Plant Physiol* **155**, 1578–1588 (2011).

472 48. Goodstein, D. M. *et al.* Phytozome: A comparative platform for green plant genomics. *Nucleic
473 Acids Res* **40**, (2012).

474 49. Paysan-Lafosse, T. *et al.* InterPro in 2022. *Nucleic Acids Res* **51**, 418–427 (2022).

475 50. Nakai, K. & Kanehisa, M. *A Knowledge Base for Predicting Protein Localization Sites in
476 Eukaryotic Cells*. *GENOMICS* vol. **14** (1992).

477 51. Reczko, M. & Hatzigeorgiou, A. Prediction of the subcellular localization of eukaryotic
478 proteins using sequence signals and composition. *Proteomics* **4**, 1591–1596 (2004).

479 52. Von Heijne, G. *A new method for predicting signal sequence cleavage sites*. *Nucleic Acids
480 Research* vol. **14** (1986).

481 53. Bedwell, D. M. *et al.* *Sequence and Structural Requirements of a Mitochondrial Protein
482 Import Signal Defined by Saturation Cassette Mutagenesis The Saccharomyces cerevisiae Fl-
483 ATPase , subunit precursor contains redundant mitochondrial protein import information at
484 its NH2 terminus* (*D. MOLECULAR AND CELLULAR BIOLOGY* vol. **9** (1989)).

485 54. Nielsen, H., Tsirigos, K. D., Brunak, S. & von Heijne, G. A Brief History of Protein Sorting
486 Prediction. *Protein Journal* vol. 38 200–216 Preprint at <https://doi.org/10.1007/s10930-019-09838-3> (2019).

488 55. Nishikawa, K. *Correlation of the Amino Acid Composition of a Protein to Its Structural and*
489 *Biological Characters I. COMMUNICATION J. Biochem* vol. **91** (1982).

490 56. Nishikawa, K., Kubota, Y. & Ooi, T. Classification of proteins into groups based on amino
491 acid composition and other characters. I. Angular distribution. *J Biochem* **94**, 981–995 (1983).

492 57. Nishikawa, K., Kubota, Y. & Ooi, T. Classification of proteins into groups based on amino
493 acid composition and other characters. II. Grouping into four types. *J Biochem* **94**, 997–1007
494 (1983).

495 58. Mcgeoch, D. J. *On the predictive recognition of signal peptide sequences. Virus Research* vol.
496 **3** (1985).

497 59. Nakai, K. & Kanehisa, M. Expert system for predicting protein localization sites in gram-
498 negative bacteria. *Proteins: Structure, Function, and Bioinformatics* **11**, 95–110 (1991).

499 60. Walker, J. M. *PSORT: a program for detecting sorting signals in proteins and predicting their*
500 *subcellular localization.* (Humana Press, 1998).

501 61. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and
502 predicting their subcellular localization. *Trends Biochem Sci* **24**, 34–36 (1999).

503 62. Gardy, J. L. *et al.* PSORT-B: Improving protein subcellular localization prediction for Gram-
504 negative bacteria. *Nucleic Acids Res* **31**, 3613–3617 (2003).

505 63. Yu, N. Y. *et al.* PSORTb 3.0: Improved protein subcellular localization prediction with refined
506 localization subcategories and predictive capabilities for all prokaryotes. *Bioinformatics* **26**,
507 1608–1615 (2010).

508 64. Horton, P. *et al.* WoLF PSORT: Protein localization predictor. *Nucleic Acids Res* **35**, (2007).

509 65. Horton, P. A., Park, K. A., Obayashi, T. B. & Nakai, K. C. *Protein subcellular localisation*
510 *prediction using WOLF PSORT.* (2005) doi:10.1142/9781860947292_0007.

511 66. Sperschneider, J. *et al.* LOCALIZER: Subcellular localization prediction of both plant and
512 effector proteins in the plant cell. *Sci Rep* **7**, (2017).

513 67. Armenteros, J. J. A. *et al.* Detecting sequence signals in targeting peptides using deep learning.
514 *Life Sci Alliance* **2**, 1–14 (2019).

515 68. Blake, J. A. *et al.* Gene ontology annotations and resources. *Nucleic Acids Res* **41**, (2013).

516 69. Raval, P. K., Macleod, A. I. & Gould, S. B. A molecular atlas of plastid and mitochondrial
517 adaptations across the evolution from chlorophyte algae to angiosperms. *bioRxiv* (2023)
518 doi:10.1101/2023.09.01.555919.

519 70. Christian, R. W., Hewitt, S. L., Roalson, E. H. & Dhingra, A. Genome-Scale Characterization
520 of Predicted Plastid-Targeted Proteomes in Higher Plants. *Sci Rep* **10**, 1–22 (2020).

521 71. de Vries, J., Stanton, A., Archibald, J. M. & Gould, S. B. Streptophyte Terrestrialization in
522 Light of Plastid Evolution. *Trends Plant Sci* **21**, 467–476 (2016).

523 72. Schreiber, M., Rensing, S. A. & Gould, S. B. The greening ashore. *Trends in Plant Science*
524 vol. **27** 847–857 Preprint at <https://doi.org/10.1016/j.tplants.2022.05.005> (2022).

525 73. Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative
526 genomics. *Genome Biol* **20**, 1–14 (2019).

527 74. Heinnickel, M. L. & Grossman, A. R. The GreenCut: Re-evaluation of physiological role of
528 previously studied proteins and potential novel protein functions. *Photosynth Res* **116**, 427–
529 436 (2013).

530 75. Schaeffer, S. M. *et al.* Comparative ultrastructure of fruit plastids in three genetically diverse
531 genotypes of apple (*Malus × domestica* Borkh.) during development. *Plant Cell Rep* **36**, 1627–
532 1640 (2017).

533 76. Richly, E. & Leister, D. An improved prediction of chloroplast proteins reveals diversities and
534 commonalities in the chloroplast proteomes of *Arabidopsis* and rice. *Gene* **329**, 11–16 (2004).

535 77. Li, L. & Yuan, H. Chromoplast biogenesis and carotenoid accumulation. *Archives of
536 Biochemistry and Biophysics* vol. **539** 102–109 Preprint at
537 <https://doi.org/10.1016/j.abb.2013.07.002> (2013).

538 78. Choi, H., Yi, T. & Ha, S. H. Diversity of Plastid Types and Their Interconversions. *Frontiers
539 in Plant Science* vol. **12** Preprint at <https://doi.org/10.3389/fpls.2021.692024> (2021).

540 79. Kleffmann, T., Hirsch-Hoffmann, M., Gruisse, W. & Baginsky, S. plprot: A comprehensive
541 proteome database for different plastid types. *Plant Cell Physiol* **47**, 432–436 (2006).

542 80. Boval, M. & Dixon, R. M. The importance of grasslands for animal production and other
543 functions: A review on management and methodological progress in the tropics. in *Animal* vol. **6**
544 748–762 (2012).

545 81. José, J., Karlusich, P., Ibarbalz, F. M. & Bowler, C. Phytoplankton in the Tara Ocean. (2019)
546 doi:10.1146/annurev-marine-010419.

547 82. Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P. & Richardson, D. M. Global
548 grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat
549 transformation. *Biological Reviews* **93**, 1125–1144 (2018).

550 83. Frangedakis, E. *et al.* What can hornworts teach us? *Frontiers in Plant Science* vol. **14** Preprint
551 at <https://doi.org/10.3389/fpls.2023.1108027> (2023).

552 84. Li, F. W. *et al.* Anthoceros genomes illuminate the origin of land plants and the unique biology
553 of hornworts. *Nat Plants* **6**, 259–272 (2020).

554 85. Rensing, S. A., Goffinet, B., Meyberg, R., Wu, S. Z. & Bezanilla, M. The moss physcomitrium
555 (*Physcomitrella*) patens: A model organism for non-seed plants. *Plant Cell* **32**, 1361–1376
556 (2020).

557 86. Lang, D. *et al.* The *Physcomitrella patens* chromosome-scale assembly reveals moss genome
558 structure and evolution. *Plant Journal* **93**, 515–533 (2018).

559 87. Murcha, M. W. *et al.* Protein import into plant mitochondria: signals, machinery, processing,
560 and regulation. *J Exp Bot* **65**, 6301–6335 (2014).

561 88. Murcha, M. W., Wang, Y., Narsai, R. & Whelan, J. The plant mitochondrial protein import
562 apparatus — The differences make it interesting. *Biochimica et Biophysica Acta (BBA) -
563 General Subjects* **1840**, 1233–1245 (2014).

564 89. Heidorn-Czarna, M., Maziak, A. & Janska, H. Protein Processing in Plant Mitochondria
565 Compared to Yeast and Mammals. *Front Plant Sci* **13**, (2022).

566 90. Carrie, C., Murcha, M. W. & Whelan, J. An in silico analysis of the mitochondrial protein
567 import apparatus of plants. *BMC Plant Biol* **10**, 249 (2010).

568 91. Lister, R. *et al.* Functional definition of outer membrane proteins involved in preprotein import
569 into mitochondria. *Plant Cell* **19**, 3739–3759 (2007).

570 92. Perry, A. J., Hulett, J. M., Likić, V. A., Lithgow, T. & Gooley, P. R. Convergent Evolution of
571 Receptors for Protein Import into Mitochondria. *Current Biology* **16**, 221–229 (2006).

572 93. Rimmer, K. A. *et al.* Recognition of mitochondrial targeting sequences by the import receptors
573 Tom20 and Tom22. *J Mol Biol* **405**, 804–818 (2011).

574 94. Chew, O. *et al.* A plant outer mitochondrial membrane protein with high amino acid sequence
575 identity to a chloroplast protein import receptor. *FEBS Lett* **557**, 109–114 (2004).

576 95. Huang, S., Taylor, N. L., Whelan, J. & Millar, A. H. Refining the definition of plant
577 mitochondrial presequences through analysis of sorting signals, n-terminal modifications, and
578 cleavage motifs. *Plant Physiol* **150**, 1272–1285 (2009).

579 96. Zhang, X.-P. & Glaser, E. Interaction of plant mitochondrial and chloroplast signal peptides
580 with the Hsp70 molecular chaperone. *Trends Plant Sci* **7**, 14–21 (2002).

581 97. Razzak, M. A., Lee, D. W., Yoo, Y. J. & Hwang, I. Evolution of rubisco complex small
582 subunit transit peptides from algae to plants. *Sci Rep* **7**, (2017).

583 98. Sáiz-Bonilla, M., Martín Merchán, A., Pallás, V. & Navarro, J. A. Molecular characterization,
584 targeting and expression analysis of chloroplast and mitochondrion protein import components
585 in *Nicotiana benthamiana*. *Front Plant Sci* **13**, 1040688 (2022).

586 99. Schnell, D. J. The TOC GTPase Receptors: Regulators of the Fidelity, Specificity and
587 Substrate Profiles of the General Protein Import Machinery of Chloroplasts. *Protein J* **38**,
588 (2019).

589 100. Yan, J., Campbell, J. H., Glick, B. R., Smith, M. D. & Liang, Y. Molecular characterization
590 and expression analysis of chloroplast protein import components in tomato (*Solanum*
591 *lycopersicum*). *PLoS One* **9**, (2014).

592 101. Paul, P. *et al.* The protein translocation systems in plants - composition and variability on the
593 example of *Solanum lycopersicum*. *BMC Genomics* **14**, 1–16 (2013).

594 102. Stengel, A., Benz, J. P., Buchanan, B. B., Soll, J. & Böltner, B. Preprotein import into
595 chloroplasts via the Toc and Tic complexes is regulated by redox signals in *Pisum sativum*.
596 *Mol Plant* **2**, 1181–1197 (2009).

597 103. Elo, A., Lyznik, A., Gonzalez, D. O., Kachman, S. D. & Mackenzie, S. A. Nuclear genes that
598 encode mitochondrial proteins for DNA and RNA metabolism are clustered in the *Arabidopsis*
599 genome. *Plant Cell* **15**, 1619–1631 (2003).

600 104. Carrie, C., Giraud, E. & Whelan, J. Protein transport in organelles: Dual targeting of proteins
601 to mitochondria and chloroplasts. *FEBS J* **276**, 1187–1195 (2009).

602 105. Martin, W. Evolutionary origins of metabolic compartmentalization in eukaryotes.
603 *Philosophical Transactions of the Royal Society B: Biological Sciences* **365**, 847–855 (2010).

604 106. Xu, L., Carrie, C., Law, S. R., Murcha, M. W. & Whelan, J. Acquisition, Conservation, and
605 Loss of Dual-Targeted Proteins in Land Plants. *Plant Physiol* **161**, 644 (2013).

606 107. Morgante, C. V. *et al.* Conservation of dual-targeted proteins in Arabidopsis and rice points to
607 a similar pattern of gene-family evolution. *Molecular Genetics and Genomics* **281**, 525–538
608 (2009).

609 108. Burak, E., Yoge, O., Sheffer, S., Schueler-Furman, O. & Pines, O. Evolving dual targeting of
610 a prokaryotic protein in yeast. *Mol Biol Evol* **30**, 1563–1573 (2013).

611 109. Tardif, M. *et al.* Predalgo: A new subcellular localization prediction tool dedicated to green
612 algae. in *Molecular Biology and Evolution* vol. **29** 3625–3639 (2012).

613 110. Cleary, S. P. *et al.* Isolated Plant Mitochondria Import Chloroplast Precursor Proteins in Vitro
614 with the Same Efficiency as Chloroplasts. *Journal of Biological Chemistry* **277**, 5562–5569
615 (2002).

616 111. Chew, O., Rudhe, C., Glaser, E. & Whelan, J. Characterization of the targeting signal of dual-
617 targeted pea glutathione reductase. *Plant Mol Biol* **53**, 341–356 (2003).

618 112. Lister, R., Chew, O., Rudhe, C., Lee, M. N. & Whelan, J. Arabidopsis thaliana ferrochelatase-I
619 and -II are not imported into Arabidopsis mitochondria. *FEBS Lett* **506**, 291–295 (2001).

620 113. Hurt, E. C., Soltanifar, N., Goldschmidt-Clermont, M., Rochaix, J.-D. & Schatz, G. The
621 cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into
622 yeast mitochondria. *EMBO J* **5**, 1343–1350 (1986).

623 114. Xiong, E., Zheng, C., Wu, X. & Wang, W. Protein Subcellular Location: The Gap Between
624 Prediction and Experimentation. *Plant Mol Biol Report* **34**, 52–61 (2016).

625 115. Breckels, L. M. *et al.* Learning from Heterogeneous Data Sources: An Application in Spatial
626 Proteomics. *PLoS Comput Biol* **12**, (2016).

627 116. Mulvey, C. M. *et al.* Using hyperLOPIT to perform high-resolution mapping of the spatial
628 proteome. *Nat Protoc* **12**, 1110–1135 (2017).

629 117. Geladaki, A. *et al.* Combining LOPIT with differential ultracentrifugation for high-resolution
630 spatial proteomics. *Nat Commun* **10**, (2019).

631 118. Wang, S. *et al.* Genomes of early-diverging streptophyte algae shed light on plant
632 terrestrialization. *Nat Plants* **6**, 95–106 (2020).

633 119. Cheng, S. *et al.* Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant
634 Evolution. *Cell* **179**, 1057-1067.e14 (2019).

635 120. Bowman, J. L. *et al.* Insights into Land Plant Evolution Garnered from the Marchantia
636 polymorpha Genome. *Cell* **171**, 287-304.e15 (2017).

637 121. Nishiyama, T. *et al.* The Chara Genome: Secondary Complexity and Implications for Plant
638 Terrestrialization. *Cell* **174**, 448-464.e24 (2018).

639 122. Hori, K. *et al.* Klebsormidium flaccidum genome reveals primary factors for plant terrestrial
640 adaptation. *Nat Commun* **5**, (2014).

641 123. Bordin, N. *et al.* Novel machine learning approaches revolutionize protein knowledge. *Trends
642 in Biochemical Sciences* vol. **48**, 345–359 Preprint at <https://doi.org/10.1016/j.tibs.2022.11.001>
643 (2023).

644 124. Hesami, M., Alizadeh, M., Jones, A. M. P. & Torkamaneh, D. Machine learning: its challenges
645 and opportunities in plant system biology. *Applied Microbiology and Biotechnology* **106**,
646 3507–3530 Preprint at <https://doi.org/10.1007/s00253-022-11963-6> (2022).

647 125. Wang, L. *et al.* A chloroplast protein atlas reveals punctate structures and spatial organization
648 of biosynthetic pathways. *Cell* **186**, 3499-3518.e14 (2023).

649 126. Gruber, A., Rocap, G., Kroth, P. G., Armbrust, E. V. & Mock, T. Plastid proteome prediction
650 for diatoms and other algae with secondary plastids of the red lineage. *Plant Journal* **81**, 519–
651 528 (2015).

652 127. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for
653 taxonomy-based analysis of pathways and genomes. *Nucleic Acids Res* **51**, D587–D592
654 (2023).

655 128. Atteia, A. *et al.* A proteomic survey of chlamydomonas reinhardtii mitochondria sheds new
656 light on the metabolic plasticity of the organelle and on the nature of the α -proteobacterial
657 mitochondrial ancestor. *Mol Biol Evol* **26**, 1533–1548 (2009).

658 129. Terashima, M., Specht, M. & Hippler, M. The chloroplast proteome: A survey from the
659 Chlamydomonas reinhardtii perspective with a focus on distinctive features. *Current Genetics*
660 vol. **57** 151–168 Preprint at <https://doi.org/10.1007/s00294-011-0339-1> (2011).

661 130. Mueller, S. J. *et al.* Quantitative analysis of the mitochondrial and plastid proteomes of the
662 moss *Physcomitrella patens* reveals protein macrocompartmentation and
663 microcompartmentation. *Plant Physiol* **164**, 2081–2095 (2014).

664