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A cautionary tale on organelle proteome prediction algorithms: limits and opportunities
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Abstract

Mitochondria and plastids import thousands of proteins. Their experimental localisation remains a
frequent task, but can be resource-intensive or even impossible especially for species that are genetically
not accessible. Hence, hundreds of studies make use of (machine learning) algorithms that predict a
sub-cellular localisation based on a protein’s sequence. Their reliability across evolutionary diverse
species is unknown. Here, we evaluate the performance of three commonly used algorithms (TargetP,
Localizer and WoLFPSORT) for four photosynthetic eukaryotes, for which experimental plastid and
mitochondrial proteome data is available. The match between algorithm-based predictions and
experimental data ranges from 75% to as low as 2%, with up to thousands of false positives being
predicted. Results depend on the algorithm used and the evolutionary distance between the training and
query species. Specificity, sensitivity and precision analysis underscore severe limitations outside the
training species and especially for plant mitochondria, for which the performance borders on random
sampling. The results highlight current issues associated with prediction algorithms and present an
opportunity for the next generation of protein localisation prediction tools that should train neural
networks on an evolutionary more diverse set of organelle proteins for optimizing their performance
and reliability.
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Introduction

A plant encodes 20-30,000 proteins on average, of which many thousand are targeted to intracellular
membrane bound compartments after or during translation'. The compartments owe their origins to
bacterial ancestors directly or indirectly*'2. Mitochondria and plastids are of endosymbiotic origin and
have transferred a majority of their coding capacity to the nuclear genome in the course of their
transition from bacterium to organelle'*" . As a consequence, the vast majority of their proteins are
translated in the cytosol and need to be imported. Protein translocation-related components of
mitochondria such as TOM40, VDAC, TIM22, TIM23-PAM, OXA, SAM, HSP70, or the
mitochondrial pre-sequence protease are likely of alphaproteobacterial origin'®?%, while many
components of the plastid import machinery such as TOC75, OEP80, TIC20, the TAT pathway and
also several signal processing peptidases are of cyanobacterial origin®>*. Despite their evolutionary
independent roots, the import machineries of mitochondria and plastids are united by principles of how
they recognize the vast majority of their cargo.

Cytosolically-translated proteins destined for the mitochondrial matrix or the plastid stroma, thousands
in sum, carry N-terminal targeting sequences (pNTS for plastid; mNTS for mitochondria) with broad
similarities and subtle differences. They concern the overall amino acid composition, processing
peptidases and translocation motifs, and an overall charge difference among the more N-terminal
region, in which mNTSs are enriched in arginine and pNTS are enriched in hydroxylated amino acids®*"
39 The subtle differences in NTS are still not fully understood, but determine whether a preprotein is
targeted to mitochondria, plastids, or in the case of dual targeted proteins to both compartments
simultaneously®’. Considering the many remaining obstacles of in vivo protein localisation (time,
resources, overexpression artefacts, impact of the tags on the cargo, or the simple unavailability of
transfection methods for non-model systems)*'™*’, hundreds of studies rely on algorithms that depend
on the difference in NTS features for their localisation prediction. Furthermore, such prediction
algorithms are integral parts of widely used databases such as Phytozome® or they are nested inside
software packages such as InterProScan®. Hence, the algorithms are often used routinely, sometimes
without a conscious decision to do so, and usually with a lack of knowledge on how reliable they work
outside of the species on which they were trained.

In-silico localisation prediction from amino acid sequences were implemented concomitant with our
understanding of cellular protein sorting®*>*. Amino acid composition was used to differentiate between
intracellular and secreted proteins®>’, followed by the use of N-terminal features (e.g. charge and
hydrophobicity) for signal sequence detection and cleavage site identification®***?, This channelled
into early prediction algorithms such as PSORT® that relied on a relatively simple set of ‘if and then’
rules to predict signalling peptides and secreted proteins in Gram negative bacteria. PSORT 11, an early
formal expansion now including eukaryotic compartments®, incorporated a more sophisticated
technique of k-nearest neighbours (kNN), which searches the query against a database of proteins with
known localisations and assigns localisation of the nearest neighbours to the query. PSORTb®*%
introduced machine learning to the pipelines by including support vector machines for accumulating
protein sequence features relevant to localisation. This culminated into WOLFPSORT (WPS from
here), one of the first sophisticated machine learning algorithms®®*. The algorithm uses approximately
20 features of the query sequence to calculate feature vectors, closest neighbours of which from the
database are used for assigning a localization prediction. More recently, supervised machine learning
was included in a set of programs including Localizer and TargetP***’. Localizer is a classifier algorithm
trained to differentiate between N-terminal regions of known organellar and non-organellar proteins.
Using the boundary conditions computed from the training dataset, it classifies query proteins. TargetP
2.0 (TargetP from here) is a more sophisticated algorithm that utilises bidirectional neural networks and
multi-attention mechanisms on a network of interconnected, long short-term memory cells®’.
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Apart from the training and sorting operations, the training datasets themselves also vary (Fig. 1a). WPS
for example used a database of 2004 (Uniprot v45.0), a time at which no genomes for bryophytes, ferns,
let alone streptophyte algae or multiple organelle proteomes were available. Its training dataset was
almost exclusively based on eudicot (for plastid) and animal (for mitochondria) sequences and the
proteins were selected based on their annotation from the gene ontology database (GO; evidence codes:
TAS, IDA, IMP; cut-off 12.4.2004). Two of these evidence codes (TAS and IMP) are indirect® and
when used as a starting point, prone to multiplying errors. Localizer was trained on several hundred
Viridiplantae organelle proteins from Uniprot (database until March 2016) and validated on the cropPal
dataset (barley, wheat, rice, maize) as well as Uniprot Viridiplantae organelle proteins that were added
between March and September of 2016. Of these Viridiplantae proteins, a vast majority was of eudicot
origin. TargetP used a relatively recent training data, including some green algal proteins, but still
leaning heavily towards eudicots.

To date, TargetP, Localizer and WolFPSORT are among the algorithms with a superior reported
accuracy and over the years, they have been used abundantly across disciplines (Fig. 1b) but are rarely
benchmarked. Therefore, the impact of the skewed training on the performance and reliability of these
algorithms outside angiosperms are unexplored. We made use of available, experimentally verified
plant proteomes of mitochondria and plastids as well as protein clustering to investigate the reliability
of these algorithms across species ranging from algae to angiosperms. Our analysis brings forth
inadequacies of these algorithms, caused by a combination of their inherent modus operandi, a lack of
training on a diverse dataset, the complex biology of the plant cell and the evolutionary dynamic nature
of the plant organelles . Tracing the error sources allows to sketch an approach towards developing
better algorithms that are capable of serving the diversity of the plant kingdom.
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Fig. 1: Targeting prediction algorithms are frequently cited across disciplines and rely on a limited training
set. (a) Taxonomic distribution of plastid and mitochondrial training datasets used for the three commonly used
predictions tools TargetP, Localizer and WoLF PSORT (WPS). (b) Distribution of citations across different
disciplines for the three commonly used predictions tools TargetP, Localizer and WoLF PSORT (WPS) and for a
time period ranging from 2018 until 2022. Numbers according to the Web of Science.
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105  Results
106  Algorithm performance declines with evolutionary distance from their training species

107 At first, we compared the organelle proteomes predicted by the algorithms (the in-silico proteomes)
108  with those of experimentally verified organelle proteomes (the in-vivo proteomes). Across species, in-
109  silico proteomes comprise 3-15% of the proteins encoded within the genome of a given species, in
110 contrast to the in-vivo numbers that are below 5% (Fig. S1). Overlaps between in-silico and in-vivo
111  proteomes show a substantial false positive rate for all, except for the in-silico plastid proteome
112 predicted for Arabidopsis by TargetP (Fig. 2a,b). Localizer and WPS show larger fractions of false
113 positives than TargetP, especially for mitochondria (Fig. 2b). The smallest overlap between in-silico
114 and in-vivo proteomes are found for WPS. False negatives are generally predicted fewer on average
115  than false positives, but still to a substantial number (Fig. 2a,b). The sensitivity of TargetP and Localizer
116  are similar, above 0.5 for plastid (i.e., correctly identifying more than half of the plastid proteins) and
117 below 0.5 for mitochondria, whereas that of WPS is 0.3 or lower (Fig. 2¢,d). Since 2—5% of the proteins
118  encoded in a nuclear genome have been localised to mitochondria or plastids (Fig. S1) in-vivo through
119  proteomics or tagging, a random sampling has a precision of 0.02-0.05; a perfect algorithm should have
120 a precision of or close to 1. Between these two theoretical extremes, established algorithms currently
121 perform closer to random sampling than to the best-case scenario, especially for mitochondria. The best
122 improvement over a random prediction is observed for TargetP on Arabidopsis data, which however
123 shifts ever closer to random the greater the evolutionary distance from Arabidopsis gets. Combinations
124 of algorithms also reflect similar trends, where TargetP and Localizer together perform marginally
125  better than the two individually, as previously reported’’, albeit confined to the angiosperm plastid (Fig.
126  2c). For mitochondria, the same combination captured less than 50% of verified proteins across species,
127  and any other combination captured less than 5% (Fig. 2d) due the poor performance of WPS. The
128  precision too, of all combinations, was high in Arabidopsis, but declined moving towards
129 Chlamydomonas and regardless of combination (Fig. 2c,d). To summarize, the predictions (for any
130  individual algorithm or any combination) are more reliable for angiosperms and with a rapidly declining
131  reliability with respect to algae and bryophytes (Fig. 2).
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133 Fig. 2: Performance of algorithms decline with increasing evolutionary distance from Arabidopsis.
134 Comparison of predicted versus experimentally localised plastid (a) and mitochondrial (b) proteome numbers.
135 Each Venn diagram of the top panel shows an overlap between predicted (left circles) and experimentally verified
136 organelle proteomes (right circles, grey). The underscored numbers in the bottom corners show the total number
137 of predicted (bottom left) and experimentally confirmed proteins (bottom right). The numbers of proteins that
138 overlap (true positives) are provided in the top right corner in bold, while the numbers of non-overlapping ones
139 (false positives) are shown next to each circle. See also the key for the Venn diagrams on the bottom left.
140 Sensitivity, specificity and precision of individual algorithms and their combinations for plastid (¢) and
141 mitochondria (d).

142
143 The training bias of algorithms causes in-silico cross-organelle contamination

144 One likely source of false positives is the errors between the two organelles, especially considering the
145  evolutionary similarities between them and their protein import machineries. For example, a plastid
146  protein can contaminate an in-silico mitochondrial proteome (Fig. 3a) or vice versa (Fig. 3b). Such
147  errors can be quantified by overlapping the in-vivo proteome of one organelle with the in-silico
148  proteome of the another: an overlap between the in-vivo plastid proteome and the in-silico mitochondrial
149  proteome, highlights those plastid proteins that “contaminated” the in-silico mitochondrial proteome
150  (Fig. 3a). We observed that on average about a hundred or more plastid proteins were found across the
151  four species in the in-silico mitochondrial proteomes (more frequently so with Localizer, in particular
152 for the bryophyte and alga, Fig. S2) and a smaller number of mitochondrial proteins were identified in
153 the in-silico plastid proteomes.
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154  While N-terminal targeting sequences of plastid and mitochondrial proteins (pNTS and mNTS,
155  respectively) share similarities, an mNTS contains a statistically significant higher net positive charge,
156 while pNTSs contain a high number of serine and threonine residues among their first 20 amino acids™.
157 It seems these differences became more pronounced later in plant evolution, since they are most striking
158  in the angiosperms (Fig. 3c,d, vertical green and orange lines) — this is a good time to remember that
159  more than 95% of discussed training datasets come from angiosperms (Fig. 1a). Algorithms are inclined
160  to sort NTSs based on these features and any NTS that deviates would be prone to an erroneous cross-
161  organelle prediction, declining the performance of the algorithm. Indeed, NTSs of plastid proteins that
162 showed a higher charge and/or a lower number of phosphorylatable amino acids than the average
163 Arabidopsis pNTS, were predicted to be mitochondrial (Fig. 3¢) and NTSs of mitochondrial proteins
164  that showed a lower charge and/or higher number of phosphorylatable amino acids than the average
165  Arabidopsis mNTS were predicted to be plastid proteins (Fig. 3d). These differences underscored that
166  algorithms are trained to recognise and sort evolutionary late angiosperm NTSs, a bias that causes error
167  when they are faced with NTSs of algae and more ancient plant species.

168  The substantial number of cross-organelle prediction errors motivated us to investigate the predictability
169  of proteins that are in vivo targeted to both, plastid and mitochondria. More than hundred such dually
170  targeted proteins are identified in Arabidopsis*, the plant proteomes of plastids and mitochondria
171  corroborate such numbers and that is how we treated all proteins that overlapped in the proteome
172 analyses. Algorithms can also predict the same protein to be plastid and mitochondria localised, either
173 explicitly (by listing both these compartments) or implicitly (by providing similar probability scores for
174 these two compartments). We considered such cases as predicted dual targeted proteins. /n-vivo and in-
175  silico dual targeted proteins hardly overlap, with hundreds of false positive and false negatives (Fig.
176  3e). Except for maize, TargetP predicted most of the experimentally dual localized proteins (i.e. plastid
177  and mitochondrion) to be only plastid localized or not to be organellar at all (Fig. 3e,f). Localizer
178  performed better than the other two with respect to quantity, but at the substantial cost of hundreds of
179  false positives, and WPS failed to predict dual targeted proteins altogether. On the whole, all algorithms
180  perform poorly on this task, sorting experimentally dual targeted proteins to only the plastid or no
181  organelle at all, while also labelling non-organellar or plastid proteins falsely as being dual targeted
182  likely as a result of cross-organelle errors (Fig. 3a-d, Fig. S2).

183  In summary, a combination of training bias and the evolution of targeting sequences ever since the
184  origin of eukaryotes with mitochondria, culminates into cross-organelle errors which also affect the
185  predictability of the dual targeted proteins.
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Fig. 3: Cross-organelle errors in proteome prediction due to physio-chemical properties of the NTS. Cross
organelle prediction errors could be either because an in-vivo plastid protein is in-silico mitochondria localised
(a) or vice versa (b). The overlaps between cross-organelle in-vivo and in-silico proteomes identifies these
predictions errors. Analysis of the first 20 amino acids of pNTSs incorrectly predicted to be mitochondrial (¢) and
vice versa (d). Average charge and phosphorylatable amino acids for NTS from all verified organelle proteins of
each species are indicated by vertical green (pNTS) and orange (mNTS) lines. Error bars indicate standard error
of mean (N=4-331, Figure S2) (e) Overlap between predicted (left) and experimentally localised (right, in grey)
dual targeted proteins. (f) Predicted (in-silico) intracellular locations of experimentally verified (in-vivo) dual
targeted proteins (left column) and experimentally verified (in-vivo) intracellular locations of proteins that are
predicted (in-silico) to be dual targeted (right column).
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198  Evolutionary dynamics and the diversity of organelles contribute to prediction inaccuracy

199  The endosymbiotic organelles of algae and plants have been co-evolving for over a billion-years and
200  their proteomes continue to change and adapt®’'’2, During plant terrestrialization for instance, the
201  plastid proteome of the algal ancestor expanded from a few hundred to that of the angiosperm plastid
202  housing about 1500 proteins®. The algorithms predict there to be 1000 to 2000 plastid (and
203  mitochondrial) organellar proteins even outside of angiosperms, 25% or less of which appear to be true
204  positives (Fig. 2). Together with the general pattern of the prediction performance worsening with the
205  evolutionary distance to model angiosperms increasing, it prompted us to consider evolutionary
206  dynamics of organelle proteomes as another error source.

207  We clustered all proteins from the four species into protein families”, filtered the experimentally
208  verified organelle protein families, and sorted them to be conserved (present in all four species) or to
209  be unique (present in only one species) (Fig. S3, Table S1). Around 150 protein families were found to
210 be conserved across all proteomes, whereas a few hundred were unique. TargetP and Localizer missed
211 around 30% of the conserved proteins, and WPS missed more (Fig. 4a). For the unique plastid proteins,
212 TargetP and Localizer performed well for Arabidopsis with declining success for the other species.
213 WPS missed more than 75% of the unique proteins across the species (Fig. 4a). For the conserved
214 mitochondrial protein families, Localizer and TargetP predicted 50-70% correctly, whereas WPS
215  missed more than 90% (Fig. 4c). For mitochondria-unique proteins, the success rate ranged from 20-
216 50% for Localizer and TargetP in Arabidopsis and other species, while WPS missed more than 90%
217  across the species (Fig. 4c). More than half of all protein missed out across the algorithms (i.e. false
218  negatives of Fig. 2), were present in only one of a given species (Fig. 4b,d) and likely missed because
219  of a lack of diverse training datasets. With the growing notion of organelle ‘pan-proteomes’, i.e.
220  organelle proteins present in selected species or organelle sub-types®’*7>"*78 ' our analysis shows that
221  algorithms are inadequate at capturing this pan-proteome or even the distant homologues of conserved
222 proteins. Training the future algorithms on these missed proteins from across (Fig. 2a-b) and within
223 species " would be the first step towards developing algorithms that can cover a larger span of
224 phylogenetic and intracellular (eg. organelle types) diversity.
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226 Fig. 4: Success rate of predicting unique versus conserved organelle proteins. Success rate (sensitivity) of
227 predicting experimentally verified conserved and unique proteins for (a) plastids and (¢) mitochondria. Percentage
228 of total plastid (b) and mitochondrial (d) false negatives explained by their unique presence in a given species.
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233 Discussion

234 After its cytosolic translation, a plant protein needs to be targeted to the correct compartment if it is not
235  to remain in the cytosol. Machine learning algorithms are used abundantly to determine where proteins
236  are targeted, but they are trained on phylogenetically constrictive datasets (Fig. 1a). As a consequence,
237  the three algorithms evaluated here perform poorly outside of (model) angiosperms, especially for
238  mitochondrial cargo for which the targeting prediction is only slightly better than random sampling.
239  TargetP, the best performing among the three, has a fifty-fifty chance of sorting an algal plastid protein
240  correctly and twice the chance of predicting a false positive. For mitochondria, the error margins are
241  worse. For WPS, the most cited of the three analysed (Fig. 1b), the chances of a wrong prediction are
242  several times higher for plastid- and tens of times higher for mitochondrial proteins. Thus far, such
243 systematic error margins were unavailable and the outputs of these algorithms have been widely
244 accepted directly, across individual studies (Fig. 1b), as well as indirectly, as integral component of
245  widely used software packages and databases. These databases contain genomes from hundreds of
246  diverse species, including taxa with ecological and academic relevance® ™ such as on streptophyte
247  algae and bryophytes. Proteins from these newly accumulating genomes, however, continue to receive
248 their intracellular localisation annotation from the same set of algorithms and, on an average, 70-80%
249  of these predicted annotations might be unreliable. Algorithms trained on phylogenetically diverse
250  datasets would thus improve reliability of large datasets, while being equally useful to diverse areas of
251  fundamental and applied life sciences (Fig. 1b).

252 Reflecting on the sources of the prediction errors and in light of the evolutionary cell biology of plants,
253 allows us to sketch improvement strategies for the future algorithms. More than a billion years of co-
254 evolution has resulted in plastid and mitochondrial proteomes and their import machinery, nuances of
255  which affect the predictability of protein sorting. For instance, likely due to a selection pressure against
256  plastid mistargeting, mitochondrial protein import evolved specific receptors such as TOM20 and
257  TOM70¥' that are unique to plant mitochondria and have binding sites for cargo that are different
258  from that of animal mitochondria®***. Such changes are likely to be reflected in plant mNTS as well,
259  but not accounted for by the algorithms that are hitherto trained almost exclusively on animal mNTSs
260  (Fig. la). Consequently, algorithms require a major upgrade to be able to predict plant mitochondrial
261  proteomes and training them on plant mitochondrial proteins is essential. The impact of organelle co-
262  evolution appears to be more pronounced in the angiosperms NTS (the training dataset), which evolved
263  features different from other clades, such as longer pNTSs and different physicochemical properties of
264  NTSs in general®>*>’. However, the details of NTSs are mostly studied in a few angiosperms” % and
265  in league with the skewed training (Fig. 1a) compromises the performance of algorithms outside of
266  angiosperms. A better understanding of NTSs outside of angiosperm remains a bottleneck for
267  developing better algorithms, as much as it remains an unchartered territory in the field of protein import
268  evolution.

269  Some NTSs are ambiguous and identified equally well by the import machineries of mitochondria and
270  plastids. Although these dual targeted proteins are small in number, they play a key role in information
271  processing'®'™ and have been theorized to reroute whole metabolic pathways'®. The process of dual
272  targeting appears to be conserved '°!%7 rarely lost '° and can arise by small changes in the NTS'%,
273 Therefore, it is likely to be common across species, although outside of the model systems, the
274  identification of dually targeted proteins is limited. Algorithms are unlikely to help for now, as they sort
275  dual targeted proteins usually only to plastids, sort plastid proteins to mitochondria as reported
276  previously'®”, and falsely predict many plastid proteins to be dually localised. In vitro protein import
277  assays with purified organelles also localise many plastid proteins to plastid and mitochondria both,
278  which complicates the matter''*'"3. Such in vitro and in silico errors on dual targeted proteins limit our
279  understanding of in vivo dual targeting mechanisms. Studying protein dual targeting outside of
280  angiosperms would elucidate general strategies of dual targeting. In the interim, explicitly training
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281  algorithms on verified dual targeted proteins could help to identify targets for experimental
282  investigation.

283 Our understanding of cellular protein sorting is far from complete and even experimental approaches
284 do not escape contradictions* . Localisation prediction reliability, too, varies based on the subcellular
285  compartment in question, consider for instance the varying reliability for nucleus vs. endoplasmic
286  reticulum localized proteins''®. Our analysis shows that reliability significantly declines when
287  phylogenetically diverse species come into play. This should motivate to plot common benchmarks for
288  other eukaryotes, while underscoring a need for major updates in prediction algorithms for plants.
289  Inclusion of data from diverse techniques into the training of algorithms has been attempted''® — the
290  inclusion of phylogenetically diverse species should be next. When doing so, and in the absence of
291  proteome data, one could commence with canonical and universally accepted organellar marker
292  proteins. Moreover, not all proteins are equally abundant in organelles, but they often contribute equally
293  to the training process of algorithms. It is conceivable that NTSs have evolved differences based on
294  protein abundance. Inclusion of relative abundance of proteins in the training process might improve
295  the predictions and reveal novel strategies of protein sorting. As advances in in proteomics''®!” |
296  genomics®*!"¥122 and machine learning'**'** set a stage for future prediction algorithms, our analysis
297  serves as a reminder that considering evolutionary diversity is key to a better modelling of protein
298  sorting. One can tailor an algorithm for a given species'? or a clade'*'* , but computational power and
299  Al-guided tools likely now make it possible to design a comprehensive prediction algorithm that can
300  serve evolutionarily diverse species and in addition help to better understand the mechanisms of protein
301  sorting in eukaryotic cells in more general.

302
303  Methods
304 Algorithms

305  All algorithms were installed on a local server supported by the ZIM at the HHU Diisseldorf. Full
306  proteomes were analyzed using TargetP 2.0 (https://services.healthtech.dtu.dk/services/TargetP-2.0/)
307  with the setting ‘pl’ (plant derived); with Localizer 1.0.4 (https://localizer.csiro.au/software.html) with
308  Python 2.7 and setting ‘-p’; WPS 0.2 (https:/github.com/fmaguire/WoLFPSort) with setting ‘plant’.
309  The number of citations for each algorithm were retrieved from the web of science.

310  Source genomes and organelle proteomes

311  Genomes of all chloroplastida species were downloaded from Kyoto Encyclopedia of Genes and
312 Genomes (KEGG) '*’. Experimental organelle proteomes were retrieved from published literature and
313 databse as follows: Chlamydomonas reinhardtii (chlorophyte algae)'*®'*  Physcomitrium patens
314  (bryophyte) '*°, Zea mays (monocot) **, Arabidopsis thaliana (eudicot) **

315  Evaluation of algorithms

316  We evaluated the performance in species from four diverse chloroplastida species. A protein present in
317  verified proteome and absent in prediction was categorised as false negative. A protein absent in verified
318  proteome and present in prediction was categorised as false positive. A protein present in both, verified
319  and experimental, proteome was categorised as true positive. Sensitivity (ie true positive rate) was
320  calculated as a ratio of true positive and true positive + false negative. Specificity (true negative rate)
321  was calculated as a ratio of true negative and true negative + false positive. Precision was calculated as
322 aratio of true positive and all predictions. For a combinatorial approach, organelle proteomes were
323  predicted individual by each algorithm and proteins present in the prediction of both or all three
324  algorithms were filtered for further evaluation against experimental proteome. TargetP2.0 predicted
325  ‘thylakoid’ proteins as a category distinct from ‘chloroplast’ and therefore around 100 thylakoid
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326  proteins were not included under ‘chloroplast predicted’ category. Inclusion of these proteins do not
327  change broad patterns by more than a few percentage (Fig S4, as compared to Fig 1a).

328  Protein family clustering and annotation

329  Whole proteomes of all species were clustered into protein families using Orthofinder version 2.5.4 .
330  Source genomes of all species was taken from KEGG '?. Functional annotations were retrieved using
331  KOID annotated to each of the gene IDs.

332 Analysis of N-terminal targeting sequences and prediction of the dual targeted proteins

333 The first 20 amino acids of each protein were retrieved from the whole genome assemblies. Charge was
334 determined by assigning -1 to D,E; +1 to K,R; +0.5 to H and 0 to the rest of the amino acids. The total
335  number of serine and threonine were counted as phosphorylatable amino acids. The verified dual
336  targeted proteins were inferred from overlapping the experimental proteomes of mitochondria and
337  plastid for each species. TargetP sorts proteins to only one intracellular locations that gets the highest
338  probability. However, if probability of mitochondria and plastid both were above 0.35, we considered
339  that protein to be dually targeted. WPS and Localizer predicted more than one locations explicitly, and
340  hence proteins predicted as plastid and mitochondria, were labelled dually targeted.
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