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Abstract 6 

Mitochondria and plastids import thousands of proteins. Their experimental localisation remains a 7 
frequent task, but can be resource-intensive or even impossible especially for species that are genetically 8 
not accessible. Hence, hundreds of studies make use of (machine learning) algorithms that predict a 9 
sub-cellular localisation based on a protein9s sequence. Their reliability across evolutionary diverse 10 
species is unknown. Here, we evaluate the performance of three commonly used algorithms (TargetP, 11 
Localizer and WoLFPSORT) for four photosynthetic eukaryotes, for which experimental plastid and 12 
mitochondrial proteome data is available. The match between algorithm-based predictions and 13 
experimental data ranges from 75% to as low as 2%, with up to thousands of false positives being 14 
predicted. Results depend on the algorithm used and the evolutionary distance between the training and 15 
query species. Specificity, sensitivity and precision analysis underscore severe limitations outside the 16 
training species and especially for plant mitochondria, for which the performance borders on random 17 
sampling. The results highlight current issues associated with prediction algorithms and present an 18 
opportunity for the next generation of protein localisation prediction tools that should train neural 19 
networks on an evolutionary more diverse set of organelle proteins for optimizing their performance 20 
and reliability. 21 
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Introduction 28 

A plant encodes 20-30,000 proteins on average, of which many thousand are targeted to intracellular 29 
membrane bound compartments after or during translation133. The compartments owe their origins to 30 
bacterial ancestors directly or indirectly4312. Mitochondria and plastids are of endosymbiotic origin and 31 
have transferred a majority of their coding capacity to the nuclear genome in the course of their 32 
transition from bacterium to organelle13315 . As a consequence, the vast majority of their proteins are 33 
translated in the cytosol and need to be imported. Protein translocation-related components of 34 
mitochondria such as TOM40, VDAC, TIM22, TIM23-PAM, OXA, SAM, HSP70, or the 35 
mitochondrial pre-sequence protease are likely of alphaproteobacterial origin16322, while many 36 
components of the plastid import machinery such as TOC75, OEP80, TIC20, the TAT pathway and 37 
also several signal processing peptidases are of cyanobacterial origin23334 . Despite their evolutionary 38 
independent roots, the import machineries of mitochondria and plastids are united by principles of how 39 
they recognize the vast majority of their cargo. 40 

Cytosolically-translated proteins destined for the mitochondrial matrix or the plastid stroma, thousands 41 
in sum, carry N-terminal targeting sequences (pNTS for plastid; mNTS for mitochondria) with broad 42 
similarities and subtle differences. They concern the overall amino acid composition, processing 43 
peptidases and translocation motifs, and an overall charge difference among the more N-terminal 44 
region, in which mNTSs are enriched in arginine and pNTS are enriched in hydroxylated amino acids35345 
39. The subtle differences in NTS are still not fully understood, but determine whether a preprotein is 46 
targeted to mitochondria, plastids, or in the case of dual targeted proteins to both compartments 47 
simultaneously40.  Considering the many remaining obstacles of in vivo protein localisation (time, 48 
resources, overexpression artefacts, impact of the tags on the cargo, or the simple unavailability of 49 
transfection methods for non-model systems)41347, hundreds of studies rely on algorithms that depend 50 
on the difference in NTS features for their localisation prediction. Furthermore, such prediction 51 
algorithms are integral parts of widely used databases such as Phytozome48 or they are nested inside 52 
software packages such as InterProScan49. Hence, the algorithms are often used routinely, sometimes 53 
without a conscious decision to do so, and usually with a lack of knowledge on how reliable they work 54 
outside of the species on which they were trained. 55 

In-silico localisation prediction from amino acid sequences were implemented concomitant with our 56 
understanding of cellular protein sorting50354. Amino acid composition was used to differentiate between 57 
intracellular and secreted proteins55357, followed by the use of N-terminal features (e.g. charge and 58 
hydrophobicity) for signal sequence detection and cleavage site identification52,58,59. This channelled 59 
into early prediction algorithms such as PSORT60 that relied on a relatively simple set of 8if and then9 60 
rules to predict signalling peptides and secreted proteins in Gram negative bacteria. PSORT II, an early 61 
formal expansion now including eukaryotic compartments61, incorporated a more sophisticated 62 
technique of k-nearest neighbours (kNN), which searches the query against a database of proteins with 63 
known localisations and assigns localisation of the nearest neighbours to the query. PSORTb62,63 64 
introduced machine learning to the pipelines by including support vector machines for accumulating 65 
protein sequence features relevant to localisation. This culminated into WOLFPSORT (WPS from 66 
here), one of the first sophisticated machine learning algorithms64,65. The algorithm uses approximately 67 
20 features of the query sequence to calculate feature vectors, closest neighbours of which from the 68 
database are used for assigning a localization prediction. More recently, supervised machine learning 69 
was included in a set of programs including Localizer and TargetP66,67. Localizer is a classifier algorithm 70 
trained to differentiate between N-terminal regions of known organellar and non-organellar proteins. 71 
Using the boundary conditions computed from the training dataset, it classifies query proteins. TargetP 72 
2.0 (TargetP from here) is a more sophisticated algorithm that utilises bidirectional neural networks and 73 
multi-attention mechanisms on a network of interconnected, long short-term memory cells67. 74 
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Apart from the training and sorting operations, the training datasets themselves also vary (Fig. 1a). WPS 75 
for example used a database of 2004 (Uniprot v45.0), a time at which no genomes for bryophytes, ferns, 76 
let alone streptophyte algae or multiple organelle proteomes were available. Its training dataset was 77 
almost exclusively based on eudicot (for plastid) and animal (for mitochondria) sequences and the 78 
proteins were selected based on their annotation from the gene ontology database (GO; evidence codes: 79 
TAS, IDA, IMP; cut-off 12.4.2004). Two of these evidence codes (TAS and IMP) are indirect68 and 80 
when used as a starting point, prone to multiplying errors. Localizer was trained on several hundred 81 
Viridiplantae organelle proteins from Uniprot (database until March 2016) and validated on the cropPal 82 
dataset (barley, wheat, rice, maize) as well as Uniprot Viridiplantae organelle proteins that were added 83 
between March and September of 2016. Of these Viridiplantae proteins, a vast majority was of eudicot 84 
origin. TargetP used a relatively recent training data, including some green algal proteins, but still 85 
leaning heavily towards eudicots. 86 

To date, TargetP, Localizer and WolFPSORT are among the algorithms with a superior reported 87 
accuracy and over the years, they have been used abundantly across disciplines (Fig. 1b) but are rarely 88 
benchmarked. Therefore, the impact of the skewed training on the performance and reliability of these 89 
algorithms outside angiosperms are unexplored. We made use of available, experimentally verified 90 
plant proteomes of mitochondria and plastids as well as protein clustering to investigate the reliability 91 
of these algorithms across species ranging from algae to angiosperms. Our analysis brings forth 92 
inadequacies of these algorithms, caused by a combination of their inherent modus operandi, a lack of 93 
training on a diverse dataset, the complex biology of the plant cell and the evolutionary dynamic nature 94 
of the plant organelles 69. Tracing the error sources allows to sketch an approach towards developing 95 
better algorithms that are capable of serving the diversity of the plant kingdom. 96 

 97 

Fig. 1: Targeting prediction algorithms are frequently cited across disciplines and rely on a limited training 98 
set. (a) Taxonomic distribution of plastid and mitochondrial training datasets used for the three commonly used 99 
predictions tools TargetP, Localizer and WoLF PSORT (WPS). (b) Distribution of citations across different 100 
disciplines for the three commonly used predictions tools TargetP, Localizer and WoLF PSORT (WPS) and for a 101 
time period ranging from 2018 until 2022. Numbers according to the Web of Science. 102 
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Results 105 

Algorithm performance declines with evolutionary distance from their training species 106 

At first, we compared the organelle proteomes predicted by the algorithms (the in-silico proteomes) 107 
with those of experimentally verified organelle proteomes (the in-vivo proteomes). Across species, in-108 
silico proteomes comprise 3-15% of the proteins encoded within the genome of a given species, in 109 
contrast to the in-vivo numbers that are below 5% (Fig. S1). Overlaps between in-silico and in-vivo 110 
proteomes show a substantial false positive rate for all, except for the in-silico plastid proteome 111 
predicted for Arabidopsis by TargetP (Fig. 2a,b). Localizer and WPS show larger fractions of false 112 
positives than TargetP, especially for mitochondria (Fig. 2b). The smallest overlap between in-silico 113 
and in-vivo proteomes are found for WPS. False negatives are generally predicted fewer on average 114 
than false positives, but still to a substantial number (Fig. 2a,b). The sensitivity of TargetP and Localizer 115 
are similar, above 0.5 for plastid (i.e., correctly identifying more than half of the plastid proteins) and 116 
below 0.5 for mitochondria, whereas that of WPS is 0.3 or lower (Fig. 2c,d). Since 235% of the proteins 117 
encoded in a nuclear genome have been localised to mitochondria or plastids (Fig. S1) in-vivo through 118 
proteomics or tagging, a random sampling has a precision of 0.02-0.05; a perfect algorithm should have 119 
a precision of or close to 1. Between these two theoretical extremes, established algorithms currently 120 
perform closer to random sampling than to the best-case scenario, especially for mitochondria. The best 121 
improvement over a random prediction is observed for TargetP on Arabidopsis data, which however 122 
shifts ever closer to random the greater the evolutionary distance from Arabidopsis gets. Combinations 123 
of algorithms also reflect similar trends, where TargetP and Localizer together perform marginally 124 
better than the two individually, as previously reported70, albeit confined to the angiosperm plastid (Fig. 125 
2c). For mitochondria, the same combination captured less than 50% of verified proteins across species, 126 
and any other combination captured less than 5% (Fig. 2d) due the poor performance of WPS. The 127 
precision too, of all combinations, was high in Arabidopsis, but declined moving towards 128 
Chlamydomonas and regardless of combination (Fig. 2c,d). To summarize, the predictions (for any 129 
individual algorithm or any combination) are more reliable for angiosperms and with a rapidly declining 130 
reliability with respect to algae and bryophytes (Fig. 2). 131 
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 132 

Fig. 2: Performance of algorithms decline with increasing evolutionary distance from Arabidopsis. 133 
Comparison of predicted versus experimentally localised plastid (a) and mitochondrial (b) proteome numbers. 134 
Each Venn diagram of the top panel shows an overlap between predicted (left circles) and experimentally verified 135 
organelle proteomes (right circles, grey). The underscored numbers in the bottom corners show the total number 136 
of predicted (bottom left) and experimentally confirmed proteins (bottom right). The numbers of proteins that 137 
overlap (true positives) are provided in the top right corner in bold, while the numbers of non-overlapping ones 138 
(false positives) are shown next to each circle. See also the key for the Venn diagrams on the bottom left. 139 
Sensitivity, specificity and precision of individual algorithms and their combinations for plastid (c) and 140 
mitochondria (d). 141 

 142 

The training bias of algorithms causes in-silico cross-organelle contamination 143 

One likely source of false positives is the errors between the two organelles, especially considering the 144 
evolutionary similarities between them and their protein import machineries. For example, a plastid 145 
protein can contaminate an in-silico mitochondrial proteome (Fig. 3a) or vice versa (Fig. 3b). Such 146 
errors can be quantified by overlapping the in-vivo proteome of one organelle with the in-silico 147 
proteome of the another: an overlap between the in-vivo plastid proteome and the in-silico mitochondrial 148 
proteome, highlights those plastid proteins that <contaminated= the in-silico mitochondrial proteome 149 
(Fig. 3a). We observed that on average about a hundred or more plastid proteins were found across the 150 
four species in the in-silico mitochondrial proteomes (more frequently so with Localizer, in particular 151 
for the bryophyte and alga, Fig. S2) and a smaller number of mitochondrial proteins were identified in 152 
the in-silico plastid proteomes. 153 
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While N3terminal targeting sequences of plastid and mitochondrial proteins (pNTS and mNTS, 154 
respectively) share similarities, an mNTS contains a statistically significant higher net positive charge, 155 
while pNTSs contain a high number of serine and threonine residues among their first 20 amino acids36. 156 
It seems these differences became more pronounced later in plant evolution, since they are most striking 157 
in the angiosperms (Fig. 3c,d, vertical green and orange lines) 3 this is a good time to remember that 158 
more than 95% of discussed training datasets come from angiosperms (Fig. 1a). Algorithms are inclined 159 
to sort NTSs based on these features and any NTS that deviates would be prone to an erroneous cross-160 
organelle prediction, declining the performance of the algorithm. Indeed, NTSs of plastid proteins that 161 
showed a higher charge and/or a lower number of phosphorylatable amino acids than the average 162 
Arabidopsis pNTS, were predicted to be mitochondrial (Fig. 3c) and NTSs of mitochondrial proteins 163 
that showed a lower charge and/or higher number of phosphorylatable amino acids than the average 164 
Arabidopsis mNTS were predicted to be plastid proteins (Fig. 3d). These differences underscored that 165 
algorithms are trained to recognise and sort evolutionary late angiosperm NTSs, a bias that causes error 166 
when they are faced with NTSs of algae and more ancient plant species.  167 

The substantial number of cross-organelle prediction errors motivated us to investigate the predictability 168 
of proteins that are in vivo targeted to both, plastid and mitochondria. More than hundred such dually 169 
targeted proteins are identified in Arabidopsis40, the plant proteomes of plastids and mitochondria 170 
corroborate such numbers and that is how we treated all proteins that overlapped in the proteome 171 
analyses. Algorithms can also predict the same protein to be plastid and mitochondria localised, either 172 
explicitly (by listing both these compartments) or implicitly (by providing similar probability scores for 173 
these two compartments). We considered such cases as predicted dual targeted proteins. In-vivo and in-174 
silico dual targeted proteins hardly overlap, with hundreds of false positive and false negatives (Fig. 175 
3e). Except for maize, TargetP predicted most of the experimentally dual localized proteins (i.e. plastid 176 
and mitochondrion) to be only plastid localized or not to be organellar at all (Fig. 3e,f). Localizer 177 
performed better than the other two with respect to quantity, but at the substantial cost of hundreds of 178 
false positives, and WPS failed to predict dual targeted proteins altogether. On the whole, all algorithms 179 
perform poorly on this task, sorting experimentally dual targeted proteins to only the plastid or no 180 
organelle at all, while also labelling non-organellar or plastid proteins falsely as being dual targeted 181 
likely as a result of cross-organelle errors (Fig. 3a-d, Fig. S2). 182 

In summary, a combination of training bias and the evolution of targeting sequences ever since the 183 
origin of eukaryotes with mitochondria, culminates into cross-organelle errors which also affect the 184 
predictability of the dual targeted proteins. 185 
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 186 

Fig. 3: Cross-organelle errors in proteome prediction due to physio-chemical properties of the NTS. Cross 187 
organelle prediction errors could be either because an in-vivo plastid protein is in-silico mitochondria localised 188 
(a) or vice versa (b). The overlaps between cross-organelle in-vivo and in-silico proteomes identifies these 189 
predictions errors. Analysis of the first 20 amino acids of pNTSs incorrectly predicted to be mitochondrial (c) and 190 
vice versa (d). Average charge and phosphorylatable amino acids for NTS from all verified organelle proteins of 191 
each species are indicated by vertical green (pNTS) and orange (mNTS) lines. Error bars indicate standard error 192 
of mean (N=4-331, Figure S2) (e) Overlap between predicted (left) and experimentally localised (right, in grey) 193 
dual targeted proteins. (f) Predicted (in-silico) intracellular locations of experimentally verified (in-vivo) dual 194 
targeted proteins (left column) and experimentally verified (in-vivo) intracellular locations of proteins that are 195 
predicted (in-silico) to be dual targeted (right column). 196 
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Evolutionary dynamics and the diversity of organelles contribute to prediction inaccuracy 198 

The endosymbiotic organelles of algae and plants have been co-evolving for over a billion-years and 199 
their proteomes continue to change and adapt69,71,72. During plant terrestrialization for instance, the 200 
plastid proteome of the algal ancestor expanded from a few hundred to that of the angiosperm plastid 201 
housing about 1500 proteins69. The algorithms predict there to be 1000 to 2000 plastid (and 202 
mitochondrial) organellar proteins even outside of angiosperms, 25% or less of which appear to be true 203 
positives (Fig. 2). Together with the general pattern of the prediction performance worsening with the 204 
evolutionary distance to model angiosperms increasing, it prompted us to consider evolutionary 205 
dynamics of organelle proteomes as another error source. 206 

We clustered all proteins from the four species into protein families73, filtered the experimentally 207 
verified organelle protein families, and sorted them to be conserved (present in all four species) or to 208 
be unique (present in only one species) (Fig. S3, Table S1). Around 150 protein families were found to 209 
be conserved across all proteomes, whereas a few hundred were unique. TargetP and Localizer missed 210 
around 30% of the conserved proteins, and WPS missed more (Fig. 4a). For the unique plastid proteins, 211 
TargetP and Localizer performed well for Arabidopsis with declining success for the other species. 212 
WPS missed more than 75% of the unique proteins across the species (Fig. 4a). For the conserved 213 
mitochondrial protein families, Localizer and TargetP predicted 50-70% correctly, whereas WPS 214 
missed more than 90% (Fig. 4c). For mitochondria-unique proteins, the success rate ranged from 20-215 
50% for Localizer and TargetP in Arabidopsis and other species, while WPS missed more than 90% 216 
across the species (Fig. 4c). More than half of all protein missed out across the algorithms (i.e. false 217 
negatives of Fig. 2), were present in only one of a given species (Fig. 4b,d) and likely missed because 218 
of a lack of diverse training datasets. With the growing notion of organelle 8pan-proteomes9, i.e. 219 
organelle proteins present in selected species or organelle sub-types69,70,72,74378 , our analysis shows that 220 
algorithms are inadequate at capturing this pan-proteome or even the distant homologues of conserved 221 
proteins. Training the future algorithms on these missed proteins from across (Fig. 2a-b) and within 222 
species 79 would be the first step towards developing algorithms that can cover a larger span of 223 
phylogenetic and intracellular (eg. organelle types) diversity. 224 

 225 

Fig. 4: Success rate of predicting unique versus conserved organelle proteins. Success rate (sensitivity) of 226 
predicting experimentally verified conserved and unique proteins for (a) plastids and (c) mitochondria. Percentage 227 
of total plastid (b) and mitochondrial (d) false negatives explained by their unique presence in a given species. 228 
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Discussion 233 

After its cytosolic translation, a plant protein needs to be targeted to the correct compartment if it is not 234 
to remain in the cytosol. Machine learning algorithms are used abundantly to determine where proteins 235 
are targeted, but they are trained on phylogenetically constrictive datasets (Fig. 1a). As a consequence, 236 
the three algorithms evaluated here perform poorly outside of (model) angiosperms, especially for 237 
mitochondrial cargo for which the targeting prediction is only slightly better than random sampling. 238 
TargetP, the best performing among the three, has a fifty-fifty chance of sorting an algal plastid protein 239 
correctly and twice the chance of predicting a false positive. For mitochondria, the error margins are 240 
worse. For WPS, the most cited of the three analysed (Fig. 1b), the chances of a wrong prediction are 241 
several times higher for plastid- and tens of times higher for mitochondrial proteins. Thus far, such 242 
systematic error margins were unavailable and the outputs of these algorithms have been widely 243 
accepted directly, across individual studies (Fig. 1b), as well as indirectly, as integral component of 244 
widely used software packages and databases. These databases contain genomes from hundreds of 245 
diverse species, including taxa with ecological and academic relevance80386 such as on streptophyte 246 
algae and bryophytes. Proteins from these newly accumulating genomes, however, continue to receive 247 
their intracellular localisation annotation from the same set of algorithms and, on an average, 70-80% 248 
of these predicted annotations might be unreliable. Algorithms trained on phylogenetically diverse 249 
datasets would thus improve reliability of large datasets, while being equally useful to diverse areas of 250 
fundamental and applied life sciences (Fig. 1b). 251 

Reflecting on the sources of the prediction errors and in light of the evolutionary cell biology of plants, 252 
allows us to sketch improvement strategies for the future algorithms. More than a billion years of co-253 
evolution has resulted in plastid and mitochondrial proteomes and their import machinery, nuances of 254 
which affect the predictability of protein sorting. For instance, likely due to a selection pressure against 255 
plastid mistargeting, mitochondrial protein import evolved specific receptors such as TOM20 and 256 
TOM7087391 that are unique to plant mitochondria and have binding sites for cargo that are different 257 
from that of animal mitochondria92394. Such changes are likely to be reflected in plant mNTS as well, 258 
but not accounted for by the algorithms that are hitherto trained almost exclusively on animal mNTSs 259 
(Fig. 1a). Consequently, algorithms require a major upgrade to be able to predict plant mitochondrial 260 
proteomes and training them on plant mitochondrial proteins is essential. The impact of organelle co-261 
evolution appears to be more pronounced in the angiosperms NTS (the training dataset), which evolved 262 
features different from other clades, such as longer pNTSs and different physicochemical properties of 263 
NTSs in general35,95397.  However, the details of NTSs are mostly studied in a few angiosperms983102 and 264 
in league with the skewed training (Fig. 1a) compromises the performance of algorithms outside of 265 
angiosperms. A better understanding of NTSs outside of angiosperm remains a bottleneck for 266 
developing better algorithms, as much as it remains an unchartered territory in the field of protein import 267 
evolution. 268 

Some NTSs are ambiguous and identified equally well by the import machineries of mitochondria and 269 
plastids. Although these dual targeted proteins are small in number, they play a key role in information 270 
processing103,104 and have been theorized to reroute whole metabolic pathways105. The process of dual 271 
targeting appears to be conserved 106,107, rarely lost 106 and can arise by small changes in the NTS108. 272 
Therefore, it is likely to be common across species, although outside of the model systems, the 273 
identification of dually targeted proteins is limited. Algorithms are unlikely to help for now, as they sort 274 
dual targeted proteins usually only to plastids, sort plastid proteins to mitochondria as reported 275 
previously109, and falsely predict many plastid proteins to be dually localised. In vitro protein import 276 
assays with purified organelles also localise many plastid proteins to plastid and mitochondria both, 277 
which complicates the matter1103113. Such in vitro and in silico errors on dual targeted proteins limit our 278 
understanding of in vivo dual targeting mechanisms. Studying protein dual targeting outside of 279 
angiosperms would elucidate general strategies of dual targeting. In the interim, explicitly training 280 
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algorithms on verified dual targeted proteins could help to identify targets for experimental 281 
investigation. 282 

Our understanding of cellular protein sorting is far from complete and even experimental approaches 283 
do not escape contradictions45347. Localisation prediction reliability, too, varies based on the subcellular 284 
compartment in question, consider for instance the varying reliability for nucleus vs. endoplasmic 285 
reticulum localized proteins114. Our analysis shows that reliability significantly declines when 286 
phylogenetically diverse species come into play. This should motivate to plot common benchmarks for 287 
other eukaryotes, while underscoring a need for major updates in prediction algorithms for plants. 288 
Inclusion of data from diverse techniques into the training of algorithms has been attempted115 3 the 289 
inclusion of phylogenetically diverse species should be next. When doing so, and in the absence of 290 
proteome data, one could commence with canonical and universally accepted organellar marker 291 
proteins. Moreover, not all proteins are equally abundant in organelles, but they often contribute equally 292 
to the training process of algorithms. It is conceivable that NTSs have evolved differences based on 293 
protein abundance. Inclusion of relative abundance of proteins in the training process might improve 294 
the predictions and reveal novel strategies of protein sorting. As advances in in proteomics116,117 , 295 
genomics84,86,1183122, and machine learning123,124 set a stage for future prediction algorithms, our analysis 296 
serves as a reminder that considering evolutionary diversity is key to a better modelling of protein 297 
sorting. One can tailor an algorithm for a given species125 or a clade109,126 , but computational power and 298 
AI-guided tools likely now make it possible to design a comprehensive prediction algorithm that can 299 
serve evolutionarily diverse species and in addition help to better understand the mechanisms of protein 300 
sorting in eukaryotic cells in more general. 301 

 302 

Methods 303 

Algorithms 304 

All algorithms were installed on a local server supported by the ZIM at the HHU Düsseldorf.  Full 305 
proteomes were analyzed using TargetP 2.0 (https://services.healthtech.dtu.dk/services/TargetP-2.0/) 306 
with the setting 8pl9 (plant derived); with Localizer 1.0.4 (https://localizer.csiro.au/software.html) with 307 
Python 2.7 and setting 8-p9; WPS 0.2 (https://github.com/fmaguire/WoLFPSort) with setting 8plant9. 308 
The number of citations for each algorithm were retrieved from the web of science. 309 

Source genomes and organelle proteomes 310 

Genomes of all chloroplastida species were downloaded from Kyoto Encyclopedia of Genes and 311 
Genomes (KEGG) 127. Experimental organelle proteomes were retrieved from published literature and 312 
databse as follows: Chlamydomonas reinhardtii (chlorophyte algae)128,129, Physcomitrium patens 313 
(bryophyte) 130,  Zea mays (monocot) 42, Arabidopsis thaliana (eudicot) 42 314 

Evaluation of algorithms  315 

We evaluated the performance in species from four diverse chloroplastida species. A protein present in 316 
verified proteome and absent in prediction was categorised as false negative. A protein absent in verified 317 
proteome and present in prediction was categorised as false positive. A protein present in both, verified 318 
and experimental, proteome was categorised as true positive. Sensitivity (ie true positive rate) was 319 
calculated as a ratio of true positive and true positive + false negative. Specificity (true negative rate) 320 
was calculated as a ratio of true negative and true negative + false positive. Precision was calculated as 321 
a ratio of true positive and all predictions. For a combinatorial approach, organelle proteomes were 322 
predicted individual by each algorithm and proteins present in the prediction of both or all three 323 
algorithms were filtered for further evaluation against experimental proteome. TargetP2.0 predicted 324 
8thylakoid9 proteins as a category distinct from 8chloroplast9 and therefore around 100 thylakoid 325 
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proteins were not included under 8chloroplast predicted9 category. Inclusion of these proteins do not 326 
change broad patterns by more than a few percentage (Fig S4, as compared to Fig 1a). 327 

Protein family clustering and annotation 328 

Whole proteomes of all species were clustered into protein families using Orthofinder version 2.5.4 73. 329 
Source genomes of all species was taken from KEGG 127. Functional annotations were retrieved using 330 
KOID annotated to each of the gene IDs. 331 

Analysis of N-terminal targeting sequences and prediction of the dual targeted proteins 332 

The first 20 amino acids of each protein were retrieved from the whole genome assemblies. Charge was 333 
determined by assigning -1 to D,E; +1 to K,R; +0.5 to H and 0 to the rest of the amino acids. The total 334 
number of serine and threonine were counted as phosphorylatable amino acids. The verified dual 335 
targeted proteins were inferred from overlapping the experimental proteomes of mitochondria and 336 
plastid for each species. TargetP sorts proteins to only one intracellular locations that gets the highest 337 
probability. However, if probability of mitochondria and plastid both were above 0.35, we considered 338 
that protein to be dually targeted. WPS and Localizer predicted more than one locations explicitly, and 339 
hence proteins predicted as plastid and mitochondria, were labelled dually targeted.  340 
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