

1 Mitochondrial thermogenesis regulates heat-shock response in the 2 nucleus

3 Hee Yong Lee^{†,1}, Hwa-Ryeon Kim^{†,2}, Chulhwan Kwak^{1,4}, Myeong-Gyun Kang¹, Jae-Seok Roe^{2,*}, Hyun-Woo
4 Rhee^{1,3*}

5
6 ¹Department of Chemistry, Seoul National University, Seoul 08826, Korea

7 ²Department of Biochemistry, Yonsei University, Seoul 03722, Korea

8 ³School of Biological Sciences, Seoul National University, Seoul 08826, Korea

9 ⁴Current address: Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA

10
11 *To whom correspondence should be addressed: rheehw@snu.ac.kr and jroe@yonsei.ac.kr

12
13 †These authors contributed equally

14 Abstract

15 Mitochondrial thermogenesis is a process in which heat is generated by mitochondrial respiration. In living
16 organisms, the thermogenic mechanisms that maintain body temperature have been studied extensively in fat
17 cells, with little knowledge on how mitochondrial heat may act beyond energy expenditure. Here, we
18 highlighted exothermic oxygen reduction reaction ($\Delta H_f^\circ = -285$ kJ/mol) is the main source of the
19 protonophore-induced mitochondrial thermogenesis and this heat was conducted to other cellular organelles,
20 including the nuclei. As a result, mitochondrial heat that reached the nucleus initiated the classical heat shock
21 response, including the formation of nuclear stress granules and localization of heat shock factor 1 to
22 chromatin. Consequently, activated HSF1 increases gene expression associated with the response to thermal
23 stress in mammalian cells. Our results illustrate heat generated within the cells as a potential source of
24 mitochondrial-nucleus communication and expand our understanding of the biological functions of
25 mitochondria in cell physiology.

26
27
28

29 **Introduction**

30 Temperature induces diverse biological events, including biochemical reactions (e.g., reaction equilibrium
31 and reaction rates)[1-2] and structural changes in proteins[3] and lipid membranes[4]. For this reason, living
32 systems can precisely sense and respond to temperature changes[5]. Under the external heat stress conditions,
33 heat shock factor 1 (HSF1) senses the increase in temperature and undergoes a structural change that enables
34 it to regulate the expression of heat shock proteins (HSPs) thereby promoting cell survival. Although HSF1
35 activation under external heat shock conditions was discovered more than 30 years ago[6-9], whether
36 mammalian cells can produce their own heat to initiate an HSF1-mediated heat shock response remains
37 unknown.

38 Mitochondrial thermogenesis is an intracellular event that actively generates heat to maintain body
39 temperature. In fat cell mitochondria, protons are directly imported into the mitochondrial matrix by the proton
40 transporter protein (UCP1), not by ATP synthase[10], which is known to accelerate exothermic oxygen
41 reduction to water reactions[11-12]. The similar event can be induced by treatment with mitochondrial
42 uncoupling agents such as carbonyl cyanide *p*-(tri-fluoromethoxy)phenyl-hydrazone (FCCP) which can
43 directly import protons to the mitochondrial matrix[13]. Intriguingly, the FCCP-driven proton import to the
44 mitochondrial matrix can also initiate mitochondrial thermogenesis which was validated experimentally using
45 several fluorescent thermometers that can precisely detect mitochondrial temperature increases in live
46 cells[14-21]. However, it remains uncertain what the biological importance and impact of the heat generated
47 in mitochondria by changes in proton import is. In this study, we highlighted that exothermic proton-coupled
48 oxygen consumption reaction or oxygen reduction reaction (ORR, $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$, $\Delta H_f^\circ = -285$
49 kJ/mol)[22-23] (**Fig. 1A**) is the main thermogenic source under the protonophore (i.e. FCCP) treatment by
50 regulation of oxygen concentration and electron flows in the electron transport chain. Furthermore, we
51 determined that this ORR-induced thermogenesis in mitochondria leads to thermal conduction to the other
52 organelles such as the nucleus. Under the same conditions, we observed that mitochondrial thermogenesis
53 activated canonical nuclear heat shock response programs mediated by HSF1. Overall, our study reveals a
54 cell-intrinsic mechanism that allows heat to actively convey biological signals from the mitochondria to the
55 nucleus.

56

57 **Results**

58 ***Heat shock factor 1 activation by mitochondrial thermogenesis***

59 To determine whether the activity of HSF1 is regulated by mitochondrial heat (**Fig. 1B**), we checked
60 endogenous HSF1 localization by immunofluorescence imaging following treatment with FCCP.
61 Biochemically, the FCCP is a weak acid that enforces reversible proton import from the mitochondrial
62 intermembrane space to the matrix, which in turn uncouples the electron transport chain and inhibits ATP
63 synthesis[24]. From a chemical perspective, this event can induce a highly exothermic oxygen reduction

64 reaction (ORR) to water at mitochondrial complex IV ($O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$, $\Delta H_f^\circ = -285$ kJ/mol)[22] by
65 providing essential protons for this reaction (**Fig. 1A**). We applied FCCP to HEK293T cells and measured the
66 mitochondrial inner membrane potential with TMRE (**SI Appendix, Figs. S1A-B**). We validated that ER
67 membrane temperature was increased by the FCCP treatment with an ER membrane-localized temperature-
68 measuring fluorescent probe, ERthermAC (ETAC)[25] (**SI Appendix, Figs. S1C-D**). Using fluorescent
69 polymeric thermometer (FDV) which are evenly distributed in entire cellular area[26-28], we also observed
70 that fluorescence emission intensity ratio (FI₅₈₀/FI₅₁₅) of FDV was changed to the ratio at the 39 °C under the
71 FCCP treatment (**SI Appendix, Figs. S1E-G**).

72 HSF1 is the fundamental heat-sensitive nuclear factor that can be activated with nuclear “foci”
73 formation under heat stress[29-30]. These observations collectively indicate that the mitochondria-generated
74 heat induced by FCCP can be transferred to the surrounding space and proximal organelles. Under this
75 condition, endogenous HSF1 formed foci in the nucleus after FCCP treatment, and this pattern was
76 comparable to that of HSF1 foci formation under external heat shock conditions (**Fig. 1C**).

77 Including heat, there are several factors that contribute to the process of HSF1 activation, including
78 intracellular pH changes[31-33] and ROS generation[34-35]. Hence, we decided to investigate whether
79 mitochondrial heat is the primary factor that triggers HSF1 foci formation with FCCP treatment. First of all,
80 we excluded pH changes in mediating HSF1 activation as FCCP treatment showed no changes in nuclear pH
81 measured by pHluorin2[36] (**SI Appendix, Fig. S2A**). To assess ROS generation under the FCCP treatment,
82 we employed our recently developed system based on the ROS-dependent engineered ascorbate peroxidase
83 (APEX) reaction[37] (**Fig. 2**). Notably, the ROS production induced by FCCP was significantly lower in all
84 submitochondrial spaces compared to the well-established ROS-generating agent, menadione[38] (**Figs. 2D-E**).
85

86 Notably, HSF1 has multiple activation modes either by heat stress or by ROS generation[39-40]. We
87 confirmed that HSF1 foci formation was induced by menadione without heat induction, however, this ROS-
88 induced HSF1 activation by menadione was significantly quenched by co-treatment of the ROS quenching
89 agent N-acetylcysteine (NAC, 5mM) (**Fig. 1C**). In contrast FCCP-driven HSF1 foci formation was minimally
90 affected by co-treatment with the same concentration of NAC (5mM), suggesting that ROS is unlikely
91 attributed to HSF1 foci formation (**Fig. 1C**). These results collectively demonstrate that FCCP-induced HSF1
92 foci formation is independent of ROS or pH changes, and instead, it can be attributed to mitochondrial
93 thermogenesis.

94 Motivated by the above results, we investigated the potential use of HSF1 foci formation as a real-
95 time recording system that responds to heat conducted from mitochondria. To facilitate the observation of
96 HSF1 foci formation, we prepared an HSF1-EGFP construct that can be delivered lentiviral and expressed
97 stably in cells (**Fig. 3A**). Utilizing the GFP fluorescence, we recorded the HSF1-EGFP foci formation
98 immediately following FCCP treatment by real-time confocal microscope (**Fig. 3B; movie 1-2**). In this real-

99 time experiment, cells were incubated in normal growth media without FCCP treatment for the first 10 min
100 and we did not observe any HSF1-EGFP foci in cells. However, when exposed to FCCP, HSF1-EGFP foci
101 emerged immediately and disappeared rapidly when replaced with FCCP-free growth medium (**Figs. 3B-C**).
102 The time-course measurement of HSF1-EGFP foci number exhibited a strong positive correlation with the
103 presence or absence of FCCP in the cell growth medium (**Fig. 3C**). This result also presented that the HSF1
104 foci can be induced in a reversible manner by transient heat generation. Consistently, HSF1-EGFP foci
105 formation was also successfully promoted by other mitochondrial uncouplers such as BAM15 and CCCP
106 (Carbonyl cyanide 3-chlorophenylhydrazone)[24] (*SI Appendix*, **Figs. S2B-E**). Nuclear HSF1 foci formation
107 following FCCP treatment was again detected to a comparable degree in multiple other cell lines, including
108 U2OS, HEK293T, MCF10A, and A549 (*SI Appendix*, **Figs. S2F-I; movie 3-10**). These observations
109 indicated that there is no cell-type specification for the induction of HSF1 foci by FCCP. Taken together, our
110 collective results suggest that HSF1 activation via mitochondrial thermogenesis is conserved in mammalian
111 cells.

113 *Exothermic oxygen consumption reaction drives the HSF1 foci formation*

114 Mitochondrial thermogenesis, induced by exothermic oxygen reduction reaction (ORR, $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$, $\Delta H_f^\circ = -285$ kJ/mol)[22], relies on the abundant availability of reactants (H^+ , O_2 , and electrons) within
115 the mitochondria. Consequently, protonophore-induced mitochondrial thermogenesis is contingent upon well-
116 maintained oxygen supply and efficient electron transport in the mitochondria. Thus, we hypothesized that
117 either diminished oxygen levels or impaired electron transport during FCCP treatment may weaken heat
118 generation thereby attenuating formation of HSF1 foci (**Fig. 4A**).

119 To test this hypothesis, we reduced oxygen supply decreasing the availability of oxygen molecules in
120 the media and the intracellular environment (**Fig. 4B; movie 11**). The HSF1-EGFP expressing cells were
121 subjected to 2 h of hypoxic conditions (1% O_2) prior to incubation with 100 μ M FCCP. Using a real-time
122 confocal imaging microscope, we could not detect HSF1 foci formation under prolonged hypoxia of over 2 h
123 (**Fig. 4C**; gray dots), indicating that 2–3 h of hypoxia are sufficient to attenuate FCCP-dependent HSF1 foci
124 formation. We observed only 1–2 HSF1 foci per cell within 10 min of FCCP treatment; however, these foci
125 subsequently disappeared in the span of 30 min (**Fig. 4C**; light blue dots). In contrast, under normoxic baseline
126 conditions (20% O_2), approximately 10 foci per cell formed within 10 min following FCCP treatment (**Fig.**
127 **4C**; dark blue dots). This finding highlights that oxygen supplementation is a pre-requisite for both
128 mitochondrial thermogenesis and HSF1 activation.

129 Next, to determine if HSF1 foci formation is affected by preventing electron supply to the exothermic
130 ORR reaction ($O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$, $\Delta H_f^\circ = -285$ kJ/mol), HSF1-EGFP stably expressed cells were treated
131 with antimycin A or sodium azide, which inhibit electron flow in the Oxidative Phosphorylation (OXPHOS)
132 complex III and IV, respectively (**Fig. 4A**). As expected, we observed that HSF1 foci formation was

134 significantly reduced upon co-incubation of cells with OXPHOS inhibitors and FCCP (**Fig. 4D**). Conversely,
135 HSF1-EGFP foci were distinctly formed in the control group after external heat shock at 43 °C, regardless of
136 treatment with either of the OXPHOS inhibitors (**Fig. 4E**). This result confirmed that OXPHOS inhibitors
137 specifically blocked the mitochondrial thermal activation process, not touching the HSF1 itself. Overall, here
138 we confirmed that every component (i.e., proton, oxygen, electrons) in the exothermic mitochondrial ORR
139 required for generating sufficient mitochondrial heat that can activate HSF1.

140

141 *Mitochondrial thermogenesis activates HSF1-dependent transcriptional programs*

142 Since heat-induced phosphorylations are prerequisites for the translocation and activation of HSF1 in the
143 nucleus[41-43], we evaluated whether mitochondrial thermogenesis induced by FCCP treatment induces
144 phosphorylation on HSF1. As shown in the HSF1 western blot results (*SI Appendix*, **Figs. S3A-D**), HSF1
145 molecules moved more slowly in the gel when treated with FCCP, similar to when the heat shock is generated
146 externally[41]. In contrast, relative to the control group, HSF1 showed no different in-gel migration under
147 intracellular ROS-generating conditions induced by either menadione or rotenone treatment (*SI Appendix*,
148 **Figs. S3A-D**). These results implicate that phosphorylation may occur on HSF1 during FCCP-dependent
149 mitochondrial thermogenesis. Taken together, our results suggest that mitochondrial thermogenesis by FCCP
150 may facilitate transcriptional activity of HSF1 in the nucleus through a similar mechanism by the heat applied
151 externally.

152 To validate this hypothesis, we investigated whether nuclear-localized HSF1 accumulation drives the
153 expression of heat shock response-related programs. To determine whether HSF1 binds to heat shock response
154 genes, we mapped the genome-wide binding of HSF1 using chromatin immunoprecipitation sequencing
155 (ChIP-seq). Meta-analysis of the ChIP-seq datasets revealed 621 sites that commonly gained HSF1 signals in
156 the promoter regions, termed Common-GAIN regions (**Fig. 5A**). Moreover, we found sites that recruited
157 HSF1 under either heat shock or FCCP-treatment conditions, termed HS-GAIN and FCCP-GAIN regions,
158 respectively (*SI Appendix*, **Fig. S4**). Notably, the average intensity of FCCP-mediated HSF1 binding to
159 Common-GAIN sites was reduced to ~50% of that compared to heat-shock dependent HSF1 activation,
160 corroborating that FCCP treatment increased nuclear temperature to levels lower than 43 °C (**Figs. 5B-C**).
161 This result is in good agreement with our previously measured mean temperature of entire cellular area (39 °C)
162 using FDV under the FCCP treatment (*SI Appendix*, **Fig. S1G**). The motif analysis of the Common-GAIN
163 regions returned classical HSF1 binding motifs, although the possibility of engagement of other transcription
164 factors could not be excluded (**Fig. 5D**). With luciferase assay system, we confirmed that HSPD1/HSPE1
165 promoter which is one of Common-GAIN regions (**Fig. 5C**) can be activated both external heat shock and
166 FCCP treatment conditions (*SI Appendix*, **Figs. S5A-B**).

167 Among the 797 genes in which single or multiple HSF1-binding peaks were found in the promoter
168 regions, RNA-seq analysis further revealed that 61 genes were transcriptionally activated in FCCP-treated

169 cells to a similar extent as under external heat shock conditions (**Figs. 5E-F**). Furthermore, gene ontology
170 (GO) analysis revealed that 61 genes were significantly associated with the nuclear response to heat shock
171 stress, exemplified by “cellular response to heat” and “response to unfolded protein,” indicating that the
172 overall transcriptional output of the FCCP treatment phenocopies that of the external heat shock stimulus (**Figs.**
173 **5G-H** and **SI Appendix, Figs. S5C-D**). Taken together, our findings suggest that FCCP-mediated heat
174 generation resembles the biological activity of the heat shock response at the transcriptional level.
175

176 Discussion

177 In this work, we used HSF1 as a molecular sensor to measure how mitochondrial heat affects binding events
178 of proximal proteins. As a result, we found that HSF1 formed foci in the nucleus when we added protonophore
179 to potentiate the mitochondrial reaction for heat-releasing oxygen consumption. At the same time, we also
180 observed HSF1 foci formation, which could be reversed by controlling the oxygen consumption in the
181 mitochondria. Finally, integrative HSF1 ChIP-seq and RNA-seq experiments verified the activation of
182 functional HSF1 pathway in a similar way under external heat stress conditions.

183 Our results revealed that mitochondrial thermogenesis can modulate the activity of intracellular
184 thermosensing proteins such as HSF1, in live cells. This suggests that mitochondria-generated heat could act
185 as an intracellular signal that may lead to protein conformation alterations without intermediate molecular
186 interactions. Compared to the targeted signaling by molecular transfer events (i.e., molecular conversion and
187 translocation[44-46], molecular interactions, or modifications), mitochondrial heat can be a global retrograde
188 signal that spatiotemporally affects numerous proteins. In mammalian cells, many proteins have a low melting
189 temperature around 40 °C[47] and proteins with intrinsically disordered proteins (IDRs) can occur liquid-
190 liquid phase separation (LLPS) in the range of 40 °C[48-52]. Notably, HSF1 possesses a long IDR domain
191 (221–383 aa) that can induce LLPS[53]. Therefore, it is expected that many of such low-melting-temperature
192 or IDR-containing proteins can be the primary effectors of mitochondrial heat signaling.

193 It is noteworthy that HSF1 has been studied for its role in mitochondria and nucleus communication.
194 A group of studies have shown that HSF1 can sense mitochondrial misfolding stress and mediated
195 mitochondrial protein unfolded response (UPR^{mt}) in the nucleus[9][44]. Other studies have shown that HSF1
196 can be activated by mitochondrial ROS and protect cells under the mitochondrial stress conditions[44, 54-55].
197 Our study firstly showed that mitochondrial generated heat can also activate HSF1. Our data also reinforces
198 the hypothesis that HSF1 is a key protein that acts as a master message-transducer between the mitochondria
199 and the nucleus. It is also noteworthy that HSF1 foci formations were observed in several aggressive tumors[8,
200 29]. Since high mitochondrial oxygen consumption rates have been measured in several cancer cell lines[56-
201 58], further studies would be attempting to test whether the mitochondrial thermogenesis can promote HSF1
202 activation under those conditions[9, 44, 54-55] because mitochondrial temperature has not been measured in
203 those studies.

204 We also provided a new chemical interpretation of mitochondrial thermogenesis, based on the
205 exothermic property of the oxygen reduction reaction ($O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$, $\Delta H_f^\circ = -285$ kJ/mol), which
206 is well-recognized in other research fields[22-23, 59]. To the best of our knowledge, our study highlights the
207 exothermic enthalpy change of this oxygen consumption reaction ($\Delta H_f^\circ = -285$ kJ/mol) and suggests that this
208 is likely the primary thermogenic reaction in mitochondria. We validated that every component (i.e., protons,
209 oxygen, and electrons) in this reaction is crucial for sufficient mitochondrial thermogenesis and the subsequent
210 upregulation of HSF1. As the oxygen consumption rate is regarded as a reliable indirect measurement standard
211 for thermogenic events in the metabolism research field[60], we believe that our theorem may be accepted in
212 the field.

213 In summary, our current study demonstrated that mitochondrial-generated heat is sufficient to activate
214 HSF1 independently of ROS and provides supporting evidence to consider intracellularly generated heat as a
215 distinct signal that promotes subsequent changes in cell homeostasis. Our work may serve as a basis for future
216 investigations to delineate the complex relationships between various mitochondrial thermogenic events and
217 the activation of heat-sensitive proteins under diverse physiological and pathological contexts.

219 **Author information**

220 **Corresponding Autor**

221 Hyun-Woo Rhee – rheehw@snu.ac.kr

222 Jae-Seok Roe – jroe@yonsei.ac.kr

223 **Authors**

224 Hee Yong Lee – dlgmlodydd22@snu.ac.kr

225 Hwa-Ryeon Kim – kim.hy@yonsei.ac.kr

226 Chulhwan Kwak – seanckwak@stanford.edu

227 Myeong-Gyun Kang – mg132@snu.ac.kr

228

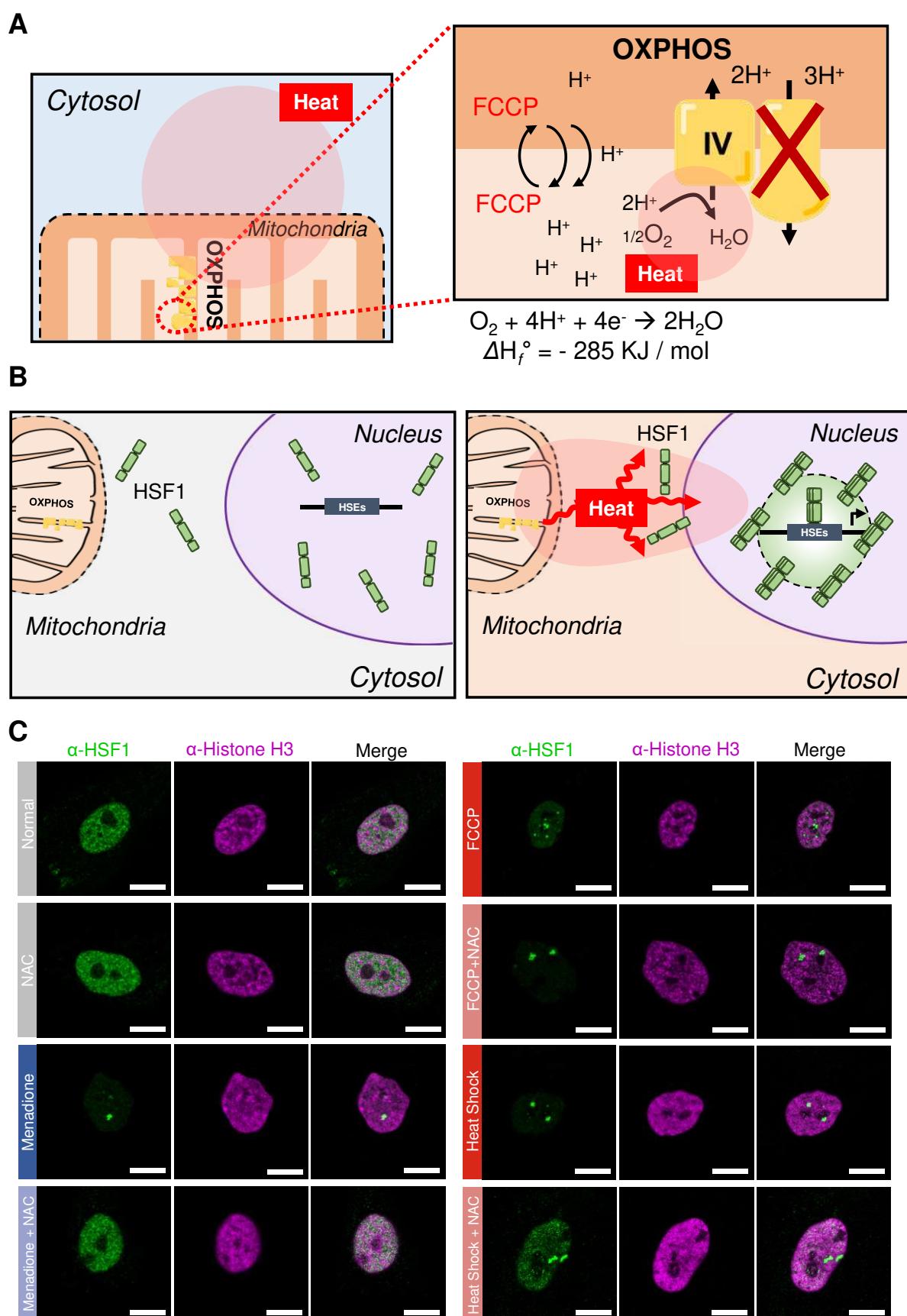
229 **Funding**

230 This work was supported by funding from the National Research Foundation of Korea (NRF
231 2022R1A2B5B03001658, NRF-2023K2A9A2A08000203, and RS-2023-00265581 awarded to H.W.R.
232 2021R1A2C4001420 to J-. S.R, NRF-2022R1C1C2006983 to C. K., and NRF-2020R1I1A1A01069160 to
233 H.R.K.). H.R.K. and J.S.R. were also supported by the Brain Korea 21 FOUR Program awarded to Yonsei
234 University. Research conducted at the Organelle Network Research Center (NRF-2017R1A5A1015366) and
235 the Korea Health Industry Development Institute (KHIDI) was funded by the Ministry of Health & Welfare
236 and the Ministry of Science and Information & Communication Technology (ICT), Republic of Korea (grant
237 number: HU23C0204). H.W.R and J.S.R are supported by Samsung Science & Technology Foundation
238 (SSTF-BA2201-08 to H.W.R, SSTF-BA2002-12 to J.S.R).

239

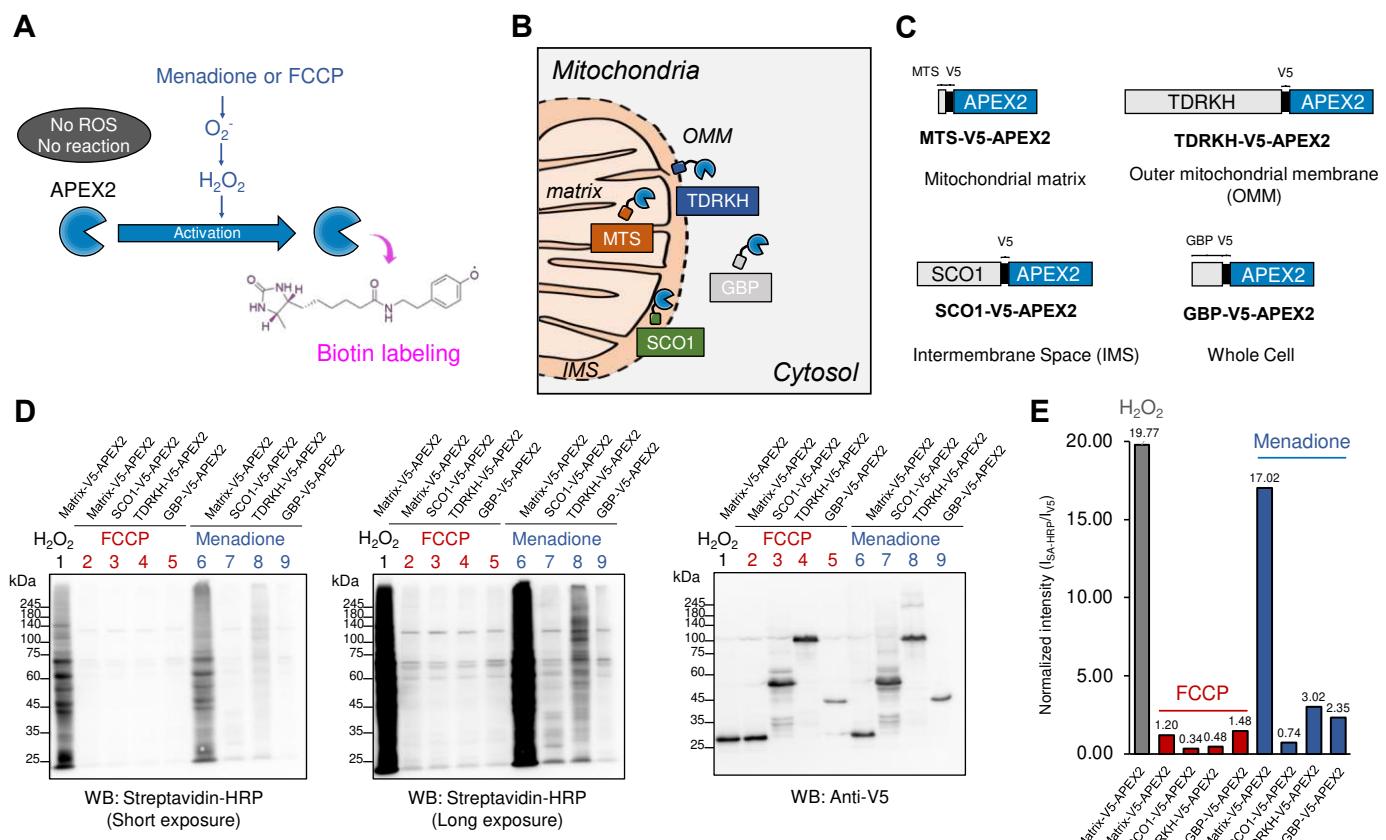
240 **Notes**

241 The authors declare no competing of interests.

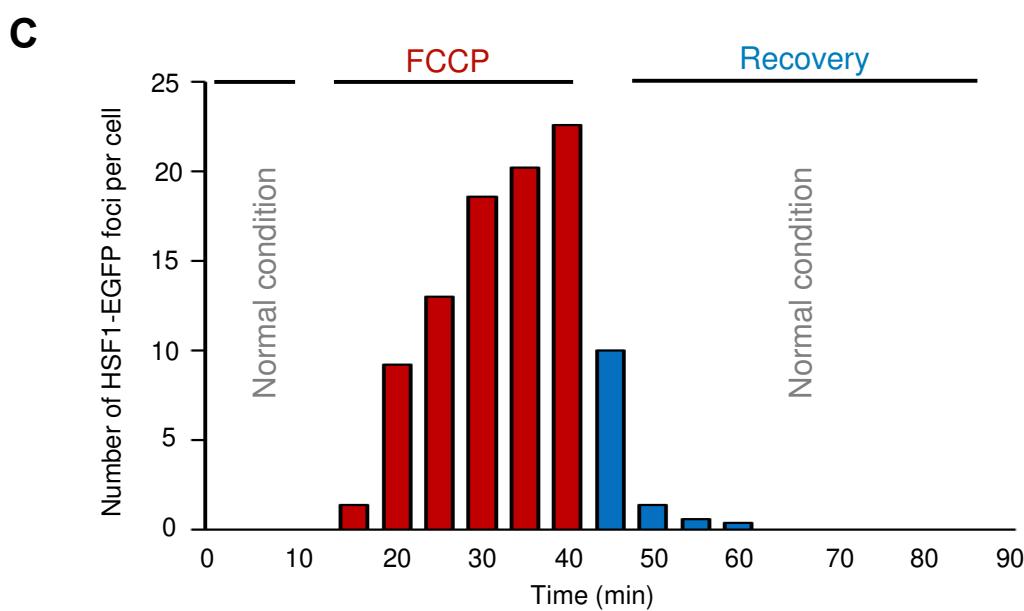
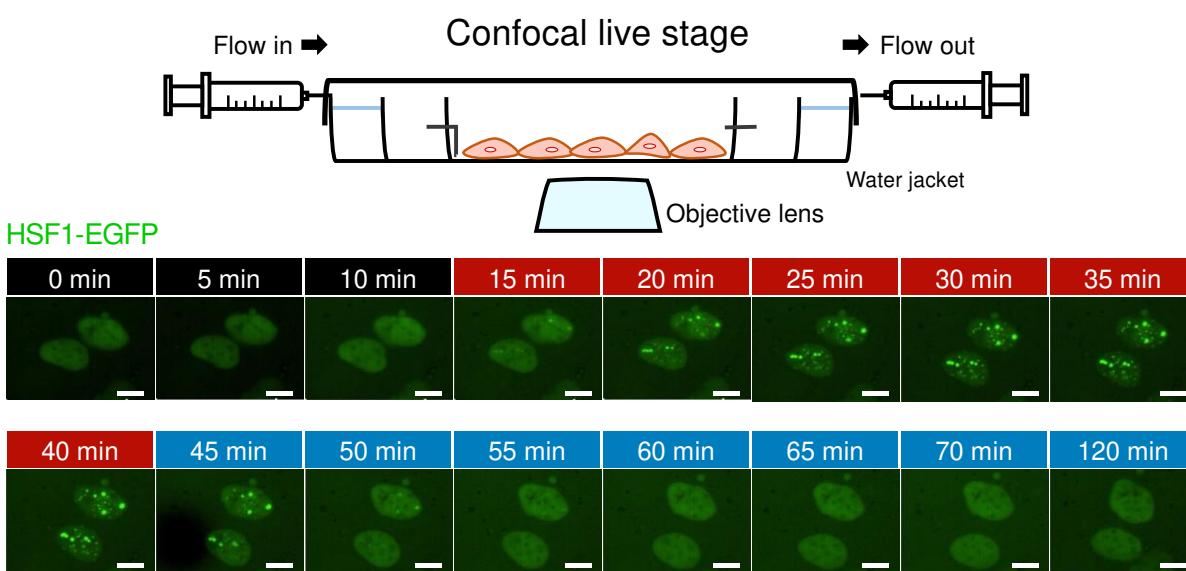
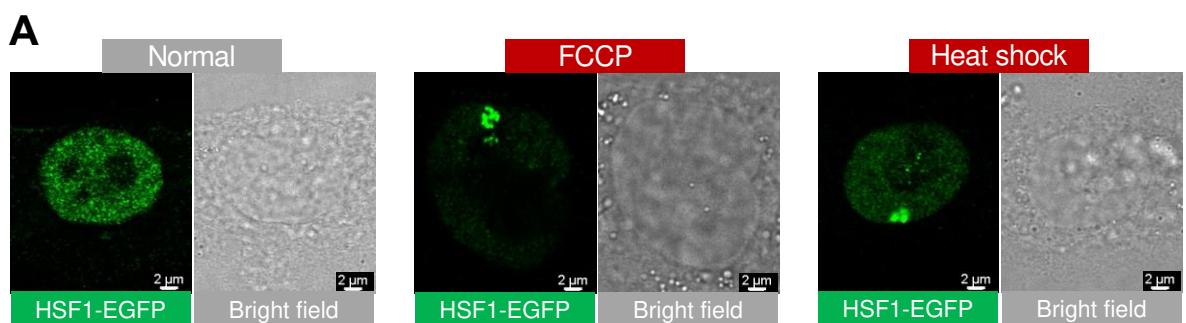

242

243 **Acknowledgements**

244 The ERthermoAc (ETAC) was a gift from Prof. Young-Tae Chang (POSTECH, Korea).

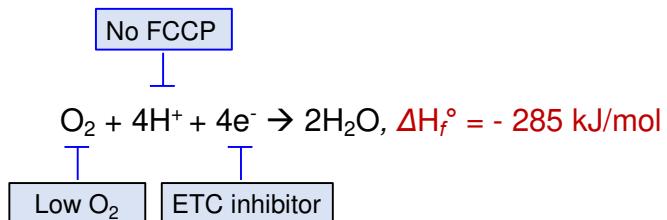

245

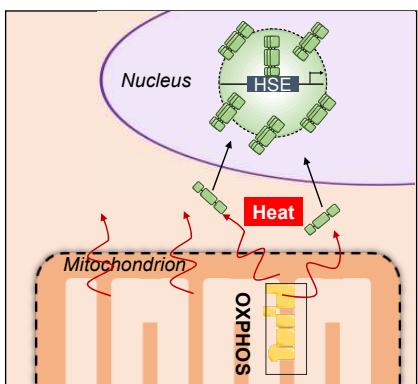
246 **Figures and Figure legends**

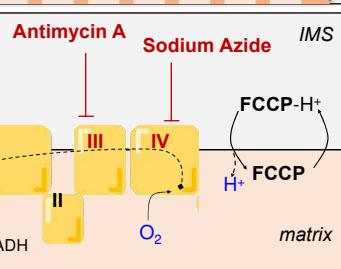
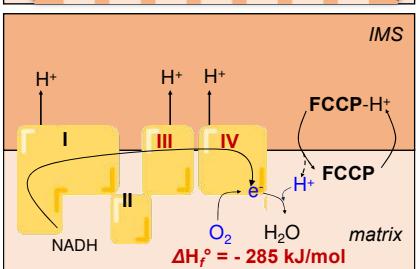
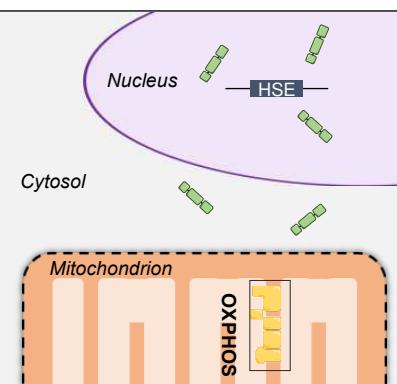
249 **Figure 1. Nuclear HSF1 activation by mitochondrial thermogenesis under FCCP treatment**
 250 (A) Schematic representation of FCCP-induced exothermic mitochondrial oxygen reduction reaction (ORR).
 251 (B) Schematic representation of HSF1 activation via mitochondrial thermogenesis following FCCP treatment
 252 (HSEs: heat shock elements). (C) Confocal images of endogenous HSF1 (anti-HSF1) and Histone H3 (anti-
 253 histone H3) activation in MCF10A cells incubated with either FCCP (100 μ M, 1 h) or menadione (30 μ M, 30
 254 min), or subjected to heat shock (43 °C, 1 h), and with or without co-treatment with NAC (5 mM, 1 h). Scale
 255 bar 10 μ m.

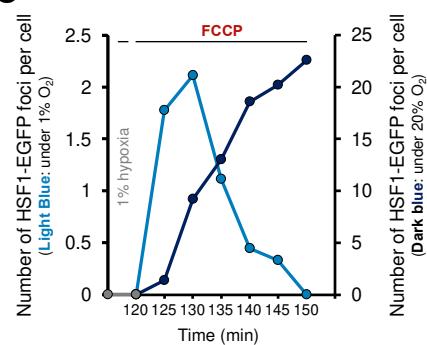
256

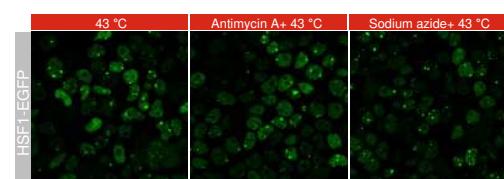
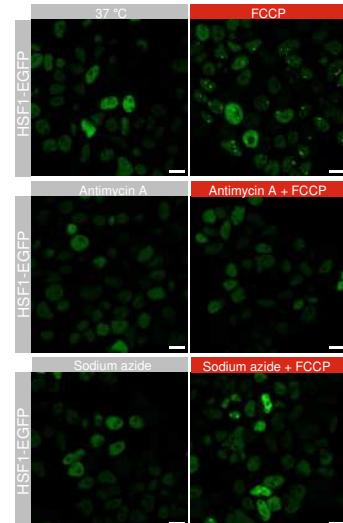

257
 258 **Figure 2. FCCP treatment does not induce ROS generation.**
 259 (A) Schematic depiction of APEX-mediated recording of cellular ROS generation. (B) Graphical
 260 representation of the subcellular localization of APEX2 constructs used for the enzymatic recording of
 261 hydrogen peroxide generation: Matrix-V5-APEX2 (mitochondrial matrix), SCO1-V5-APEX2 (IMS),
 262 TDRKH-V5-APEX2 (OMM), and GBP-V5-APEX2 (whole cell). (C) Construct map of the APEX plasmids
 263 used in this study. (D) Streptavidin (SA) western blot results of APEX-mediated biotinyling activity
 264 measurements after menadione or FCCP treatment. Anti-V5 western blotting images of the same lysate are
 265 shown below. (E) Quantification plots of the relative band intensity after short exposure to streptavidin and
 266 anti-V5 antibodies.


268 **Figure 3. Real-time imaging of HSF1 foci formation by FCCP treatment**

269 (A) Confocal fluorescent images of HSF1-EGFP foci formation in the stable HSF1-EGFP-expressing cells,
270 under FCCP treatment or heat shock. Scale bar 2 μ m. (B) Real-time fluorescence recording of HSF1-EGFP
271 in U2OS HSF1-EGFP-expressing stable cells. The FCCP (100 μ M, 30 min) was administered after 10 min of
272 incubation in normal conditions, and recovery was recorded during the incubation in fresh media for 1 h. (C)
273 Time-series graph for the number of counted HSF1-EGFP foci per cell nucleus throughout the FCCP-
274 treatment and recovery phases.

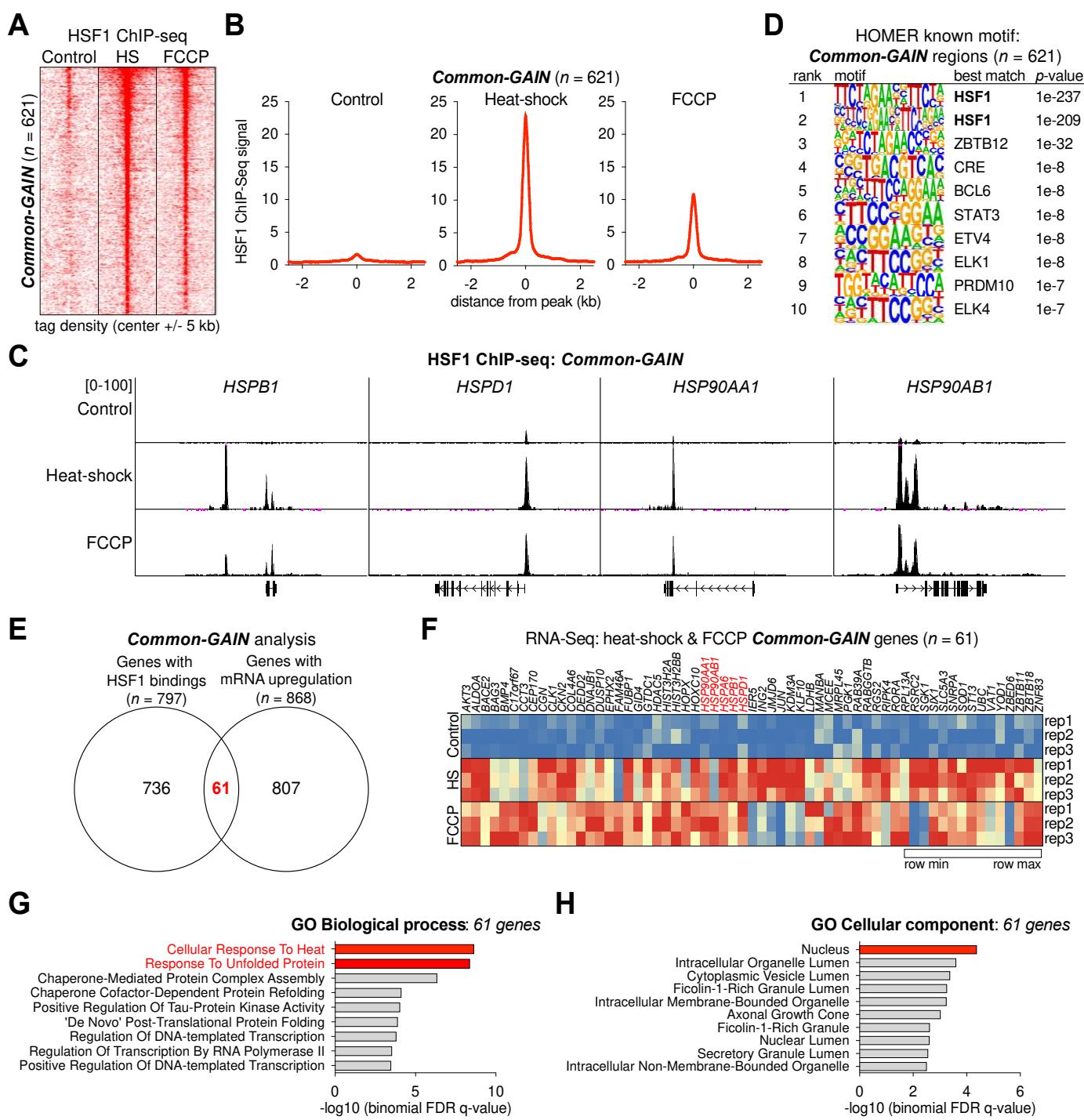



A


FCCP



FCCP+ ETC inhibitor


C

D


B

276 **Figure 4. Mitochondrial oxygen concentration and OXPHOS complex activity are crucial for**
277 **mitochondrial thermogenesis and HSF1 activation**

278 (A) Schematic view of exothermic mitochondrial oxygen consumption reaction under the FCCP treatment.

279 (B) Real-time confocal imaging of HSF1-EGFP stably expressed in HEK293T cells under normoxic (20% O₂
280 concentration, 30 min) and hypoxic (1% O₂ concentration, 2 h 30 min) conditions, with FCCP (100 μM) co-
281 treatment at last 30 min. Scale bar 10 μm. (C) The number of counted HSF1-EGFP foci per cell under
282 incubation conditions of 100 μM FCCP and either 1% O₂ concentration (Light blue dots, count: left y-axis),
283 or 20% O₂ concentration (Dark blue dots, count: right y-axis). The gray dots represent 1% hypoxia without
284 any chemical treatment. (D) Confocal images of HSF1-EGFP activation in HEK293T HSF1-EGFP stably
285 expressed cells treated with FCCP (100 μM, 1 h), antimycin A (20 μM, 1 h), and sodium azide (32 μM, 1 h).
286 Scale bar 10 μm. (E) Confocal images of HSF1-EGFP activation in HEK293T HSF1-EGFP stably expressed
287 cells treated with antimycin A (20 μM, 1 h), sodium azide (32 μM, 1 h), under heat shock (43 °C, 1 h)
288 conditions. Scale bar 10 μm.

290 **Figure 5. Chip-seq and RNA-seq analysis for common-GAIN regions of HSF1 expression under heat
291 shock and FCCP treatment**

292 (A) Density plots of HSF1 ChIP-seq signal enrichment at a 5-kb region around the center of heat shock/FCCP
293 co-bound regions. Each row represents a single region ($n = 621$). The conditions for heat shock were 43 °C
294 for 1 h, and for the FCCP treatment 100 μ M, for 1 h. (B) Analysis of ChIP-seq signals on overactive promoters
295 and enhancers under control, heat shock, and FCCP-treatment conditions. The scale of all graphs is calculated
296 based on the distance of the peak (kb). (C) Representative HSF1 ChIP-seq profiles at the *HSPB1*, *HSPD1*,
297 *HSP90AA1*, and *HSP90AB1* loci. (D) Motif analysis (HOMER) based on HSF1 ChIP-seq results showing
298 enriched motifs in Common-GAIN peaks. Only the top 10 motifs ranked by statistical significance are shown
299 in the logo plot. (E) Venn diagram depicting the number of identified HSF1-bound genes ($n = 797$) and
300 mRNA-upregulated genes ($n = 868$), following heat shock or treatment with FCCP. Between the two clusters,
301 there were a total of 61 ($n = 61$) overlapping genes, identified as both being associated with HSF1 and
302 upregulated. (F) Heatmap representation of changes in gene expression of heat shock and FCCP Common-
303 GAIN genes ($n = 61$). (G–H) Gene Ontology (GO) analysis for the identified 61 heat shock/FCCP co-bound
304 region genes of (G) the associated biological processes, and (H) the subcellular compartment (Cellular
305 Component).

306

307

References

308

Uncategorized References

309

- [1] A. Fischer, *Nature* **1936**, *137* (3466), 576, <https://doi.org/10.1038/137576a0>.
- [2] A. Hill, *Nature* **1951**, *167* (4245), 377.
- [3] S. Alberti, A. Gladfelter, T. Mittag, *Cell* **2019**, *176* (3), 419, <https://doi.org/https://doi.org/10.1016/j.cell.2018.12.035>.
- [4] B. S. Schuster, E. H. Reed, R. Parthasarathy, C. N. Jahnke, R. M. Caldwell, J. G. Bermudez, H. Ramage, M. C. Good, D. A. Hammer, *Nature communications* **2018**, *9* (1), 2985.
- [5] R. Gomez-Pastor, E. T. Burchfiel, D. J. Thiele, *Nature reviews Molecular cell biology* **2018**, *19* (1), 4.
- [6] G. Wiederrecht, D. Seto, C. S. Parker, *Cell* **1988**, *54* (6), 841.
- [7] J. S. Larson, T. J. Schuetz, R. E. Kingston, *Nature* **1988**, *335* (6188), 372.
- [8] M. L. Mendillo, S. Santagata, M. Koeva, G. W. Bell, R. Hu, R. M. Tamimi, E. Fraenkel, T. A. Ince, L. Whitesell, S. Lindquist, *Cell* **2012**, *150* (3), 549.
- [9] A. Katiyar, M. Fujimoto, K. Tan, A. Kurashima, P. Srivastava, M. Okada, R. Takii, A. Nakai, *FEBS Open bio* **2020**, *10* (6), 1135.
- [10] R. D. Ganetzky, A. L. Markhard, I. Yee, S. Clever, A. Cahill, H. Shah, Z. Grabarek, T.-L. To, V. K. Mootha, *New England Journal of Medicine* **2022**, *387* (15), 1395.
- [11] K. H. Kwok, K. S. Lam, A. Xu, *Experimental & molecular medicine* **2016**, *48* (3), e215.
- [12] S. Melmed, R. Koenig, C. Rosen, M. D. P. D. Richard J Auchus, A. Goldfine, *Williams Textbook of Endocrinology, 14 Edition: South Asia Edition, 2 Vol Set - E-Book*, Elsevier Health Sciences, **2020**.
- [13] S. Demine, P. Renard, T. Arnould, *Cells* **2019**, *8* (8), 795.
- [14] N. Inada, N. Fukuda, T. Hayashi, S. Uchiyama, *Nature protocols* **2019**, *14* (4), 1293.
- [15] S. Uchiyama, C. Gota, T. Tsuji, N. Inada, *Chemical Communications* **2017**, *53* (80), 10976.
- [16] C. Gota, K. Okabe, T. Funatsu, Y. Harada, S. Uchiyama, *Journal of the American Chemical Society* **2009**, *131* (8), 2766.
- [17] K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, *Nature communications* **2012**, *3* (1), 705.
- [18] T. Hayashi, N. Fukuda, S. Uchiyama, N. Inada, *PloS one* **2015**, *10* (2), e0117677.
- [19] D. Chrétien, P. Bénit, H.-H. Ha, S. Keipert, R. El-Khoury, Y.-T. Chang, M. Jastroch, H. T. Jacobs, P. Rustin, M. Rak, *PLoS biology* **2018**, *16* (1), e2003992.
- [20] J. Zhou, B. Del Rosal, D. Jaque, S. Uchiyama, D. Jin, *Nature methods* **2020**, *17* (10), 967.
- [21] C. W. Chung, A. D. Stephens, T. Konno, E. Ward, E. Avezov, C. F. Kaminski, A. A. Hassanali, G. S. Kaminski Schierle, *Journal of the American Chemical Society* **2022**, *144* (22), 10034.
- [22] P. Atkins, L. Jones, *Chemical principles: The quest for insight*, Macmillan, **2007**.
- [23] F. D. Rossini, *Proceedings of the National Academy of Sciences* **1930**, *16* (11), 694.
- [24] E. S. Childress, S. J. Alexopoulos, K. L. Hoehn, W. L. Santos, *Journal of Medicinal Chemistry* **2018**, *61* (11), 4641, <https://doi.org/10.1021/acs.jmedchem.7b01182>.
- [25] R. Kriszt, S. Arai, H. Itoh, M. H. Lee, A. G. Goralczyk, X. M. Ang, A. M. Cypess, A. P. White, F. Shamsi, R. Xue, *Scientific Reports* **2017**, *7* (1), 1383.
- [26] S. Uchiyama, T. Tsuji, K. Ikado, A. Yoshida, K. Kawamoto, T. Hayashi, N. Inada, *Analyst* **2015**, *140* (13), 4498.
- [27] H. Kimura, T. Nagoshi, A. Yoshii, Y. Kashiwagi, Y. Tanaka, K. Ito, T. Yoshino, T. D. Tanaka, M. Yoshimura, *Scientific reports* **2017**, *7* (1), 12978.
- [28] Y. Hoshi, K. Okabe, K. Shibasaki, T. Funatsu, N. Matsuki, Y. Ikegaya, R. Koyama, *Journal of Neuroscience* **2018**, *38* (25), 5700.
- [29] G. Gaglia, R. Rashid, C. Yapp, G. N. Joshi, C. G. Li, S. L. Lindquist, K. A. Sarosiek, L. Whitesell, P. K. Sorger, S. Santagata, *Nature Cell Biology* **2020**, *22* (2), 151, <https://doi.org/10.1038/s41556-019-0458-3>.
- [30] N. Hentze, L. Le Breton, J. Wiesner, G. Kempf, M. P. Mayer, *eLife* **2016**, *5*, e11576.
- [31] C. G. Triandafillou, C. D. Katanski, A. R. Dinner, D. A. Drummond, *eLife* **2020**, *9*, e54880, <https://doi.org/10.7554/eLife.54880>.

- 358 [32] M. Zhong, S.-J. Kim, C. Wu, *Journal of Biological Chemistry* **1999**, 274 (5), 3135,
359 <https://doi.org/https://doi.org/10.1074/jbc.274.5.3135>.
- 360 [33] D. D. Mosser, P. T. Kotzbauer, K. D. Sarge, R. I. Morimoto, *Proceedings of the National Academy of Sciences* **1990**, 87 (10), 3748, <https://doi.org/doi:10.1073/pnas.87.10.3748>.
- 361 [34] S. V. Himanen, M. C. Puustinen, A. J. Da Silva, A. Vihervaara, L. Sistonen, *Nucleic Acids Research* **2022**, 50 (11), 6102, <https://doi.org/10.1093/nar/gkac493>.
- 362 [35] S. Agarwal, S. Ganesh, *Journal of Cell Science* **2020**, 133 (13), <https://doi.org/10.1242/jcs.245589>.
- 363 [36] M. J. Mahon, *Adv Biosci Biotechnol* **2011**, 2 (3), 132, <https://doi.org/10.4236/abb.2011.23021>.
- 364 [37] P. K. Mishra, I. Park, N. Sharma, C.-M. Yoo, H. Y. Lee, H.-W. Rhee, *Analytical Chemistry* **2022**, 94 (43), 14869, <https://doi.org/10.1021/acs.analchem.2c01966>.
- 365 [38] G. Loor, J. Kondapalli, J. M. Schriewer, N. S. Chandel, T. L. V. Hoek, P. T. Schumacker, *Free Radical Biology and Medicine* **2010**, 49 (12), 1925.
- 366 [39] H. Y. Kim, Y.-S. Kim, H. H. Yun, C.-N. Im, J.-H. Ko, J.-H. Lee, *Experimental & Molecular Medicine* **2016**, 48 (9), e260, <https://doi.org/10.1038/emm.2016.84>.
- 367 [40] J. C. Young, V. R. Agashe, K. Siegers, F. U. Hartl, *Nature Reviews Molecular Cell Biology* **2004**, 5 (10), 781, <https://doi.org/10.1038/nrm1492>.
- 368 [41] K. D. Sarge, S. P. Murphy, R. I. Morimoto, *Molecular and Cellular Biology* **1993**, 13 (3), 1392, <https://doi.org/10.1128/mcb.13.3.1392-1407.1993>.
- 369 [42] V. Hietakangas, J. K. Ahlskog, A. M. Jakobsson, M. Hellesuo, N. M. Sahlberg, C. I. Holmberg, A. Mikhailov, J. J. Palvimo, L. Pirkkala, L. Sistonen, *Mol Cell Biol* **2003**, 23 (8), 2953, <https://doi.org/10.1128/MCB.23.8.2953-2968.2003>.
- 370 [43] G. Gaglia, R. Rashid, C. Yapp, G. N. Joshi, C. G. Li, S. L. Lindquist, K. A. Sarosiek, L. Whitesell, P. K. Sorger, S. Santagata, *Nat Cell Biol* **2020**, 22 (2), 151, <https://doi.org/10.1038/s41556-019-0458-3>.
- 371 [44] F. X. R. Sutandy, I. Gößner, G. Tascher, C. Münch, *Nature* **2023**, 618 (7966), 849, <https://doi.org/10.1038/s41586-023-06142-0>.
- 372 [45] I. Martínez-Reyes, N. S. Chandel, *Nature Communications* **2020**, 11 (1), 102, <https://doi.org/10.1038/s41467-019-13668-3>.
- 373 [46] T. Shpilka, C. M. Haynes, *Nature Reviews Molecular Cell Biology* **2018**, 19 (2), 109, <https://doi.org/10.1038/nrm.2017.110>.
- 374 [47] M. M. Savitski, F. B. M. Reinhard, H. Franken, T. Werner, M. F. Savitski, D. Eberhard, D. M. Molina, R. Jafari, R. B. Dovega, S. Klaeger, B. Kuster, P. Nordlund, M. Bantscheff, G. Drewes, *Science* **2014**, 346 (6205), 1255784, <https://doi.org/doi:10.1126/science.1255784>.
- 375 [48] V. Londoño Vélez, F. Alquraish, I. Tarbiyyah, F. Rafique, D. Mao, M. Chodasiewicz, *Frontiers in Plant Science* **2022**, 13, <https://doi.org/10.3389/fpls.2022.1032045>.
- 376 [49] S. C. Weber, C. P. Brangwynne, *Cell* **2012**, 149 (6), 1188, <https://doi.org/10.1016/j.cell.2012.05.022>.
- 377 [50] A. A. Hyman, C. A. Weber, F. Jülicher, *Annual Review of Cell and Developmental Biology* **2014**, 30 (1), 39, <https://doi.org/10.1146/annurev-cellbio-100913-013325>.
- 378 [51] Timothy J. Nott, E. Petsalaki, P. Farber, D. Jervis, E. Fussner, A. Plochowietz, T. D. Craggs, David P. Bazett-Jones, T. Pawson, Julie D. Forman-Kay, Andrew J. Baldwin, *Molecular Cell* **2015**, 57 (5), 936, <https://doi.org/https://doi.org/10.1016/j.molcel.2015.01.013>.
- 379 [52] B. S. Schuster, E. H. Reed, R. Parthasarathy, C. N. Jahnke, R. M. Caldwell, J. G. Bermudez, H. Ramage, M. C. Good, D. A. Hammer, *Nat Commun* **2018**, 9 (1), 2985, <https://doi.org/10.1038/s41467-018-05403-1>.
- 380 [53] H. Zhang, S. Shao, Y. Zeng, X. Wang, Y. Qin, Q. Ren, S. Xiang, Y. Wang, J. Xiao, Y. Sun, *Nature Cell Biology* **2022**, 24 (3), 340, <https://doi.org/10.1038/s41556-022-00846-7>.
- 381 [54] R. Williams, M. Laskovs, R. I. Williams, A. Mahadevan, J. Labbadia, *Developmental Cell* **2020**, 54 (6), 758, <https://doi.org/https://doi.org/10.1016/j.devcel.2020.06.038>.
- 382 [55] K. M. Tharp, R. Higuchi-Sanabria, G. A. Timblin, B. Ford, C. Garzon-Coral, C. Schneider, J. M. Muncie, C. Stashko, J. R. Daniele, A. S. Moore, P. A. Frankino, S. Homentcovschi, S. S. Manoli, H. Shao, A. L. Richards, K.-H. Chen, J. t. Hoeve, G. M. Ku, M. Hellerstein, D. K. Nomura, K. Saijo, J. Gestwicki, A. R. Dunn, N. J. Krogan, D. L. Swaney, A. Dillin, V. M. Weaver, *Cell Metabolism* **2021**, 33 (7), 1322, <https://doi.org/https://doi.org/10.1016/j.cmet.2021.04.017>.

- 410 [56] S. D. Martin, S. L. McGee, *Cancer & Metabolism* **2019**, 7 (1), 12, <https://doi.org/10.1186/s40170-019-0207-x>.
- 411 [57] U. Dier, D.-H. Shin, L. P. M. P. Hemachandra, L. M. Uusitalo, N. Hempel, *PLOS ONE* **2014**, 9 (5),
e98479, <https://doi.org/10.1371/journal.pone.0098479>.
- 412 [58] D. Chrétien, P. Bénit, H.-H. Ha, S. Keipert, R. El-Khoury, Y.-T. Chang, M. Jastroch, H. T. Jacobs, P.
413 Rustin, M. Rak, *PLOS Biology* **2018**, 16 (1), e2003992, <https://doi.org/10.1371/journal.pbio.2003992>.
- 414 [59] C. Beyler, P. Croce, C. Dubay, P. Johnson, M. McNamee, *Fire Science Reviews* **2017**, 6 (1), 1.
- 415 [60] M. H. Bokhari, C. Halleskog, A. Åslund, N. Boulet, E. Casadesús Rendos, J. M. A. de Jong, R.
416 Csikasz, E.-Z. Amri, I. Shabalina, T. Bengtsson, *Communications Biology* **2021**, 4 (1), 1108.
- 417
- 418
- 419

420 Supporting Figure and Figure Legends

421

422 **Figure S1. Confirm the intracellular thermogenesis by two different thermometers.** (A) Chemical
423 structures of TMRE, FCCP, and menadione. (C) Flow cytometry analyses and its histogram of HEK293T cell
424 suspensions treated with either TMRE, FCCP, or menadione. (D) Schematic illustration of temperature
425 measurement by ETAC. (E) ETAC fluorescence intensity after FCCP (100 μ M, 1 h) treatment. Decreased
426 ETAC fluorescence intensity under the indicates increased local temperature at the ER membrane. Flow
427 cytometry analysis result of ETAC fluorescent signal under the two conditions (steady-state or 100 μ M FCCP,
428 1 h), in HEK293T, HeLa and HepG2 cell lines. Cell count is shown on the y-axis, while fluorescent signal
429 intensity (PE-A) is shown on the x-axis. (F) The polymer structure of the organic thermometer “FDV-0005”.
430 (G) Graph of the calibration curve and the FCCP treatment results for the organic thermometer. The
431 thermometer was used at a dilution of 0.1% w/v in cell extract solution. Measurements were performed at a
432 temperature range of 30 °C to 45 °C. (H) Intracellular temperature calibration by the FDV-0005 organic
433 thermometer. The thermometer was used at a dilution of 0.01% w/v in 5% glucose solution. Measurements
434 were performed at a temperature range of 35 °C to 45 °C. Cells were incubated at 37 °C and 5% CO₂ in a
435 humidified incubator and treated with 100 μ M FCCP.

436

437 **Figure S2. Measurement of pH under FCCP condition and HSF1-foci formation in various HSF1-EGFP**
438 **stably expressed cell lines.** (A) Measurement of nuclear pH in the FCCP condition. The fluorescent protein-
439 based pH sensor pHluorin2 was used. The HEK293T cells were incubated at 37 °C and 5% CO₂ in a
440 humidified incubator and 100 μ M FCCP was used for this assay. (B-C) Chemical structures of BAM15 and
441 CCCP. (D) Confocal images of HSF1-EGFP foci formation in HEK293T HSF1-EGFP-expressing cells
442 following treatment with various CCCP concentrations (10, 50, and 100 μ M; 1-h incubation). Scale bar 20
443 μ m. (E) Confocal images of HSF1-EGFP foci formation in HEK293T HSF1-EGFP-expressing cells under
444 treatment with various BAM15 concentrations (10, 20, 50, and 100 μ M; 1-h incubation). Scale bar 20 μ m. (F)
445 Live-cell imaging of HSF1-EGFP foci formation following FCCP treatment (100 μ M, 30 min) of HSF1-
446 EGFP-expressing MCF10A cells. A real-time video recording is shown in movie zip 6. (G) Live-cell imaging
447 of HSF1-EGFP foci formation following FCCP treatment (100 μ M, 30 min) of HSF1-EGFP-expressing

448 HEK293T cells. (H) Live-cell imaging of HSF1-EGFP foci formation following FCCP treatment (100 μ M, 5
449 min) of HSF1-EGFP-expressing U2OS cells. A real-time video recording is shown in movie zip 5. (I) Live-
450 cell imaging of HSF1-EGFP foci formation following FCCP treatment (100 μ M, 30 min) of HSF1-EGFP-
451 expressing A549 cells. All live cell experiments were conducted at 37 °C in a humidified 5% CO₂ incubator.
452

453 **Figure S3. Western blot analysis in MCF10A cells.** (A-B) Western blot analysis of (A) endogenous HSF1,
454 or (B) recombinant HSF1-EGFP modification, following treatment with FCCP (100 μ M, 1 h) or heat shock
455 (43 °C, 1 h) in MCF10A cells. Histone H3 was used as reference. (C-D) Ponceau S image of western blot
456 results (A) and (B) respectively.
457

458 **Figure S4. Chip-seq and RNA-seq analysis of HSF1 under heat shock-specific and FCCP treatment-
459 specific GAIN.** (A-B) Representative HSF1 ChIP-seq profiles at the (A) *BAG3* and *NXT2*, and (B) *RBM25*
460 and *AQP12B* loci. (C) Density plots of HSF1 ChIP-seq, signal enrichment at a 5-kb region around the center
461 of heat shock-specific bound regions. Each row represents a single region ($n = 548$). (D) Analysis of the ChIP-
462 seq signals (shown in C) overactive promoters and enhancers. The scale of all graphs was calculated using the
463 distance of the peaks (kb). (E) Motif analysis (HOMER) based on HSF1 ChIP-seq results showing enriched
464 motifs in *HS-GAIN* peaks. Only the top 10 statistically significant motifs are shown in the logo plots. (F)
465 Density plots of HSF1 ChIP-seq and signal enrichment at a 5-kb region around the center of the FCCP
466 treatment-specific bound regions. (G) Analysis of the ChIP-seq signals (shown in f) overactive promoters and
467 enhancers. The scales of all graphs were calculated using the distance of the peaks (kb). (H) Motif analysis
468 (HOMER) based on HSF1 ChIP-seq results showing enriched motifs in *FCCP-GAIN* peaks. Only the top 10
469 statistically significant motifs are shown in the logo plots.
470

471 **Figure S5. Luciferase assay on HSPD1; HSF1 binding site and mRNA upregulated gene under Heat
472 shock and FCCP treatment common-GAIN.** (A) HSPD1/HSPE1 promoter region sequence, and schematic
473 representation of the HSPD1-luciferase assay. (B) HSPD1/HSPE1 promoter luciferase assay in HEK293T
474 cells after FCCP treatment (100 μ M, 1 h), heat shock at 40 °C for 1 h, or heat shock a 43 °C for 1 h). All live
475 cell experiments were conducted at 37 °C, in a humidified 5% CO₂ incubator. Box plots shown in b indicate
476 the quartiles, whiskers range from minimal to maximal values except outlier. The middle line of the box
477 indicates the mid-point of the data (middle quartile). Each dot indicates individual data points plotted on the
478 middle side of the box. Symbol ‘x’ means average value of data. Statistical analysis performed by student’s T
479 test and the following symbols were used: (**p<0.01). (C) Venn diagram showing the overlap ($n = 15$) of the
480 HSF1-bound genes ($n = 708$) and mRNA upregulated genes ($n = 104$) under heat shock-specific conditions.
481 (D) Gene Ontology (GO) analysis of the biological processes associated with the identified 15 upregulated
482 HSF1-bound genes (as shown in c).