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Abstract 15 

Mitochondrial thermogenesis is a process in which heat is generated by mitochondrial respiration. In living 16 

organisms, the thermogenic mechanisms that maintain body temperature have been studied extensively in fat 17 

cells, with little knowledge on how mitochondrial heat may act beyond energy expenditure. Here, we 18 

highlighted exothermic oxygen reduction reaction (∆Hf° = -285 kJ/mol) is the main source of the 19 

protonophore-induced mitochondrial thermogenesis and this heat was conducted to other cellular organelles, 20 

including the nuclei. As a result, mitochondrial heat that reached the nucleus initiated the classical heat shock 21 

response, including the formation of nuclear stress granules and localization of heat shock factor 1 to 22 

chromatin. Consequently, activated HSF1 increases gene expression associated with the response to thermal 23 

stress in mammalian cells. Our results illustrate heat generated within the cells as a potential source of 24 

mitochondrial-nucleus communication and expand our understanding of the biological functions of 25 

mitochondria in cell physiology. 26 
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Introduction 29 

Temperature induces diverse biological events, including biochemical reactions (e.g., reaction equilibrium 30 

and reaction rates)[1-2] and structural changes in proteins[3] and lipid membranes[4]. For this reason, living 31 

systems can precisely sense and respond to temperature changes[5]. Under the external heat stress conditions, 32 

heat shock factor 1 (HSF1) senses the increase in temperature and undergoes a structural change that enables 33 

it to regulate the expression of heat shock proteins (HSPs) thereby promoting cell survival. Although HSF1 34 

activation under external heat shock conditions was discovered more than 30 years ago[6-9], whether 35 

mammalian cells can produce their own heat to initiate an HSF1-mediated heat shock response remains 36 

unknown.  37 

Mitochondrial thermogenesis is an intracellular event that actively generates heat to maintain body 38 

temperature. In fat cell mitochondria, protons are directly imported into the mitochondrial matrix by the proton 39 

transporter protein (UCP1), not by ATP synthase[10], which is known to accelerate exothermic oxygen 40 

reduction to water reactions[11-12]. The similar event can be induced by treatment with mitochondrial 41 

uncoupling agents such as carbonyl cyanide p-(tri-fluromethoxy)phenyl-hydrazone (FCCP) which can 42 

directly import protons to the mitochondrial matrix[13]. Intriguingly, the FCCP-driven proton import to the 43 

mitochondrial matrix can also initiate mitochondrial thermogenesis which was validated experimentally using 44 

several fluorescent thermometers that can precisely detect mitochondrial temperature increases in live 45 

cells[14-21]. However, it remains uncertain what the biological importance and impact of the heat generated 46 

in mitochondria by changes in proton import is. In this study, we highlighted that exothermic proton-coupled 47 

oxygen consumption reaction or oxygen reduction reaction (ORR, O2 + 4H+ + 4e- → 2H2O, ∆Hf° = -285 48 

kJ/mol)[22-23] (Fig. 1A) is the main thermogenic source under the protonophore (i.e. FCCP) treatment by 49 

regulation of oxygen concentration and electron flows in the electron transport chain. Furthermore, we 50 

determined that this ORR-induced thermogenesis in mitochondria leads to thermal conduction to the other 51 

organelles such as the nucleus. Under the same conditions, we observed that mitochondrial thermogenesis 52 

activated canonical nuclear heat shock response programs mediated by HSF1. Overall, our study reveals a 53 

cell-intrinsic mechanism that allows heat to actively convey biological signals from the mitochondria to the 54 

nucleus. 55 

 56 

Results 57 

Heat shock factor 1 activation by mitochondrial thermogenesis 58 

To determine whether the activity of HSF1 is regulated by mitochondrial heat (Fig. 1B), we checked 59 

endogenous HSF1 localization by immunofluorescence imaging following treatment with FCCP. 60 

Biochemically, the FCCP is a weak acid that enforces reversible proton import from the mitochondrial 61 

intermembrane space to the matrix, which in turn uncouples the electron transport chain and inhibits ATP 62 

synthesis[24]. From a chemical perspective, this event can induce a highly exothermic oxygen reduction 63 
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reaction (ORR) to water at mitochondrial complex IV (O2 + 4H+ + 4e- → 2H2O, ∆Hf° = -285 kJ/mol)[22] by 64 

providing essential protons for this reaction (Fig. 1A). We applied FCCP to HEK293T cells and measured the 65 

mitochondrial inner membrane potential with TMRE (SI Appendix, Figs. S1A-B). We validated that ER 66 

membrane temperature was increased by the FCCP treatment with an ER membrane-localized temperature-67 

measuring fluorescent probe, ERthermAC (ETAC)[25](SI Appendix, Figs. S1C-D). Using fluorescent 68 

polymeric thermometer (FDV) which are evenly distributed in entire cellular area[26-28], we also observed 69 

that fluorescence emission intensity ratio (FI580/FI515) of FDV was changed to the ratio at the 39 °C under the 70 

FCCP treatment (SI Appendix, Figs. S1E-G). 71 

HSF1 is the fundamental heat-sensitive nuclear factor that can be activated with nuclear <foci= 72 

formation under heat stress[29-30]. These observations collectively indicate that the mitochondria-generated 73 

heat induced by FCCP can be transferred to the surrounding space and proximal organelles. Under this 74 

condition, endogenous HSF1 formed foci in the nucleus after FCCP treatment, and this pattern was 75 

comparable to that of HSF1 foci formation under external heat shock conditions (Fig. 1C).  76 

Including heat, there are several factors that contribute to the process of HSF1 activation, including 77 

intracellular pH changes[31-33] and ROS generation[34-35]. Hence, we decided to investigate whether 78 

mitochondrial heat is the primary factor that triggers HSF1 foci formation with FCCP treatment. First of all, 79 

we excluded pH changes in mediating HSF1 activation as FCCP treatment showed no changes in nuclear pH 80 

measured by pHluorin2[36] (SI Appendix, Fig. S2A). To assess ROS generation under the FCCP treatment, 81 

we employed our recently developed system based on the ROS-dependent engineered ascorbate peroxidase 82 

(APEX) reaction[37] (Fig. 2). Notably, the ROS production induced by FCCP was significantly lower in all 83 

submitochondrial spaces compared to the well-established ROS-generating agent, menadione[38] (Figs. 2D-84 

E).  85 

Notably, HSF1 has multiple activation modes either by heat stress or by ROS generation[39-40]. We 86 

confirmed that HSF1 foci formation was induced by menadione without heat induction, however, this ROS-87 

induced HSF1 activation by menadione was significantly quenched by co-treatment of the ROS quenching 88 

agent N-acetylcysteine (NAC, 5mM) (Fig. 1C). In contrast FCCP-driven HSF1 foci formation was minimally 89 

affected by co-treatment with the same concentration of NAC (5mM), suggesting that ROS is unlikely 90 

attributed to HSF1 foci formation (Fig. 1C). These results collectively demonstrate that FCCP-induced HSF1 91 

foci formation is independent of ROS or pH changes, and instead, it can be attributed to mitochondrial 92 

thermogenesis. 93 

Motivated by the above results, we investigated the potential use of HSF1 foci formation as a real-94 

time recording system that responds to heat conducted from mitochondria. To facilitate the observation of 95 

HSF1 foci formation, we prepared an HSF1-EGFP construct that can be delivered lentiviral and expressed 96 

stably in cells (Fig. 3A). Utilizing the GFP fluorescence, we recorded the HSF1-EGFP foci formation 97 

immediately following FCCP treatment by real-time confocal microscope (Fig. 3B; movie 1-2). In this real-98 
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time experiment, cells were incubated in normal growth media without FCCP treatment for the first 10 min 99 

and we did not observe any HSF1-EGFP foci in cells. However, when exposed to FCCP, HSF1-EGFP foci 100 

emerged immediately and disappeared rapidly when replaced with FCCP-free growth medium (Figs. 3B-C). 101 

The time-course measurement of HSF1-EGFP foci number exhibited a strong positive correlation with the 102 

presence or absence of FCCP in the cell growth medium (Fig. 3C). This result also presented that the HSF1 103 

foci can be induced in a reversible manner by transient heat generation. Consistently, HSF1-EGFP foci 104 

formation was also successfully promoted by other mitochondrial uncouplers such as BAM15 and CCCP 105 

(Carbonyl cyanide 3-chlorophenylhydrazone)[24] (SI Appendix, Figs. S2B-E). Nuclear HSF1 foci formation 106 

following FCCP treatment was again detected to a comparable degree in multiple other cell lines, including 107 

U2OS, HEK293T, MCF10A, and A549 (SI Appendix, Figs. S2F-I; movie 3-10). These observations 108 

indicated that there is no cell-type specification for the induction of HSF1 foci by FCCP. Taken together, our 109 

collective results suggest that HSF1 activation via mitochondrial thermogenesis is conserved in mammalian 110 

cells. 111 

 112 

Exothermic oxygen consumption reaction drives the HSF1 foci formation 113 

Mitochondrial thermogenesis, induced by exothermic oxygen reduction reaction (ORR, O2 + 4H+ + 4e- → 114 

2H2O, ∆Hf° = -285 kJ/mol)[22], relies on the abundant availability of reactants (H+, O2, and electrons) within 115 

the mitochondria. Consequently, protonophore-induced mitochondrial thermogenesis is contingent upon well-116 

maintained oxygen supply and efficient electron transport in the mitochondria. Thus, we hypothesized that 117 

either diminished oxygen levels or impaired electron transport during FCCP treatment may weaken heat 118 

generation thereby attenuating formation of HSF1 foci (Fig. 4A). 119 

To test this hypothesis, we reduced oxygen supply decreasing the availability of oxygen molecules in 120 

the media and the intracellular environment (Fig. 4B; movie 11). The HSF1-EGFP expressing cells were 121 

subjected to 2 h of hypoxic conditions (1% O2) prior to incubation with 100 μM FCCP. Using a real-time 122 

confocal imaging microscope, we could not detect HSF1 foci formation under prolonged hypoxia of over 2 h 123 

(Fig. 4C; gray dots), indicating that 2–3 h of hypoxia are sufficient to attenuate FCCP-dependent HSF1 foci 124 

formation. We observed only 1–2 HSF1 foci per cell within 10 min of FCCP treatment; however, these foci 125 

subsequently disappeared in the span of 30 min (Fig. 4C; light blue dots). In contrast, under normoxic baseline 126 

conditions (20% O2), approximately 10 foci per cell formed within 10 min following FCCP treatment (Fig. 127 

4C; dark blue dots). This finding highlights that oxygen supplementation is a pre-requisite for both 128 

mitochondrial thermogenesis and HSF1 activation. 129 

Next, to determine if HSF1 foci formation is affected by preventing electron supply to the exothermic 130 

ORR reaction (O2 + 4H+ + 4e- → 2H2O, ∆Hf° = -285 kJ/mol), HSF1-EGFP stably expressed cells were treated 131 

with antimycin A or sodium azide, which inhibit electron flow in the Oxidative Phosphorylation (OXPHOS) 132 

complex III and IV, respectively (Fig. 4A). As expected, we observed that HSF1 foci formation was 133 
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significantly reduced upon co-incubation of cells with OXPHOS inhibitors and FCCP (Fig. 4D). Conversely, 134 

HSF1-EGFP foci were distinctly formed in the control group after external heat shock at 43 °C, regardless of 135 

treatment with either of the OXPHOS inhibitors (Fig. 4E). This result confirmed that OXPHOS inhibitors 136 

specifically blocked the mitochondrial thermal activation process, not touching the HSF1 itself. Overall, here 137 

we confirmed that every component (i.e., proton, oxygen, electrons) in the exothermic mitochondrial ORR 138 

required for generating sufficient mitochondrial heat that can activate HSF1. 139 

 140 

Mitochondrial thermogenesis activates HSF1-dependent transcriptional programs 141 

Since heat-induced phosphorylations are prerequisites for the translocation and activation of HSF1 in the 142 

nucleus[41-43], we evaluated whether mitochondrial thermogenesis induced by FCCP treatment induces 143 

phosphorylation on HSF1. As shown in the HSF1 western blot results (SI Appendix, Figs. S3A-D), HSF1 144 

molecules moved more slowly in the gel when treated with FCCP, similar to when the heat shock is generated 145 

externally[41]. In contrast, relative to the control group, HSF1 showed no different in-gel migration under 146 

intracellular ROS-generating conditions induced by either menadione or rotenone treatment (SI Appendix, 147 

Figs. S3A-D). These results implicate that phosphorylation may occur on HSF1 during FCCP-dependent 148 

mitochondrial thermogenesis. Taken together, our results suggest that mitochondrial thermogenesis by FCCP 149 

may facilitate transcriptional activity of HSF1 in the nucleus through a similar mechanism by the heat applied 150 

externally. 151 

To validate this hypothesis, we investigated whether nuclear-localized HSF1 accumulation drives the 152 

expression of heat shock response-related programs. To determine whether HSF1 binds to heat shock response 153 

genes, we mapped the genome-wide binding of HSF1 using chromatin immunoprecipitation sequencing 154 

(ChIP-seq). Meta-analysis of the ChIP-seq datasets revealed 621 sites that commonly gained HSF1 signals in 155 

the promoter regions, termed Common-GAIN regions (Fig. 5A). Moreover, we found sites that recruited 156 

HSF1 under either heat shock or FCCP-treatment conditions, termed HS-GAIN and FCCP-GAIN regions, 157 

respectively (SI Appendix, Fig. S4). Notably, the average intensity of FCCP-mediated HSF1 binding to 158 

Common-GAIN sites was reduced to ~50% of that compared to heat-shock dependent HSF1 activation, 159 

corroborating that FCCP treatment increased nuclear temperature to levels lower than 43 °C (Figs. 5B-C). 160 

This result is in good agreement with our previously measured mean temperature of entire cellular area (39 °C) 161 

using FDV under the FCCP treatment (SI Appendix, Fig. S1G). The motif analysis of the Common-GAIN 162 

regions returned classical HSF1 binding motifs, although the possibility of engagement of other transcription 163 

factors could not be excluded (Fig. 5D). With luciferase assay system, we confirmed that HSPD1/HSPE1 164 

promoter which is one of Common-GAIN regions (Fig. 5C) can be activated both external heat shock and 165 

FCCP treatment conditions (SI Appendix, Figs. S5A-B). 166 

Among the 797 genes in which single or multiple HSF1-binding peaks were found in the promoter 167 

regions, RNA-seq analysis further revealed that 61 genes were transcriptionally activated in FCCP-treated 168 
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cells to a similar extent as under external heat shock conditions (Figs. 5E-F). Furthermore, gene ontology 169 

(GO) analysis revealed that 61 genes were significantly associated with the nuclear response to heat shock 170 

stress, exemplified by <cellular response to heat= and <response to unfolded protein,= indicating that the 171 

overall transcriptional output of the FCCP treatment phenocopies that of the external heat shock stimulus (Figs. 172 

5G-H and SI Appendix, Figs. S5C-D). Taken together, our findings suggest that FCCP-mediated heat 173 

generation resembles the biological activity of the heat shock response at the transcriptional level. 174 

 175 

Discussion 176 

In this work, we used HSF1 as a molecular sensor to measure how mitochondrial heat affects binding events 177 

of proximal proteins. As a result, we found that HSF1 formed foci in the nucleus when we added protonophore 178 

to potentiate the mitochondrial reaction for heat-releasing oxygen consumption. At the same time, we also 179 

observed HSF1 foci formation, which could be reversed by controlling the oxygen consumption in the 180 

mitochondria. Finally, integrative HSF1 ChIP-seq and RNA-seq experiments verified the activation of 181 

functional HSF1 pathway in a similar way under external heat stress conditions. 182 

Our results revealed that mitochondrial thermogenesis can modulate the activity of intracellular 183 

thermosensing proteins such as HSF1, in live cells. This suggests that mitochondria-generated heat could act 184 

as an intracellular signal that may lead to protein conformation alterations without intermediate molecular 185 

interactions. Compared to the targeted signaling by molecular transfer events (i.e., molecular conversion and 186 

translocation[44-46], molecular interactions, or modifications), mitochondrial heat can be a global retrograde 187 

signal that spatiotemporally affects numerous proteins. In mammalian cells, many proteins have a low melting 188 

temperature around 40 °C[47] and proteins with intrinsically disordered proteins (IDRs) can occur liquid-189 

liquid phase separation (LLPS) in the range of 40 °C[48-52]. Notably, HSF1 possesses a long IDR domain 190 

(221–383 aa) that can induce LLPS[53]. Therefore, it is expected that many of such low-melting-temperature 191 

or IDR-containing proteins can be the primary effectors of mitochondrial heat signaling. 192 

It is noteworthy that HSF1 has been studied for its role in mitochondria and nucleus communication. 193 

A group of studies have shown that HSF1 can sense mitochondrial misfolding stress and mediated 194 

mitochondrial protein unfolded response (UPRmt) in the nucleus[9],[44]. Other studies have shown that HSF1 195 

can be activated by mitochondrial ROS and protect cells under the mitochondrial stress conditions[44, 54-55]. 196 

Our study firstly showed that mitochondrial generated heat can also activate HSF1. Our data also reinforces 197 

the hypothesis that HSF1 is a key protein that acts as a master message-transducer between the mitochondria 198 

and the nucleus. It is also noteworthy that HSF1 foci formations were observed in several aggressive tumors[8, 199 

29]. Since high mitochondrial oxygen consumption rates have been measured in several cancer cell lines[56-200 

58], further studies would be attempting to test whether the mitochondrial thermogenesis can promote HSF1 201 

activation under those conditions[9, 44, 54-55] because mitochondrial temperature has not been measured in 202 

those studies. 203 
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We also provided a new chemical interpretation of mitochondrial thermogenesis, based on the 204 

exothermic property of the oxygen reduction reaction (O2 + 4H+ + 4e- → 2H2O, ∆Hf° = -285 kJ/mol), which 205 

is well-recognized in other research fields[22-23, 59]. To the best of our knowledge, our study highlights the 206 

exothermic enthalpy change of this oxygen consumption reaction (∆Hf° =-285 kJ/mol) and suggests that this 207 

is likely the primary thermogenic reaction in mitochondria. We validated that every component (i.e., protons, 208 

oxygen, and electrons) in this reaction is crucial for sufficient mitochondrial thermogenesis and the subsequent 209 

upregulation of HSF1. As the oxygen consumption rate is regarded as a reliable indirect measurement standard 210 

for thermogenic events in the metabolism research field[60], we believe that our theorem may be accepted in 211 

the field. 212 

In summary, our current study demonstrated that mitochondrial-generated heat is sufficient to activate 213 

HSF1 independently of ROS and provides supporting evidence to consider intracellularly generated heat as a 214 

distinct signal that promotes subsequent changes in cell homeostasis. Our work may serve as a basis for future 215 

investigations to delineate the complex relationships between various mitochondrial thermogenic events and 216 

the activation of heat-sensitive proteins under diverse physiological and pathological contexts. 217 

  218 
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Figures and Figure legends 246 
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Figure 1. Nuclear HSF1 activation by mitochondrial thermogenesis under FCCP treatment 249 

(A) Schematic representation of FCCP-induced exothermic mitochondrial oxygen reduction reaction (ORR). 250 

(B) Schematic representation of HSF1 activation via mitochondrial thermogenesis following FCCP treatment 251 

(HSEs: heat shock elements). (C) Confocal images of endogenous HSF1 (anti-HSF1) and Histone H3 (anti-252 

histone H3) activation in MCF10A cells incubated with either FCCP (100 μM, 1 h) or menadione (30 μM, 30 253 

min), or subjected to heat shock (43 °C, 1 h), and with or without co-treatment with NAC (5 mM, 1 h). Scale 254 

bar 10 μm.  255 

 256 

 257 
Figure 2. FCCP treatment does not induce ROS generation. 258 

(A) Schematic depiction of APEX-mediated recording of cellular ROS generation. (B) Graphical 259 

representation of the subcellular localization of APEX2 constructs used for the enzymatic recording of 260 

hydrogen peroxide generation: Matrix-V5-APEX2 (mitochondrial matrix), SCO1-V5-APEX2 (IMS), 261 

TDRKH-V5-APEX2 (OMM), and GBP-V5-APEX2 (whole cell). (C) Construct map of the APEX plasmids 262 

used in this study. (D) Streptavidin (SA) western blot results of APEX-mediated biotinylating activity 263 

measurements after menadione or FCCP treatment. Anti-V5 western blotting images of the same lysate are 264 

shown below. (E) Quantification plots of the relative band intensity after short exposure to streptavidin and 265 

anti-V5 antibodies.  266 
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Figure 3. Real-time imaging of HSF1 foci formation by FCCP treatment 268 

(A) Confocal fluorescent images of HSF1-EGFP foci formation in the stable HSF1-EGFP-expressing cells, 269 

under FCCP treatment or heat shock. Scale bar 2 μm. (B) Real-time fluorescence recording of HSF1-EGFP 270 

in U2OS HSF1-EGFP-expressing stable cells. The FCCP (100 μM, 30 min) was administered after 10 min of 271 

incubation in normal conditions, and recovery was recorded during the incubation in fresh media for 1 h. (C) 272 

Time-series graph for the number of counted HSF1-EGFP foci per cell nucleus throughout the FCCP-273 

treatment and recovery phases. 274 
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Figure 4. Mitochondrial oxygen concentration and OXPHOS complex activity are crucial for 276 

mitochondrial thermogenesis and HSF1 activation  277 

(A) Schematic view of exothermic mitochondrial oxygen consumption reaction under the FCCP treatment.  278 

(B) Real-time confocal imaging of HSF1-EGFP stably expressed in HEK293T cells under normoxic (20% O2 279 

concentration, 30 min) and hypoxic (1% O2 concentration, 2 h 30 min) conditions, with FCCP (100 μM) co-280 

treatment at last 30 min. Scale bar 10 μm. (C) The number of counted HSF1-EGFP foci per cell under 281 

incubation conditions of 100 μM FCCP and either 1% O2 concentration (Light blue dots, count: left y-axis), 282 

or 20% O2 concentration (Dark blue dots, count: right y-axis). The gray dots represent 1% hypoxia without 283 

any chemical treatment. (D) Confocal images of HSF1-EGFP activation in HEK293T HSF1-EGFP stably 284 

expressed cells treated with FCCP (100 μM, 1 h), antimycin A (20 μM, 1 h), and sodium azide (32 μM, 1 h). 285 

Scale bar 10 μm. (E) Confocal images of HSF1-EGFP activation in HEK293T HSF1-EGFP stably expressed 286 

cells treated with antimycin A (20 μM, 1 h), sodium azide (32 μM, 1 h), under heat shock (43 °C, 1 h) 287 

conditions. Scale bar 10 μm. 288 
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Figure 5. Chip-seq and RNA-seq analysis for common-GAIN regions of HSF1 expression under heat 290 

shock and FCCP treatment 291 

(A) Density plots of HSF1 ChIP-seq signal enrichment at a 5-kb region around the center of heat shock/FCCP 292 

co-bound regions. Each row represents a single region (n = 621). The conditions for heat shock were 43 °C 293 

for 1 h, and for the FCCP treatment 100 μM, for 1 h. (B) Analysis of ChIP-seq signals on overactive promoters 294 

and enhancers under control, heat shock, and FCCP-treatment conditions. The scale of all graphs is calculated 295 

based on the distance of the peak (kb). (C) Representative HSF1 ChIP-seq profiles at the HSPB1, HSPD1, 296 

HSP90AA1, and HSP90AB1 loci. (D) Motif analysis (HOMER) based on HSF1 ChIP-seq results showing 297 

enriched motifs in Common-GAIN peaks. Only the top 10 motifs ranked by statistical significance are shown 298 

in the logo plot. (E) Venn diagram depicting the number of identified HSF1-bound genes (n = 797) and 299 

mRNA-upregulated genes (n = 868), following heat shock or treatment with FCCP. Between the two clusters, 300 

there were a total of 61 (n = 61) overlapping genes, identified as both being associated with HSF1 and 301 

upregulated. (F) Heatmap representation of changes in gene expression of heat shock and FCCP Common-302 

GAIN genes (n = 61). (G–H) Gene Ontology (GO) analysis for the identified 61 heat shock/FCCP co-bound 303 

region genes of (G) the associated biological processes, and (H) the subcellular compartment (Cellular 304 

Component). 305 
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Supporting Figure and Figure Legends 420 

 421 

Figure S1. Confirm the intracellular thermogenesis by two different thermometers. (A) Chemical 422 

structures of TMRE, FCCP, and menadione. (C) Flow cytometry analyses and its histogram of HEK293T cell 423 

suspensions treated with either TMRE, FCCP, or menadione. (D) Schematic illustration of temperature 424 

measurement by ETAC. (E) ETAC fluorescence intensity after FCCP (100 μM, 1 h) treatment. Decreased 425 

ETAC fluorescence intensity under the indicates increased local temperature at the ER membrane. Flow 426 

cytometry analysis result of ETAC fluorescent signal under the two conditions (steady-state or 100 μM FCCP, 427 

1 h), in HEK293T, HeLa and HepG2 cell lines. Cell count is shown on the y-axis, while fluorescent signal 428 

intensity (PE-A) is shown on the x-axis. (F) The polymer structure of the organic thermometer <FDV-0005=. 429 

(G) Graph of the calibration curve and the FCCP treatment results for the organic thermometer. The 430 

thermometer was used at a dilution of 0.1% w/v in cell extract solution. Measurements were performed at a 431 

temperature range of 30 °C to 45 °C. (H) Intracellular temperature calibration by the FDV-0005 organic 432 

thermometer. The thermometer was used at a dilution of 0.01% w/v in 5% glucose solution. Measurements 433 

were performed at a temperature range of 35 °C to 45 °C. Cells were incubated at 37 °C and 5% CO2 in a 434 

humidified incubator and treated with 100 μM FCCP. 435 

 436 

Figure S2. Measurement of pH under FCCP condition and HSF1-foci formation in various HSF1-EGFP 437 

stably expressed cell lines. (A) Measurement of nuclear pH in the FCCP condition. The fluorescent protein-438 

based pH sensor pHluorin2 was used. The HEK293T cells were incubated at 37 °C and 5% CO2 in a 439 

humidified incubator and 100 μM FCCP was used for this assay. (B-C) Chemical structures of BAM15 and 440 

CCCP. (D) Confocal images of HSF1-EGFP foci formation in HEK293T HSF1-EGFP-expressing cells 441 

following treatment with various CCCP concentrations (10, 50, and 100 μM; 1-h incubation). Scale bar 20 442 

μm. (E) Confocal images of HSF1-EGFP foci formation in HEK293T HSF1-EGFP-expressing cells under 443 

treatment with various BAM15 concentrations (10, 20, 50, and 100 μM; 1-h incubation). Scale bar 20 μm. (F) 444 

Live-cell imaging of HSF1-EGFP foci formation following FCCP treatment (100 μM, 30 min) of HSF1-445 

EGFP-expressing MCF10A cells. A real-time video recording is shown in movie zip 6. (G) Live-cell imaging 446 

of HSF1-EGFP foci formation following FCCP treatment (100 μM, 30 min) of HSF1-EGFP-expressing 447 
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HEK293T cells. (H) Live-cell imaging of HSF1-EGFP foci formation following FCCP treatment (100 μM, 5 448 

min) of HSF1-EGFP-expressing U2OS cells. A real-time video recording is shown in movie zip 5. (I) Live-449 

cell imaging of HSF1-EGFP foci formation following FCCP treatment (100 μM, 30 min) of HSF1-EGFP-450 

expressing A549 cells. All live cell experiments were conducted at 37 °C in a humidified 5% CO2 incubator. 451 

 452 

Figure S3. Western blot analysis in MCF10A cells. (A-B) Western blot analysis of (A) endogenous HSF1, 453 

or (B) recombinant HSF1-EGFP modification, following treatment with FCCP (100 μM, 1 h) or heat shock 454 

(43 °C, 1 h) in MCF10A cells. Histone H3 was used as reference. (C-D) Ponceau S image of western blot 455 

results (A) and (B) respectively. 456 

 457 

Figure S4. Chip-seq and RNA-seq analysis of HSF1 under heat shock-specific and FCCP treatment-458 

specific GAIN. (A–B) Representative HSF1 ChIP-seq profiles at the (A) BAG3 and NXT2, and (B) RBM25 459 

and AQP12B loci. (C) Density plots of HSF1 ChIP-seq, signal enrichment at a 5-kb region around the center 460 

of heat shock-specific bound regions. Each row represents a single region (n = 548). (D) Analysis of the ChIP-461 

seq signals (shown in C) overactive promoters and enhancers. The scale of all graphs was calculated using the 462 

distance of the peaks (kb). (E) Motif analysis (HOMER) based on HSF1 ChIP-seq results showing enriched 463 

motifs in HS-GAIN peaks. Only the top 10 statistically significant motifs are shown in the logo plots. (F) 464 

Density plots of HSF1 ChIP-seq and signal enrichment at a 5-kb region around the center of the FCCP 465 

treatment-specific bound regions. (G) Analysis of the ChIP-seq signals (shown in f) overactive promoters and 466 

enhancers. The scales of all graphs were calculated using the distance of the peaks (kb). (H) Motif analysis 467 

(HOMER) based on HSF1 ChIP-seq results showing enriched motifs in FCCP-GAIN peaks. Only the top 10 468 

statistically significant motifs are shown in the logo plots. 469 

 470 

Figure S5. Luciferase assay on HSPD1; HSF1 binding site and mRNA upregulated gene under Heat 471 

shock and FCCP treatment common-GAIN. (A) HSPD1/HSPE1 promoter region sequence, and schematic 472 

representation of the HSPD1-luciferase assay. (B) HSPD1/HSPE1 promoter luciferase assay in HEK293T 473 

cells after FCCP treatment (100 μM, 1 h), heat shock at 40 °C for 1 h, or heat shock a 43 °C for 1 h). All live 474 

cell experiments were conducted at 37 °C, in a humidified 5% CO2 incubator. Box plots shown in b indicate 475 

the quartiles, whiskers range from minimal to maximal values except outlier. The middle line of the box 476 

indicates the mid-point of the data (middle quartile). Each dot indicates individual data points plotted on the 477 

middle side of the box. Symbol 8x9 means average value of data. Statistical analysis performed by student9s T 478 

test and the following symbols were used:(**p<0.01). (C) Venn diagram showing the overlap (n = 15) of the 479 

HSF1-bound genes (n = 708) and mRNA upregulated genes (n = 104) under heat shock-specific conditions. 480 

(D) Gene Ontology (GO) analysis of the biological processes associated with the identified 15 upregulated 481 

HSF1-bound genes (as shown in c). 482 
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