

1 Arctos: Community-driven innovations for managing biodiversity
2 and cultural collections

3
4 Carla Cicero^{1¶*}, Michelle S. Koo^{1¶}, Emily Braker^{2¶}, John Abbott^{3&}, David Bloom^{4&}, Mariel
5 Campbell^{5&}, Joseph A. Cook^{5,6&}, John R. Demboski^{7&}, Andrew C. Doll^{7&}, Lindsey M.
6 Frederick^{8&}, Angela J. Linn^{9&}, Teresa J. Mayfield-Meyer^{10&}, Dusty L. McDonald^{10&}, Michael
7 W. Nachman^{1&}, Link E. Olson^{9&}, Dawn Roberts^{11&}, Derek S. Sikes^{9,12&}, Christopher C.
8 Witt^{5,6&}, Elizabeth Wommack^{13&}

9

10 ¹Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of
11 America

12 ²University of Colorado Museum of Natural History, University of Colorado, Boulder, Colorado,
13 United States of America

14 ³Department of Museums Research and Collections and Alabama Museum of Natural History,
15 University of Alabama, Tuscaloosa, Alabama, United States of America

16 ⁴VertNet, Sebastopol, California, United States of America

17 ⁵Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico,
18 United States of America

19 ⁶Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of
20 America

21 ⁷Denver Museum of Nature & Science, Denver, Colorado, United States of America

22 ⁸New Mexico Museum of Natural History & Science, Albuquerque, New Mexico, United States
23 of America

24 ⁹University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States
25 of America

26 ¹⁰Arctos Consortium, 1000 Broadway, Suite 480, Oakland, California, United States of America

27 ¹¹Chicago Academy of Sciences, 2430 N Cannon Drive, Chicago, Illinois, United States of
28 America

29 ¹²Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, United
30 States of America

31 ¹³University of Wyoming Museum of Vertebrates, University of Wyoming, Laramie, Wyoming,
32 United States of America

33

34 [¶]These authors contributed equally to this work. Other authors are listed in alphabetical order.

35 [&]Authors are current or former Officers or Board of Director members for the Arctos
36 Consortium.

37 * Corresponding author. Email: ccicero@berkeley.edu

38

39

40 **Abstract**

41

42 Museum collections house millions of objects and associated data records that document
43 biological and cultural diversity. In recent decades, digitization efforts have greatly increased
44 accessibility to these data, thereby revolutionizing interdisciplinary studies in evolutionary
45 biology, biogeography, epidemiology, cultural change, and human-mediated environmental
46 impacts. Curators and collection managers can make museum data as accessible as possible
47 to scientists and learners by using a collection management system. However, selecting a
48 system can be a challenging task. Here, we describe Arctos, a community solution for managing
49 and accessing collections data for research and education. Specific goals are to: (1) Describe
50 the core elements of Arctos for a broad audience with respect to the biodiversity informatics
51 principles that enable high quality research; (2) Highlight the unique aspects of Arctos; (3)
52 Illustrate Arctos as a model for supporting and enhancing the Digital Extended Specimen; and
53 (4) Emphasize the role of the Arctos community for improving data discovery and enabling
54 cross-disciplinary, integrative studies within a sustainable governance model. In addition to
55 detailing Arctos as both a community of museum professionals and a collection database
56 platform, we discuss how Arctos achieves its richly annotated data by creating a web of
57 knowledge with deep connections between catalog records and derived or associated data. We
58 also highlight the value of Arctos as an educational resource. Finally, we present a financial
59 model of fiscal sponsorship by a non-profit organization, implemented in 2022, to ensure the
60 long-term success and sustainability of Arctos. We attribute Arctos' longevity of nearly three
61 decades to its core development principles of standardization, flexibility, interdisciplinarity, and
62 connectivity within a nimble development model for addressing novel needs and information
63 types in response to changing technology, workflows, ethical considerations, and regulations.

64 Introduction

65

66 Museum collections are veritable treasure troves of objects and associated data that document
67 biological and cultural diversity across spatial and temporal scales. In recent decades, national
68 and global digitization efforts that promote free and open access to those records have
69 unleashed exciting initiatives in both research and education [1-6]. Furthermore, community
70 science efforts aimed at digitizing museum data have shown that entire communities can be
71 engaged in enhancing the scientific value of museum collections [7]. The vast increase in data
72 available through different platforms has revolutionized interdisciplinary studies in evolutionary
73 biology, biogeography, epidemiology, cultural change, and human-mediated environmental
74 impacts [2, 8-10]. Although collections data are increasingly accessible, initiatives for research,
75 education, and policy benefit the most from carefully curated, high-quality information that
76 comprehensively assembles and links everything that is known about objects in an extended
77 network [11-13].

78

79 Collection information management systems range from simple spreadsheets to sophisticated
80 relational databases. Fortunately, advances in informatics focused on biodiversity and cultural
81 heritage have enabled broad-scale aggregation of museum data [14] from different sources
82 through the development of global metadata standards (e.g., Darwin Core, <https://dwc.tdwg.org>;
83 Dublin Core, <https://dublincore.org>; Getty Vocabularies,
84 <https://www.getty.edu/research/tools/vocabularies>). Although these efforts have massively
85 increased the *quantity* of data that are available, the *quality* of data depends strongly on local
86 controls that standardize and improve the consistency of data *values* [11]. Efforts to standardize
87 data benefit from community input, especially when diverse disciplines with varying perspectives
88 are represented [15]. Likewise, FAIR Data Principles for scientific data management and

89 stewardship (Findability, Accessibility, Interoperability, and Reusability [16]) promote discovery
90 and use of data through transparency, reproducibility, and reusability.

91

92 Museum curators and collection managers are faced with a bewildering number of challenges
93 and choices when considering collections digitization, management, and data access. Although
94 collections data are increasingly available online, not all collection management systems have
95 the advanced infrastructure needed to integrate diverse data sets, broaden the scope of
96 accessible data as new technologies become available, and examine complex interactions and
97 processes [17]. Here, we describe Arctos (<https://arctosdb.org>), a community solution for
98 managing and accessing collections data for research and education. Specific goals to: (1)
99 Describe the core elements of Arctos for a broad audience with respect to the biodiversity
100 informatics principles that enable high quality research; (2) Highlight the unique aspects of
101 Arctos; (3) Illustrate Arctos as a model for supporting and enhancing the Digital Extended
102 Specimen [12, 18]; and (4) Emphasize the role of the Arctos community for improving data
103 discovery and enabling cross-disciplinary, integrative studies within a sustainable governance
104 model.

105 A brief history of Arctos

106

107 The foundation of Arctos was set in 1996 when the Museum of Vertebrate Zoology (MVZ) at the
108 University of California Berkeley developed an information management model for its collections
109 (“MVZ Database Model”, [19]). This model was unique at the time in its ability to integrate and
110 manage data from diverse collection types in a single environment, to relate cataloged objects
111 across different collections, and to track and promote access to researchers and educators. The
112 model was implemented as a web-based system and renamed Arctos in 1999 at the University
113 of Alaska Museum (UAM) as part of the Arctic Archival Observatory (National Science

114 Foundation grant DEB-9981915). The University of New Mexico Museum of Southwestern
115 Biology (MSB) and the MVZ began using this Arctos platform in 2003 and 2008, respectively. In
116 2009, a separate installation of Arctos that eventually became MCZBase was established at the
117 Museum of Comparative Zoology, Harvard University, as a centralized repository for its
118 collections data. The Texas Advanced Computing Center (TACC) began working with Arctos in
119 2008, first to host media and later to host and provide database support and security for the
120 entire shared system.

121

122 Arctos has averaged ~8-9% annual increase in collection records since its inception over 20
123 years ago (Fig 1A). Records served by Arctos are globally distributed (Fig 1B), and growth has
124 been concomitant with diversification in the types of data served. Initially developed for
125 vertebrate collections, the University of Alaska Museum became the first institution to add object
126 records from cultural collections in 2014. Arctos now serves rich data across a spectrum of
127 collections beyond vertebrates including archaeology, archives, art, botany, entomology,
128 ethnology, geosciences, history, invertebrate zoology, meteoritics, parasitology, paleontology,
129 teaching, and zooarchaeology. This breadth of data types, along with the accompanying
130 expertise of curators who use Arctos for data management, fosters cross-disciplinary
131 discussions and promotes scientific collaboration and integration.

132

133 **Fig 1. Growth and geographic distribution of Arctos records.**

134 (A) Growth of data in the Arctos Consortium showing total number of cataloged records by year
135 (1999 through July 2023). Arctos has grown from ~614K records in 1999 to ~5 million records in
136 2023. (B) Global map of georeferenced localities in Arctos per 100 km² grid, showing 777,380
137 spatially distinct localities for over 4 million georeferenced records worldwide with
138 concentrations in North America and Alaska.

139

140 Core features of Arctos

141
142 Arctos is a community of museum curators, collection managers, researchers, and informatics
143 professionals as well as a database platform for cutting-edge collection management. As such,
144 it provides a full suite of features for governing, hosting, managing, and connecting collection
145 object data, people, transactions, and other information relevant to collections-based research
146 and education. Arctos is implemented in the relational database PostGRESQL/PostGIS
147 controlled by a Virtual Private Database (VPD, [20]) with a Lucee-based web interface, which
148 allows each collection to manage their data independently. Core versions of its software are
149 released under the open-source license Apache 2.0. (<https://github.com/ArctosDB>).

150

151 As a collection management platform and data portal, Arctos provides a comprehensive solution
152 for managing biological, educational, and cultural collections of all sizes (Fig 2) for museums,
153 universities, state and federal agencies, and field stations. In addition, it functions as its own
154 data aggregator and publisher with dynamic (non-static) object-based data housed in multiple
155 collections and institutions. Because it is a hosted and entirely web-based service, individual
156 collections do not need to spend time or financial resources installing or updating software,
157 maintaining servers, responding to security threats, or coordinating backups. Furthermore, the
158 centralized packaging and publishing of records to external data aggregators (e.g., VertNet,
159 [14]; Global Biodiversity Information Facility [GBIF, 21]) frees collection staff from handling this
160 often-cumbersome process. Arctos is supported through a combination of subscription-based
161 fees, external grants, donations, and in-kind support in the form of personnel subsidized by its
162 members. Subscriptions are on a sliding scale based on collection size and ability to pay, and
163 fee waivers are granted to a small number of collections that lack funding support. The Arctos
164 software development model of “release early, release often” means that it responds quickly as

165 research or collection management needs arise within the consortium. Furthermore, the data
166 model can accommodate a wide variety of data types and values as new collections are added.

167

168 **Fig 2. Snapshot of Arctos Collection Management System statistics.**

169 Arctos Collection Management System statistics across all collections as of 1 July 2023.

170

171 The flexibility of Arctos, combined with its focus on displaying all that is known about a collection
172 object through its integrated data ecosystem, provides a rich platform for scientific and cultural
173 discovery. Its feature-rich components can be categorized into four core areas (Table 1) that are
174 described more fully below: (1) Community; (2) Records; (3) Tools; (4) Connectivity.

175

176 **Table 1. Summary of the core elements of Arctos.**

Community	<ul style="list-style-type: none">• Active forum for community discussion of needs and priorities• Advisory Committee (Board of Directors) with fiduciary and strategic oversight• Collaborative training, documentation, and proposals• Executive Officers who oversee daily operations• Members Council of collection representatives guiding development• Monthly meetings to discuss issues and community needs• Network of diverse expertise in managing different types of collections• Peer mentorship for new and existing collections• Shared vocabularies and authorities to improve data consistency and retrieval
Records	<ul style="list-style-type: none">• Archives• Artwork• Cultural objects• Biological specimens• Earth science and paleontological materials• Environmental samples• Genetic and genomic resources• Meteorites• Microbiological samples• Observational occurrences• Physical and digital media

Tools	<ul style="list-style-type: none">• Automated reminders and data-quality checks• Batch edits and updates of existing records• Collection level control over data management, permissions, access• Creation and management of projects, publications, and citations• Data entry and bulkloading of new records• Data migration and cleaning services• Export of records in standards-compliant formats• Generation of labels, reports, and invoices• Internal statistics and data quality notifications• Management of information about people and organizations• Management of transactions (acquisitions, loans, borrows, permits)• Object tracking and machine-readable labels integrated with catalog records• Semi-automated georeferencing, reverse geocoding, and mapping
Connectivity	<ul style="list-style-type: none">• Agents and organizations• Biological and cultural interactions• Data publishers and aggregators• Digital Object Identifiers• External data repositories• Project management platforms• Taxonomic resources

177

178 **Community**

179

180

181 The Arctos community is a collaborative, self-governing consortium of collection professionals,
182 information experts, researchers, and educators from diverse disciplines and institutions. As a
183 community, Arctos' priority is to make research-grade collection data openly accessible and
184 richly networked for multidisciplinary research and public understanding of natural and cultural
185 history. It also serves as a repository and public portal for curated data associated with
186 specimens under federal ownership (e.g., those collected on lands administered by agencies
187 such as the U.S. National Park Service and Bureau of Land Management, among others), and
188 supports or enhances the mission of government agencies at all levels. Community members
189 share in the governance, policy writing, maintenance, and development of Arctos as a collection
190 management platform and data portal (<https://arctos.database.museum>). In addition to sharing
191 knowledge and expertise, participants form a network of peers that are available to mentor new

192 and existing collection representatives, create training modules (e.g., tutorials,
193 <https://arctosdb.org/learn/tutorial-blitz>; webinars, <https://arctosdb.org/learn/webinars>;
194 documentation, <https://handbook.arctosdb.org>), and discuss development needs and priorities.
195 A shared data environment compels Arctos users to collectively manage controlled vocabularies
196 across different nodes of the database (e.g., geography, taxonomy, agents, preparations,
197 attributes) to promote data standardization and discovery. Consequently, proposed vocabulary
198 or changes to the functionality of Arctos undergo a community decision-making process,
199 ensuring that database developments are guided by Arctos users and reflect community needs.
200 By integrating datasets across biological, geological, and cultural collections, Arctos brings
201 together varied perspectives and data types that lead to innovative, integrative, and broadly
202 beneficial new features and capabilities.

203
204 In the collaborative community model, all Arctos collections, regardless of size, are able to
205 actively participate in development priorities and are given equal access to mentors, decision
206 processes, programming aid, community discussion boards, and resources. Learning how to
207 use and contribute to Arctos is a collaborative process which includes regular dialogue among
208 data managers and users. This is especially beneficial to personnel who are less experienced or
209 are interested in growing their knowledge of scientific tools for collection management. Although
210 consensus-building presents its own challenges, the Arctos model encourages community-
211 based solutions, workflow efficiencies, and data quality improvements, thereby advancing best
212 practices in collection data management and data fitness for use [11, 22].

213
214 Arctos governance consists of an Advisory Committee and a Working Group composed of
215 volunteer officers, institutional members, technical staff, and subcommittees focused on
216 particular database functions (Fig 3). Regular meetings and online communications through
217 GitHub enable the community to discuss specific issues, address questions or concerns, and

218 resolve problems. Community discussion often focuses on Arctos data that are shared among
219 all collections (e.g., taxonomy, geography, preparations, people, and organizations). Because
220 data standardization is a core tenet of Arctos, database features and enhancements are forged
221 from input and discussion among Arctos users. New features requested by one collection and
222 approved by the community result in a benefit to the community as a whole. Thus, Arctos can
223 be highly responsive to emerging innovations and community needs.

224

225 **Fig 3. Arctos Consortium organization chart.**

226 The Arctos Working Group drives development priorities, responds to issues, engages in
227 outreach, and produces documentation, among other activities. Strategic and financial planning
228 are overseen jointly by the Arctos Advisory Committee and Arctos Officers. Committees within
229 the Working Group focus on specific issues identified by the Arctos community and meet
230 regularly or ad hoc depending on need (see <https://arctosdb.org/contacts> for details on all
231 Arctos committees).

232

233 Shared data lead to positive benefits in efficiencies and data quality improvements. For
234 example, locality georeferences created by one collection are available to other collection
235 records from the same place, forming a gazetteer of vetted data and reducing redundant staff
236 effort (Fig 4). As a case study, the MVZ acquired an orphaned bird collection in 2005 and was
237 able to match over 60% of the records with georeferenced localities already in Arctos. Beyond
238 gained efficiencies, data collated across Arctos institutions enable novel discoveries about
239 people, organizations, and other parties (e.g., businesses, societies, museums, zoos, and
240 government agencies, all of which are included as ‘agents’ in the database) and their
241 contributions within and beyond Arctos (Fig 5). Biographical and statistical information in Arctos
242 produces a holistic view of an individual’s career-long activities across institutions rather than
243 partitioning that information by institution. It also provides opportunities to discover that names

244 associated with different collections are indeed the same person, thus allowing for reconciliation
245 of name variants and corroboration of low-resolution identities while making the data richer and
246 more complete. Finally, the ability to store and share biographical information about agents
247 across collections is an important feature of Arctos, especially for cultural and archival records.

248

249 **Fig 4. Example of how localities and associated georeferences may be shared in Arctos.**

250 Data managers can choose to apply georeferences for a specific locality (e.g., Locality 2) to
251 their own cataloged records that may be from the same descriptive place (e.g., Locality 1) but
252 are lacking coordinates and associated metadata.

253

254 **Fig 5. Synopsis of agent activity summary in Arctos.**

255 Arctos provides a holistic view of research and curatorial contributions by people, organizations,
256 and institutions (i.e., “agent activity”) to facilitate data relationships, attribution, and assessment
257 metrics. Dynamic links associate agents with related agents (e.g., academic lineages, family
258 members), external resources (wikidata, ORCID), collection activities (objects collected,
259 prepared, or identified), curatorial work (transactions, edits, georeferences), and projects and
260 products (publications, media, grants, expeditions).

261 **Records**

262

263

264 Arctos serves records on over five million specimens, objects, and observations (biological,
265 archival, cultural, geological, and meteorological) curated by participating collections and
266 institutions. The shared database environment allows curators to manage records that cross
267 disciplines (Fig 6), such as objects with both biological and cultural materials or significance,
268 artworks made of iron that intersect with geology, or fossils with mineral taxonomy. Collections
269 can add a mixture of scientific names and/or associated taxa to the identifications of their

270 objects, thus allowing the records to be useful for ethnographic, geologic, and biodiversity
271 research.

272

273 **Fig 6. Example of an Arctos record that cross-links cultural and biological records.**

274 Arctos record from the University of Alaska Museum Ethnology and History Collection
275 (<https://arctos.database.museum/guid/UAM:EH:UA91-014-0001>) showcasing a cultural object
276 composed of biological materials that are cross-linked to biological records in Arctos.

277

278 Nearly one million media records (e.g., still images, sound recordings, video files) enrich the
279 data in Arctos. Media may showcase objects and specimens before and after preservation [23-
280 24] or function as a voucher for non-specimen observations. In addition, they can be key to
281 increasing access to rare or fragile collection objects that are not typically loaned, such as eggs
282 and nests [25-26], type specimens [27], and objects that are no longer available [28-29].
283 Increasingly, specimens are being used in high-resolution photogrammetry and three-
284 dimensional scanning projects [30-32] that can be linked directly to the Arctos record. Finally,
285 Arctos media that are linked to collecting events add value by documenting field work,
286 landscapes, habitats, and people.

287 **Tools**

288
289 Collection management tools are the nuts and bolts of Arctos functionality, and are used for
290 basic data entry, editing, and searching as well as to improve data quality and increase
291 discoverability. Arctos reports generate transaction invoices, collection ledgers, and dry or wet
292 labels. Different tools find duplicate agents, gaps in catalog numbers, records without parts,
293 unreciprocated relationships between two cataloged items, and records that potentially
294 correspond to GenBank (National Center for Biotechnology, NCBI) accessions but need

295 verification and linking, among other data quality issues. Collection contacts may receive
296 specific reminders with notifications about loans that are due or permits that are expiring.
297 Statistics generated across all of Arctos, or filtered by collection, provide summaries of specific
298 data such as numbers of cataloged items, localities, georeferenced localities, collecting events,
299 agents, media, publications, GenBank links, and specimen relationships.

300

301 Access to different tools depends on a user's training and role. For example, students and
302 volunteers may be given access to enter data for a specific collection by choosing values from
303 existing controlled vocabularies but may not create new taxonomies, higher geography, or
304 names of people and organizations. The addition of new values to controlled vocabularies is
305 limited to collection curators or focused Arctos committees. This hierarchy of permissions limits
306 misspellings and duplication of values (e.g., the same person entered multiple ways), ensures
307 that entries are verified (e.g., a country, state, or county is valid), and compels consistent values
308 for certain fields (e.g., sex, preparations). Ultimately, the focus on standardizing data *values*
309 leads to higher data quality [11] and increases discoverability for researchers and educators
310 using specific criteria.

311

312 Below we describe how tools for the following core functions operate in Arctos: data entry and
313 encumbrances; taxonomy and identifications; transactions; object tracking; and spatial data
314 quality.

315 Data entry and encumbrances

316

317 New records are entered individually or through a variety of batch tools, validated by Arctos
318 through a series of data checks and accepted by curators prior to data loading. Arctos also has
319 implemented workflows to capture data in batches from digitized collection objects such as
320 herbarium sheet labels. Once the data are added, they are immediately accessible online

321 unless a curator chooses to encumber (i.e., restrict access to) those records. Encumbrances
322 may protect sensitive data such as sacred cultural information, collecting locations for fossils or
323 endangered species, and archaeological resources. The Arctos community has developed
324 guidelines for data redaction measures as required by paleontological and cultural collections to
325 meet U.S. federal and private land regulations (e.g., Paleontological Resources Preservation
326 Act of 2009, 16 U.S.C. § 470aaa 1-11; National Historic Preservation Act of 1966, Public Law
327 89-665; 54 U.S.C. 300101 *et seq*; and Archaeological Resources Protection Act of 1979, 16
328 U.S.C. 470aa-470mm; Public Law 96-95 and amendments). Likewise, encumbrances restrict
329 usage of collection objects and data according to permit conditions and material transfer
330 agreements (e.g. Nagoya Protocol [33]).

331 Taxonomy and identifications

332

333 Identifications within Arctos are treated separately from taxonomy, both during data entry and
334 editing. Taxonomy refers to formal classification systems including cultural lexicons, and Arctos
335 harvests data from external web services (e.g., Global Names Architecture,
336 <https://globalnames.org>) while allowing for customized taxonomies. This provides both data
337 quality control and the flexibility of collections to choose and modify their own taxonomy.
338 Collection staff then apply those names to collection objects through a flexible identification
339 module that allows for vernacular, regional, and Indigenous names, taxonomic uncertainties,
340 biological realities (e.g., hybrids, intergrades, new species with temporary designations),
341 multiple identifications, non-hierarchical identifications, and nomenclature from geological,
342 archival, art, and cultural collections. For example, a hybrid specimen is identified by selecting
343 two parental names from the Arctos taxonomy table, and a parka made of furs from different
344 species is identified by multiple taxonomic names that comprise the components (e.g., parka,
345 *Bos taurus*, *Rangifer tarandus*, *Canis lupus*, *Gulo gulo*; Fig 6). This can also be applied to egg

346 sets with nest parasites, which are identified by the taxonomic name of both the host and the
347 parasite (e.g., *Melospiza melodia* and *Molothrus ater*,
348 <https://arctos.database.museum/guid/MVZ.Egg:609>). Importantly, Arctos records the history of
349 all changes to identifications; when new identifications and associated metadata (e.g.,
350 determiner, date, basis of determination) are added, old but invalid (i.e., erroneous or
351 synonymous) identifications are retained and remain searchable. Arctos also allows batch
352 identification updates, critical for management of entomology as well as other collections.

353 Transactions

354

355 Transactions include accessions, loans (outgoing collection material), borrows (incoming
356 material from another collection), and permits, all of which are managed in Arctos. Accessions,
357 loans, and borrows are collection-specific, with options for formatting transaction numbers
358 depending on in-house curatorial practices. Permit metadata, on the other hand, are shared
359 among collections and can be linked to accessions, loans, and borrows (the permits themselves
360 are private unless a collection chooses otherwise). This facilitates the management of permits,
361 material transfer agreements, memoranda of understanding, and other documentation for
362 compliance with state, federal, and international (e.g., CITES, Nagoya) regulations [33]. It also
363 allows specimens or objects acquired by one collection under its permit(s) to be accessioned
364 into a different collection using the same permit(s). Likewise, loans sent by different collections
365 can use the same institutional permit. In addition to capturing basic information about the
366 transaction (i.e., persons and/or agencies involved, date, transaction number, nature and
367 amount of material, remarks), transactions can be linked to media such as images or
368 documents (including spreadsheets) that provide supporting information. Arctos also tracks the
369 use of data *about* objects (e.g., metadata or media) through transactions such as data loans
370 and media loans; users may request data records or object photographs rather than objects per

371 se, allowing more comprehensive documentation about how records, information, and
372 associated elements are being used.

373 Projects and publications

374

375 A special feature of Arctos is the ability to link transactions to thematic web pages called
376 “Projects” that summarize the contributions and use of cataloged records for activities, studies,
377 or uses (e.g., field trips, digitization initiatives, traveling exhibitions, collections on state or
378 federal lands). Projects also are used to document biosampling contributions by Indigenous
379 communities for resource policy and decision-making as well as to highlight cultural object
380 acquisitions, displays, and practices. Publications and media resulting from these activities are
381 easily added to the project page. Further, publications may be cross-referenced to digital object
382 identifiers (DOIs) and cataloged records may be added as citations, directly showing usage of
383 individual records within or across collections. Thus, projects serve as the central hub that link
384 all related data in Arctos to showcase the impact of collections by highlighting how researchers,
385 educators, organizations, and others are using the platform for discipline-specific or
386 interdisciplinary goals (Fig 7; examples in Table 2). Projects are automatically related to other
387 projects based on shared objects, which enables deep-tracking of a collections’ utility and
388 products through time. They serve as a convenient hub for agencies, funders, and users to
389 access up-to-date records associated with specific activities.

390

391 **Fig 7. Synopsis of the Beringian Coevolution Project in Arctos.**

392 The Beringian Coevolution Project (<https://arctos.database.museum/project/51>) showcases
393 primary source data and collated products. The project included 28,941 cataloged records
394 representing co-examined boreal mammals and associated parasites from two museums and
395 resulted in 8 media objects, 216 publications citing 8,561 specimens, and a dynamic web of 153

396 related projects that either contributed records used by this project or that used specimens from
397 this project to generate additional research outputs (293 subsequent publications with 69,087
398 citations).

399

400 **Table 2. Examples of projects in Arctos that target different users.**

401 Arctos project IDs have the base URL <https://arctos.database.museum/project/> (e.g.,
402 <https://arctos.database.museum/project/10000850>).

403

Topic	Arctos Project ID	Target User(s)
Alaskan Insect Pollinators	10000850	Alaska Department of Fish and Game, Researchers, National Science Foundation
Alaskan Plant Survey	1000054	National Park Service
Albuquerque BioPark & Museum of Southwestern Biology Specimen Repository Agreement	10002948	Researchers, Zoos
Art and Ethnology Collections purchased with funds from Rasmuson Foundation	10003033	Artists, Funder
Art Work Inspired by Life	10002855	Artists
Beringian Mammal and Parasite Coevolution	51 (also see Fig. 9)	Researchers, National Science Foundation

Center for Disease Control Hantavirus Survey in National Parks	10002373	U.S. Center for Disease Control, Epidemiologists, Researchers, National Park Service
Educational Collaboration between Art and Biology	10003671	Students
Support for Ornithology and Herpetology Collections	10003135	National Science Foundation
Mexican Wolf Recovery Program	1000071	U. S. Fish and Wildlife Service, Conservation Groups
Resurvey of Vertebrate Communities in California	10000047	Researchers, Agencies, National Science Foundation
Seal Specimens Hunted by Native Americans in Alaska	15	Alaska Native Harbor Seal Commission
Greenwood Wildlife Rehabilitation Center Salvaged Vertebrates	10004199	Agencies/governments (city, county, state, etc.), Researchers

404

405

406 Object tracking

407

408

409 Object tracking in Arctos acts as an independent module linked via barcodes to the catalog

410 record and provides the capacity to track materials from collection and accession through

411 cataloging, storage, and loans. For example, genetic resource collections can be organized in a

412 hierarchy that associates barcoded cryovials with specific positions in barcoded boxes, racks,

413 freezers, and rooms within buildings (e.g., nested “containers”; Fig 8). Similarly, barcodes are
414 used to track the locations of dry specimens in cabinets or fluid-preserved specimens in jars on
415 shelves. Arctos can accommodate different types of scannable codes (e.g., a true barcode) or
416 non-scannable codes (e.g., cabinet numbers printed on labels) that are captured through the
417 container module, and these can be applied to both cataloged and non-cataloged (in process)
418 items. In addition to tracking the location of collection objects, container environments (e.g.,
419 relative humidity, temperature, ethanol concentration, Integrated Pest Management check) and
420 their history can be tracked to better monitor collections and document changes over time.
421 Containers in Arctos are broadly applicable to a variety of curatorial functions, including
422 management of accessions and loans, collection inventories and moves, conservation and
423 preservation of collection objects, and Integrated Pest Management practices.

424

425 **Fig 8. Schematic showing hierarchical object tracking of tissues in Arctos.**

426 In this example, the hierarchy shows where an institutional collection freezer is located and the
427 nested position of a cryogenic vial within a box in that freezer.

428 Spatial data quality

429

430 Geography in Arctos adds critical value to records as fundamental metadata and as a measure
431 of data quality. Adding spatial data allows records to be correlated with environmental and
432 geographic data, thus ensuring their usefulness beyond Arctos [34-36]. Over 75% of the more
433 than 850,000 localities in Arctos have associated georeferences that are available to Arctos
434 users and global data aggregators. Localities are shared among all collections in Arctos, which
435 brings advantages (Fig 4). For example, diverse taxa from the same expedition (e.g., snails,
436 fish, and salamanders collected in the same pond) or collected at different times from the same

437 location can share the same locality in Arctos. This saves georeferencing effort, ensures data
438 consistency, improves discoverability, and stimulates cross-disciplinary integration.

439

440 With an emphasis on spatial accessibility and quality, Arctos has a suite of tools for mapping
441 and describing spatial locations of collection objects. A plug-in for GeoLocate (<https://geolocate.org>) facilitates semi-automated georeferencing while BerkeleyMapper

442 (<https://berkeleymapper.berkeley.edu>) provides data visualization and spatial exploration tools.

443 Arctos also uses Google Maps web services for automated data-quality checking, whereby
444 reverse geocoding verifies if coordinates are in the correct higher geography (i.e., continent,
445 country, state/province, county). Higher geographies are defined with polygons, and countries
446 follow a spatially explicit authority (Database of Global Administrative Areas, <https://gadm.org>)
447 which uses ISO standards (International Organization for Standards, <https://iso.org>). Polygons
448 are not limited to higher geography but can be used to describe an object's locality instead of
449 point coordinates. Finally, locality attributes add descriptive terms to a place (see
450 <https://handbook.arctosdb.org/documentation/geology.html>), and localities can be verified and
451 locked once checked by collectors or curators to preserve data integrity.

453 **Connectivity**

454

455 Arctos prizes connectivity, in which everything that is known about an object and its
456 relationships, interactions, or derivatives can be displayed or made accessible. For this reason,
457 Arctos integrates with a growing list of external data repositories and services (Table 3) that add
458 value to its data records. This core feature makes Arctos a uniquely rich center of collection-
459 related data and tools for the exploration and visualization of biological, geological, and cultural
460 diversity in novel ways. For example, Arctos can integrate with any resolvable identifier, and
461 was the first collection management system to develop reciprocal, dynamic connections

462 between specimen records and genetic data in GenBank. Dynamic linkages from GenBank
463 back to the Arctos record are created when submissions to NCBI involve referencing the
464 specimen voucher in the NCBI “specimen_voucher” field using three-part “Darwin Core Triplets”
465 (institution:collection:catalog number). As of July 2023, over 37,600 Arctos records are linked to
466 associated data in GenBank.

467

468 **Table 3. Arctos connections with external repositories, authorities, and databases.**

469 Links to these sites add value and relevance for collection transactions, curation, and record
470 management for both natural and cultural history collections. Some connections are reciprocal
471 while others integrate values from an authority. Connections may be made through web
472 services automatically or updated manually.

473

Category	Data Service or Repository	URL
Taxonomy & Legal Status	Global Names Architecture Hey's Mineral Index Integrated Taxonomic Information System Nickel-Strunz Mineral Classification Species+ World Register of Marine Species Nomenclature 4.0 Getty Art & Architecture Thesaurus	https://globalnames.org https://www.mindat.org/cim.php https://www.itis.gov http://webmineral.com/strunz.shtml https://www.speciesplus.net https://www.marinespecies.org https://www.nomenclature.info https://collectionstrust.org.uk
People & Publications	Bionomia Crossref ORCID	https://bionomia.net https://www.crossref.org https://orcid.org

	Library of Congress PubMED Wikidata	https://loc.gov https://pubmed.ncbi.nlm.nih.gov https://www.wikidata.org
Data Repositories	Barcode of Life Data Systems BugGuide CalPhotos Dryad GenBank iNaturalist IsoBank MorphoSource National Center for Biotechnology Information Sketchfab Wikipedia	https://boldsystems.org http://bugguide.net https://calphotos.berkeley.edu https://datadryad.org https://ncbi.nlm.nih.gov/genbank http://inaturalist.org https://isobank.org https://www.morphosource.org https://www.ncbi.nlm.nih.gov https://sketchfab.com https://en.wikipedia.org
Data Aggregators	Biodiversity Information Serving Our Nation Consortium of Pacific Northwest Herbaria Global Biodiversity Information Facility Global Genome Biodiversity Network Integrated Digitized Biocollections VertNet SCAN Portal SEINet Portal	https://bison.usgs.gov https://pnwherbaria.org https://www.gbif.org https://wiki.ggbn.org https://www.idigbio.org https://vertnet.org https://scan-bugs.org https://swbiodiversity.org/seinet/ https://vilda.alaska.edu/

	Alaska's Digital Archives	
Interactions	Global Biotic Interactions (GloBI)	https://www.globalbioticinteractions.org

474

475 A model for the multidimensional Digital Extended Specimen

476

477 Connectivity is a core principle of the Digital Extended Specimen network, which promotes
478 interdisciplinary research into functional traits [37] and biological interactions [38], provides a
479 critical foundation for global conservation efforts [38], and reflects the role that “next-generation
480 collections” [17] play in advancing science and society. From its inception, Arctos as a data
481 platform has been built on the “extended specimen network” concept - that is, linking physical
482 objects to all of their derived data (especially web-accessible digital assets) and to third-party
483 repositories for increased accessibility and discoverability [13, 18, 39].

484

485 Arctos achieves its richly annotated data by creating a web of knowledge with deep connections
486 between catalog records and derived or associated data, and by using reliable published
487 resources for globally shared information. Here we illustrate how the extended specimen in
488 Arctos can become multidimensional (Fig 9). An Alpine Chipmunk (*Tamias amoenus*) was
489 collected with a pinworm parasite (*Rauschtingeria eutamiae*) in Inyo County, California, in 2010,
490 and the two specimens are accessioned in the Museum of Vertebrate Zoology
491 (<https://arctos.database.museum/guid/MVZ:Mamm:225308>) and Museum of Southwestern
492 Biology (<http://arctos.database.museum/guid/MSB:Para:27057>), respectively. Each specimen has
493 its own extended data network with URL-based links to GenBank sequences, media, and a
494 shared georeferenced collecting event. Within Arctos, the extended specimen networks are
495 multiplied by several inter-collection connections: (1) the two specimens are explicitly related to
496 each other with a biotic interaction of host and parasite, and these relationships are harvested

497 by the Global Biotic Interactions platform [40]; (2) they were cited in publications [41, 42] shared
498 across collections; and (3) they share a collecting event with other specimens that may be
499 important to ecological studies of parasites. Lastly, the chipmunk was collected as part of a
500 state-wide effort to resurvey California biodiversity (Arctos project
501 <https://arctos.database.museum/project/10000244>), placing occurrences for both the mammal
502 and its associated parasite in a research context.

503

504 **Fig 9. Multidimensional extended specimens in Arctos.**

505 Records in Arctos include multidimensional extended specimens that share primary, secondary,
506 and tertiary components and are directly related to each other. The example shown here
507 includes a chipmunk (MVZ:Mamm:225308) and its parasite (MSB:Para:27057) that were
508 collected and accessioned at separate Arctos institutions. They share host-parasite biotic
509 interactions, the same collecting event, and primary source material such as field notes. Any
510 updates to host or parasite metadata (e.g., identification, locality, date) are reflected and
511 searchable in both records across institutions. Together, the chipmunk and parasite were used
512 in graduate student research producing at least two publications and two dissertations that cited
513 569 specimens from four Arctos collections. The host is linked to one genomic sequence
514 deposited at the National Center for Biotechnology Information (NCBI) Sequence Read Archive
515 (SRA), and the parasite is linked dynamically to three GenBank sequences at NCBI. In addition,
516 the chipmunk was one of 10,987 vertebrate specimens and observations collected in the
517 southern Sierra Nevada as part of the Grinnell Resurvey Project [41], which resulted in 19 more
518 publications and 2,215 citations in Arctos.

519 The Arctos Entity

520

521 The premise of the Digital Extended Specimen revolves around an individual specimen or object
522 with a single collecting event and links to its derivatives such as gene sequences, CT scans,
523 isotope data, and media (Fig 9). However, the reality of many collections may be more
524 complicated. An individual specimen may be split or composed of separate components, each
525 of which may have different collecting events, preparators, preservation types, and other
526 metadata. Arctos community discussion on how to address this challenge led to the creation of
527 a network-wide “Entity” collection that acts to combine multiple component records sharing the
528 same organism, object, or event ID into a single dashboard with a unique, shareable URL (Fig
529 10). These components are linked from the Arctos entity record to their own respective record
530 via individual URLs.

531

532 For example, one entity record (<https://arctos.database.museum/guid/Arctos:Entity:16>) links the
533 cataloged blood sample of a Golden Eagle (*Aquila chrysaetos*) chick banded at its nest in 2014
534 (MVZ:Bird:193216) with data from a radio transmitter device that tracked the individual’s last
535 known location to Mexico in 2017; that observation was cataloged in Arctos as
536 MVZOBS:Bird:4792. Here, the coordinates for the original sampling locality are encumbered to
537 protect the eagle nest. In another example
538 (<https://arctos.database.museum/guid/Arctos:Entity:134>), a single endangered Mexican wolf
539 (*Canis lupus baileyi*) was monitored through a federal conservation program with regular blood
540 sampling at different places and times (e.g., MSB:Mamm:341613, MSB:Mamm:231704). Once
541 moribund, the entire specimen was preserved and cataloged as MSB:Mamm:341614. Both
542 examples illustrate how the Entity record functions to compile and unite multiple related
543 occurrences or records of a single organism or collection object under one persistent identifier
544 (Arctos base URL combined with the Darwin Core Triplet for the Entity record). The Entity
545 identifier is passed to biodiversity data publishers via the Darwin Core organismID field, thus
546 allowing aggregator portals and users to resolve these different records as the same individual.

547 The flexibility of this model allows additional samples and observations to be continually linked
548 to their Arctos Entity record as more data are collected.

549

550 **Fig 10. Example of the Arctos Entity model.**

551 The Arctos Entity model links diverse records to a single unifying record for increased
552 discoverability. Here, Record A is a bird observation with an associated blood sample, Record B
553 is a second observation of the same individual with associated radio telemetry data, Record C is
554 the vouchered specimen, and Records D and E are endoparasites and ectoparasites,
555 respectively, taken from the specimen.

556 **An educational resource**

557

558 From its beginnings, Arctos has spearheaded collection-based inquiries for undergraduate
559 education because of its web accessibility and richly linked data [3]. Students interested in
560 biodiversity, evolutionary dynamics, spatiotemporal variation, cultural heritage, responses to
561 anthropogenic change, and other topics have access to an array of data and tools that can
562 initiate and answer interdisciplinary questions. This is exemplified by educational platforms
563 where Arctos-based modules are posted for open-access class exercises (Table 4). Arctos also
564 is used as a live classroom tool at universities (e.g., "Natural History Museums & Biodiversity
565 Science" at the University of California Berkeley; "Museum Practicum in Advanced Collections
566 Management" at the University of Colorado Boulder; "Mammalogy" at the University of New
567 Mexico) and has been important in training undergraduate and graduate students, post-
568 baccalaureates, and postdoctoral researchers in museum curation and data management [43].
569 Additionally, collection staff have used Arctos to creatively integrate museum objects with
570 artwork and public engagement in an effort to educate students and the broader community
571 about their collections. For example, the Alabama Museum of Natural History collaborated with

572 the University of Alabama Fashion Archive to host a colorfest on social media that invited the
573 public to interact with museum objects in art projects (#ColorOurCollections,
574 <http://library.nyam.org/colorourcollections>; see Arctos project
575 <https://arctos.database.museum/project/10003310>). In another art-based public exhibit,
576 students, volunteers, and researchers spent a semester at the University of Wyoming Museum
577 of Vertebrates creating original art pieces inspired by natural history objects, which were then
578 displayed in a public show at the Berry Biodiversity Conservation Center (Art Inspired by Life,
579 see Arctos project <https://arctos.database.museum/project/10002855>). At the University of
580 Alaska Museum, staff in the Archaeology and Ethnology & History Departments work
581 collaboratively with local, regional, national, and international organizations to highlight cultural
582 items and Alaska Native heritage. As the Arctos network expands, so will its educational role in
583 promoting awareness of the rich legacy and potential of museum collections.

584

585 **Table 4. Examples of educational platforms with Arctos-based modules.**

586 Arctos modules aim to teach undergraduate students about biodiversity databases,
587 biogeography, evolutionary biology, and climate change, among other topics.

588

Sample Educational Topics	Educational Platform
Accessing Biodiversity Data	Advancing Integration of Museums into Undergraduate
Arctos User Tutorials	Programs (AIM-UP!)
Bat Species Distributions	http://aimup.unm.edu
Biodiversity Assessment	https://arctos.database.museum/project/10003944
Climate Change	Biodiversity Literacy in Undergraduate Education (BLUE)

Geographic Barriers	https://biodiversityliteracy.com
Hemoglobin Function	https://arctos.database.museum/project/10003955
Island Biogeography	
Phylogenetics	Quantitative Undergraduate Biology Education and Synthesis (QUBES)
Plant Distribution	https://qubeshub.org
Population Divergence	
Speciation and Gene Flow	

589

590 A sustainable future for Arctos

591

592 To fulfill the responsibilities of managing and ensuring access to our natural and cultural
593 heritage data for current and future generations, museum administrators need to thoughtfully
594 plan for the financial viability and health of their collections. Unfortunately, museum staff are too
595 often overextended with diverse responsibilities and limited financial resources [44]. Another
596 facet of sustainability is the maintenance and development of technical infrastructure. Arctos
597 has a long track record as a model for “next-generation collections” and associated
598 interdisciplinary research that addresses current and future societal challenges [17, 45-47].
599 Arctos’ longevity of nearly three decades may be due in part to its core development principles
600 of standardization, flexibility, interdisciplinarity, and connectivity within a nimble development
601 model for addressing novel needs and information types in response to changing technology,
602 workflows, ethical considerations, and regulations [33, 48-50]. The sustainability and importance
603 of maintaining these networked and interconnected technologies ultimately becomes premised
604 on reliable funding. Despite the vital importance of these fundamental biodiversity digital
605 resources, financial sustainability remains an ongoing community issue [51]. Facing this reality,
606 the Arctos community sought to improve its financial model for the growing consortium of

607 independent and diverse institutions. The most practical solution was fiscal sponsorship by a
608 non-profit organization dedicated to supporting consortia like Arctos. This new business model,
609 implemented in 2022, allows Arctos to follow diverse sources of funding and support including
610 public and private grants, in-kind and volunteer assistance, fees for use, charitable donations,
611 and annual subscription fees [44, 52]. Our overall goal is to use fiscal sponsorship to guarantee
612 the success and sustainability of Arctos to ensure long term benefits to society and the
613 community of biodiversity scientists, cultural heritage stewards, and educators of all kinds.

614 Acknowledgements

615

616 We thank all members of the Arctos Working Group for their unflagging efforts to improve Arctos
617 and keep it an active, functioning, and engaged community and platform. We also thank the
618 generations of undergraduate and graduate students, post-baccalaureates, collection
619 managers, curators, and technicians who perform daily collection tasks using Arctos at member
620 institutions. The following individuals and collaborators have contributed invaluable expertise,
621 perspectives, and support that have helped to enrich and expand Arctos as both a data platform
622 and community: Stan Blum, John Deck, Jonathan Dunnum, Joyce Gross, Steffi Ickert-Bond,
623 Gordon Jarrell, Craig Moritz, Kyndall B.P. Hildebrandt, Barbara Stein, Lam Voong, Cam Webb,
624 John Wieczorek; Global Biotic Interactions (GloBI; Jorrit Poelen), Global Genome Biodiversity
625 Network (GGBN; Katharine Barker), Integrated Digitized Biocollections (iDigBio; Gil Nelson,
626 Deborah Paul, Erica Krimmel), and the Texas Advanced Computing Center (TACC; Chris
627 Jordan). We thank the National Science Foundation for funding specific to the development and
628 sustainability of Arctos (DBI-9630909, DBI-9876837, DEB-9981915, DBI-2034593, DBI-
629 2034568, DBI-2034577), as well as the Robert & Patricia Switzer Foundation for awarding
630 Arctos a Leadership Grant in 2023; additional grants from various sources have funded
631 collection-specific initiatives that resulted in Arctos improvements. Finally, we thank Community

632 Initiatives, especially Brandy Shah and Rose Cohen Westbrooke, for their guidance and
633 expertise in our transition to fiscal sponsorship.

634 References

635

636 1. Peterson AT, Cicero C, Wieczorek JR. Free and open access to bird specimen data: Why?
637 The Auk 2005;122: 987-990. doi: 10.1093/auk/122.3.987.

638 2. Sunderland ME. Computerizing natural history collections. Endeavour 2013;37: 150-161.
639 doi: 10.1016/j.endeavour.2013.04.001.

640 3. Cook JA, Edwards SV, Lacey E, Guralnick RP, Soltis PS, Soltis DE, et al. Natural History
641 Collections as Emerging Resources for Innovative Education. BioScience 2014;64: 725-734.
642 doi: 10.1093/biosci/biu096.

643 4. Nelson G, Ellis S. The history and impact of digitization and digital data mobilization on
644 biodiversity research. Philos Trans R Soc B. 2019;374: 20170391. doi:
645 10.1098/rstb.2017.0391

646 5. Bakker FT, Antonelli A, Clarke JA, Cook JA, Edwards SV, Ericson PGP, et al. The Global
647 Museum: natural history collections and the future of evolutionary science and public
648 education. PeerJ 2020;8: e8225. doi: 10.7717/peerj.8225.

649 6. Miller SE, Barrow LN, Ehlman SM, Goodheart JA, Greiman SE, Lutz HL, et al. Building
650 natural history collections for the twenty-first century and beyond. BioScience 2020;70: 674-
651 687. doi: 10.1093/biosci/biass069.

652 7. Hill A, Guralnick R, Smith A, Sallans A, Gillespie R, Denslow M, et al. The notes from nature
653 tool for unlocking biodiversity records from museum records through citizen science.
654 ZooKeys 2012;209: 219–233. doi: 10.3897/zookeys.209.3472.

655 8. Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT. New developments in museum-
656 based informatics and applications in biodiversity analysis. *Trends Ecol Evol.* 2004;19: 497-
657 503. doi: 10.1016/j.tree.2004.07.006.

658 9. Holmes MW, Hammond TT, Wogan GOU, Walsh RE, LaBarbera K, Wommack EA, et al.
659 Natural history collections as windows on evolutionary processes. *Mol Ecol.* 2016;25: 864-
660 881. doi: 10.1111/mec.13529.

661 10. Lacey EA, Hammond TT, Mast A, Guralnick RP, Monfils A, McCormack J, et al. Climate
662 change, collections and the classroom: Using big data to tackle big problems. *Evolution:
663 Education and Outreach* 2017;10: 2. doi: 10.1186/s12052-017-0065-3.

664 11. Cicero C, Spencer CL, Bloom DA, Guralnick RP, Koo MS, Otegui J, Russell LA, Wieczorek
665 JR. Biodiversity informatics and data quality on a global scale. In: Webster MS, editor. *The
666 extended specimen: Emerging frontiers in collections-based ornithological research.* Boca
667 Raton: Studies in Avian Biology no. 50, CRC Press; 2017. pp. 201–218.

668 12. Webster MS, editor. *The extended specimen: Emerging frontiers in collections-based
669 ornithological research.* Boca Raton: Studies in Avian Biology no. 50, CRC Press; 2017.

670 13. Lendemer J, Thiers B, Monfils AK, Zaspel J, Ellwood ER, Bentley A, LeVan K, Bates J,
671 Jennings D, Contreras D, Lagomarsino L, Mabee P, Ford LS, Guralnick RP, Gropp RE,
672 Revelez M, Cobb N, Seltmann K, Aime MC. The extended specimen network: A strategy to
673 enhance US biodiversity collections, promote research and education. *BioScience* 2020; 70:
674 23-30. doi: 10.1093/biosci/biz140.

675 14. Constable H, Guralnick R, Wieczorek J, Spencer C, Peterson AT, The VertNet Steering
676 Committee. VertNet: A new model for biodiversity data sharing. *PLoS Biology* 2010;8:
677 e1000309. doi: 10.1371/journal.pbio.1000309.

678 15. Bates JM, Cicero C, Peterson AT, Wieczorek J, Zermoglio PF. Making bird specimen data
679 more consistent, accessible, and informative. Abstract, Joint Meeting of the American
680 Ornithological Society and Canadian Society of Ornithologists. 2021. Available from

681 https://americanornithology.org/wp-

682 content/uploads/2021/08/AbstractBook_13August2021.pdf.

683 16. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR
684 guiding principles for scientific data management and stewardship. *Scientific data* 2016;3: 1-
685 9. doi: 10.1038/sdata.2016.18.

686 17. Schindel DE, Cook JA. The next generation of natural history collections. *PLoS Biol*
687 2018;16: e2006125. doi: 10.1371/journal.pbio.2006125.

688 18. Hardisty AR, Ellwood ER, Nelson G, Zimkus B, Buschbom J, Addink W, et al. Digital
689 extended specimens: Enabling an extensible network of biodiversity data records as
690 integrated digital objects on the internet. *BioScience* 2022;72: 978-987. doi:
691 10.1093/biosci/biac060.

692 19. Ogle G, Koo MS. Database evolution. Berkeley: Berkeley Natural History Museums
693 [Internet]. 2016. Available from <https://bnhm.berkeley.edu/informatics/database-evolution>.

694 20. Wikipedia. Virtual private database. 2021 Sep 5. Available from
695 https://en.wikipedia.org/wiki/Virtual_private_database.

696 21. Robertson T, Döring M, Guralnick R, Bloom D, Wieczorek J, Braak K, et al. The GBIF
697 Integrated Publishing Toolkit: Facilitating the efficient publishing of biodiversity data on the
698 internet. *PLoS ONE* 2014;9: e102623. doi: 10.1371/journal.pone.0102623.

699 22. Viega AK., Saraiva AM, Chapman AD, Morris PJ, Gendreau C, Schigel D, et al. A
700 conceptual framework for quality assessment and management of biodiversity data. *PLoS*
701 *ONE* 2017;12 :e0178731. doi: 10.1371/journal.pone.0178731.

702 23. Simmons JE. Fluid preservation: A comprehensive reference. Lanham: Rowman &
703 Littlefield; 2014.

704 24. Marquina D, Buczek M, Ronquist F, Łukasik P. The effect of ethanol concentration on the
705 molecular and morphological preservation of insects for biodiversity studies. *PeerJ* 2021;9:
706 e10799. doi: 10.7717/peerj.10799.

707 25. Stoddard MC, Yong EH, Akkaynak D, Sheard C, Tobias J, Mahadevan L. Avian egg shape:
708 Form, function and evolution. *Science* 2017;6344: 1249-1254. doi:
709 10.1126/science.aaaj1945.

710 26. Hauber ME, Kim CR, Goethe C, Hanley D. Self-referent phenotype matching is a poor
711 predictor of egg rejection by American Robins. *J Field Ornithol.* 2020;91: 254–262. doi:
712 10.1111/jfo.12339.

713 27. Adams, TL, Strganac C, Polcyn MJ, Jacobs LL. High resolution three-dimensional laser-
714 scanning of the type specimen of *Eubrontes* (?) *glenrosensis* Shuler, 1935, from the
715 Comanchean (Lower Cretaceous) of Texas: Implications for digital archiving and
716 preservation. *Palaeontol Electronica* 2010;13: 1T,11p. Available from https://palaeo-electronica.org/2010_3/226/index.html.

717 28. Hollinger RE, John E Jr., Jacobs H, Moran-Collins L, Thome C, Zastrow J, et al. Tlingit-
718 Smithsonian collaborations with 3D digitization of cultural objects. *Museum Anthropology*
719 Review 2013;7. Available from
720 <https://scholarworks.iu.edu/journals/index.php/mar/article/view/2173>.

721 29. Brecko J, Mathys A. Handbook of best practice and standards for 2D+ and 3D imaging of
722 natural history collections. *Eur J Taxon.* 2020;623. doi: 10.5852/ejt.2020.623.

723 30. Dubay SG, Fuldner CC. Bird specimens track 135 years of atmospheric black carbon and
724 environmental policy. *Proc Natl Acad Sci USA* 2017.;114: 11321-11326. doi:
725 10.1073/pnas.1710239114.

726 31. Bardua C, Bon M, Fabre AC, Clavel J, Das K, Herrel A, et al. Size, microhabitat, and loss of
727 larval feeding drive cranial diversification in frogs. *Nat Commun.* 2021;12: 2503. doi:
728 10.1038/s41467-021-22792-y.

729 32. Boyer D, Gunnell G, Kaufman S, McGeary T. Morphosource: Archiving and sharing 3-D
730 digital specimen data. *The Paleontological Society Papers* 2016;22: 157-181. doi:
731 10.1017/scs.2017.13.

733 33. Zimkus B, Ford LS, Morris PJ. The need for permit management within biodiversity
734 collection management systems to digitally track legal compliance documentation and
735 increase transparency about origins and uses. *Collection Forum* 2021;35: 1-20. doi:
736 10.14351/0831-4985-35.1.1.

737 34. McGuire JL, Davis EB. Using the palaeontological record of *Microtus* to test species
738 distribution models and reveal responses to climate change. *J Biogeogr* 2013;40: 1490-
739 1500. doi: 10.1111/jbi.12106.

740 35. Smith AB, Santos MJ, Koo MS, Rowe KMC, Rowe KC, Patton JL, et al. Evaluation of
741 species distribution models by resampling of sites surveyed a century ago by Joseph
742 Grinnell. *Ecography* 2013;36: 1017–1031. doi: 10.1111/j.1600-0587.2013.00107.x.

743 36. Wieringa JG, Carstens BC, Gibbs HL. Predicting migration routes for three species of
744 migratory bats using species distribution models. *PeerJ* 2021;9: e11177. doi:
745 10.7717/peerj.11177.

746 37. Guralnick RP, Zermoglio PF, Wieczorek J, LaFrance R, Bloom D, Russell L. The importance
747 of digitized biocollections as a source of trait data and a new VertNet resource. *Database*
748 2016;2016: baw158. doi: 10.1093/database/baw158.

749 38. Paton A. Biodiversity informatics and the plant conservation baseline. *Trends Plant Sci*
750 2009;14: 629-637. doi: 10.1016/j.tplants.2009.08.007.

751 39. Pauli JN, Newsome SD, Cook JA, Harrod C, Steffan SA, Baker CJO, et al. Opinion: Why we
752 need a centralized repository for isotopic data. *Proc Natl Acad Sci USA* 2017;114: 2997-
753 3001. doi: 10.1073/pnas.1701742114.

754 40. Poelen J, Simons J, Mungall C. Global biotic interactions: An open infrastructure to share
755 and analyze species-interaction datasets. *Ecol Inform*. 2014;24: 148-159. doi:
756 10.1016/j.ecoinf.2014.08.005.

757 41. Bi K, Linderöth T, Singhal S, Vanderpool D, Patton JL, Nielsen R, et al. Temporal genomic
758 contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate
759 change. *PLoS Genet* 2019;15: e1008119. doi: 10.1371/journal.pgen.1008119.

760 42. Bell KC, Demboski JR, Cook JA. Sympatric parasites have similar host-associated, but
761 asynchronous, patterns of diversification. *Am Nat* 2018;192: E106-E119.

762 43. Hiller AE, Cicero C, Able MJ, Barclay TLW, Spencer CL, Koo MS, et al. Mutualism in
763 museums: A model for engaging undergraduates in biodiversity science. *PLoS Biol* 2017;15:
764 e2003318. doi: 10.1371/journal.pbio.2003318.

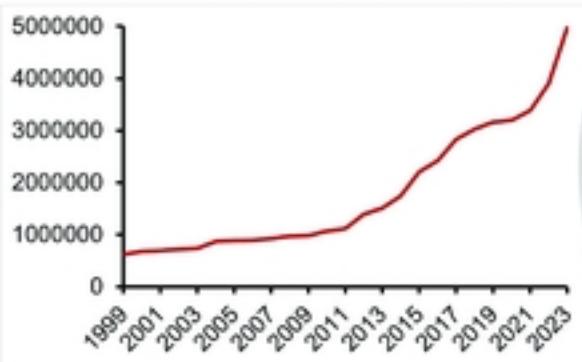
765 44. National Academies of Sciences, Engineering, and Medicine. *Biological collections: Ensuring critical research and education for the 21st century*. Washington: The National
766 Academies Press. 2020. doi: 10.17226/25592.

767 45. Colella JP, Bates J, Burneo SF, Camacho MA, Bonilla CC, Constable I, et al. Leveraging
768 natural history biorepositories as a global, decentralized, pathogen surveillance network.
769 *PLoS Pathog* 2021;17: e1009583. doi: 10.1371/journal.ppat.1009583.

770 46. Hardisty A, Roberts D, and the Biodiversity Informatics Community. A decadal view of
771 biodiversity informatics: challenges and priorities. *BMC Ecol.* 2013;13: 16. doi:
772 10.1186/1472-6785-13-16.

773 47. Kagan JS. Biodiversity informatics: Challenges and opportunities for applying biodiversity
774 information to management and conservation. *Northwest Nat.* 2006;87: 80-85. doi:
775 10.1898/1051-1733(2006)87[80:BICAOF]2.0.CO;2.

776 48. Beaman RS, Cellinese N. Mass digitization of scientific collections: New opportunities to
777 transform the use of biological specimens and underwrite biodiversity science. *Zookeys*
778 2012;209: 7-17. doi: 10.3897/zookeys.209.3313.


780 49. Vermeylen S, Pilcher J. Let artifacts speak: Online museums and intangible cultural
781 heritage. *Int J Intang Heritage* 2009;4: 49-63. doi: 10.35638/ijih.2009..4.004.

782 50. Kremers H, editor. Digital cultural heritage. Cham: Springer Nature Switzerland. 2020. doi:
783 10.1007/978-3-030-15200-0.

784 51. Lin D, Crabtree J, Dillo I, Downs RR, Edmunds R, Giaretta D, et al. The TRUST Principles
785 for digital repositories. *Scientific Data* 2020;7: 144. doi: 10.1038/s41597-020-0486-7.

786 52. Johnson N, Druckenmiller ML, Danielsen F, Pulsifer PL. The use of digital platforms for
787 community-based monitoring, *BioScience* 2021;71: 452–466. doi: 10.1093/biosci/biaa162.

A

B

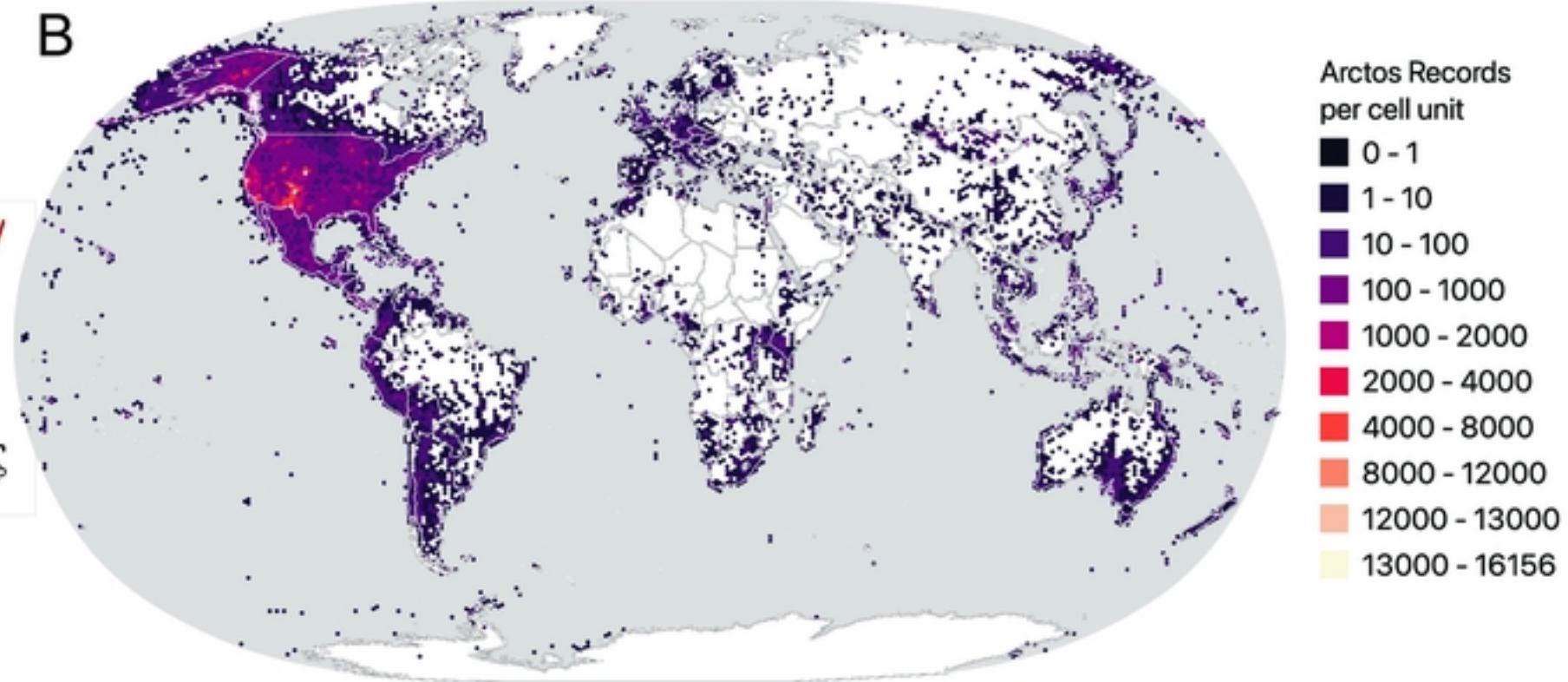


Figure 1

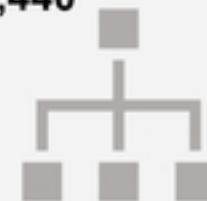
Community Statistics

Institutions: 54

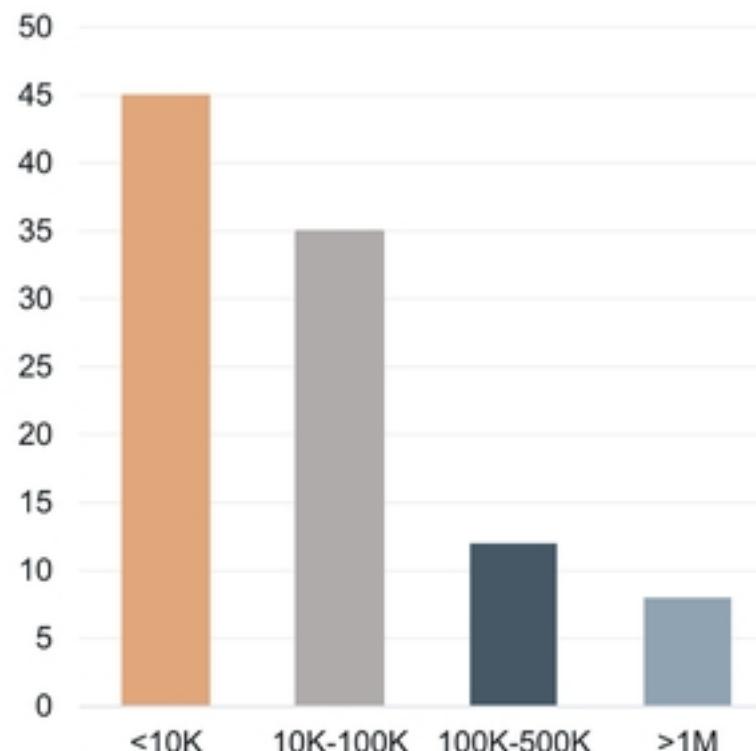
Collections: 311

Collection Types: 40

Countries: 4


Collection Statistics

Cataloged Records: 4,899,113


Taxonomic Identifications: 3,518,536

People & Organizations: 58,819

Barcode Items: 3,586,440

Arctos Collections by Size

Usage Statistics

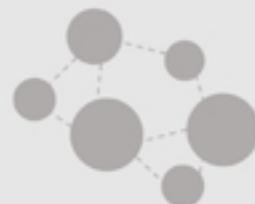
Projects in Arctos: 3,542

Loans Recorded: 13,012

Items Loaned: 866,117

Publications: 10,319

Records/Objects Cited: 433,126



Extended Network

Relationships: 175,800

GenBank Links: 37,658

Media: 981,836

External Linkages

BoLD

GGBN

MorphoSource

CalPhotos

GloBI

NEON

GenBank

iDigBio

ORCID

GBIF

IsoBank

VertNet

Figure 2

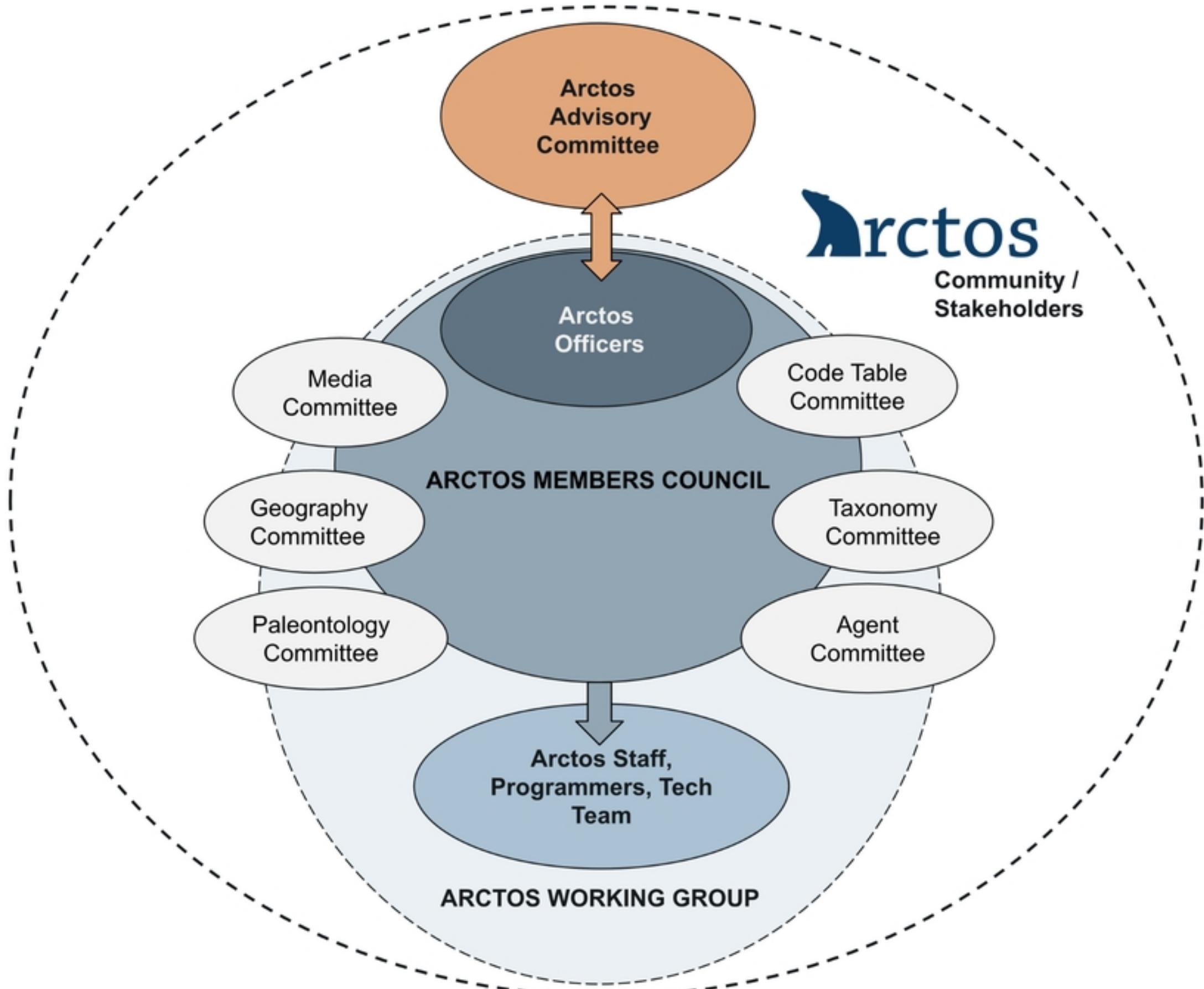


Figure 3

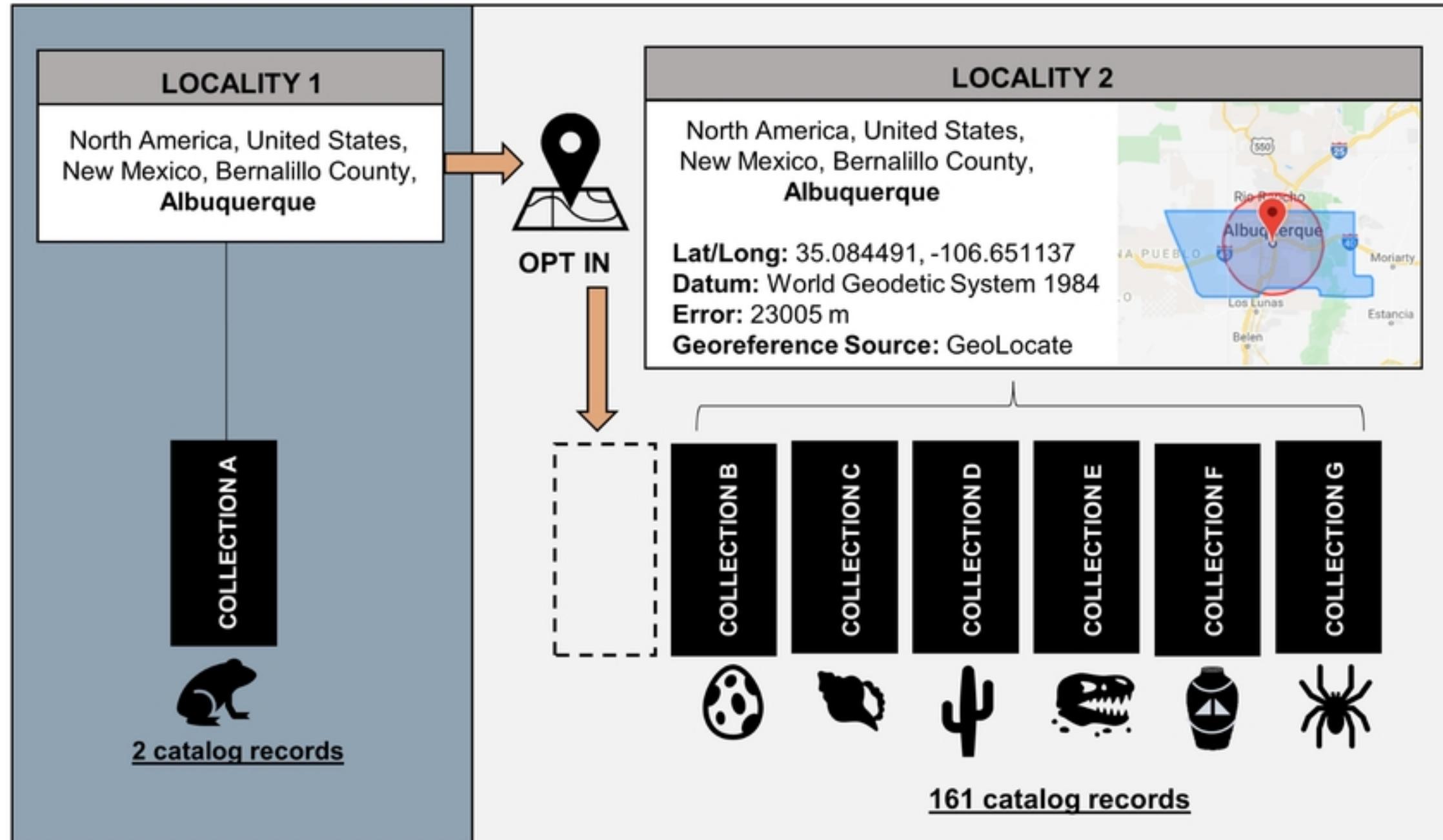
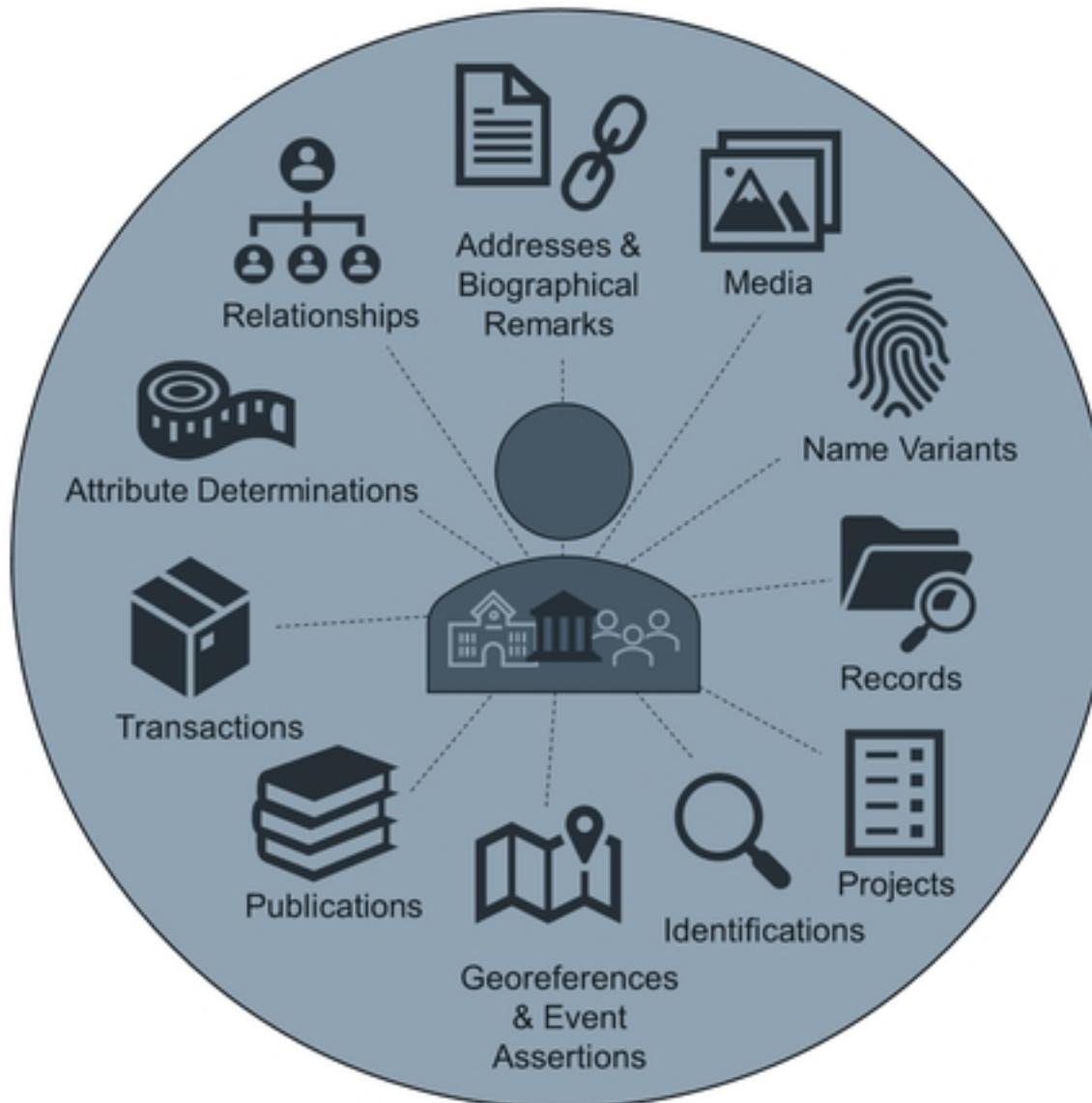



Figure 4

Agent Activity Summary
Name Variations (nicknames/aka, initials, birth names)
Remarks (biographical, curatorial)
Relationships (familial, collegial, academic)
Identifiers and Addresses (contact, URLs, wikidata, ORCIDs)
Collection Activity (e.g., collected, prepared, identified)
Curatorial Activity (e.g., transactions, edits, georeferences)
Products (media, publications, projects)
Project Participation (e.g., grants, expeditions, roles)

Figure 5

BERINGIAN COEVOLUTION PROJECT (BCP)

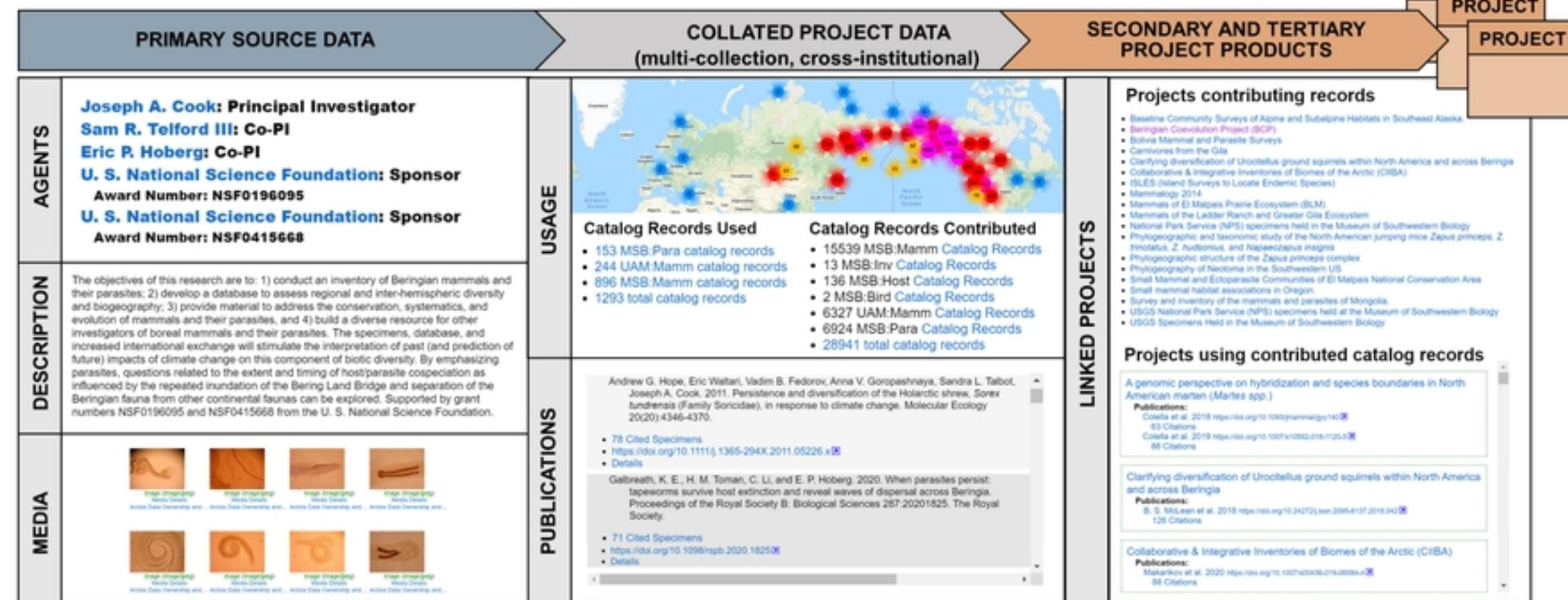


Figure 7

Hierarchical Object Location Tracking

Institution

Collection

Room A

Room B

Room C

Freezer 1

Freezer Rack

Freezer Box

Position 1

Cryovial #

Position 2

Position 3

Freezer 2

Install Date: 2017-09-18T02:12:54

Institution: MSB

[Edit this container](#)

[See all collection objects in this container](#)

[Positions](#)

[Empty Positions](#)

[History](#)

Location:

[Museum of Southwestern Biology](#)

Container Type: institution

Barcode: MSB

[Genomic Resources](#)

Container Type: collection

Barcode: DGR

Last Envo: checked=1@2017-01-27

[326 Freezer Room -80](#)

Container Type: room

Barcode: DGRCERIA326

[DGR-6](#)

Container Type: freezer

Barcode: DGR12749

Last Envo: checked=1@2020-11-03

[DGR-6-1](#)

Container Type: freezer rack

Barcode: A8PPP

[DGR-6-1-1](#)

Container Type: freezer box

[1](#)

Container Type: position

[NK 102003 X](#)

Container Type: cryovial

Figure 8

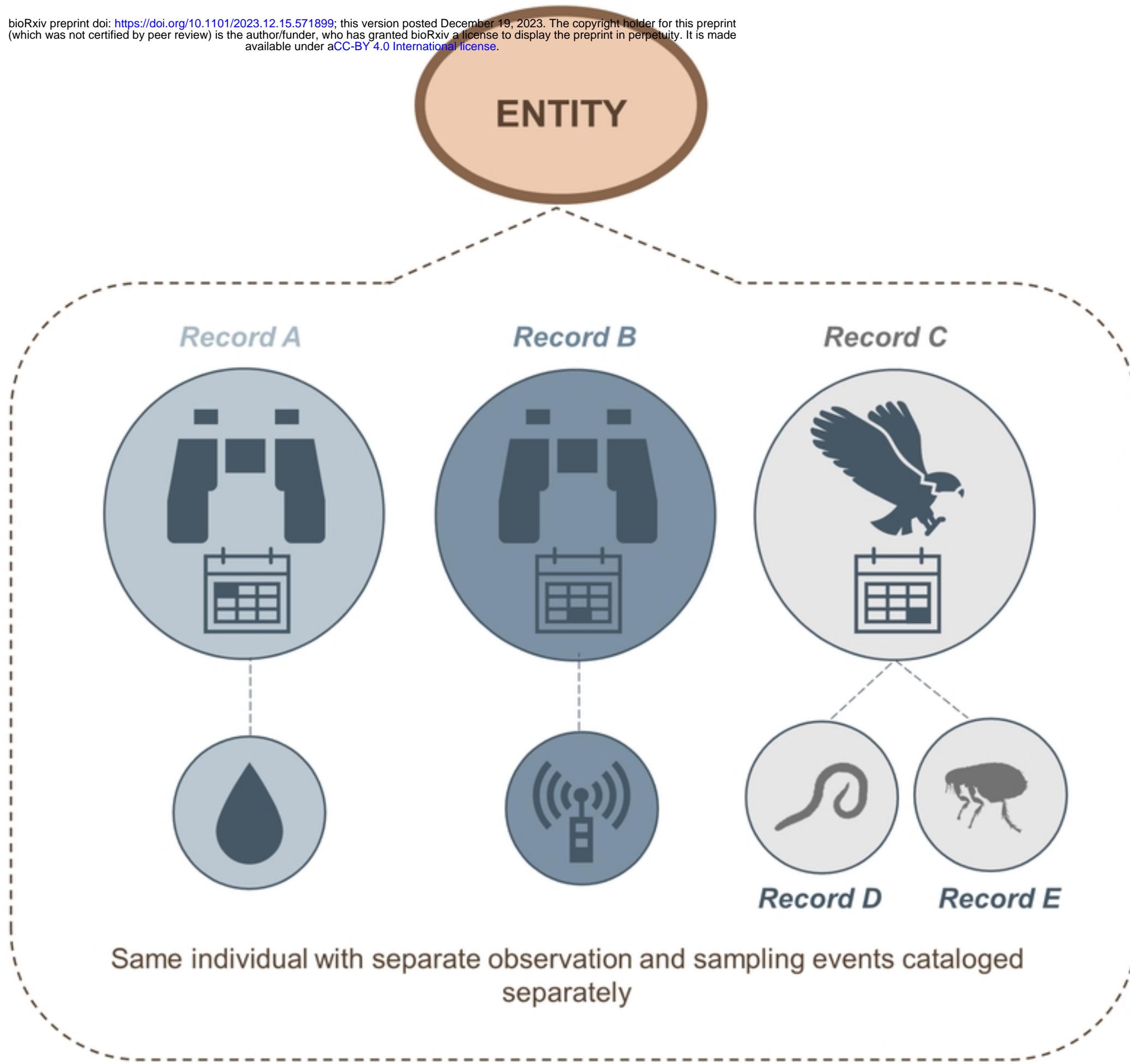


Figure 10

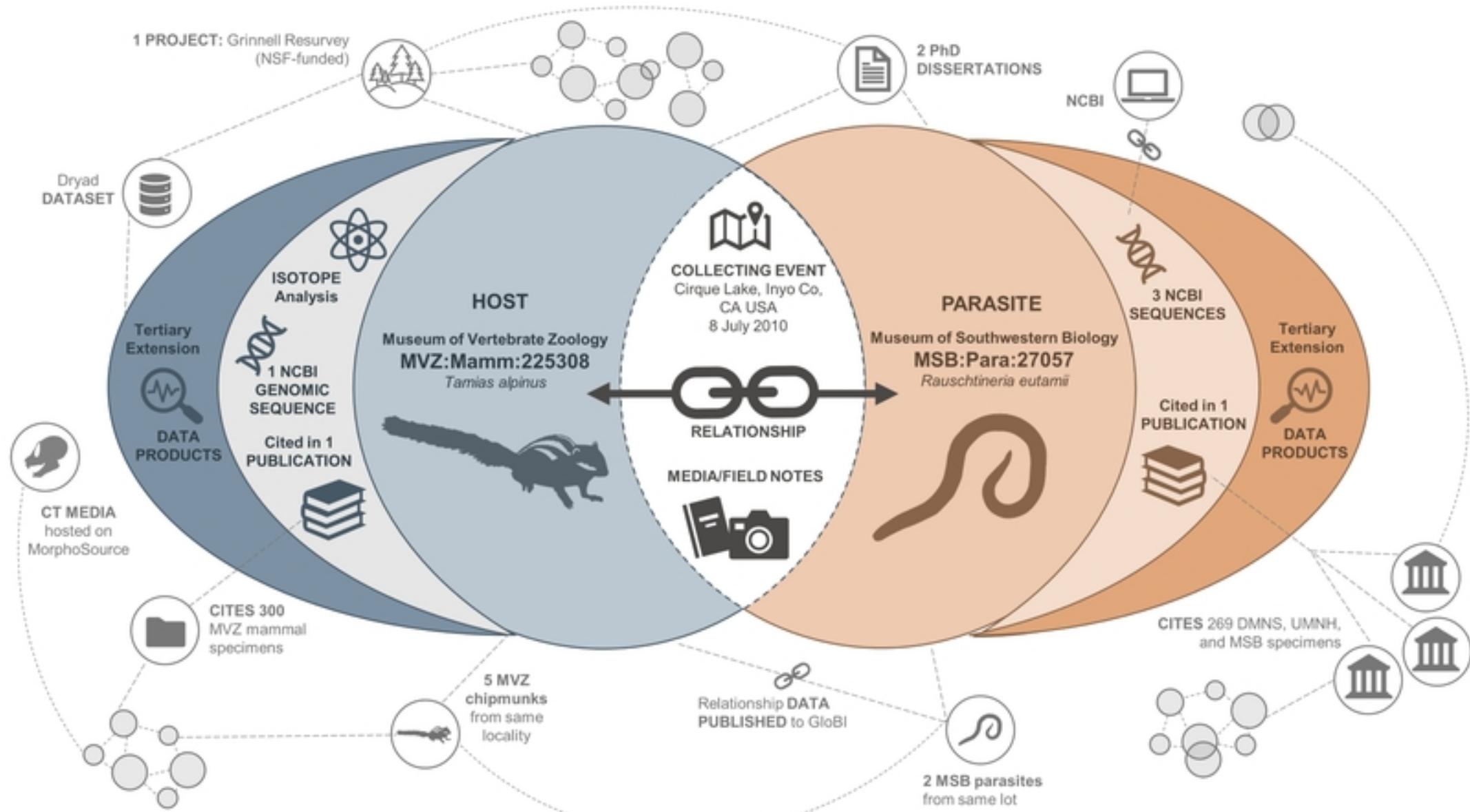


Figure 9