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Abstract 

Electroencephalography (EEG) has a long history as a clinical tool to study brain function, 
and its potential to derive biomarkers for various applications is far from exhausted. 
Machine learning (ML) can guide future innovation by harnessing the wealth of complex 
EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore 
physiological artifacts, which may cause problems for deriving biomarkers specific to the 
central nervous system (CNS). 
We present a framework for conceptualizing machine learning from CNS versus peripheral 
signals measured with EEG. A common signal representation across the frequency 
spectrum based on Morlet wavelets allowed us to define traditional brain activity features 
(e.g. log power) and alternative inputs used by state-of-the-art ML approaches (covariance 
matrices). Using more than 2600 EEG recordings from large public databases (TUAB, 
TDBRAIN), we studied the impact of peripheral signals and artifact removal techniques on 
ML models in exemplary age- and sex-prediction analyses. 
Across benchmarks, basic artifact rejection improved model performance whereas further 
removal of peripheral signals using ICA decreased performance. Our analyses revealed 
that peripheral signals enable age and sex prediction. However, they explained only a 
fraction of the performance provided by brain signals.  
We show that brain signals and body signals, both reflected in the EEG, allow for prediction 
of personal characteristics. While these results may depend on specific prediction 
problems, our work suggests that great care is needed to separate these signals when the 
goal is to develop CNS-specific biomarkers using ML. 
 
Keywords: EEG, machine learning, deep learning, artifacts, biomarker, CNS 

Introduction 

Electroencephalography (EEG) has a long history as a non-invasive technique for 

measuring brain activity in clinical research and practice. In the past decades, EEG has 
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become increasingly popular as a technique for studying brain function in neurology 

(Frohlich, Miller, et al., 2019; Gaubert et al., 2019; Hawellek et al., 2022; Jovicich et al., 

2019; Schumacher et al., 2020; Sidorov et al., 2017; Y. Sun et al., 2018; Zijlmans et al., 

2012), psychiatry (Hegerl et al., 2012; Lenartowicz & Loo, 2014; Wang et al., 2020; Wu et 

al., 2020), and drug development (Janz et al., 2022; Leiser et al., 2011). EEG measures 

electrical potentials induced by cortical large-scale synchrony at dozens to hundreds of 

electrode locations on the scalp (Nunez & Srinivasan, 2006) and at temporal scales on the 

order of milliseconds to minutes (Buzsáki & Draguhn, 2004). The resulting multi-

dimensional time series contain rich information about brain activity that can be quantified, 

e.g. as spectral power, spatial patterns, and waveform morphology (Jackson et al., 2019). 

Therefore, EEG is a rich source of information that shows promise for deriving biomarkers 

of cognitive function, CNS pathology, and pharmacodynamics. 

 EEG signals are intrinsically complex. Analyses focusing on select frequencies, 

electrodes or time-points, can be successful in clinical settings characterizing global 

changes in EEG signals, e.g. related to changes in wakefulness or consciousness induced 

by sleep (Benca et al., 1999), severe brain injuries (Engemann et al., 2018; Schiff et al., 

2014) or anesthesia (Purdon et al., 2013). It can be expected that more refined modeling 

uncovering subtler EEG signatures could broaden the application of EEG. Propelled by 

advances in computer science, signal processing and increasing availability of large EEG 

datasets, machine learning (ML) has emerged as a promising technology for isolating 

hidden patterns from complex EEG signals. ML therefore has the potential to unlock novel 

types of EEG biomarkers, e.g. to predict progression risk in neurodegenerative disorders 

(García-Pretelt et al., 2022; Gaubert et al., 2021) or to predict treatment success (Wu et al., 

2020; Zhdanov et al., 2020). 

As ML methods for EEG are rapidly developing, which also includes deep learning (DL), 

the field has not yet converged on methodological standards and best practices (Roy et al., 

2019). This increases the researcher9s degrees of freedom, and consequently the variability 

of results, which may hamper unlocking the potential of ML for improving EEG analysis. 

One potentially important source of such variability arises from handling artifactual signals 

in the EEG. A recent systematic review of the ML & DL literature for EEG (Roy et al., 2019), 

found that the majority of studies (72%) did not perform any explicit removal of physiological 

artifacts related to peripheral body signals (e.g. eye blinks, muscle & cardiac activity) that 

are well known to leak into the EEG and can overshadow the brain signal of interest. This 

is particularly problematic as these peripheral sources are often modified by medical 

conditions and other individual factors and might therefore be predictive too (Golding et al., 
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2006; Lage et al., 2020; Lindow et al., 2023), which is entirely ignored if EEG is left 

unprocessed as was recently advocated for (Delorme, 2023). Depending on the relationship 

between artifacts and variables of interest, high-capacity ML techniques such as deep neural 

networks may automatically learn how to filter out artifact-generating sources as irrelevant 

noise, or, instead will use non-brain information to minimize prediction error (Jochmann et al., 

2023). The latter case would hamper unambiguous interpretation as brain-specific biomarkers.  

Artifact removal techniques such as independent component analysis (ICA) or signal-

space projection (SSP) have proven effective for reducing the leakage of signals from non-

brain generators into the EEG (Hyvärinen et al., 2004; Uusitalo & Ilmoniemi, 1997)(Uusitalo 

& Ilmoniemi, 1997). Enabled by recent developments, it became easier to automate and 

scale artifact removal (Jas et al., 2017; Pion-Tonachini et al., 2019; Zhang et al., 2021). Yet, 

such automated techniques for isolating brain signals from body signals, have not been 

systematically studied in the context of machine learning pipelines for biomarker learning. 

It remains thus unclear if and how artifact removal procedures impact model performance 

and to which extent ML models make use of EEG signals induced by peripheral 

physiological generators.  

This work had two principal scientific objectives. 1) We aimed at formalizing the 

importance of considering potentially predictive physiological signals in a conceptual 

framework for building interpretable brain-specific EEG biomarkers with ML. 2) We tested  

if ML models make systematic use of peripheral non-brain signals if EEG signals are not 

sufficiently preprocessed.  

We focused on ML approaches for subject-level prediction, where one data point 

contains one EEG recording and one single outcome measure (Fruehwirt et al., 2017; 

Sabbagh et al., 2023; Wu et al., 2020) as compared to event-related modeling in cognitive 

decoding (King & Dehaene, 2014; Stokes et al., 2015) or brain-computer interfaces (BCI) 

(Abiri et al., 2019; Congedo et al., 2017). As ML requires training data, age and sex 

prediction are promising example problems that are easily accessible across data 

resources and have received increasing attention in human neuroscience. For example, 

the brain age approach (J. H. Cole et al., 2019; Smith et al., 2019) encapsulates patterns 

of brain aging via age prediction models, which, evaluated on atypical or clinical 

populations, can show informative biases like over-prediction of the chronological age (J. 

H. Cole et al., 2018; Denissen et al., 2022). A similar idea has been recently explored for 

sex prediction (Floris et al., 2023). Both age and sex prediction are actively investigated 

with EEG (Binnie et al., 2021; Engemann et al., 2022; Jochmann et al., 2023; H. Sun et al., 

2019; van Putten et al., 2018). To study the interplay between predictive brain and body 
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signals captured by the EEG through age and sex prediction, we chose publicly accessible 

datasets with wide age ranges for which at least 1000 data points were available, i.e. 

TDBRAIN, the Two Decades of Brainclinics (van Dijk et al., 2022) and TUAB, the Temple 

University Hospital Abnormal Corpus (Obeid & Picone, 2016). 

We used a generic framework suited for expressing prior biological assumptions. 

Previous work has obtained promising results for subject-level prediction of age from EEG 

by relying on the between-electrodes covariance matrices from different frequency bands 

as model inputs (Engemann et al., 2022). This approach is backed by statistical theory and 

defines mathematical tools from Riemannian geometry for building prediction algorithms on 

covariance manifolds (Barachant et al., 2010; Congedo et al., 2017; Sabbagh et al., 2019). 

The resulting models are effective at suppressing the distorting effects of volume 

conduction and electrical potential spread (Sabbagh et al., 2020). Our theoretical 

framework follows this line of research and extends it by making the role of non-brain 

predictive artifacts explicit. Moreover, our approach is committed to avoiding hand-picking 

of frequencies or band definitions and to improving interpretability against classical spectral 

measures. We therefore computed the covariances using complex Morlet wavelets  (Morlet 

et al., 1982) that have a long tradition in EEG signal analysis (Cohen, 2019; Hipp et al., 

2012; Tallon-Baudry et al., 1996). This allowed us to cover the entire frequency spectrum 

with fine-grained resolution. As a second complementary generic approach, we 

benchmarked a convolutional neural network (Schirrmeister et al., 2017) that has the 

capability to learn custom oscillatory motifs.  

Results 

 

Conceptual framework for building brain-specific prediction models with EEG 

 

We first developed our methodological framework (Figure 1).  Prior work (Sabbagh et al., 

2020) proposed a generative modeling framework for regressing biomedical outcomes on 

cortical activity in the presence of volume conduction. A central feature of that work are 

statistical guarantees that yield unbiased prediction models without approximation error 3 

also termed statistical consistency 3 given specific model assumptions of, e.g. linear field 

spread, and a log linear relationship between brain activity and the outcome (eqs. 1-3).  
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Figure 1. Conceptual framework for biomarker learning from EEG. (a) Individual genetics, medical conditions, and interventions 

among other factors affect the brain (CNS) and the body (periphery) simultaneously, enabling predictive modeling as outcome 

measures related to these conditions become correlated to physiological measures such as EEG. Predictive CNS generators, 

predictive peripheral generators (e.g., ocular, cardiac, muscular) and non-predictive ambient noise (electronics, loose 

electrodes, electromagnetic interference) induce EEG signals through linear mixing. An ideal CNS biomarker isolates brain-

related signals and ignores the other generators contributing to the EEG signal. (b) Families of complex Morlet wavelets (left) 

offer useful representations for disentangling signal generators inducing EEG patterns in different frequencies (solid and dotted 

lines represent real and imaginary parts of the complex valued kernel). Beyond classical log power topographies (middle) we 

derived covariance matrices (right) through wavelet convolutions. Covariances play a central role in machine learning (ML) 

algorithms for EEG as they define representations that help mitigate distortions and biases due to linear source mixing. (c) Data 

processing and predictive modeling pipeline. To study the impact of different EEG generators on ML pipelines, we varied the 

preprocessing (minimal 3 numerically stabilizing processing, autoreject 3 removal of ambient noise and high-amplitude signals, 

autoreject & ICA 3 additional removal of peripheral artifacts). We focused on Morlet wavelets and covariance-based approaches 

that emerged as informative baselines in previous work as they imply different underlying hypotheses about the regression 

function and make different use of spatial information (cf methods - prediction algorithms). We also investigated a convolutional 

neural network (ShallowNet) capable of learning custom, temporal filters from the data, which leads to increased model capacity 

and enables learning of features sensitive to changes in the shape of oscillations or bursting events.     

Figure 1 - supplement 1: Detailed comparisons between wavelets and manually defined classical frequency bands (following 

IPEG  standard) for covariance-based models. 
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Moreover, the framework can accommodate matrix-rank deficiencies caused by artifact 

cleaning (Absil et al., 2009; Sabbagh et al., 2019), which is of central importance in our 

context. 

 Here, we extended that framework to explicitly reflect the role of potentially predictive 

body signals as compared to non-predictive noise (Figure 1a, eq. 1 in methods). This 

inspired us to propose a stringent definition of CNS biomarkers for which we require that 

the EEG model isolates CNS components from noise and peripheral signals (eq. 2-3 in 

methods).  At the theoretical level, this formulation allowed us to see that statistically 

consistent regression models for prediction from EEG brain activity (Sabbagh et al., 2019, 

2020) from EEG-sensor-space covariance matrices (eq. 4 in methods) are also consistent 

for predicting from non-brain activity leaking into the EEG, unless dedicated artifact cleaning 

is applied. It is therefore not necessarily a safe assumption that such machine learning 

models will automatically learn to ignore artifacts with enough training data (see formal 

analysis presented in methods, eqs. 13-16). If artifacts are uncorrelated with the outcome 

of interest, one might choose to leave them unprocessed and thereby potentially even 

increase the robustness of the learned representation. However, prior studies have shown 

that peripheral signals and EEG artifacts can be systematically modulated in different 

patient groups (Golding et al., 2006; Jongkees & Colzato, 2016; Lindow et al., 2023; 

Wilkinson & Nelson, 2021). This motivated us to systematically study the relationship 

between different EEG components attributed to CNS versus peripheral generators, which 

typically differ in terms of spectral and spatial patterns.  

 In support of this purpose, we combined ML with EEG representations based on Morlet 

wavelets (Figure 1b, eq 4 in methods; (Morlet et al., 1982; Tallon-Baudry et al., 1996). Our 

approach to spectral analysis chooses a log-frequency parametrization defining the wavelet 

families using a base-2 logarithmic grid (Hipp et al., 2012), which is tailored to the natural 

scaling of brain rhythms that are rather lognormal (Buzsáki & Mizuseki, 2014). That is, the 

spectral resolution is higher at lower frequencies, and accordingly the spectral smoothing 

is greater at higher frequencies. This representation is well established for implementing 

spectral EEG measures (e.g. log power, eq. 8 in methods) and a common choice in clinical 

biomarker studies (Frohlich, Miller, et al., 2019; Hawellek et al., 2022; Janz et al., 2022). 

Beyond classical EEG metrics, here, we adapted the Wavelet approach to further derive 

advanced representations for state-of-the-art ML methods developed for EEG (Figure 1b, 

Figure 1c). 

 As our principal ML strategy, we focused on the family of covariance-based prediction 

models (Congedo et al., 2017; Grosse-Wentrup & Buss, 2008; Koles et al., 1990) that were 
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theoretically and empirically analyzed in previous work (Sabbagh et al., 2019, 2020). These 

models provide useful baselines as they enjoy statistical guarantees under different 

assumptions, such that the comparison of their performance can hint at characteristics of 

the data-generating mechanism  (cf. section prediction algorithms  in methods). So far, 

these models have been studied with conventional frequency bands and other than in 

previous work, we estimated frequency-specific covariances from the real part of the Morlet 

wavelet representation (Figure 1b). Additional validation confirmed that covariance-based 

models performed consistently better when implemented under the wavelet approach. For 

a comparison with frequency bands proposed by the International Pharmaco-EEG Society 

(IPEG; Jobert et al 2012), see Figure 1 - supplement 1. 

 We also explored a flexible convolutional neural network approach: ShallowNet 

(Schirrmeister et al., 2017) operates directly on EEG time series data and can overcome 

the potential limitations of the assumptions of sinusoidal brain oscillations at fixed 

frequencies (Jackson et al., 2019). Together, these models should be reasonably 

representative of state-of-the-art ML models used in EEG research. 

 We then used this combination of a high resolution spectral representation and powerful 

covariance-based ML models that can leverage fine-grained spatial features to investigate 

the impact of artifact preprocessing. We performed analyses across different levels of 

preprocessing, designed to vary the extent to which environmental versus physiological 

artifacts are cleaned (Figure 1c). 

 

Impact of Preprocessing on Model Performance 

 

We applied our framework to investigate the contribution of brain and non-brain signals to 

the performance of the different ML models in two benchmark tests, age and sex prediction. 

We compared model performance across different levels of preprocessing to assess if ML 

models would benefit, suffer or be unaffected by artifact removal. We compared the 10-fold 

cross-validation results for different models on either minimally, moderately or extensively 

preprocessed input data (Figure 2, Table S1, S2). Minimally preprocessed data was filtered 

and resampled. Moderate preprocessing made additional use of autoreject (Jas et al., 2017), 

a method that discards and interpolates bad channels and segments (AR) to remove high-

amplitude artifacts produced by ambient interference, electronics or loose electrodes. 

Extensive preprocessing added explicit removal of physiological artifacts using ICA (AR & 

ICA) supported by automatic labeling of brain and artifact components (Ablin et al., 2018; 

Hyvärinen & Oja, 2000; Pion-Tonachini et al., 2019). 
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The depth of preprocessing affected total power, relative power and covariances across 

frequencies (Figure 2 - supplement 1 & 2). Grouping of log power spectra by age showed 

differences that may enable prediction, regardless of preprocessing.  

Figure 2. Impact of artifact removal on EEG prediction performance in (a) age prediction and (b) sex classification on the 

TDBRAIN and the TUAB datasets. Boxplots show 10-fold-cross validation distributions. Color depicts the degree of EEG 

processing (minimal, autoreject, autoreject & ICA). Rows present model architectures: Ridge regression & classification based 

on covariances with upper vectorization (upper), the log of the variance components (log diagonal), supervised spatial filtering 

(SPoC), the Riemannian tangent space (Riemann) and a convolutional neural network operating on raw EEG time series 

(ShallowNet). Removing noisy channels and high-amplitude data segments (autoreject) often led to improved performance. The 

Riemannian model benefited least from intense preprocessing, whereas simpler models (upper, log diagonal) could be 

substantially improved by preprocessing. Performing additional ICA-based rejection of artifacts (muscles, eye blinks, etc.) often 

lowered the prediction performance, suggesting that bodily, non-brain generators of the EEG can include predictive information. 

Figure 2 - supplement 2: Impact of processing on EEG power spectra, topographies and covariances (TDBRAIN). 

Figure 2 - supplement 3: Impact of processing on EEG power spectra, topographies and covariances (TUAB). 

 

Except for the upper model, all models showed above-chance prediction regardless of 

processing choices (Figure 2a, 2b). Pooling over models and datasets, we can observe that 

autoreject led to an improvement in R2 over minimally preprocessed data of 0.151 

(CI95%=[0.076, 0.236]) for age prediction (Figure 2a) and in area under the curve (AUC) of 

0.071 (CI95%=[0.021, 0.126]) for sex prediction (Figure 2b). The additional ICA step did not 

yield further improvements and instead lowered the performance by on average -0.036  
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(CI95%=[-0.061, -0.004]) in R2 and  -0.047 (CI95%=[-0.057,-0.037]) in AUC compared to 

autoreject preprocessing alone.  

Detailed model comparisons revealed that simpler models tended to benefit more from 

preprocessing. The upper model (eq. 9), for instance, failed on the task of age prediction 

on TUAB when only minimal preprocessing was applied to the input, and performance was 

substantially improved with preprocessing. A similar effect was observed for the log 

diagonal and SPoC models. The Riemann model and the ShallowNet benefited less from 

preprocessing with autoreject. This might be explained by their increased capacity to use 

the wealth of information in raw signals or the covariance matrix to suppress irrelevant 

signals. All cross-validation results including additional metrics are printed in Tables S1 & 

S2 to facilitate comparisons with other studies. 

  In summary, our results suggest that removal of high-amplitude artifacts using 

autoreject can be beneficial across models, whereas refined ICA-based removal of 

physiological artifacts might hamper predictive information.  

 

Exploring the relative contribution of peripheral non-brain signals 

 

That ICA-based removal of non-brain signals (including muscle activity, eye movements or 

cardiac activity) led to lower prediction performance could imply that these non-brain signals 

contained information about the outcome. We next performed an in-depth investigation of 

the predictive value of these signals that are typically treated as artifacts. To approximate 

a decomposition of the model performance into brain and non-brain contributions (eqs. 13-

16), we explored two complementary approaches: (1) reconstruction of EEG features from 

brain and artifactual ICs, and (2) computation of EEG features from auxiliary channels, 

where available. Specifically, we focused on the auxiliary channels used to record ocular, 

muscular, and cardiac activity in the TDBRAIN dataset (see approximate subspace 

regression and classification methods). 

If the drop in performance after ICA preprocessing is due to the removal of predictive 

information, we should achieve above-chance prediction performance when using only the 

removed signal as input. To investigate this hypothesis, we first used ICA on the 
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Figure 3. Exploration of the contribution of CNS and peripheral signals as extracted from ICA. (a) Power spectra of EEG 

reconstructed from ICA components identified as reflecting brain signals and artifacts, averaged across electrodes. Power in ocular 

artifact subspaces is concentrated at low frequencies and muscle activity is concentrated at high frequencies. Note that the overall 

lower amount of power for artifacts compared to the cleaned signal is partially explained by the averaging across all electrodes: 

artifacts are typically concentrated in a subset of the electrodes. Importantly, alpha power (8-12 Hz) was largely preserved in EEG 

and virtually absent in ICA-reconstructed signals. (b) and (c) show model comparisons for cleaned EEG versus ICA-reconstructed 

signals. Performance was higher after cleaning with AR (blue) and AR & ICA (yellow), yet the ICA reconstructions of artifact 

subspaces (orange) also contained predictive information. The highest performance was achieved after AR preprocessing, which 

eliminated large artifact sections but did not eliminate the contribution of physiological artifacts. 
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TUAB dataset where no auxiliary channels were available (Figure 3). We reconstructed 

the signal from the subspaces spanned by the rejected ICA components (cf. methods).  

As the ICLabel algorithm (Pion-Tonachini et al., 2019) used for labeling of independent 

components provides categories for the rejected components, we also reconstructed the 

signal for particular classes of artifacts (e.g. ocular or muscle artifacts). 

Inspecting the power spectra of the reconstructed artifact signals, ocular artifacts were 

dominated by low-frequency power, whereas muscle artifacts contained mostly high 

frequency power (Figure 3a). Moreover, the alpha-band peak above 8 Hz was preserved 

after ICA-cleaning of the EEG (signal-subspace) and not present on the artifact-subspace 

power spectra (Figure 3a). Grouping by age and sex on subspace power spectra showed 

average power differences that may enable prediction. We used 10-fold cross-validation 

to gauge model performances for age and sex prediction (Figure 3b, 3c). The subspace 

models achieved above-chance performance, suggesting that non-brain signal generators 

are predictive of age and sex. The only exception to this pattern was the ShallowNet 

performance for age prediction, potentially related to data requirements of complex 

regression models in situations with low signal-to-noise ratio. Jointly predicting from all 

artifact sources together yielded better performance than predicting from any individual 

artifact class, but performance results for individual artifact classes were still above 

chance. Importantly, the performance of models using clean EEG were substantially better 

and performance distributions were non-overlapping with the artifact subspace models.  

The second approach, using auxiliary channels instead of ICA subspaces, was explored 

on the TDBRAIN dataset (see methods for details). The horizontal and vertical EOG 

electrodes are placed close to the eyes and thus primarily pick up eye movements, which 

is reflected in high power at low frequencies. The ECG electrode is placed at the cervical 

bone and provides a measurement of cardiac activity. Finally, the EMG electrode is placed 

on the right masseter muscle and measures (jaw) muscle activity, reflected in large 

amounts of high-frequency power (Figure 4a). As we expected, comparing power spectra, 

all auxiliary channels appeared markedly different from the EEG channels. However, we 

can still discern alpha peaks between 8 and 12 Hz in the EOG and EMG channels, 

suggesting that auxiliary channels also picked up brain activity to some extent. As before, 

the grouping by age and sex on the auxiliary-channel power spectra reveal differences that 

may enable prediction. In line with results from the ICA-based analysis, predictions based 

on auxiliary channels were substantially better than chance (Figure 4b, 4c). In many cases, 

data from EOG channels explained the larger part of the performance obtained with 

auxiliary channels. 
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Figure 4. Exploration of the contribution of brain and body signals in EEG-based prediction models through auxiliary (AUX) 

channels. (a) AUX channel power spectra generally exhibit different characteristics than EEG (cleaned with autoreject, averaged 

across electrodes). (b) and (c) show comparisons of model performance with EEG versus auxiliary physiological channels (AUX) 

for age and sex prediction, respectively. It can be seen that modeling from AUX inputs (orange) leads to systematic prediction 

performance across tasks and model architectures. The effect of AUX inputs related to ocular activity explained much of the 

performance of all AUX inputs together. Predicting from EEG inputs (yellow) yielded consistently higher performance. As a 

tendency, model architectures that achieve better results for EEG inputs also achieve better results for AUX inputs. Combining 

EEG and AUX features (blue) did not result in systematically better performance. These results suggest that the predictive 

information conveyed by AUX channels is already captured by the EEG channels. 
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Yet, the combination of all available auxiliary channels led to the highest performance 

compared to individual auxiliary channels. Again, the performance achieved with EEG data 

was substantially higher, as evidenced by non-overlapping or weakly overlapping cross-

validation distributions. Strikingly, despite the performance observed with auxiliary 

channels, combining EEG and auxiliary channels did not lead to consistent improvements 

over pure EEG data for most models. This suggests that the predictive information present 

in the auxiliary channels was already present in the EEG signal and explained part of its 

performance. 

In sum, our findings suggest that across datasets and tasks, non-brain signals contain 

information predictive of age and sex but that the main driver of prediction performance is 

brain related. 

 

Model exploration through spectral profiling of prediction performance 

 

The wavelet-based framework developed in this work not only offers competitive prediction 

performance (Figure 1 - supplement 1). It provides additional opportunities for model 

interpretation. How individual frequencies contribute to model prediction can provide 

insights about the underlying physiological processes. E.g. in motor tasks, the predictive 

signal was found to occupy a specific frequency range (beta frequency range), possibly 

reflecting strong associations of outcomes with oscillatory activity in the motor cortex 

(Schoffelen et al., 2011) and not much information was gained by combining multiple 

frequencies (Sabbagh et al., 2020). On the other hand, specific frequency ranges might 

not play a prominent role if predictive brain sources are distributed across cortical 

networks. Moreover, structural anatomical characteristics may systematically influence 

propagation of brain activity, as recently hypothesized for sex prediction from EEG 

(Jochmann et al., 2023). Also, changes of states of consciousness (awake, sleep, coma) 

that go hand in hand with global changes of the EEG signal may enable decoding from 

broadband power. This included certain drugs like anesthetics (Bojak & Liley, 2005; 

Drummond et al., 1991). 

Comparing models with a restricted frequency range versus all frequencies, allowed 

us to characterize the nature of the predictive signal. We focused this analysis on the SPoC 

model, which strikes a good compromise between computation time and model 

performance. As covariances at a single frequency cannot capture local changes across 

frequencies, we built models capable of deriving local contrasts between neighboring 
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frequencies (Figure 5, left subpanels, blue lines). To this end, we extracted covariances 

from 5 neighboring wavelets around the center frequency � spanning one octave (see 

methods 3 Background: Spectral analysis and machine learning for EEG biomarkers). In 

addition, we averaged covariances (with fixed equal weights) across the same neighboring 

frequencies (Figure 5, left subpanels, yellow lines). Comparing these two approaches 

allowed exploring the complexity of local information as performance should be equal if 

local changes in the spatial patterns along the spectrum contain no information.  

To put performance based on these models with a restricted frequency range around 

center frequencies into perspective with previous results, we replotted the full model joining 

all frequencies as input (Figure 5, right subpanels, blue markers), corresponding to results 

shown for SPoC in Figure 2. In addition, we conducted a control analysis using the average 

of all covariances as input, which basically corresponds to the covariance of the broad-

band signal that lacks any frequency information (Figure 5, right subpanels, yellow 

markers). Furthermore, we explored the effect of preprocessing on performance in local 

frequency regions as compared to global effects (Figure 5, dotted lines and markers). 

We first focussed on age prediction from EEG cleaned with autoreject (solid lines). For 

TDBRAIN (Figure 5a), performance peaked between 8-16 Hz, around R2 scores of 0.6. A 

similar peak emerged below 8 Hz. By comparison, adaptively joining all wavelets (as in 

our previous analysis), increased the R2 score to around 0.8. A similar picture emerged for 

TUAB (Figure 5b), with R2 peaking around 0.4 at similar frequencies, whereas, joining all 

wavelets increased the score to around 0.6. For orientation, uncertainty estimates (SD) 

are displayed on the right subpanels. This suggests that the information from different 

frequencies was complementary for age-prediction on both datasets. Applying averaging 

(yellow lines), a clear drop in performance of around 0.2 in terms of R2 scores was 

observed on, both, local-frequency (Figure 5a, 5b, left subpanels) and global broadband 

models (Figure 5a, 5b, right subpanels), pointing at complex and local spectral information 

that is lost upon averaging. 

A similar picture emerged for sex prediction (Figures 5c and 5d). For TDBRAIN, peak 

AUC scores of about 0.8 were observed between 8 and 16 Hz (Figure 5c). Joining all 

frequencies lifted the AUC score close to 0.9. This was highly similar for TUAB (Figure 5d), 

except that peak performance was observed above 16 Hz. By comparison, averaging 

(yellow lines) decreased the performance to AUC scores closer to 0.7.  

To connect this analysis with our previous results, we analyzed changes in 

performance profiles as further artifact removal with ICA was added (dashed lines).  
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Figure 5. Spectral profiling of predictive EEG signatures using the wavelet framework. We inspected the SPoC pipeline on 

TDBRAIN (a, c) and TUAB (b, d) datasets for age (a, b) and sex (c, d) prediction by confronting frequency-wise models (left 

subpanels) with full cross-frequency models (right subpanels, all wavelets). For frequency-wise modeling, we used 5 wavelets 

around the center frequency (x-axis), from which covariances were averaged (yellow) or individually combined by the model 

(blue). Solid versus dashed curves depict the preprocessing, i.e., autoreject only and additional ICA, respectively. Horizontal 

lines provide an orientation with regard to the results based on all wavelets (right subpanels). The joint model with all individual 

wavelets represents the previously investigated standard models. The broadband model averaged all covariances across all 

frequencies to capture the global signal. It can be seen that letting the model combine the frequencies consistently led to better 

results, pointing at spectrally distributed information. 

 

changes in performance were small for age prediction in general, especially for the 

TDBRAIN dataset where frequency-specific models seemed unaffected. Some reduction 

in prediction performance at the peak above 8Hz from 0.4 to around 0.3 is seen on the 

TUAB dataset. By comparison, the effect of removing artifacts was more visible for sex 

prediction, also for global combined models. 

Taken together, spectral profiling revealed some spectral specificity in prediction 

performance, whereas prediction was possible across all frequencies. Models combining 
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frequencies at local or global ranges always clearly outperformed averaged models, 

pointing at synergistic information across the frequency spectrum and ruling out trivial 

offsets or broadband effects as main drivers of the prediction. 

 

Discussion 

 

Over the past decade, important advances have been made in EEG-based biomarker 

exploration with ML. To fully harness the potential of ML for EEG biomarkers, it will be 

important to optimally use neuroscientific and biophysiological insights from EEG research. 

Incorporating such prior knowledge into machine learning models can endow them with 

theoretical grounding and increase their robustness in wide-data regimes (few training data 

points, many variables) dominating human neuroscience. Our literature review identified 

an important gap in the conceptualization and practical handling of signal contributions to 

the EEG originating from non-brain, peripheral generators. Peripheral signals are 

rigorously treated as artifacts in classical EEG methods but are commonly ignored in ML 

work. This is potentially due to widespread enthusiasm about the capability of ML models 

to detect the hidden patterns of interest in data and ignore the noise. 

Our work addresses the need for a practical yet theoretically grounded machine 

learning methodology for biomarker discovery and development with EEG. Our proposed 

framework carefully reconsidered previous theoretical results on regression models for 

predicting from brain activity in the presence of field spread and volume conduction. As 

biomedical conditions and therapeutic interventions can affect, both, the brain and the 

body, related outcomes can potentially be predicted from, both, brain and body signals.  

This insight has inspired us to study state-of-the-art ML algorithms in empirical 

benchmarks designed to evaluate and isolate the differential contributions of brain versus 

body signals mixed in the EEG. Our benchmarks demonstrate that exemplary age and sex 

prediction problems were substantially affected by non-brain signal generators if these 

were not explicitly handled.  

A key insight obtained from our conceptual analysis and our empirical work is that 

prediction from EEG signals will only yield a brain-specific biomarker model if bodily signals 

are explicitly removed or controlled for. 

Furthermore, our empirical results provide new insights into the prediction algorithms, 

extend the scope from age prediction to sex classification, and unlock model interpretation 
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techniques through the proposed wavelet framework. In the following sections, we provide 

deep dives into some of the details and their practical implications. 

 

Artifact removal is essential for learning interpretable biomarkers  

 

The wavelet methodology allowed us to compile new benchmarks, visualization and 

analysis techniques for studying the interplay between CNS and peripheral EEG 

generators. Our benchmarks on artifact removal revealed a colorful picture. For all ML 

models, removal of high-amplitude artifacts via autoreject improved prediction 

performance (Figure 2), which contrasts a widespread view according to which minimal 

processing of EEG is preferable for ML (Delorme, 2023; Roy et al., 2019). On the other 

hand, additionally regressing out artifacts related to peripheral signals with ICA 

consistently led to a decrease rather than a further improvement in performance, which 

suggests that there is predictive information in these signals. 

One common argument presented in the context of model interpretation is that one 

cannot tell ad-hoc whether certain features are necessarily bad because the model might 

use them to denoise the predictive function (Haufe et al., 2014). For instance, if the model 

has access to a channel that strongly reflects ocular artifacts, it could, in principle, use this 

channel as an artifact indicator and down-weight the importance of artifacted segments. 

§his might motivate researchers to keep the data minimally processed (Roy et al., 2019). 

We see our theoretical framework and empirical results in disagreement with this view. 

The key point, formalized in our generative model, is that it matters whether these artifact 

signals are themselves correlated with the outcome. If one expects artifact signals to be 

useful 3 not because of their own predictive value but only as a means for the model to 

denoise the actual signal of interest 3 one should also expect the removal of high-

amplitude artifacts, related to bad channels and segments, to lead to a decrease in model 

performance. Our benchmarks show the opposite. It is thus much more plausible that the 

decrease in performance after removal of physiological artifacts with ICA is not explained 

by the prediction model's limited capacity to denoise the signal, but instead because the 

removed signals are themselves predictive of the outcome.  

A related argument would be to motivate the omission of preprocessing based on the 

emerging literature on data augmentation in EEG, where noise and perturbations are 

added to the data to improve model robustness and performance (Rommel et al., 2022). 

But the critical difference is that data augmentation is performed in a way that breaks the 
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statistical dependence between the noise features and the outcome, which forces high-

capacity ML models to better extract the underlying function of interest. The presence of 

artifacts induced by peripheral signal generators can therefore not be seen as data 

augmentation as, in their natural state, they can be correlated with the outcome (as shown 

here for the two example tasks of age and sex prediction). An interesting twist of this 

observation would be to develop a proper augmentation approach that injects (simulated) 

peripheral artifacts into the EEG in ways that break their statistical association with the 

outcome, hence, enforcing true decorrelation. 

Another objection could be that the predictive signal removed with ICA is not only a 

pure (physiological) artifact but also contains some genuine brain signal. Given that ICA 

decompositions and component classification can be imperfect, it is a logical possibility 

that some brain signal is removed along with artifacts and that this led to the observed 

drop in performance. This would be compatible with the observation that the removal of 

segments or channels with autoreject does not result in the same drop in performance. If 

ICA removes a brain source it does remove it from the entire recording whereas the 

rejection of individual segments with autoreject is local and preserves brain signals in the 

retained segments. 

For at least three reasons, we hold that regardless of ICA quality, one has to consider 

that artifacts are predictive and risk diluting CNS biomarkers: 1) prior knowledge of the 

change in peripheral and body variables in aging and pathology (Golding et al., 2006; 

Jongkees & Colzato, 2016; Lage et al., 2020; Lindow et al., 2023; Wilkinson & Nelson, 

2021). 2) The sensitivity of machine learning models to pick up even weak and hidden 

patterns. 3) Similar effects were obtained for auxiliary channels where no ICA was applied 

(Figure 4).   

The first point deserves some additional reflection. Certain patient populations may be 

more likely to move, talk or activate facial muscles during the EEG recording than healthy 

controls. When focusing on a diagnostic analysis and comparing a group of patients with 

controls, differences in artifact load between diagnoses can therefore lead to a statistical 

difference that is not driven by differences in brain activity. For example, eye blinks induce 

major high-amplitude EEG artifacts (Croft & Barry, 2000) and eye blink rate is driven by 

central dopaminergic function and systematically reduced or increased by pathologies like 

Parkinson9s disease or schizophrenia, respectively (Jongkees & Colzato, 2016). Another 

recent study reported higher artifact probability and fewer clean data segments in children 

with Fragile X Syndrome as compared to age-matched controls (Wilkinson & Nelson, 

2021). 
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In sum, even if we risk losing some brain signals after ICA cleaning, the alternative 

would be to have models that cannot be unequivocally interpreted with regard to underlying 

brain signals. 

 

Disentangling brain and body EEG generators 

 

Our benchmarks present clear evidence that the signal components attributed to 

peripheral body signals are predictive themselves, hence, should not be used for a model 

that intends to capture brain-specific signals (Figure 2-4). Would it then be appropriate to 

address the problem of disentangling brain and body signals with statistical techniques for 

deconfounding (Zhang et al., 2021)? A recent line of work has started studying machine 

learning techniques for addressing confounding in neuroscience applications (Chyzhyk et 

al., 2022; Qu et al., 2021). While this can lead to practically useful methods, there is an 

important theoretical mismatch with our perspective. In confounding, a noise factor of non-

interest affects both the inputs and the outcomes. For example, age (cofounder) affects 

neuronal activity (input) and vascular function (Tsvetanov et al., 2021), both of which 

influence the blood-oxygen-level-dependent (BOLD) signal measured with functional 

magnetic resonance imaging (fMRI, outcome). This could induce spurious correlations 

between electrophysiological measures of neuronal activity and the fMRI signal, as the 

effects of age on both neuronal activity and vascular function can be mistakenly attributed 

to a direct relationship between neuronal activity and the BOLD signal. In our theoretical 

framework, conditions related to the outcome affect latent factors which are mixed in the 

input signals.  

A latent factor view of the problem, therefore, lends itself to trying to disentangle the 

CNS and peripheral signal generators through blind source separation, ICA and related 

techniques (Hyvärinen et al., 2004). This is anything but new from the view of traditional 

EEG analysis, where ICA is a standard tool for isolating brain activity in clinical biomarker 

studies (Jung et al., 2000). However, this thinking has not yet been broadly embraced in 

applied ML work with EEG. In this work, we applied the generative model and theoretical 

results developed in (Sabbagh et al., 2019) to better connect the two fields. We 

reformulated the generative model as a latent factor model with three components: The 

predictive brain sources, the predictive body sources and the non-predictive noise sources 

(eq. 1-3 in methods). This has motivated signal-isolating regression methods (eqs. 13-16 

in methods). Our work explored two practical ad-hoc methods for isolating brain from body 
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(Figure 3-4) for virtually any machine learning pipeline, following a same-analysis 

approach (Görgen et al., 2018). The implementation of both approaches (ICA versus 

auxiliary channels) within our wavelet framework has allowed us to gauge direct evidence 

for the quality of the approximation by comparing power spectra from the respective 

subspace approximations. With ICA, alpha band oscillations (8-12 Hz) were convincingly 

isolated and did not seem to leak into the subspace of peripheral models (Figure 3A). On 

the other hand, alpha band rhythms were clearly visible on the auxiliary channels (Figure 

4A). It is therefore unsurprising that the second approach resulted in higher performance 

estimates for non-brain components as it actually contained some brain signal. The bigger 

picture was in both cases the same: Mixing of peripheral and CNS signal generators was 

pervasive across prediction tasks and datasets and deserves explicit handling if the goal 

is to develop CNS-specific prediction models. 

Reconsidering the results shown in Figure 3A, one can see that the average power 

spectrum over the 4-32 Hz frequency range was less affected by ICA cleaning than lower 

(<4Hz) or higher (>32Hz) frequencies. It could thus be tempting to believe that this 

frequency range is <safer= for predictive modeling of CNS signals. The situation is more 

complicated, however, as predictive cues may lie in lower-amplitude spatial patterns not 

well characterized by average EEG power. To investigate this possibility, our wavelet 

framework offered a practical control analysis in which we deployed the models of interest 

along the frequency spectrum (Figure 5). Our explorations showed that only for age 

prediction of the TDBRAIN data (Figure 5a), the prediction models were not affected by 

preprocessing in this supposedly <safer= frequency range. On all other tasks and datasets, 

a drop was visible when artifacts were removed (Figure 5b-d). Thus, spectral profiling of 

prediction models using different degrees of artifact removal can further the understanding 

of what frequency ranges may be co-occupied by CNS and peripheral sources. 

 

Wavelets as flexible method bridging predictive modeling and classical analyses 

 

By estimating covariance matrices from convolutions with Morlet wavelets, our framework 

successfully bridged EEG frequency spectrum descriptors with statistically consistent 

regression algorithms based on spatial filtering and Riemannian geometry (Barachant et 

al., 2010; Dähne et al., 2014; Fruehwirt et al., 2017; Grosse-Wentrup & Buss, 2008). These 

algorithms benefit from theoretical guarantees of zero approximation error under the 

assumptions (Sabbagh et al., 2019) of constant linear source mixing and a specified 
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nonlinearity (logarithm). Our benchmarks showed that Morlet wavelets can be used as a 

drop-in-replacement for classical bandpass filtering to obtain the covariance matrix inputs 

to these types of algorithms without obvious disadvantages, in fact, even leading to 

improved cross-validation results (Figure 1 - supplement 1).  

Overall, our modeling benchmarks replicate the bigger picture reported in previous 

work (Sabbagh et al., 2019, 2020): The upper triangular vectorization that, essentially, 

uses the covariances as they are, led to the lowest scores. Of note, this model is 

statistically consistent if one does not make the assumption of lognormal relationships 

(Buzsáki & Mizuseki, 2014), leading to linear regression on EEG powers. This is interesting 

as it was the only method for which our logarithmically scaled wavelets did not consistently 

lead to improvements over the bandpass filtered equivalents. Models with logarithmic 

nonlinearity performed consistently better and the Riemann model achieved the best 

results, which taken together suggests that the log-nonlinearity yields models that better 

match the data generating processes. We noticed that both the theoretically inconsistent 

log diagonal model (biased in the presence of linear source mixing) 3 representing the 

classical EEG approach 3 and the consistent SPoC model (Dähne et al., 2014) showed 

improved performance in our work compared to previously reported benchmark results 

(Figure 1 - supplement 2), especially if artifact removal was applied (Figure 2). This can 

be explained in at least two ways. First, we harmonized the processing of covariances 

across the different pipelines, in particular the handling of data rank and regularization 

parameters (see methods for details). This was particularly important to enable prediction 

with minimally processed data that suffer from high-amplitude artifacts, which can lead to 

ill-conditioned covariance matrices. Second, the improvement could be attributed to the 

higher performance achieved with the wavelet approach observed across all models 

(Figure 1 - supplement 1), which could potentially be due to the more adapted frequency 

smoothing. It is also conceivable that for the less complex log diagonal model, the 

availability of additional frequencies increased model capacity. Compared to previous work 

(Sabbagh et al., 2019, 2020), where the SPoC approach was interpreted as superior to 

the log diagonal approach, here, we observed similar performance for the two models 

(Sabbagh et al., 2019, 2020) previously reported benchmark results (Figure 1 - supplement 

2). From the perspective of biomarker development, this would be a welcome result. It 

gives empirical justification to the less theoretically grounded but far simpler practice in 

clinical biomarker studies to directly model outcomes from EEG power spectra. 

Importantly, we do not necessarily expect this result to hold for the (cryogenic) MEG 

context where the issue of source mixing might be different due to the increased distance 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.15.571864doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571864
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

22/54 

between generators and sensors and variable head position. However, the same 

reasoning might apply for optical MEG (Brookes et al., 2022; Hill et al., 2020). 

The Riemann model was particularly advantageous when preprocessing was minimal, 

confirming its potential role as an ad-hoc model in early exploratory phases of research as 

was initially proposed in (Sabbagh et al., 2020). On the other hand, handling this model 

with intensified data processing was cumbersome as the model makes the strict 

assumption that the data is full rank (see prediction algorithms - Riemann in methods). 

SPoC and the log diagonal model, therefore, emerged as potential alternatives as they do 

not make these strong assumptions. 

The more expressive ShallowNet (Schirrmeister et al., 2017) did not achieve 

consistently better results and its performance in the age prediction benchmark 

(Engemann et al., 2022) was now also reached by the Riemann model with wavelets 

(Figure 1D). In a previous benchmarking study on age prediction, the ShallowNet showed 

clearer advantages over Riemann models with a classical filterbank approach (Engemann 

et al., 2022). It appears that using a pre-defined Morlet wavelet family to extract temporal 

features can outperform temporal convolution layers learned in the ShallowNet 

architecture, which, in principle, can overcome the limited fixed-frequency sinusoidal 

oscillations stipulated by Morlet wavelets. However, it may also simply be a matter of the 

size of the training data and it does not follow from this that the oscillatory model implied 

by wavelets is neurobiologically more precise (S. R. Cole & Voytek, 2017; Jackson et al., 

2019; Schaworonkow & Nikulin, 2019). More importantly, the utility of deep learning is not 

captured exhaustively by looking at prediction performance in standard settings. As far as 

custom loss functions, generalization across datasets, or multi-task and multimodal 

learning are concerned, a deep learning approach is more amenable to the implementation 

of the latest developments in machine learning research (Banville et al., 2020, 2022; 

Rommel et al., 2022; Wilson et al., 2022). We therefore recommend keeping a good deep 

learning baseline among the benchmarks in future work.  

In sum, machine learning based on covariances derived with log-parametrized Morlet 

wavelets (as compared to conventional frequency bands) led to improved prediction 

performance, especially for simpler, hence, potentially more interpretable models. Thus, 

wavelets emerged as a practical tool to extend established spectral EEG analysis with 

elements of machine learning.  
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A new benchmark for sex prediction from EEG 

 

Interestingly, we observed highly similar trends for sex prediction for both TUAB and 

TDBRAIN. For sex prediction, only few EEG-based ML studies are available at this point 

(Jochmann et al., 2023; van Putten et al., 2018) and it was a priori not clear if previous 

methods studied for age prediction would generalize. Comparing our results with the 

amplitude-based neural network from (Jochmann et al., 2023) shows a favorable picture 

for the models benchmarked in our work. Jochmann and colleagues reported a balanced 

accuracy score of around 78% on the TUAB dataset. In this work, the ShallowNet and 

Riemann benchmarks reached a score around 84% (Table S2 in supplement). This argues 

for the utility of the generative modeling framework and the covariance-based models 

derived from it beyond its initial exploration for age prediction and brain age (Banville et 

al., 2023; Mellot et al., 2023; Sabbagh et al., 2020, 2023).  

 

Additional considerations for model interpretation 

 

Importantly, the proposed framework was not initially motivated by considerations of 

prediction performance, which emerged as a welcome byproduct of our work. We see the 

true advantage of the proposed wavelet methodology in its ability to bridge classical results 

from EEG research on clinical biomarkers with machine learning enabling frequency-by-

frequency comparisons between classical measures like EEG power (Figure 1, Figure 3-

4) and machine learning analyses (Figure 3-5). This not only enhances model 

interpretation but may also facilitate approximations of models by simpler spectral 

characteristics that can be more easily operationalized and used in clinical studies and 

subsequent bio-statistical analyses that are highly regulated in drug development and 

clinical applications. 

This brings us to another important point of interest in CNS biomarkers: an 

interpretation of the signature in terms of brain activity versus variance in brain structure. 

Our explorations resulted in a mixed picture in which certain frequencies, often around 8-

16 Hz, yielded the best results when used as stand-alone models (Figure 5). On the other 

hand, for most tasks and datasets, above-chance prediction was possible at any frequency 

and the best performance was obtained by adaptively combining all frequencies. This 

signature does not rule out the possibility that the prediction models picked up anatomical 

differences and ensuing changes in the geometrical configuration of signal generators to 
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the electrodes rather than in brain activity. This hypothesis was considered in related work 

on sex prediction (Jochmann et al., 2023) and age prediction (Sabbagh et al., 2020) from 

MEG. In the former work, the researchers noted the predictive importance of spatial 

patterns and frequencies untypical to EEG. In the latter context, the researchers estimated 

that around half of the performance might be explainable by source geometry, which was 

estimated by reconstructing fake-covariance matrices from the MEG forward models from 

individual magnetic resonance imaging (MRI) scans. Alternatively, one might assume that 

intrinsic long-term autocorrelations are affected by the outcome of interest, translating into 

changes in the 1/f slope (Cesnaite et al., 2023; Chaoul & Siegel, 2021; Voytek et al., 2015), 

even if it remains unclear to which extent both explanations might overlap or interact as 

the link between individual anatomy and brain activity is actively investigated (Pang et al., 

2023). While it remains challenging to quantify the impact of anatomical imprinting onto 

EEG signatures without anatomical measurements, the model inspection techniques 

presented here can instantly provide an ad-hoc sense of whether the model is driven by 

specific frequencies or diffuse distributed changes in brain activity that might be related to 

individual anatomical differences. 

 

Limitations and future directions 

 

Our work focused on cross-sectional observational data from two large quasi-public 

datasets and the two exemplary tasks of sex and age prediction. While this offers versatile 

opportunities for developing ML models and benchmarking EEG methods relevant for 

developing biomarkers, in our work we did not predict clinical outcomes. Promising 

biomarker applications that may be in reach for the methods studied in this work include 

diagnostic (Blennow et al., 2015), pharmacodynamic (Gautam et al., 2023), prognostic 

(Lokhande et al., 2022), predictive (Bar-Or et al., 2023; Sechidis et al., 2021) or surrogate-

efficacy (Budd Haeberlein et al., 2022; Downing, 2001) questions.  

We hope that our work can inform both biomarker developers and machine learning 

researchers in terms of concepts, methods and empirical benchmarks. We believe that 

there are several direct applications of our results. Biomarker scientists could reuse our 

models and techniques on their own clinical data, if the size of the datasets support a 

machine learning approach as the sex and age prediction tasks are exemplary and can be 

replaced with other tasks. Moreover, the techniques presented here could inform a transfer 

learning approach where age and sex prediction tasks are used for representation learning 
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(Mourragui et al., 2021) or model predictions are used as downstream variables as in brain 

age (J. H. Cole et al., 2018; Denissen et al., 2022). A second direct application of the 

models presented here would be proper deconfounding, i.e., when the scientific task 

requires removing age and sex related components from an outcome of interest (Chyzhyk 

et al., 2022). 

Moreover, we approximated subspace regression from ICA on individual EEG 

recordings and automated labeling. The quality of the decomposition therefore stands or 

falls with the quality of ICA. We hope that our work can inspire the development of novel 

end-to-end solutions for disentangling brain and non-brain sources, ideally directly built 

into the prediction models. Promising directions for this effort may lay in the nonlinear ICA 

(Monti et al., 22--25 Jul 2020; Zhu, Parviainen, et al., 2023), self-supervision (Banville et 

al., 2020; Tong et al., 2023; Yang et al., 2021) and disentanglement literature (R. T. Q. 

Chen et al., 2018; Lynch et al., 2023; Mathieu et al., 09--15 Jun 2019; Shu et al., 2018). 

Finally, it should be noted that our conclusions are based on two prediction tasks, age 

and sex. While it is plausible that our findings in principle generalize to other prediction 

tasks the details (e.g. prediction performance based on peripheral signals, spectral 

specificity) will be task-dependent. 

Conclusion 

 

Through conceptual analysis, prediction using wavelet-based features and visualization of 

modeling results across different levels of preprocessing and along the frequency 

spectrum, our work exposed the risk of applying ML approaches to EEG in the context of 

biomarker development. Our results emphasize that ML models may not automatically 

learn the function of interest from mixed signals. When it comes to CNS biomarkers, we 

think that one has to follow Carl Sagan9s principle that extraordinary claims require 

extraordinary evidence. This certainly does not mitigate the exploratory value of applied 

ML in neuroscience and there may be situations in which the best prediction is the priority, 

regardless of its source. We believe that a new generation of ML techniques is urgently 

needed to support interpretable disentanglement of latent factors alongside larger clinical 

trial datasets, potentially enhanced through simulations, for ground-truth assessment and 

ranking of ML methods for biomarker discovery. 

To support these developments, in a future updated version of this article, we will share 

the research code and a Python and Matlab implementation of the log-frequency-
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parametrized Wavelet method (Hipp et al., 2012) as open-source software with the 

community.  

Methods 

 

Datasets 

 

In this work we used two large quasi-public EEG datasets (institutionally controlled 

access). We selected these datasets because their size is sufficient for conducting 

machine-learning benchmarks and their demographic and biomedical heterogeneity and 

EEG setup sufficiently resembles clinical studies. 

 

TUAB 

 

The archival Temple University Hospital Abnormal (TUAB) dataset (de Diego & Isabel, 

2017) contains a subset of recordings from the Temple University Hospital EEG Corpus 

(Harati et al., 2014; Obeid & Picone, 2016) that have been annotated as normal or 

abnormal by medical experts. In the present work we used only the normal recordings 

(N=1363). The number of female and male participants in this subset is 766 (56%) and 

597 (44%), respectively. The age of the participants ranged from 0 to 95 years. EEG was 

recorded with uninstructed resting state and may therefore contain data from eyes-open 

and eyes-closed conditions. Sampling rates varied between 250hz and 512Hz. To the best 

of our knowledge, the settings for hardware filters are not available.  

Rationale. We chose this EEG dataset as it represents a heterogeneous sample of the 

general population of patients from the Philadelphia area seeking medical counseling. 

Furthermore, the dataset has been popular among applied machine learning researchers 

(Banville et al., 2020; Darvishi-Bayazi et al., 2023; Gemein et al., 2020, 2023; Sabbagh et 

al., 2020; Wagh & Varatharajah, 2020; Zhu, Canham, et al., 2023) and therefore provides 

a point of reference for algorithmic benchmarking.  

Data curation and preparation. For convenience, we provide the following description 

of the TUAB dataset, adapted from our previous work (Engemann et al., 2022): EEG data 

were recorded using Nicolet devices (Natus Medical Inc.), with 24 to 36 electrodes. The 

10-5 system (Oostenveld & Praamstra, 2001) was applied for channel placement. All 
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sessions have been recorded with a common average reference (Nunez & Srinivasan, 

2006). We identified 21 common channels across recordings which comprise the clinically 

relevant 10-20 configuration and two mastoid electrodes. Because channel numbers were 

different between recordings, we re-referenced the data to the average across channels. 

As the order of the channels was variable, we explicitly reordered all channels consistently. 

For many patients, multiple recordings were available. For simplicity we only considered 

the first recording. To ensure comparability, we cropped all recordings to a length of 15 

minutes, which was the shortest common recording length. 

 

TDBRAIN 

 

The two decades brainclinics research archive for insights in neurophysiology (TDBRAIN) 

dataset (van Dijk et al., 2022), contains resting state EEG data of 1274 individuals from a 

heterogenous population of psychiatric patients and healthy volunteers. The age of 

subjects ranged from 5 to 89 years and the number of female and male participants is 

approximately equal with 620 female (49%) and 654 male (51%) participants. The 

recordings were acquired with a 26 channel Compumedics Quickcap or ANT-Neuro 

Waveguard Cap based on the 10-10 system. In addition to the EEG, seven auxiliary 

channels were recorded: five channels to measure vertical and horizontal eye movements 

(electrooculogram; EOG), one to measure the electromyogram (EMG) at the right 

masseter muscle, and one to record the electrocardiogram (ECG) at the cervical bone. 

Hardware filters were set to 0.03Hz and 100Hz. Signals were acquired with a sampling 

frequency of 500Hz. 

Rationale. This large dataset was only recently opened for public access and covers a 

clinically heterogeneous population. The data was acquired using research-grade 

equipment and a single assessment protocol. The dataset comes with a rich set of auxiliary 

channels that capture peripheral physiological activity. This renders the TDBRAIN dataset 

an interesting platform for developing machine learning benchmarks and studying the 

interplay between CNS and peripheral signals. 

Data curation and preparation. For convenience, we provide the following description 

of the TDBRAIN dataset, adapted from the reference publication (van Dijk et al., 2022). 

EEG data were recorded using a Compumedics Quickcap or ANT-Neuro Waveguard Cap 

with 26 electrodes. The 10-10 system (Oostenveld & Praamstra, 2001) was applied for 

channel placement and we used all available EEG channels. All sessions were referenced 
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against the average of the A1 and A2 mastoids. For many patients, multiple recordings 

were available. For simplicity we only considered the first recording. Contrary to the TUAB 

dataset, here, EEG was collected under 2-minute eyes-closed and eyes-open conditions. 

We pooled the entirety of data, ignoring the conditions. 

 

Preprocessing 

 

To study the impact of environmental interference and peripheral artifacts on model 

predictions we systematically varied the depth of EEG preprocessing in three levels 

ranging from basic numerically stabilizing processing and harmonization (minimal 

processing) over automated bad-segment removal (autoreject) to full-blown identification 

and removal of non-brain artifacts (autoreject & ICA). 

 

Minimal processing 

This level comprises cropping to a recording length of 15 minutes (only applies for TUAB), 

filtering (FIR filter with pass-band from 1-100 Hz), resampling to a sampling frequency of 

250 Hz, epoching into 10 second epochs, and average referencing. 

 

Autoreject 

This preprocessing level comprises all the steps of minimal preprocessing and additional 

removal and repair of high-amplitude data segments and bad channels using the 

autoreject algorithm (Jas et al., 2017). Autoreject is designed to identify and interpolate 

bad segments and channels based on outlier peak-to-peak amplitude ranges. We used 

autoreject with the following hyperparameters. For consensus, we tested 11 values 

between 0 and 1 in steps of 0.1. (default). For  n_interpolates we tested {1, 4, 8} which we 

adapted to our settings of around 20 EEG channels as we did not want to allow rejecting 

more than half of the EEG channels (the default would have tested 32 instead of 8). To 

improve computation time, we used an internal cross validation with 5 iterations instead of 

the default of 10. 

 

Autoreject & ICA 

This processing level included all previous steps and added artifact removal via 

independent component analysis (ICA). For the ICA decomposition, we used a fast 

approximation of the FastICA model (Hyvärinen et al., 2004) offered by the PICARD 
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algorithm (Ablin et al., 2018) as interfaced through MNE-Python (Gramfort et al., 2014). 

We used the ICLabel algorithm via its Python implementation in the MNE-ICLabel package 

(Li et al., 2022) for automatic labeling of the components. Following (Rodrigues et al., 

2021), components were rejected if any of the artifact probabilities reported by ICLabel 

(but ignoring the <other< class) were larger than the reported <brain= probability. This 

labeling was later used for ICA-subspace regression (eqs. 13-16, cf. section Approximate 

subspace regression & classification). 

 

Background: Spectral analysis and machine learning for EEG biomarkers 

 

Spectral analysis 

As noted early on, EEG comprises oscillatory, i.e. band-limited components and spectrally 

resolved representations are generally considered useful. A historically grown practice is 

to evaluate EEG signals in specific frequency bands (alpha, beta, gamma, &). No 

universally agreed definitions of these bands exist, which results in substantial variability 

across studies and is hampering progress in biomarker development. There are important 

efforts to standardize band definitions, e.g. by the IPEG (Jobert et al., 2012). However, 

such  frequency bands are descriptive categories by human observers and not an 

operating principle of the human brain. Specific definitions of frequencies may not be the 

right choice for all applications. Moreover, by restricting analyses to pre-specified bands it 

remains elusive if the choice of these frequency ranges was optimal. We think that given 

current knowledge about EEG and in the context of ML applications, an unbiased spectrally 

continuous representation that avoids any band definition is the best choice. 

    A recent body of literature estimated spectral EEG features (power, phase interactions, 

power envelope correlations) from complex Morlet wavelets (Forsyth et al., 2018; Frohlich, 

Miller, et al., 2019; Frohlich, Reiter, et al., 2019; Hawellek et al., 2022; Hipp et al., 2021) 

with a logarithmic frequency grid and log-linear scaling of spectral smoothness (Hipp et al., 

2012). This approach takes into account prior knowledge about lognormal scaling of brain 

structure and function (Buzsáki & Mizuseki, 2014), leading to fewer and spectrally wider 

Wavelets with increasing frequency and log-frequency integration over orders of 

magnitudes (octaves) rather than frequencies. We defined the wavelet families using a 

base-2 logarithmic grid. As a consequence, the spectral resolution is higher at lower 

frequencies and spectral smoothing is greater at higher frequencies. Importantly, our 

implementation parametrizes the wavelets based on their center frequency and their 
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spectral standard deviations in octaves and not in the time domain (Cohen, 2019; Tallon-

Baudry et al., 1996). 

 Details of the implementation and configuration choices are provided below (Feature 

engineering - Covariance estimation 3 Morlet Wavelets). Spectral power is provided in 

units of ��!/���, which corresponds to ��!/���!(��). The frequency axis is scaled 

logarithmically but is labeled in �� for better readability.  

 For analyzing local frequency effects, we defined groups of 5 wavelets centered 

spanning the range of � ç 2"#.%	to � ç 2#.%	 Hz around the center frequency, hence, covering 

1 octave. 

 For comparison against classical approaches based on bandpass filtering in 

frequency-bands (Figure 1 - supplement 1), we used the band definitions provided by the 

IPEG (Jobert et al., 2012), see also Table 1. 

 

Machine learning 

 

To improve the generality of our study, we focused state-of-the-art ML methods for EEG 

that avoid hand-crafted features motivated by specific theories, clinical populations or 

cognitive processes (Engemann et al., 2018; Gemein et al., 2020; Zhdanov et al., 2020). 

 Spatial filtering and Riemannian-geometry (Dähne et al., 2014; de Cheveigné & Parra, 

2014; Grosse-Wentrup & Buss, 2008; Koles et al., 1990; Roijendijk et al., 2016) enable a 

general approach that can adapt to specific applications. These methods focus on the 

between-electrodes covariance matrix as input and therefore can even avoid the pre-

specified selection of electrodes or frequencies by algorithmically weighting all inputs (Ang 

et al., 2008; Sabbagh et al., 2020) through the objective function of the prediction model. 

They are, therefore, well-suited for isolating the overlapping patterns of distinct EEG-signal 

generators. 

 Deep learning (DL) approaches such as convolutional neural networks push this 

reasoning one step further by not only learning predictive combinations of electrodes but 

also learning relevant temporal filters (which in turn implies resonance to specific 

frequencies) from EEG signals (Jing et al., 2020; Schirrmeister et al., 2017; Tveit et al., 

2023). 

 Importantly, results from statistical machine learning in EEG (Sabbagh et al., 2019, 

2020) allowed us to map our research question (how EEG-based prediction models are 

affected by non-brain signals) onto formal model hypotheses, which we developed below.  
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Generative latent factor model and CNS-biomarker model 

 

Generative model of EEG 

 

The brain contains billions of neurons whose synchronization could produce EEG signals. 

Yet, their activity remains hidden to the observer and by constraints of linear systems, one 

cannot distinguish between more linearly independent brain sources of EEG activity than 

one has EEG channels. Instead of using individual brain anatomy conveyed by MRI scans, 

machine learning techniques for EEG approach isolation of brain sources statistically 

through the construct of statistical sources also known as latent factors. 

We extend the model described in (Sabbagh et al, 2020), which assumes that the EEG 

signal �'(�) * =(, recorded on the �)* subject with � electrodes, results from the mixing of 

brain sources, to describe the fact that �'(�) actually results from the mixing of CNS 

sources that we denote �+'(�) * =	,! and additional peripheral sources, �-'(�) 	* =	,". The 

resulting generative model of the observed EEG can be expressed as 

 

�'(�) 	= 	�+�+'(�) 	+	�-�-'(�) 	+	�.�'(�) (1) 

 

where �+ * 	=	(×,! , �- * 	=	(×," , �. * 	=	(×((	"	,!	"	,")denote the mixing matrices 

associated with the different signal generators and �' the noise source (not correlated with 

the outcome).  

Further assuming that the subspaces of the CNS, peripheral sources and noise are not 

mixed, we obtain � =	 [�+ , �-, �.] * =	(×(	 the mixing matrix and �2
'	
(�) =

[�+'(�), �-'(�), �'(�)] * =	( the column vector of sources plus noise, we can then use the 

compact matrix notation �'(�) 	= 	��'(�).  

From this notation, when isolating the CNS and peripheral sources from the noise, we can 

write �3 =	 [�+ , �-] 	= 	 [�24, ï , �2,!5,"] * =	(×(,!5,"), �62 being the �)*	a column of the 

mixing matrix and �' 	= 	 [�+' , �-'] * =	(,!5,") the column vector of sources. 

As a result, our statistical modeling can only resolve � linearly independent sources, 

which, obviously, stands in contrast with the complexity of the true biological brain. Of note, 

this constraint is shared with linear inverse solution techniques such as minimum norm 

estimates (Gross et al., 2001; Hämäläinen & Ilmoniemi, 1994; Van Veen et al., 1997) or 
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beamforming (Gross et al., 2001; Hämäläinen & Ilmoniemi, 1994; Van Veen et al., 1997), 

which project the limited number of linearly independent vectors onto a predefined set of 

thousands of MRI-defined dipole locations. 

 

Generative model of outcome and biomarker model 

 

Next we want to formalize outcome measures (including e.g. age, sex, cognitive 

performance, presence of pathologies, CNS-active drugs) that can modulate source 

activity and can therefore be predicted from EEG signals. 

 

Denoting �'(�) 	* =	(	the EEG time series recorded using � electrodes, and �' 	 * =	(×7 the 

EEG recording of subject � with � time samples. We can now conceptualize the outcome 

of interest �'	 as a function of the sources �(�') and some additive noise �' 	 (eq. 2). A 

common assumption for � is a linear function (weighted sum) of the log of the power of 

sources �' (Sabbagh et al., 2020)  

For defining prediction algorithms, it will be convenient to decompose this function into two 

parts �2 and /	which reconstruct the (power of) sources from the EEG signal (eq 3). 

 

�'	 = �(�') 	+ �' 	  (2) 

�8I  = �2	 : �(�')		 (3) 

 = �2	 : [/4(�'),ï , /9(�')]  

 

Where:  

ÿ �' * =	(,!5	,")×7: The vector of statistical sources (CNS and peripheral sources). 

ÿ �:	=(,!5	,")×7 ³ 	= is the true but unknown function generating the outcome �'	.  

ÿ �' * =	(×7: The EEG recording signal of the subject �, with � time samples. 

ÿ /:: Function extracting features from the signal in the frequency range defined by 

the �)* element of a set of filters that isolate frequencies of interest. This function, 

and the dimension of the output space will depend on the method used, see 

prediction algorithms for more details on the different methods. The function is 
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constructed in a way to approximate statistical sources or equipped with 

invariances to mitigate distorting field spread produced by �3. 

ÿ �2:	=9×(,!5	,")×7 	³ 	= is a function that concatenates the feature vectors and maps 

them to the outcome. It is based on the estimated representation of the source. 

This mapping can be a linear function that can be estimated with ridge regression 

or a more complex nonlinear function.  

 

Feature engineering 

 

Raw 

The ShallowNet model operates directly on the epoched (10 second windows) 

multidimensional time series data (see also section Preprocessing). Here we refer to this 

as <raw= to indicate that there is no explicit feature extraction step. This is not to be 

confused with the preprocessing state of the data. Thus, when we refer to the <raw= 

features, it does not mean that the data has not been preprocessed. 

 

Covariance estimation (bandpass filter) 

The other baseline models used between-channel covariance matrices estimated from 

different EEG frequencies as their inputs. 

IPEG frequency bands. The classical approach explored in previous work applies 

bandpass filtering before estimating the covariance matrix (Engemann et al., 2022; 

Sabbagh et al., 2020). We used the IPEG frequency band definitions designed for 

pharmacological EEG studies (Jobert et al., 2012). 

 

Table 1 - IPEG frequency bands 

Name delta theta alpha1 alpha2 beta1 beta2 beta3 gamma 

Hz 1- 

6 

6 - 

8.5 

8.5 - 

10.5 

10.5 - 

12.5 

12.8 - 

18.5 

18.5 - 

21 

21 - 

30 

30 - 

40 

 

After bandpass filtering �' in frequency � we obtain �'
:. The empirical covariance matrix 

in that frequency is then given by 
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�'
: 	= 	�'

:�'
:2/	�. (4) 

 

To improve conditioning of the covariance matrices (Engemann & Gramfort, 2015), and for 

consistency with previous benchmarks, we used Oracle Approximating Shrinkage (OAS) 

which adaptively downweighs the off-diagonal terms based on the number of samples and 

number of variables used (Y. Chen et al., 2010). As the covariance was computed over 

the entire recording, the OAS estimate can be expected to be very close to the empirical 

covariance. 

 

Covariance estimation (Morlet wavelets). 

 

Alternatively, we used convolutions with Morelet wavelets (Morlet et al., 1982) constructed 

as complex sinusoids windowed by a Gaussian window: 

 

�:(�) 	= 	 (�):�	)"4/! ��� (2�!/	2�)!) 	��� (2�2�	��) 

 

(5) 

 

Morlet wavelets have the convenient property that the gaussian windowing in time, with a 

standard deviation �), translates into a gaussian smoothing in frequency, with standard 

deviation �: = (2��))"4. We used the frequency-domain parametrization described in 

previous work (Hipp et al., 2012) while implementing a logarithmically spaced grid of 

frequencies ranging from 1 - 64Hz. The spectral smoothing was set to �: = 0.25 octaves. 

The spacing of wavelets was set to half the standard deviation, i.e. 0.125 octaves. This 

resulted in 49 wavelets. To obtain spectral spectral estimates, we convolved the signal �' 

with the complex-valued wavelets �:(�). 

 

�:'(�) 	= 	 �'(�) 	7 	�:(�) (6) 

 

The kernels widths were trimmed to 5 standard deviations. For computational efficiency, 

convolution results were derived at a lower temporal resolution than the original signals, 

i.e., steps of 1/4 of the kernel width. The covariance was then derived as: 
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�:' =	�'
:(�'

:)	�/	� (7) 

 

where (�'
:)	� is the conjugate transpose and c is a normalizing constant number 

representing the number of elements of the convolution result composed of the number 

valid convolutions defined by the availability of good data segments multiplied by the 

squared 3! norm of the wavelet �:(�), which helps estimating the effective sample size �. 

The classical EEG log power-spectral density (PSD) was then derived from the diagonal 

of the covariance matrix as  

 

log ���' 	=	log 	 [diag(�4')2, ï , diag(�:')2] (8) 

  

Note that this is identical with the log diagonal vectorization used for predictive modeling, 

which is detailed below. 

To improve the conditioning of covariance matrices across different degrees of 

preprocessing and to ensure that the matrices were positive semidefinite, we applied 

algorithmic correction to all covariances (Higham, 1988) with a regularization value of 10-

15 and covariances scaled in volts squared (�!). 

 

Prediction algorithms 

 

Our benchmark includes four covariance-based methods (upper, log diagonal, SPoC, and 

Riemann) and one Neural Network architecture (ShallowNet). All of the covariance-based 

methods consist of a frequency-wise transformation stage followed by a ridge regression 

(or classification) stage. The regression (or classification) stage is the same across all 

models such that they only differ in the transformation of the covariance matrix features. 

The covariance-based algorithms follow previous work (Sabbagh et al., 2019, 2020) 

and provide useful baselines as they enjoy guarantees under different assumptions about 

the underlying regression function and degree of signal mixing and can lead to competitive 

performance in different settings (Table 2). Observed differences in prediction 

performance between these models can, therefore, be practically used to guide 

interpretation of the underlying regression function and data-generating scenario.  

For covariance-based models, we used the ridge regression (Hoerl & Kennard, 1970) 

and ridge classification as supervised learning algorithms. Ridge classification uses ridge 
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regression to predict class labels {-1, 1}, such that the decision is obtained from the sign 

of the prediction. The hyperparameter � was controlled through generalized cross-

validation (Golub & von Matt, 1997) considering a logarithmic grid of 100 candidate values 

between 1	 × 10"% and 1	 × 104#. This configuration was adapted from previous work 

(Engemann et al., 2022; Sabbagh et al., 2020). We preferred ridge classification over 

logistic regression as a probabilistic treatment of predictions was not necessary for this 

study and hyperparameter selection for ridge classification was fast, hence, well suited for 

repeated large-scale benchmarking. 

 

Table 2. Models and implied signal-generating hypotheses.  

Upper (eq. 9) 

 

outcome linear in source power regardless of source mixing 

log diagonal (eq. 10) outcome linear in log of source power in absence of source mixing 

SPoC (eq. 11) 

outcome linear in log of source power regardless of source mixing 

Riemann (eq. 12) 

 

Upper 

The upper model (Sabbagh et al., 2019) vectorizes the upper triangular coefficients of the 

covariance matrices. This model is thus consistent with a linear relationship between the 

power and interaction coefficients and the target variable. 

 

/:	:	=(×( 	÷	 	=(((54)	/	!	  

�:' 	§ 	upper	(�:')		 (9) 

 

Where upper:	=(×( ÷		=(((54)	/	!		is an operator that takes as a vector the upper 

triangular coefficients of a matrix with off-diagonal terms weighed by a factor :2 so that 

the L2 norm of the vector is equal to the Frobenius norm of the matrix. Of note, this leads 

to a statistically consistent regression model if no nonlinearity is assumed and the outcome 

is linear in the source power and not its log (Sabbagh et al., 2019, 2020). 
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Log Diagonal 

The log diagonal model (Sabbagh et al., 2020) extracts the diagonal elements of the 

covariance matrices (corresponding to the average signal power of each channel) and 

applies a log transform. This is consistent with a logarithmic relationship between signal 

power and the target variable. Of note, this leads to a statistically inconsistent regression 

model if linear mixing is applied (Sabbagh et al., 2019, 2020). 

 

/:	:	=(×( 	÷	=(	  

�:' 	§	log diag(�:')		 (10) 

 

SPoC 

The Source Power Comodulation (SPoC) mode (Dähne et al., 2014) aims to learn spatial 

filters in order to demix the signal into components with high correlation to the target 

variable and can be thought of as a regression version of Common Spatial Patterns (Koles 

et al., 1990). This is similar to Blind Source Separation (BSS) approaches like ICA, where 

the signal is mapped from sensor space to source space, but special in the sense that the 

target variable is directly used in the optimization process to maximize correlations 

between the resulting components and the target variable. This leads to a statistically 

consistent regression model if the outcome is assumed to be linear in the log of the source 

power, 

 

/:	:	=(×( 	÷	=,"	5,! 	  

 �'
: 	§	log diag	(�:

=(>?�'
:	�:2

=(>?)		, �:
=(>? * =(,"	5,!)×(

	
 (11) 

 

Where �:
=(>? is obtained from solving the generalized eigenvalue problem to find the 

filters �	 = 	 [�4
2, ï ,�-

2] that maximize  
@	�$	@

%

@	�	B @%
	with �C denoting the covariances 

averaged weighted by the outcome and �n the arithmetic mean of all covariances (Dähne 

et al., 2014). 
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Riemann 

As an alternative to SPoC, the Riemann model projects the covariances to a Riemannian 

embedding space, motivated by their positive definite nature. In previous work, this has 

been observed to yield high robustness to noise and good model performance even with 

minimally preprocessed data. This leads to a statistically consistent regression model if 

the outcome is assumed to be linear in the log of the source power. 

 

	/:	:	=(×( 	÷	=(	((54)	/	!	 (12) 

 �'
: 	§ 	upper	 log 	(�n:	:	"4/!	�'

:�n:		"4/!)	,  
  

with �"! the geometric mean over the subjects. 

 

 

Notably, the Riemann model assumes full-rank inputs. In particular, when rank-reducing 

preprocessing approaches such as ICA are employed, one should therefore be careful not 

to violate this assumption. Here we ensured that the input has full rank after ICA 

preprocessing by applying Principal Component Analysis (PCA) as suggested by 

(Sabbagh et al., 2019) by choosing the smallest common rank value, which we obtained 

from analysis of the eigenvalues of individual covariances. 

Of note, it is useful to study both SPoC and Riemann models as 3 despite expressing 

the same signal-generating hypothesis 3 can behave differently in the face of model 

violations and noise (Sabbagh et al., 2019, 2020). The Riemann model tends to be more 

robust in the face of noise and model violations. On the other hand, the SPoC model is 

computationally lighter and readily provides compact visualizations of its spatial patterns 

(Dähne et al., 2014; Mellot et al., 2023), which, taken together, facilitates model 

interpretation.  

 

ShallowNet 

The ShallowNet architecture proposed in (Schirrmeister et al., 2017) is a convolutional 

neural network architecture inspired by the Filter Bank Common Spatial Patterns (FBCSP) 

algorithm (Ang et al., 2008), which can be seen as the classification version of SPoC. The 

architecture presented by (Schirrmeister et al., 2017) consists of the following operations.  

 

1. Temporal convolution  
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2. Spatial convolution  

3. Square  

4. Mean pooling  

5. Logarithm 

6. Linear regression / classification 

 

And directly maps the raw signal �' * 	=(	×7	to the outcome. The parameters of each layer 

are described in the original publication. We adapted the ShallowNet as a regression 

model based on a previous publication (Engemann et al., 2022).  

Of note, while a proof has never been formally undertaken to the best of our knowledge, 

the ShallowNet expresses the same types of operations as the SPoC model. We can 

therefore assume that the ShallowNet can learn the same regression function as the SPoC 

model and can, therefore be statistically consistent for the same scenario. As the model 

has more trainable parameters and can learn the temporal convolution filters, its 

expressive capacity is higher, hence, it can cover additional regression functions that the 

SPoC model cannot capture. 

 

Approximate subspace regression and classification 

 

When exploring the relative contribution of peripheral non-brain signals the previous 

models are used with alternative data inputs to the different feature extractors /:	. These 

are obtained by applying data selection or processing so that the resulting input can be 

interpretable as an approximation of the subspaces of interest. In fact, applying the 

theoretical results from (Absil et al., 2009; Sabbagh et al., 2019),  if predictive latent factors 

related to peripheral body signals are fully silenced through low-rank projection, the 

remaining subspace leads to a consistent prediction model of brain activity predicting from 

covariances. The shape depends on the approximation method but the general form is  

�'
+ * =(×7 for the CNS subspace 

�'	 = �(�+') +�' (13) 

�8I  = �2	 : �(�'
+) (14) 

 = �2	 : [/4(�'
+,4),ï , /9(�'

+,9)].  
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This can be inverted, and the same reasoning can be used to define non-brain source 

models to estimate the relationship between peripheral signals and the outcome. In this 

case we have �'
- * =(E×7 for the subspace of peripheral body signals. 

 

�'	 = �(�-')	+�' (15) 

�8I  = �2	 : �(�'
-,4) (16) 

 = �2	 : [/4(�'
-,4),ï , /9(�'

-,:)]  

 

We used two different approaches to assess the predictive value of physiological (non-

brain) signals: (1) the signal reconstructions from ICA artifact subspaces and (2) additional 

auxiliary channels that were recorded along with the EEG in the TDBRAIN dataset. 

 

Subspace regression & classification with ICA 

The artifact ICA subspaces provide a complementary source of physiological information 

that can be extracted from any dataset. First, ICA is used to decompose the data into 

source components. Next, the components are categorized into brain sources and different 

classes of artifacts. This step can be automated with a tool like ICLabel (Pion-Tonachini et 

al., 2019). Finally, the signal corresponding to the artifact subspaces can be reconstructed. 

For eqs. 13-14, �'
+ is given by reconstructing the EEG from the subspace of ICA 

components that were labeled as brain-related and for eqs. 14-16,  �'
- is given by the 

subspace of ICA components labeled as artifact. 

 

Compared to the analysis of auxiliary channels, which requires the acquisition of additional 

information during the recording, this approach is more flexible and allows us to also 

extract auxiliary information for the TUAB dataset. 

 

Subspace regression & classification from auxiliary-channels 

As described in the Dataset section, the TDBRAIN dataset contains auxiliary channels in 

addition to the EEG channels. These channels are designed to record physiological signals 

including eye movements, (jaw) muscle activity, and cardiac activity. 
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For eq. (12), �'
+ is given by reconstructing the EEG after performing autoreject and for eq. 

(13),  �'
-E is given by the �2	 = 	7 auxiliary channels. 

 

Statistical analyses 

 

Model performance 

To estimate and compare generalization performance, we performed 10-fold cross-

validation with reshuffling using a fixed random seed. For the TDBRAIN dataset, which 

comes with a high cardinality of psychiatric descriptors and diagnoses, we stratified the 

data to approximately equalize the proportion of psychiatric indications across the cross-

validation splits. Of note this only supports qualitative comparisons and cannot be readily 

converted into hypothesis tests as cross-validation splits are not statistically independent. 

We practically assessed the chance level by all cross-validation splits exceeding an R2 of 

0 as this score quantifies the improvement over the mean predictor based on the training 

data. 

 

Hypothesis testing 

To compare types of features or degrees of processing across models and datasets, we 

treated the cross-validation estimates for a given model as a random variable. To obtain 

uncertainty estimates of pairwise differences in cross-validation performance, we 

conducted bootstrap resampling with 9999 iterations using the percentile method. We 

further computed an empirical null-distribution through permutation testing with 9999 

iterations. For both analyses, we used the bootstrap and permutation_test functions from 

scipy (Virtanen et al., 2020). 

 

Software 

 

All analyses were performed using Python 3.9.17. M/EEG data processing, BIDS 

conversion and subsequent data analysis steps were carried out with the MNE-Python 

software (v1.5, Gramfort et al., 2013, 2014), the MNE-BIDS package (v0.13, Appelhoff et 

al., 2019) and Picard (v0.7, Ablin et al., 2018) for an efficient implementation of FastICA. 

For artifact removal the Autoreject package (v0.4.2, Jas et al., 2017) and MNE-ICLabel  

(v0.4, Li et al., 2022) were used. The joblib (Varoquaux & Grisel, n.d.) library (v1.2) was 

used for parallel processing.  
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For feature computation, the PyRiemann (v0.4, Barachant, n.d.) and coffeine (v0.3, 

Sabbagh et al., 2020) libraries were used. Analyses were composed in custom scripts and 

library functions based on the Scientific Python Stack with NumPy (v1.24.4, Harris et al., 

2020),  SciPy (v1.9.1, Virtanen et al., 2020), pandas (v.2.0.3, McKinney & Others, 2011) 

and polars (v0.18.15). 

For classical machine learning, models were implemented using scikit-learn (v1.3.0, 

(Pedregosa et al., 2011). Deep learning was implemented using the PyTorch (Paszke et 

al., 2019) and braindecode (Schirrmeister et al., 2017) packages. 

All visualizations were performed using matplotlib (v3.7.1). Figure 1A was created with 

BioRender.com. 
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