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Abstract

Electroencephalography (EEG) has a long history as a clinical tool to study brain function,
and its potential to derive biomarkers for various applications is far from exhausted.
Machine learning (ML) can guide future innovation by harnessing the wealth of complex
EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore
physiological artifacts, which may cause problems for deriving biomarkers specific to the
central nervous system (CNS).

We present a framework for conceptualizing machine learning from CNS versus peripheral
signals measured with EEG. A common signal representation across the frequency
spectrum based on Morlet wavelets allowed us to define traditional brain activity features
(e.g. log power) and alternative inputs used by state-of-the-art ML approaches (covariance
matrices). Using more than 2600 EEG recordings from large public databases (TUAB,
TDBRAIN), we studied the impact of peripheral signals and artifact removal techniques on
ML models in exemplary age- and sex-prediction analyses.

Across benchmarks, basic artifact rejection improved model performance whereas further
removal of peripheral signals using ICA decreased performance. Our analyses revealed
that peripheral signals enable age and sex prediction. However, they explained only a
fraction of the performance provided by brain signals.

We show that brain signals and body signals, both reflected in the EEG, allow for prediction
of personal characteristics. While these results may depend on specific prediction
problems, our work suggests that great care is needed to separate these signals when the
goal is to develop CNS-specific biomarkers using ML.
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Introduction

Electroencephalography (EEG) has a long history as a non-invasive technique for

measuring brain activity in clinical research and practice. In the past decades, EEG has
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become increasingly popular as a technique for studying brain function in neurology
(Frohlich, Miller, et al., 2019; Gaubert et al., 2019; Hawellek et al., 2022; Jovicich et al.,
2019; Schumacher et al., 2020; Sidorov et al., 2017; Y. Sun et al., 2018; Zijimans et al.,
2012), psychiatry (Hegerl et al., 2012; Lenartowicz & Loo, 2014; Wang et al., 2020; Wu et
al., 2020), and drug development (Janz et al., 2022; Leiser et al., 2011). EEG measures
electrical potentials induced by cortical large-scale synchrony at dozens to hundreds of
electrode locations on the scalp (Nunez & Srinivasan, 2006) and at temporal scales on the
order of milliseconds to minutes (Buzsaki & Draguhn, 2004). The resulting multi-
dimensional time series contain rich information about brain activity that can be quantified,
e.g. as spectral power, spatial patterns, and waveform morphology (Jackson et al., 2019).
Therefore, EEG is a rich source of information that shows promise for deriving biomarkers
of cognitive function, CNS pathology, and pharmacodynamics.

EEG signals are intrinsically complex. Analyses focusing on select frequencies,
electrodes or time-points, can be successful in clinical settings characterizing global
changes in EEG signals, e.g. related to changes in wakefulness or consciousness induced
by sleep (Benca et al., 1999), severe brain injuries (Engemann et al., 2018; Schiff et al.,
2014) or anesthesia (Purdon et al., 2013). It can be expected that more refined modeling
uncovering subtler EEG signatures could broaden the application of EEG. Propelled by
advances in computer science, signal processing and increasing availability of large EEG
datasets, machine learning (ML) has emerged as a promising technology for isolating
hidden patterns from complex EEG signals. ML therefore has the potential to unlock novel
types of EEG biomarkers, e.g. to predict progression risk in neurodegenerative disorders
(Garcia-Pretelt et al., 2022; Gaubert et al., 2021) or to predict treatment success (Wu et al.,
2020; Zhdanov et al., 2020).

As ML methods for EEG are rapidly developing, which also includes deep learning (DL),
the field has not yet converged on methodological standards and best practices (Roy et al.,
2019). This increases the researcher’s degrees of freedom, and consequently the variability
of results, which may hamper unlocking the potential of ML for improving EEG analysis.
One potentially important source of such variability arises from handling artifactual signals
in the EEG. A recent systematic review of the ML & DL literature for EEG (Roy et al., 2019),
found that the majority of studies (72%) did not perform any explicit removal of physiological
artifacts related to peripheral body signals (e.g. eye blinks, muscle & cardiac activity) that
are well known to leak into the EEG and can overshadow the brain signal of interest. This
is particularly problematic as these peripheral sources are often modified by medical

conditions and other individual factors and might therefore be predictive too (Golding et al.,
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2006; Lage et al., 2020; Lindow et al., 2023), which is entirely ignored if EEG is left
unprocessed as was recently advocated for (Delorme, 2023). Depending on the relationship
between artifacts and variables of interest, high-capacity ML techniques such as deep neural
networks may automatically learn how to filter out artifact-generating sources as irrelevant
noise, or, instead will use non-brain information to minimize prediction error (Jochmann et al.,
2023). The latter case would hamper unambiguous interpretation as brain-specific biomarkers.

Artifact removal techniques such as independent component analysis (ICA) or signal-
space projection (SSP) have proven effective for reducing the leakage of signals from non-
brain generators into the EEG (Hyvarinen et al., 2004; Uusitalo & limoniemi, 1997)(Uusitalo
& limoniemi, 1997). Enabled by recent developments, it became easier to automate and
scale artifact removal (Jas et al., 2017; Pion-Tonachini et al., 2019; Zhang et al., 2021). Yet,
such automated techniques for isolating brain signals from body signals, have not been
systematically studied in the context of machine learning pipelines for biomarker learning.
It remains thus unclear if and how artifact removal procedures impact model performance
and to which extent ML models make use of EEG signals induced by peripheral
physiological generators.

This work had two principal scientific objectives. 1) We aimed at formalizing the
importance of considering potentially predictive physiological signals in a conceptual
framework for building interpretable brain-specific EEG biomarkers with ML. 2) We tested
if ML models make systematic use of peripheral non-brain signals if EEG signals are not
sufficiently preprocessed.

We focused on ML approaches for subject-level prediction, where one data point
contains one EEG recording and one single outcome measure (Fruehwirt et al., 2017,
Sabbagh et al., 2023; Wu et al., 2020) as compared to event-related modeling in cognitive
decoding (King & Dehaene, 2014; Stokes et al., 2015) or brain-computer interfaces (BCI)
(Abiri et al.,, 2019; Congedo et al., 2017). As ML requires training data, age and sex
prediction are promising example problems that are easily accessible across data
resources and have received increasing attention in human neuroscience. For example,
the brain age approach (J. H. Cole et al., 2019; Smith et al., 2019) encapsulates patterns
of brain aging via age prediction models, which, evaluated on atypical or clinical
populations, can show informative biases like over-prediction of the chronological age (J.
H. Cole et al., 2018; Denissen et al., 2022). A similar idea has been recently explored for
sex prediction (Floris et al., 2023). Both age and sex prediction are actively investigated
with EEG (Binnie et al., 2021; Engemann et al., 2022; Jochmann et al., 2023; H. Sun et al.,
2019; van Putten et al., 2018). To study the interplay between predictive brain and body
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signals captured by the EEG through age and sex prediction, we chose publicly accessible
datasets with wide age ranges for which at least 1000 data points were available, i.e.
TDBRAIN, the Two Decades of Brainclinics (van Dijk et al., 2022) and TUAB, the Temple
University Hospital Abnormal Corpus (Obeid & Picone, 2016).

We used a generic framework suited for expressing prior biological assumptions.
Previous work has obtained promising results for subject-level prediction of age from EEG
by relying on the between-electrodes covariance matrices from different frequency bands
as model inputs (Engemann et al., 2022). This approach is backed by statistical theory and
defines mathematical tools from Riemannian geometry for building prediction algorithms on
covariance manifolds (Barachant et al., 2010; Congedo et al., 2017; Sabbagh et al., 2019).
The resulting models are effective at suppressing the distorting effects of volume
conduction and electrical potential spread (Sabbagh et al., 2020). Our theoretical
framework follows this line of research and extends it by making the role of non-brain
predictive artifacts explicit. Moreover, our approach is committed to avoiding hand-picking
of frequencies or band definitions and to improving interpretability against classical spectral
measures. We therefore computed the covariances using complex Morlet wavelets (Morlet
et al., 1982) that have a long tradition in EEG signal analysis (Cohen, 2019; Hipp et al.,
2012; Tallon-Baudry et al., 1996). This allowed us to cover the entire frequency spectrum
with fine-grained resolution. As a second complementary generic approach, we
benchmarked a convolutional neural network (Schirrmeister et al., 2017) that has the

capability to learn custom oscillatory motifs.

Results

Conceptual framework for building brain-specific prediction models with EEG

We first developed our methodological framework (Figure 1). Prior work (Sabbagh et al.,
2020) proposed a generative modeling framework for regressing biomedical outcomes on
cortical activity in the presence of volume conduction. A central feature of that work are
statistical guarantees that yield unbiased prediction models without approximation error —
also termed statistical consistency — given specific model assumptions of, e.g. linear field

spread, and a log linear relationship between brain activity and the outcome (egs. 1-3).

4/54


https://doi.org/10.1101/2023.12.15.571864
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.15.571864; this version posted December 19, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

a - medication, bs f=16Hz
Yy — B thol fi 0]
E3 ¢ 2 pathology, genetics h =
peripheral ~1000 -500 0 500 1000
CNS / " l physiology 5 .
B g@® [0 L
. ~1000 -500 500 1000
A\lmear l / ambient
g interference ,. f=4Hz
P 0} =
2
—1600 —SIOO (I) 5(I)0 10I00
X G 3. F=2Hz,
EEG generator: X = A S, + ApSp + 1 _g
CNS biomarker model: Yy = f(SC) = 1 1000 -500 O 500 1000

Time [ms]

C

Preprocessing Feature Extraction

EEG — - — » Upper
TDBRAIN _» minimal >{Wavelet convolution }—»[ Cov J—»[Vectonzatnon} > log diagonal |
U autoreject > z_POC

p . L lemann

» ShallowNet

Figure 1. Conceptual framework for biomarker learning from EEG. (a) Individual genetics, medical conditions, and interventions
among other factors affect the brain (CNS) and the body (periphery) simultaneously, enabling predictive modeling as outcome
measures related to these conditions become correlated to physiological measures such as EEG. Predictive CNS generators,
predictive peripheral generators (e.g., ocular, cardiac, muscular) and non-predictive ambient noise (electronics, loose
electrodes, electromagnetic interference) induce EEG signals through linear mixing. An ideal CNS biomarker isolates brain-
related signals and ignores the other generators contributing to the EEG signal. (b) Families of complex Morlet wavelets (left)
offer useful representations for disentangling signal generators inducing EEG patterns in different frequencies (solid and dotted
lines represent real and imaginary parts of the complex valued kernel). Beyond classical log power topographies (middle) we
derived covariance matrices (right) through wavelet convolutions. Covariances play a central role in machine learning (ML)
algorithms for EEG as they define representations that help mitigate distortions and biases due to linear source mixing. (¢) Data
processing and predictive modeling pipeline. To study the impact of different EEG generators on ML pipelines, we varied the
preprocessing (minimal — numerically stabilizing processing, autoreject — removal of ambient noise and high-amplitude signals,
autoreject & ICA — additional removal of peripheral artifacts). We focused on Morlet wavelets and covariance-based approaches
that emerged as informative baselines in previous work as they imply different underlying hypotheses about the regression
function and make different use of spatial information (cf methods - prediction algorithms). We also investigated a convolutional
neural network (ShallowNet) capable of learning custom, temporal filters from the data, which leads to increased model capacity
and enables learning of features sensitive to changes in the shape of oscillations or bursting events.

Figure 1 - supplement 1: Detailed comparisons between wavelets and manually defined classical frequency bands (following
IPEG standard) for covariance-based models.
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Moreover, the framework can accommodate matrix-rank deficiencies caused by artifact
cleaning (Absil et al., 2009; Sabbagh et al., 2019), which is of central importance in our
context.

Here, we extended that framework to explicitly reflect the role of potentially predictive
body signals as compared to non-predictive noise (Figure 1a, eq. 1 in methods). This
inspired us to propose a stringent definition of CNS biomarkers for which we require that
the EEG model isolates CNS components from noise and peripheral signals (eq. 2-3 in
methods). At the theoretical level, this formulation allowed us to see that statistically
consistent regression models for prediction from EEG brain activity (Sabbagh et al., 2019,
2020) from EEG-sensor-space covariance matrices (eq. 4 in methods) are also consistent
for predicting from non-brain activity leaking into the EEG, unless dedicated artifact cleaning
is applied. It is therefore not necessarily a safe assumption that such machine learning
models will automatically learn to ignore artifacts with enough training data (see formal
analysis presented in methods, eqs. 13-16). If artifacts are uncorrelated with the outcome
of interest, one might choose to leave them unprocessed and thereby potentially even
increase the robustness of the learned representation. However, prior studies have shown
that peripheral signals and EEG artifacts can be systematically modulated in different
patient groups (Golding et al., 2006; Jongkees & Colzato, 2016; Lindow et al., 2023;
Wilkinson & Nelson, 2021). This motivated us to systematically study the relationship
between different EEG components attributed to CNS versus peripheral generators, which
typically differ in terms of spectral and spatial patterns.

In support of this purpose, we combined ML with EEG representations based on Morlet
wavelets (Figure 1b, eq 4 in methods; (Morlet et al., 1982; Tallon-Baudry et al., 1996). Our
approach to spectral analysis chooses a log-frequency parametrization defining the wavelet
families using a base-2 logarithmic grid (Hipp et al., 2012), which is tailored to the natural
scaling of brain rhythms that are rather lognormal (Buzsaki & Mizuseki, 2014). That is, the
spectral resolution is higher at lower frequencies, and accordingly the spectral smoothing
is greater at higher frequencies. This representation is well established for implementing
spectral EEG measures (e.g. log power, eq. 8 in methods) and a common choice in clinical
biomarker studies (Frohlich, Miller, et al., 2019; Hawellek et al., 2022; Janz et al., 2022).
Beyond classical EEG metrics, here, we adapted the Wavelet approach to further derive
advanced representations for state-of-the-art ML methods developed for EEG (Figure 1b,
Figure 1c).

As our principal ML strategy, we focused on the family of covariance-based prediction
models (Congedo et al., 2017; Grosse-Wentrup & Buss, 2008; Koles et al., 1990) that were
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theoretically and empirically analyzed in previous work (Sabbagh et al., 2019, 2020). These
models provide useful baselines as they enjoy statistical guarantees under different
assumptions, such that the comparison of their performance can hint at characteristics of
the data-generating mechanism (cf. section prediction algorithms in methods). So far,
these models have been studied with conventional frequency bands and other than in
previous work, we estimated frequency-specific covariances from the real part of the Morlet
wavelet representation (Figure 1b). Additional validation confirmed that covariance-based
models performed consistently better when implemented under the wavelet approach. For
a comparison with frequency bands proposed by the International Pharmaco-EEG Society
(IPEG; Jobert et al 2012), see Figure 1 - supplement 1.

We also explored a flexible convolutional neural network approach: ShallowNet
(Schirrmeister et al., 2017) operates directly on EEG time series data and can overcome
the potential limitations of the assumptions of sinusoidal brain oscillations at fixed
frequencies (Jackson et al., 2019). Together, these models should be reasonably
representative of state-of-the-art ML models used in EEG research.

We then used this combination of a high resolution spectral representation and powerful
covariance-based ML models that can leverage fine-grained spatial features to investigate
the impact of artifact preprocessing. We performed analyses across different levels of
preprocessing, designed to vary the extent to which environmental versus physiological

artifacts are cleaned (Figure 1c).

Impact of Preprocessing on Model Performance

We applied our framework to investigate the contribution of brain and non-brain signals to
the performance of the different ML models in two benchmark tests, age and sex prediction.
We compared model performance across different levels of preprocessing to assess if ML
models would benefit, suffer or be unaffected by artifact removal. We compared the 10-fold
cross-validation results for different models on either minimally, moderately or extensively
preprocessed input data (Figure 2, Table S1, S2). Minimally preprocessed data was filtered
and resampled. Moderate preprocessing made additional use of autoreject (Jas et al., 2017),
a method that discards and interpolates bad channels and segments (AR) to remove high-
amplitude artifacts produced by ambient interference, electronics or loose electrodes.
Extensive preprocessing added explicit removal of physiological artifacts using ICA (AR &
ICA) supported by automatic labeling of brain and artifact components (Ablin et al., 2018;
Hyvarinen & Oja, 2000; Pion-Tonachini et al., 2019).
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The depth of preprocessing affected total power, relative power and covariances across
frequencies (Figure 2 - supplement 1 & 2). Grouping of log power spectra by age showed

differences that may enable prediction, regardless of preprocessing.
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Figure 2. Impact of artifact removal on EEG prediction performance in (a) age prediction and (b) sex classification on the
TDBRAIN and the TUAB datasets. Boxplots show 10-fold-cross validation distributions. Color depicts the degree of EEG
processing (minimal, autoreject, autoreject & ICA). Rows present model architectures: Ridge regression & classification based
on covariances with upper vectorization (upper), the log of the variance components (log diagonal), supervised spatial filtering
(SPoC), the Riemannian tangent space (Riemann) and a convolutional neural network operating on raw EEG time series
(ShallowNet). Removing noisy channels and high-amplitude data segments (autoreject) often led to improved performance. The
Riemannian model benefited least from intense preprocessing, whereas simpler models (upper, log diagonal) could be
substantially improved by preprocessing. Performing additional ICA-based rejection of artifacts (muscles, eye blinks, etc.) often
lowered the prediction performance, suggesting that bodily, non-brain generators of the EEG can include predictive information.
Figure 2 - supplement 2: Impact of processing on EEG power spectra, topographies and covariances (TDBRAIN).

Figure 2 - supplement 3: Impact of processing on EEG power spectra, topographies and covariances (TUAB).

Except for the upper model, all models showed above-chance prediction regardless of
processing choices (Figure 2a, 2b). Pooling over models and datasets, we can observe that
autoreject led to an improvement in R? over minimally preprocessed data of 0.151
(Clgs%=[0.076, 0.236]) for age prediction (Figure 2a) and in area under the curve (AUC) of
0.071 (Clgs%=[0.021, 0.126]) for sex prediction (Figure 2b). The additional ICA step did not

yield further improvements and instead lowered the performance by on average -0.036
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(Clgs%=[-0.061, -0.004]) in R? and -0.047 (Cles%=[-0.057,-0.037]) in AUC compared to
autoreject preprocessing alone.

Detailed model comparisons revealed that simpler models tended to benefit more from
preprocessing. The upper model (eq. 9), for instance, failed on the task of age prediction
on TUAB when only minimal preprocessing was applied to the input, and performance was
substantially improved with preprocessing. A similar effect was observed for the log
diagonal and SPoC models. The Riemann model and the ShallowNet benefited less from
preprocessing with autoreject. This might be explained by their increased capacity to use
the wealth of information in raw signals or the covariance matrix to suppress irrelevant
signals. All cross-validation results including additional metrics are printed in Tables S1 &
S2 to facilitate comparisons with other studies.

In summary, our results suggest that removal of high-amplitude artifacts using
autoreject can be beneficial across models, whereas refined ICA-based removal of

physiological artifacts might hamper predictive information.

Exploring the relative contribution of peripheral non-brain signals

That ICA-based removal of non-brain signals (including muscle activity, eye movements or
cardiac activity) led to lower prediction performance could imply that these non-brain signals
contained information about the outcome. We next performed an in-depth investigation of
the predictive value of these signals that are typically treated as artifacts. To approximate
a decomposition of the model performance into brain and non-brain contributions (egs. 13-
16), we explored two complementary approaches: (1) reconstruction of EEG features from
brain and artifactual ICs, and (2) computation of EEG features from auxiliary channels,
where available. Specifically, we focused on the auxiliary channels used to record ocular,
muscular, and cardiac activity in the TDBRAIN dataset (see approximate subspace
regression and classification methods).

If the drop in performance after ICA preprocessing is due to the removal of predictive
information, we should achieve above-chance prediction performance when using only the

removed signal as input. To investigate this hypothesis, we first used ICA on the
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a Power spectra of EEG reconstructed from ICA artifact components (TUAB)
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Figure 3. Exploration of the contribution of CNS and peripheral signals as extracted from ICA. (a) Power spectra of EEG
reconstructed from ICA components identified as reflecting brain signals and artifacts, averaged across electrodes. Power in ocular
artifact subspaces is concentrated at low frequencies and muscle activity is concentrated at high frequencies. Note that the overall
lower amount of power for artifacts compared to the cleaned signal is partially explained by the averaging across all electrodes:
artifacts are typically concentrated in a subset of the electrodes. Importantly, alpha power (8-12 Hz) was largely preserved in EEG
and virtually absent in ICA-reconstructed signals. (b) and (¢) show model comparisons for cleaned EEG versus |ICA-reconstructed
signals. Performance was higher after cleaning with AR (blue) and AR & ICA (yellow), yet the ICA reconstructions of artifact
subspaces (orange) also contained predictive information. The highest performance was achieved after AR preprocessing, which
eliminated large artifact sections but did not eliminate the contribution of physiological artifacts.
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TUAB dataset where no auxiliary channels were available (Figure 3). We reconstructed
the signal from the subspaces spanned by the rejected ICA components (cf. methods).
As the ICLabel algorithm (Pion-Tonachini et al., 2019) used for labeling of independent
components provides categories for the rejected components, we also reconstructed the
signal for particular classes of artifacts (e.g. ocular or muscle artifacts).
Inspecting the power spectra of the reconstructed artifact signals, ocular artifacts were
dominated by low-frequency power, whereas muscle artifacts contained mostly high
frequency power (Figure 3a). Moreover, the alpha-band peak above 8 Hz was preserved
after ICA-cleaning of the EEG (signal-subspace) and not present on the artifact-subspace
power spectra (Figure 3a). Grouping by age and sex on subspace power spectra showed
average power differences that may enable prediction. We used 10-fold cross-validation
to gauge model performances for age and sex prediction (Figure 3b, 3c). The subspace
models achieved above-chance performance, suggesting that non-brain signal generators
are predictive of age and sex. The only exception to this pattern was the ShallowNet
performance for age prediction, potentially related to data requirements of complex
regression models in situations with low signal-to-noise ratio. Jointly predicting from all
artifact sources together yielded better performance than predicting from any individual
artifact class, but performance results for individual artifact classes were still above
chance. Importantly, the performance of models using clean EEG were substantially better
and performance distributions were non-overlapping with the artifact subspace models.
The second approach, using auxiliary channels instead of ICA subspaces, was explored
on the TDBRAIN dataset (see methods for details). The horizontal and vertical EOG
electrodes are placed close to the eyes and thus primarily pick up eye movements, which
is reflected in high power at low frequencies. The ECG electrode is placed at the cervical
bone and provides a measurement of cardiac activity. Finally, the EMG electrode is placed
on the right masseter muscle and measures (jaw) muscle activity, reflected in large
amounts of high-frequency power (Figure 4a). As we expected, comparing power spectra,
all auxiliary channels appeared markedly different from the EEG channels. However, we
can still discern alpha peaks between 8 and 12 Hz in the EOG and EMG channels,
suggesting that auxiliary channels also picked up brain activity to some extent. As before,
the grouping by age and sex on the auxiliary-channel power spectra reveal differences that
may enable prediction. In line with results from the ICA-based analysis, predictions based
on auxiliary channels were substantially better than chance (Figure 4b, 4c). In many cases,
data from EOG channels explained the larger part of the performance obtained with

auxiliary channels.
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Figure 4. Exploration of the contribution of brain and body signals in EEG-based prediction models through auxiliary (AUX)
channels. (a) AUX channel power spectra generally exhibit different characteristics than EEG (cleaned with autoreject, averaged
across electrodes). (b) and (¢) show comparisons of model performance with EEG versus auxiliary physiological channels (AUX)
for age and sex prediction, respectively. It can be seen that modeling from AUX inputs (orange) leads to systematic prediction
performance across tasks and model architectures. The effect of AUX inputs related to ocular activity explained much of the
performance of all AUX inputs together. Predicting from EEG inputs (yellow) yielded consistently higher performance. As a
tendency, model architectures that achieve better results for EEG inputs also achieve better results for AUX inputs. Combining
EEG and AUX features (blue) did not result in systematically better performance. These results suggest that the predictive

information conveyed by AUX channels is already captured by the EEG channels.
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Yet, the combination of all available auxiliary channels led to the highest performance
compared to individual auxiliary channels. Again, the performance achieved with EEG data
was substantially higher, as evidenced by non-overlapping or weakly overlapping cross-
validation distributions. Strikingly, despite the performance observed with auxiliary
channels, combining EEG and auxiliary channels did not lead to consistent improvements
over pure EEG data for most models. This suggests that the predictive information present
in the auxiliary channels was already present in the EEG signal and explained part of its
performance.

In sum, our findings suggest that across datasets and tasks, non-brain signals contain
information predictive of age and sex but that the main driver of prediction performance is

brain related.

Model exploration through spectral profiling of prediction performance

The wavelet-based framework developed in this work not only offers competitive prediction
performance (Figure 1 - supplement 1). It provides additional opportunities for model
interpretation. How individual frequencies contribute to model prediction can provide
insights about the underlying physiological processes. E.g. in motor tasks, the predictive
signal was found to occupy a specific frequency range (beta frequency range), possibly
reflecting strong associations of outcomes with oscillatory activity in the motor cortex
(Schoffelen et al., 2011) and not much information was gained by combining multiple
frequencies (Sabbagh et al., 2020). On the other hand, specific frequency ranges might
not play a prominent role if predictive brain sources are distributed across cortical
networks. Moreover, structural anatomical characteristics may systematically influence
propagation of brain activity, as recently hypothesized for sex prediction from EEG
(Jochmann et al., 2023). Also, changes of states of consciousness (awake, sleep, coma)
that go hand in hand with global changes of the EEG signal may enable decoding from
broadband power. This included certain drugs like anesthetics (Bojak & Liley, 2005;
Drummond et al., 1991).

Comparing models with a restricted frequency range versus all frequencies, allowed
us to characterize the nature of the predictive signal. We focused this analysis on the SPoC
model, which strikes a good compromise between computation time and model
performance. As covariances at a single frequency cannot capture local changes across

frequencies, we built models capable of deriving local contrasts between neighboring
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frequencies (Figure 5, left subpanels, blue lines). To this end, we extracted covariances
from 5 neighboring wavelets around the center frequency f spanning one octave (see
methods — Background: Spectral analysis and machine learning for EEG biomarkers). In
addition, we averaged covariances (with fixed equal weights) across the same neighboring
frequencies (Figure 5, left subpanels, yellow lines). Comparing these two approaches
allowed exploring the complexity of local information as performance should be equal if
local changes in the spatial patterns along the spectrum contain no information.

To put performance based on these models with a restricted frequency range around
center frequencies into perspective with previous results, we replotted the full model joining
all frequencies as input (Figure 5, right subpanels, blue markers), corresponding to results
shown for SPoC in Figure 2. In addition, we conducted a control analysis using the average
of all covariances as input, which basically corresponds to the covariance of the broad-
band signal that lacks any frequency information (Figure 5, right subpanels, yellow
markers). Furthermore, we explored the effect of preprocessing on performance in local
frequency regions as compared to global effects (Figure 5, dotted lines and markers).

We first focussed on age prediction from EEG cleaned with autoreject (solid lines). For
TDBRAIN (Figure 5a), performance peaked between 8-16 Hz, around R? scores of 0.6. A
similar peak emerged below 8 Hz. By comparison, adaptively joining all wavelets (as in
our previous analysis), increased the R? score to around 0.8. A similar picture emerged for
TUAB (Figure 5b), with R? peaking around 0.4 at similar frequencies, whereas, joining all
wavelets increased the score to around 0.6. For orientation, uncertainty estimates (SD)
are displayed on the right subpanels. This suggests that the information from different
frequencies was complementary for age-prediction on both datasets. Applying averaging
(yellow lines), a clear drop in performance of around 0.2 in terms of R? scores was
observed on, both, local-frequency (Figure 5a, 5b, left subpanels) and global broadband
models (Figure 5a, 5b, right subpanels), pointing at complex and local spectral information
that is lost upon averaging.

A similar picture emerged for sex prediction (Figures 5¢ and 5d). For TDBRAIN, peak
AUC scores of about 0.8 were observed between 8 and 16 Hz (Figure 5c). Joining all
frequencies lifted the AUC score close to 0.9. This was highly similar for TUAB (Figure 5d),
except that peak performance was observed above 16 Hz. By comparison, averaging
(yellow lines) decreased the performance to AUC scores closer to 0.7.

To connect this analysis with our previous results, we analyzed changes in

performance profiles as further artifact removal with ICA was added (dashed lines).
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Figure 5. Spectral profiling of predictive EEG signatures using the wavelet framework. We inspected the SPoC pipeline on
TDBRAIN (a, ¢) and TUAB (b, d) datasets for age (a, b) and sex (¢, d) prediction by confronting frequency-wise models (left
subpanels) with full cross-frequency models (right subpanels, all wavelets). For frequency-wise modeling, we used 5 wavelets
around the center frequency (x-axis), from which covariances were averaged (yellow) or individually combined by the model
(blue). Solid versus dashed curves depict the preprocessing, i.e., autoreject only and additional ICA, respectively. Horizontal
lines provide an orientation with regard to the results based on all wavelets (right subpanels). The joint model with all individual
wavelets represents the previously investigated standard models. The broadband model averaged all covariances across all
frequencies to capture the global signal. It can be seen that letting the model combine the frequencies consistently led to better

results, pointing at spectrally distributed information.

changes in performance were small for age prediction in general, especially for the
TDBRAIN dataset where frequency-specific models seemed unaffected. Some reduction
in prediction performance at the peak above 8Hz from 0.4 to around 0.3 is seen on the
TUAB dataset. By comparison, the effect of removing artifacts was more visible for sex
prediction, also for global combined models.

Taken together, spectral profiling revealed some spectral specificity in prediction

performance, whereas prediction was possible across all frequencies. Models combining
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frequencies at local or global ranges always clearly outperformed averaged models,
pointing at synergistic information across the frequency spectrum and ruling out trivial

offsets or broadband effects as main drivers of the prediction.

Discussion

Over the past decade, important advances have been made in EEG-based biomarker
exploration with ML. To fully harness the potential of ML for EEG biomarkers, it will be
important to optimally use neuroscientific and biophysiological insights from EEG research.
Incorporating such prior knowledge into machine learning models can endow them with
theoretical grounding and increase their robustness in wide-data regimes (few training data
points, many variables) dominating human neuroscience. Our literature review identified
an important gap in the conceptualization and practical handling of signal contributions to
the EEG originating from non-brain, peripheral generators. Peripheral signals are
rigorously treated as artifacts in classical EEG methods but are commonly ignored in ML
work. This is potentially due to widespread enthusiasm about the capability of ML models
to detect the hidden patterns of interest in data and ignore the noise.

Our work addresses the need for a practical yet theoretically grounded machine
learning methodology for biomarker discovery and development with EEG. Our proposed
framework carefully reconsidered previous theoretical results on regression models for
predicting from brain activity in the presence of field spread and volume conduction. As
biomedical conditions and therapeutic interventions can affect, both, the brain and the
body, related outcomes can potentially be predicted from, both, brain and body signals.
This insight has inspired us to study state-of-the-art ML algorithms in empirical
benchmarks designed to evaluate and isolate the differential contributions of brain versus
body signals mixed in the EEG. Our benchmarks demonstrate that exemplary age and sex
prediction problems were substantially affected by non-brain signal generators if these
were not explicitly handled.

A key insight obtained from our conceptual analysis and our empirical work is that
prediction from EEG signals will only yield a brain-specific biomarker model if bodily signals
are explicitly removed or controlled for.

Furthermore, our empirical results provide new insights into the prediction algorithms,

extend the scope from age prediction to sex classification, and unlock model interpretation
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techniques through the proposed wavelet framework. In the following sections, we provide

deep dives into some of the details and their practical implications.

Artifact removal is essential for learning interpretable biomarkers

The wavelet methodology allowed us to compile new benchmarks, visualization and
analysis techniques for studying the interplay between CNS and peripheral EEG
generators. Our benchmarks on artifact removal revealed a colorful picture. For all ML
models, removal of high-amplitude artifacts via autoreject improved prediction
performance (Figure 2), which contrasts a widespread view according to which minimal
processing of EEG is preferable for ML (Delorme, 2023; Roy et al., 2019). On the other
hand, additionally regressing out artifacts related to peripheral signals with ICA
consistently led to a decrease rather than a further improvement in performance, which
suggests that there is predictive information in these signals.

One common argument presented in the context of model interpretation is that one
cannot tell ad-hoc whether certain features are necessarily bad because the model might
use them to denoise the predictive function (Haufe et al., 2014). For instance, if the model
has access to a channel that strongly reflects ocular artifacts, it could, in principle, use this
channel as an artifact indicator and down-weight the importance of artifacted segments.
This might motivate researchers to keep the data minimally processed (Roy et al., 2019).
We see our theoretical framework and empirical results in disagreement with this view.
The key point, formalized in our generative model, is that it matters whether these artifact
signals are themselves correlated with the outcome. If one expects artifact signals to be
useful — not because of their own predictive value but only as a means for the model to
denoise the actual signal of interest — one should also expect the removal of high-
amplitude artifacts, related to bad channels and segments, to lead to a decrease in model
performance. Our benchmarks show the opposite. It is thus much more plausible that the
decrease in performance after removal of physiological artifacts with ICA is not explained
by the prediction model's limited capacity to denoise the signal, but instead because the
removed signals are themselves predictive of the outcome.

A related argument would be to motivate the omission of preprocessing based on the
emerging literature on data augmentation in EEG, where noise and perturbations are
added to the data to improve model robustness and performance (Rommel et al., 2022).

But the critical difference is that data augmentation is performed in a way that breaks the
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statistical dependence between the noise features and the outcome, which forces high-
capacity ML models to better extract the underlying function of interest. The presence of
artifacts induced by peripheral signal generators can therefore not be seen as data
augmentation as, in their natural state, they can be correlated with the outcome (as shown
here for the two example tasks of age and sex prediction). An interesting twist of this
observation would be to develop a proper augmentation approach that injects (simulated)
peripheral artifacts into the EEG in ways that break their statistical association with the
outcome, hence, enforcing true decorrelation.

Another objection could be that the predictive signal removed with ICA is not only a
pure (physiological) artifact but also contains some genuine brain signal. Given that ICA
decompositions and component classification can be imperfect, it is a logical possibility
that some brain signal is removed along with artifacts and that this led to the observed
drop in performance. This would be compatible with the observation that the removal of
segments or channels with autoreject does not result in the same drop in performance. If
ICA removes a brain source it does remove it from the entire recording whereas the
rejection of individual segments with autoreject is local and preserves brain signals in the
retained segments.

For at least three reasons, we hold that regardless of ICA quality, one has to consider
that artifacts are predictive and risk diluting CNS biomarkers: 1) prior knowledge of the
change in peripheral and body variables in aging and pathology (Golding et al., 2006;
Jongkees & Colzato, 2016; Lage et al., 2020; Lindow et al., 2023; Wilkinson & Nelson,
2021). 2) The sensitivity of machine learning models to pick up even weak and hidden
patterns. 3) Similar effects were obtained for auxiliary channels where no ICA was applied
(Figure 4).

The first point deserves some additional reflection. Certain patient populations may be
more likely to move, talk or activate facial muscles during the EEG recording than healthy
controls. When focusing on a diagnostic analysis and comparing a group of patients with
controls, differences in artifact load between diagnoses can therefore lead to a statistical
difference that is not driven by differences in brain activity. For example, eye blinks induce
major high-amplitude EEG artifacts (Croft & Barry, 2000) and eye blink rate is driven by
central dopaminergic function and systematically reduced or increased by pathologies like
Parkinson’s disease or schizophrenia, respectively (Jongkees & Colzato, 2016). Another
recent study reported higher artifact probability and fewer clean data segments in children
with Fragile X Syndrome as compared to age-matched controls (Wilkinson & Nelson,
2021).
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In sum, even if we risk losing some brain signals after ICA cleaning, the alternative
would be to have models that cannot be unequivocally interpreted with regard to underlying

brain signals.

Disentangling brain and body EEG generators

Our benchmarks present clear evidence that the signal components attributed to
peripheral body signals are predictive themselves, hence, should not be used for a model
that intends to capture brain-specific signals (Figure 2-4). Would it then be appropriate to
address the problem of disentangling brain and body signals with statistical techniques for
deconfounding (Zhang et al., 2021)? A recent line of work has started studying machine
learning techniques for addressing confounding in neuroscience applications (Chyzhyk et
al., 2022; Qu et al., 2021). While this can lead to practically useful methods, there is an
important theoretical mismatch with our perspective. In confounding, a noise factor of non-
interest affects both the inputs and the outcomes. For example, age (cofounder) affects
neuronal activity (input) and vascular function (Tsvetanov et al., 2021), both of which
influence the blood-oxygen-level-dependent (BOLD) signal measured with functional
magnetic resonance imaging (fMRI, outcome). This could induce spurious correlations
between electrophysiological measures of neuronal activity and the fMRI signal, as the
effects of age on both neuronal activity and vascular function can be mistakenly attributed
to a direct relationship between neuronal activity and the BOLD signal. In our theoretical
framework, conditions related to the outcome affect latent factors which are mixed in the
input signals.

A latent factor view of the problem, therefore, lends itself to trying to disentangle the
CNS and peripheral signal generators through blind source separation, ICA and related
techniques (Hyvarinen et al., 2004). This is anything but new from the view of traditional
EEG analysis, where ICA is a standard tool for isolating brain activity in clinical biomarker
studies (Jung et al., 2000). However, this thinking has not yet been broadly embraced in
applied ML work with EEG. In this work, we applied the generative model and theoretical
results developed in (Sabbagh et al., 2019) to better connect the two fields. We
reformulated the generative model as a latent factor model with three components: The
predictive brain sources, the predictive body sources and the non-predictive noise sources
(eq. 1-3 in methods). This has motivated signal-isolating regression methods (egs. 13-16

in methods). Our work explored two practical ad-hoc methods for isolating brain from body
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(Figure 3-4) for virtually any machine learning pipeline, following a same-analysis
approach (Goérgen et al., 2018). The implementation of both approaches (ICA versus
auxiliary channels) within our wavelet framework has allowed us to gauge direct evidence
for the quality of the approximation by comparing power spectra from the respective
subspace approximations. With ICA, alpha band oscillations (8-12 Hz) were convincingly
isolated and did not seem to leak into the subspace of peripheral models (Figure 3A). On
the other hand, alpha band rhythms were clearly visible on the auxiliary channels (Figure
4A). It is therefore unsurprising that the second approach resulted in higher performance
estimates for non-brain components as it actually contained some brain signal. The bigger
picture was in both cases the same: Mixing of peripheral and CNS signal generators was
pervasive across prediction tasks and datasets and deserves explicit handling if the goal
is to develop CNS-specific prediction models.

Reconsidering the results shown in Figure 3A, one can see that the average power
spectrum over the 4-32 Hz frequency range was less affected by ICA cleaning than lower
(<4Hz) or higher (>32Hz) frequencies. It could thus be tempting to believe that this
frequency range is “safer” for predictive modeling of CNS signals. The situation is more
complicated, however, as predictive cues may lie in lower-amplitude spatial patterns not
well characterized by average EEG power. To investigate this possibility, our wavelet
framework offered a practical control analysis in which we deployed the models of interest
along the frequency spectrum (Figure 5). Our explorations showed that only for age
prediction of the TDBRAIN data (Figure 5a), the prediction models were not affected by
preprocessing in this supposedly “safer” frequency range. On all other tasks and datasets,
a drop was visible when artifacts were removed (Figure 5b-d). Thus, spectral profiling of
prediction models using different degrees of artifact removal can further the understanding

of what frequency ranges may be co-occupied by CNS and peripheral sources.

Wavelets as flexible method bridging predictive modeling and classical analyses

By estimating covariance matrices from convolutions with Morlet wavelets, our framework
successfully bridged EEG frequency spectrum descriptors with statistically consistent
regression algorithms based on spatial filtering and Riemannian geometry (Barachant et
al., 2010; Dahne et al., 2014; Fruehwirt et al., 2017; Grosse-Wentrup & Buss, 2008). These
algorithms benefit from theoretical guarantees of zero approximation error under the

assumptions (Sabbagh et al., 2019) of constant linear source mixing and a specified
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nonlinearity (logarithm). Our benchmarks showed that Morlet wavelets can be used as a
drop-in-replacement for classical bandpass filtering to obtain the covariance matrix inputs
to these types of algorithms without obvious disadvantages, in fact, even leading to
improved cross-validation results (Figure 1 - supplement 1).

Overall, our modeling benchmarks replicate the bigger picture reported in previous
work (Sabbagh et al., 2019, 2020): The upper triangular vectorization that, essentially,
uses the covariances as they are, led to the lowest scores. Of note, this model is
statistically consistent if one does not make the assumption of lognormal relationships
(Buzsaki & Mizuseki, 2014), leading to linear regression on EEG powers. This is interesting
as it was the only method for which our logarithmically scaled wavelets did not consistently
lead to improvements over the bandpass filtered equivalents. Models with logarithmic
nonlinearity performed consistently better and the Riemann model achieved the best
results, which taken together suggests that the log-nonlinearity yields models that better
match the data generating processes. We noticed that both the theoretically inconsistent
log diagonal model (biased in the presence of linear source mixing) — representing the
classical EEG approach — and the consistent SPoC model (Dahne et al., 2014) showed
improved performance in our work compared to previously reported benchmark results
(Figure 1 - supplement 2), especially if artifact removal was applied (Figure 2). This can
be explained in at least two ways. First, we harmonized the processing of covariances
across the different pipelines, in particular the handling of data rank and regularization
parameters (see methods for details). This was particularly important to enable prediction
with minimally processed data that suffer from high-amplitude artifacts, which can lead to
ill-conditioned covariance matrices. Second, the improvement could be attributed to the
higher performance achieved with the wavelet approach observed across all models
(Figure 1 - supplement 1), which could potentially be due to the more adapted frequency
smoothing. It is also conceivable that for the less complex log diagonal model, the
availability of additional frequencies increased model capacity. Compared to previous work
(Sabbagh et al., 2019, 2020), where the SPoC approach was interpreted as superior to
the log diagonal approach, here, we observed similar performance for the two models
(Sabbagh et al., 2019, 2020) previously reported benchmark results (Figure 1 - supplement
2). From the perspective of biomarker development, this would be a welcome result. It
gives empirical justification to the less theoretically grounded but far simpler practice in
clinical biomarker studies to directly model outcomes from EEG power spectra.
Importantly, we do not necessarily expect this result to hold for the (cryogenic) MEG

context where the issue of source mixing might be different due to the increased distance
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between generators and sensors and variable head position. However, the same
reasoning might apply for optical MEG (Brookes et al., 2022; Hill et al., 2020).

The Riemann model was particularly advantageous when preprocessing was minimal,
confirming its potential role as an ad-hoc model in early exploratory phases of research as
was initially proposed in (Sabbagh et al., 2020). On the other hand, handling this model
with intensified data processing was cumbersome as the model makes the strict
assumption that the data is full rank (see prediction algorithms - Riemann in methods).
SPoC and the log diagonal model, therefore, emerged as potential alternatives as they do
not make these strong assumptions.

The more expressive ShallowNet (Schirrmeister et al., 2017) did not achieve
consistently better results and its performance in the age prediction benchmark
(Engemann et al., 2022) was now also reached by the Riemann model with wavelets
(Figure 1D). In a previous benchmarking study on age prediction, the ShallowNet showed
clearer advantages over Riemann models with a classical filterbank approach (Engemann
et al., 2022). It appears that using a pre-defined Morlet wavelet family to extract temporal
features can outperform temporal convolution layers learned in the ShallowNet
architecture, which, in principle, can overcome the limited fixed-frequency sinusoidal
oscillations stipulated by Morlet wavelets. However, it may also simply be a matter of the
size of the training data and it does not follow from this that the oscillatory model implied
by wavelets is neurobiologically more precise (S. R. Cole & Voytek, 2017; Jackson et al.,
2019; Schaworonkow & Nikulin, 2019). More importantly, the utility of deep learning is not
captured exhaustively by looking at prediction performance in standard settings. As far as
custom loss functions, generalization across datasets, or multi-task and multimodal
learning are concerned, a deep learning approach is more amenable to the implementation
of the latest developments in machine learning research (Banville et al., 2020, 2022;
Rommel et al., 2022; Wilson et al., 2022). We therefore recommend keeping a good deep
learning baseline among the benchmarks in future work.

In sum, machine learning based on covariances derived with log-parametrized Morlet
wavelets (as compared to conventional frequency bands) led to improved prediction
performance, especially for simpler, hence, potentially more interpretable models. Thus,
wavelets emerged as a practical tool to extend established spectral EEG analysis with

elements of machine learning.
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A new benchmark for sex prediction from EEG

Interestingly, we observed highly similar trends for sex prediction for both TUAB and
TDBRAIN. For sex prediction, only few EEG-based ML studies are available at this point
(Jochmann et al., 2023; van Putten et al., 2018) and it was a priori not clear if previous
methods studied for age prediction would generalize. Comparing our results with the
amplitude-based neural network from (Jochmann et al., 2023) shows a favorable picture
for the models benchmarked in our work. Jochmann and colleagues reported a balanced
accuracy score of around 78% on the TUAB dataset. In this work, the ShallowNet and
Riemann benchmarks reached a score around 84% (Table S2 in supplement). This argues
for the utility of the generative modeling framework and the covariance-based models
derived from it beyond its initial exploration for age prediction and brain age (Banville et
al., 2023; Mellot et al., 2023; Sabbagh et al., 2020, 2023).

Additional considerations for model interpretation

Importantly, the proposed framework was not initially motivated by considerations of
prediction performance, which emerged as a welcome byproduct of our work. We see the
true advantage of the proposed wavelet methodology in its ability to bridge classical results
from EEG research on clinical biomarkers with machine learning enabling frequency-by-
frequency comparisons between classical measures like EEG power (Figure 1, Figure 3-
4) and machine learning analyses (Figure 3-5). This not only enhances model
interpretation but may also facilitate approximations of models by simpler spectral
characteristics that can be more easily operationalized and used in clinical studies and
subsequent bio-statistical analyses that are highly regulated in drug development and
clinical applications.

This brings us to another important point of interest in CNS biomarkers: an
interpretation of the signature in terms of brain activity versus variance in brain structure.
Our explorations resulted in a mixed picture in which certain frequencies, often around 8-
16 Hz, yielded the best results when used as stand-alone models (Figure 5). On the other
hand, for most tasks and datasets, above-chance prediction was possible at any frequency
and the best performance was obtained by adaptively combining all frequencies. This
signature does not rule out the possibility that the prediction models picked up anatomical

differences and ensuing changes in the geometrical configuration of signal generators to
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the electrodes rather than in brain activity. This hypothesis was considered in related work
on sex prediction (Jochmann et al., 2023) and age prediction (Sabbagh et al., 2020) from
MEG. In the former work, the researchers noted the predictive importance of spatial
patterns and frequencies untypical to EEG. In the latter context, the researchers estimated
that around half of the performance might be explainable by source geometry, which was
estimated by reconstructing fake-covariance matrices from the MEG forward models from
individual magnetic resonance imaging (MRI) scans. Alternatively, one might assume that
intrinsic long-term autocorrelations are affected by the outcome of interest, translating into
changes in the 1/f slope (Cesnaite et al., 2023; Chaoul & Siegel, 2021; Voytek et al., 2015),
even if it remains unclear to which extent both explanations might overlap or interact as
the link between individual anatomy and brain activity is actively investigated (Pang et al.,
2023). While it remains challenging to quantify the impact of anatomical imprinting onto
EEG signatures without anatomical measurements, the model inspection techniques
presented here can instantly provide an ad-hoc sense of whether the model is driven by
specific frequencies or diffuse distributed changes in brain activity that might be related to

individual anatomical differences.

Limitations and future directions

Our work focused on cross-sectional observational data from two large quasi-public
datasets and the two exemplary tasks of sex and age prediction. While this offers versatile
opportunities for developing ML models and benchmarking EEG methods relevant for
developing biomarkers, in our work we did not predict clinical outcomes. Promising
biomarker applications that may be in reach for the methods studied in this work include
diagnostic (Blennow et al., 2015), pharmacodynamic (Gautam et al., 2023), prognostic
(Lokhande et al., 2022), predictive (Bar-Or et al., 2023; Sechidis et al., 2021) or surrogate-
efficacy (Budd Haeberlein et al., 2022; Downing, 2001) questions.

We hope that our work can inform both biomarker developers and machine learning
researchers in terms of concepts, methods and empirical benchmarks. We believe that
there are several direct applications of our results. Biomarker scientists could reuse our
models and techniques on their own clinical data, if the size of the datasets support a
machine learning approach as the sex and age prediction tasks are exemplary and can be
replaced with other tasks. Moreover, the techniques presented here could inform a transfer

learning approach where age and sex prediction tasks are used for representation learning
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(Mourragui et al., 2021) or model predictions are used as downstream variables as in brain
age (J. H. Cole et al., 2018; Denissen et al., 2022). A second direct application of the
models presented here would be proper deconfounding, i.e., when the scientific task
requires removing age and sex related components from an outcome of interest (Chyzhyk
et al., 2022).

Moreover, we approximated subspace regression from ICA on individual EEG
recordings and automated labeling. The quality of the decomposition therefore stands or
falls with the quality of ICA. We hope that our work can inspire the development of novel
end-to-end solutions for disentangling brain and non-brain sources, ideally directly built
into the prediction models. Promising directions for this effort may lay in the nonlinear ICA
(Monti et al., 22--25 Jul 2020; Zhu, Parviainen, et al., 2023), self-supervision (Banville et
al., 2020; Tong et al., 2023; Yang et al., 2021) and disentanglement literature (R. T. Q.
Chen et al., 2018; Lynch et al., 2023; Mathieu et al., 09--15 Jun 2019; Shu et al., 2018).

Finally, it should be noted that our conclusions are based on two prediction tasks, age
and sex. While it is plausible that our findings in principle generalize to other prediction
tasks the details (e.g. prediction performance based on peripheral signals, spectral

specificity) will be task-dependent.

Conclusion

Through conceptual analysis, prediction using wavelet-based features and visualization of
modeling results across different levels of preprocessing and along the frequency
spectrum, our work exposed the risk of applying ML approaches to EEG in the context of
biomarker development. Our results emphasize that ML models may not automatically
learn the function of interest from mixed signals. When it comes to CNS biomarkers, we
think that one has to follow Carl Sagan’s principle that extraordinary claims require
extraordinary evidence. This certainly does not mitigate the exploratory value of applied
ML in neuroscience and there may be situations in which the best prediction is the priority,
regardless of its source. We believe that a new generation of ML techniques is urgently
needed to support interpretable disentanglement of latent factors alongside larger clinical
trial datasets, potentially enhanced through simulations, for ground-truth assessment and
ranking of ML methods for biomarker discovery.

To support these developments, in a future updated version of this article, we will share

the research code and a Python and Matlab implementation of the log-frequency-
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parametrized Wavelet method (Hipp et al., 2012) as open-source software with the

community.

Methods

Datasets

In this work we used two large quasi-public EEG datasets (institutionally controlled
access). We selected these datasets because their size is sufficient for conducting
machine-learning benchmarks and their demographic and biomedical heterogeneity and

EEG setup sufficiently resembles clinical studies.

TUAB

The archival Temple University Hospital Abnormal (TUAB) dataset (de Diego & Isabel,
2017) contains a subset of recordings from the Temple University Hospital EEG Corpus
(Harati et al., 2014; Obeid & Picone, 2016) that have been annotated as normal or
abnormal by medical experts. In the present work we used only the normal recordings
(N=1363). The number of female and male participants in this subset is 766 (56%) and
597 (44%), respectively. The age of the participants ranged from 0 to 95 years. EEG was
recorded with uninstructed resting state and may therefore contain data from eyes-open
and eyes-closed conditions. Sampling rates varied between 250hz and 512Hz. To the best
of our knowledge, the settings for hardware filters are not available.

Rationale. We chose this EEG dataset as it represents a heterogeneous sample of the
general population of patients from the Philadelphia area seeking medical counseling.
Furthermore, the dataset has been popular among applied machine learning researchers
(Banville et al., 2020; Darvishi-Bayazi et al., 2023; Gemein et al., 2020, 2023; Sabbagh et
al., 2020; Wagh & Varatharajah, 2020; Zhu, Canham, et al., 2023) and therefore provides
a point of reference for algorithmic benchmarking.

Data curation and preparation. For convenience, we provide the following description
of the TUAB dataset, adapted from our previous work (Engemann et al., 2022): EEG data
were recorded using Nicolet devices (Natus Medical Inc.), with 24 to 36 electrodes. The

10-5 system (Oostenveld & Praamstra, 2001) was applied for channel placement. All
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sessions have been recorded with a common average reference (Nunez & Srinivasan,
2006). We identified 21 common channels across recordings which comprise the clinically
relevant 10-20 configuration and two mastoid electrodes. Because channel numbers were
different between recordings, we re-referenced the data to the average across channels.
As the order of the channels was variable, we explicitly reordered all channels consistently.
For many patients, multiple recordings were available. For simplicity we only considered
the first recording. To ensure comparability, we cropped all recordings to a length of 15

minutes, which was the shortest common recording length.

TDBRAIN

The two decades brainclinics research archive for insights in neurophysiology (TDBRAIN)
dataset (van Dijk et al., 2022), contains resting state EEG data of 1274 individuals from a
heterogenous population of psychiatric patients and healthy volunteers. The age of
subjects ranged from 5 to 89 years and the number of female and male participants is
approximately equal with 620 female (49%) and 654 male (51%) participants. The
recordings were acquired with a 26 channel Compumedics Quickcap or ANT-Neuro
Waveguard Cap based on the 10-10 system. In addition to the EEG, seven auxiliary
channels were recorded: five channels to measure vertical and horizontal eye movements
(electrooculogram; EOG), one to measure the electromyogram (EMG) at the right
masseter muscle, and one to record the electrocardiogram (ECG) at the cervical bone.

Hardware filters were set to 0.03Hz and 100Hz. Signals were acquired with a sampling
frequency of 500Hz.

Rationale. This large dataset was only recently opened for public access and covers a
clinically heterogeneous population. The data was acquired using research-grade
equipment and a single assessment protocol. The dataset comes with a rich set of auxiliary
channels that capture peripheral physiological activity. This renders the TDBRAIN dataset
an interesting platform for developing machine learning benchmarks and studying the
interplay between CNS and peripheral signals.

Data curation and preparation. For convenience, we provide the following description
of the TDBRAIN dataset, adapted from the reference publication (van Dijk et al., 2022).
EEG data were recorded using a Compumedics Quickcap or ANT-Neuro Waveguard Cap
with 26 electrodes. The 10-10 system (Oostenveld & Praamstra, 2001) was applied for

channel placement and we used all available EEG channels. All sessions were referenced
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against the average of the A1 and A2 mastoids. For many patients, multiple recordings
were available. For simplicity we only considered the first recording. Contrary to the TUAB
dataset, here, EEG was collected under 2-minute eyes-closed and eyes-open conditions.

We pooled the entirety of data, ignoring the conditions.

Preprocessing

To study the impact of environmental interference and peripheral artifacts on model
predictions we systematically varied the depth of EEG preprocessing in three levels
ranging from basic numerically stabilizing processing and harmonization (minimal
processing) over automated bad-segment removal (autoreject) to full-blown identification

and removal of non-brain artifacts (autoreject & ICA).

Minimal processing

This level comprises cropping to a recording length of 15 minutes (only applies for TUAB),
filtering (FIR filter with pass-band from 1-100 Hz), resampling to a sampling frequency of

250 Hz, epoching into 10 second epochs, and average referencing.

Autoreject

This preprocessing level comprises all the steps of minimal preprocessing and additional
removal and repair of high-amplitude data segments and bad channels using the
autoreject algorithm (Jas et al., 2017). Autoreject is designed to identify and interpolate
bad segments and channels based on outlier peak-to-peak amplitude ranges. We used
autoreject with the following hyperparameters. For consensus, we tested 11 values
between 0 and 1 in steps of 0.1. (default). For n_interpolates we tested {1, 4, 8} which we
adapted to our settings of around 20 EEG channels as we did not want to allow rejecting
more than half of the EEG channels (the default would have tested 32 instead of 8). To
improve computation time, we used an internal cross validation with 5 iterations instead of
the default of 10.

Autoreject & ICA

This processing level included all previous steps and added artifact removal via
independent component analysis (ICA). For the ICA decomposition, we used a fast
approximation of the FastiICA model (Hyvarinen et al., 2004) offered by the PICARD
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algorithm (Ablin et al., 2018) as interfaced through MNE-Python (Gramfort et al., 2014).
We used the ICLabel algorithm via its Python implementation in the MNE-ICLabel package
(Li et al., 2022) for automatic labeling of the components. Following (Rodrigues et al.,
2021), components were rejected if any of the artifact probabilities reported by ICLabel
(but ignoring the “other® class) were larger than the reported “brain” probability. This
labeling was later used for ICA-subspace regression (egs. 13-16, cf. section Approximate

subspace regression & classification).

Background: Spectral analysis and machine learning for EEG biomarkers

Spectral analysis

As noted early on, EEG comprises oscillatory, i.e. band-limited components and spectrally
resolved representations are generally considered useful. A historically grown practice is
to evaluate EEG signals in specific frequency bands (alpha, beta, gamma, ...). No
universally agreed definitions of these bands exist, which results in substantial variability
across studies and is hampering progress in biomarker development. There are important
efforts to standardize band definitions, e.g. by the IPEG (Jobert et al., 2012). However,
such frequency bands are descriptive categories by human observers and not an
operating principle of the human brain. Specific definitions of frequencies may not be the
right choice for all applications. Moreover, by restricting analyses to pre-specified bands it
remains elusive if the choice of these frequency ranges was optimal. We think that given
current knowledge about EEG and in the context of ML applications, an unbiased spectrally
continuous representation that avoids any band definition is the best choice.

A recent body of literature estimated spectral EEG features (power, phase interactions,
power envelope correlations) from complex Morlet wavelets (Forsyth et al., 2018; Frohlich,
Miller, et al., 2019; Frohlich, Reiter, et al., 2019; Hawellek et al., 2022; Hipp et al., 2021)
with a logarithmic frequency grid and log-linear scaling of spectral smoothness (Hipp et al.,
2012). This approach takes into account prior knowledge about lognormal scaling of brain
structure and function (Buzsaki & Mizuseki, 2014), leading to fewer and spectrally wider
Wavelets with increasing frequency and log-frequency integration over orders of
magnitudes (octaves) rather than frequencies. We defined the wavelet families using a
base-2 logarithmic grid. As a consequence, the spectral resolution is higher at lower
frequencies and spectral smoothing is greater at higher frequencies. Importantly, our

implementation parametrizes the wavelets based on their center frequency and their
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spectral standard deviations in octaves and not in the time domain (Cohen, 2019; Tallon-
Baudry et al., 1996).

Details of the implementation and configuration choices are provided below (Feature
engineering - Covariance estimation — Morlet Wavelets). Spectral power is provided in
units of uV?/oct, which corresponds to uV?/log,(Hz). The frequency axis is scaled
logarithmically but is labeled in Hz for better readability.

For analyzing local frequency effects, we defined groups of 5 wavelets centered
spanning the range of f - 27%5 to f - 2%5 Hz around the center frequency, hence, covering
1 octave.

For comparison against classical approaches based on bandpass filtering in
frequency-bands (Figure 1 - supplement 1), we used the band definitions provided by the
IPEG (Jobert et al., 2012), see also Table 1.

Machine learning

To improve the generality of our study, we focused state-of-the-art ML methods for EEG
that avoid hand-crafted features motivated by specific theories, clinical populations or
cognitive processes (Engemann et al., 2018; Gemein et al., 2020; Zhdanov et al., 2020).

Spatial filtering and Riemannian-geometry (Dahne et al., 2014; de Cheveigné & Parra,
2014; Grosse-Wentrup & Buss, 2008; Koles et al., 1990; Roijendijk et al., 2016) enable a
general approach that can adapt to specific applications. These methods focus on the
between-electrodes covariance matrix as input and therefore can even avoid the pre-
specified selection of electrodes or frequencies by algorithmically weighting all inputs (Ang
et al., 2008; Sabbagh et al., 2020) through the objective function of the prediction model.
They are, therefore, well-suited for isolating the overlapping patterns of distinct EEG-signal
generators.

Deep learning (DL) approaches such as convolutional neural networks push this
reasoning one step further by not only learning predictive combinations of electrodes but
also learning relevant temporal filters (which in turn implies resonance to specific
frequencies) from EEG signals (Jing et al., 2020; Schirrmeister et al., 2017; Tveit et al.,
2023).

Importantly, results from statistical machine learning in EEG (Sabbagh et al., 2019,
2020) allowed us to map our research question (how EEG-based prediction models are

affected by non-brain signals) onto formal model hypotheses, which we developed below.
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Generative latent factor model and CNS-biomarker model

Generative model of EEG

The brain contains billions of neurons whose synchronization could produce EEG signals.
Yet, their activity remains hidden to the observer and by constraints of linear systems, one
cannot distinguish between more linearly independent brain sources of EEG activity than
one has EEG channels. Instead of using individual brain anatomy conveyed by MRI scans,
machine learning techniques for EEG approach isolation of brain sources statistically
through the construct of statistical sources also known as latent factors.

We extend the model described in (Sabbagh et al, 2020), which assumes that the EEG
signal x;(t) € R?, recorded on the i*" subject with P electrodes, results from the mixing of
brain sources, to describe the fact that x;(t) actually results from the mixing of CNS
sources that we denote s¢;(t) € R 9 and additional peripheral sources, sP;(t) € R%. The

resulting generative model of the observed EEG can be expressed as
x;(t) = A°s(¢t) + APsPi(t) + A"Gi(D) (1)

where A° € RPX%, AP ¢ RP*% A" € RPX(P-CQ~Cpldenote the mixing matrices
associated with the different signal generators and {; the noise source (not correlated with
the outcome).

Further assuming that the subspaces of the CNS, peripheral sources and noise are not
mixed, we obtain A= [A°AP,A"] € R"*" the mixing matrix and 7T, (t)=
[s€i(t),sP;(t),¢;(t)] € R the column vector of sources plus noise, we can then use the
compact matrix notation x;(t) = An;(t).

From this notation, when isolating the CNS and peripheral sources from the noise, we can

write A° = [A%, AP] = [aTy,,a  g.40,] € RP*Q+@) 3, T being the k" a column of the

mixing matrix and S; = [S€¢;,SP;] € R (@*%) the column vector of sources.

As a result, our statistical modeling can only resolve P linearly independent sources,
which, obviously, stands in contrast with the complexity of the true biological brain. Of note,
this constraint is shared with linear inverse solution techniques such as minimum norm

estimates (Gross et al., 2001; Hamalainen & limoniemi, 1994; Van Veen et al., 1997) or
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beamforming (Gross et al., 2001; Hamalainen & limoniemi, 1994; Van Veen et al., 1997),
which project the limited number of linearly independent vectors onto a predefined set of

thousands of MRI-defined dipole locations.

Generative model of outcome and biomarker model

Next we want to formalize outcome measures (including e.g. age, sex, cognitive
performance, presence of pathologies, CNS-active drugs) that can modulate source

activity and can therefore be predicted from EEG signals.

Denoting x;(t) € R the EEG time series recorded using P electrodes, and X; € RP*T the
EEG recording of subject i with T time samples. We can now conceptualize the outcome
of interest y; as a function of the sources g(S;) and some additive noise ¢; (eq. 2). A
common assumption for g is a linear function (weighted sum) of the log of the power of
sources S; (Sabbagh et al., 2020)

For defining prediction algorithms, it will be convenient to decompose this function into two

parts g’ and h which reconstruct the (power of) sources from the EEG signal (eq 3).

yvi =49@6) ¢ (2)

% =9 °hX) 3)

=g o [mX), - he(X)]

Where:
S; € R©@* @)XT: The vector of statistical sources (CNS and peripheral sources).
g: R@cH@)*T _, R is the true but unknown function generating the outcome y; .
X; € RP*T: The EEG recording signal of the subject i, with T time samples.
hs: Function extracting features from the signal in the frequency range defined by
the ft" element of a set of filters that isolate frequencies of interest. This function,
and the dimension of the output space will depend on the method used, see

prediction algorithms for more details on the different methods. The function is
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constructed in a way to approximate statistical sources or equipped with
invariances to mitigate distorting field spread produced by A®.

g': RFXQc+)XT _ Ris a function that concatenates the feature vectors and maps
them to the outcome. It is based on the estimated representation of the source.
This mapping can be a linear function that can be estimated with ridge regression

or a more complex nonlinear function.

Feature engineering

Raw

The ShallowNet model operates directly on the epoched (10 second windows)
multidimensional time series data (see also section Preprocessing). Here we refer to this
as “raw” to indicate that there is no explicit feature extraction step. This is not to be
confused with the preprocessing state of the data. Thus, when we refer to the “raw”

features, it does not mean that the data has not been preprocessed.

Covariance estimation (bandpass filter)

The other baseline models used between-channel covariance matrices estimated from
different EEG frequencies as their inputs.

IPEG frequency bands. The classical approach explored in previous work applies
bandpass filtering before estimating the covariance matrix (Engemann et al., 2022;
Sabbagh et al., 2020). We used the IPEG frequency band definitions designed for
pharmacological EEG studies (Jobert et al., 2012).

Table 1 - IPEG frequency bands

Name delta theta alphai alphaz beta1 beta: betas gamma
Hz 1- 6 - 8.5- 10.5 - 12.8 - 18.5 - 21 - 30 -
6 8.5 10.5 12.5 18.5 21 30 40

After bandpass filtering X; in frequency f we obtain X;”. The empirical covariance matrix

in that frequency is then given by
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¢/ = x/x /T (4)

To improve conditioning of the covariance matrices (Engemann & Gramfort, 2015), and for
consistency with previous benchmarks, we used Oracle Approximating Shrinkage (OAS)
which adaptively downweighs the off-diagonal terms based on the number of samples and
number of variables used (Y. Chen et al., 2010). As the covariance was computed over
the entire recording, the OAS estimate can be expected to be very close to the empirical

covariance.

Covariance estimation (Morlet wavelets).

Alternatively, we used convolutions with Morelet wavelets (Morlet et al., 1982) constructed

as complex sinusoids windowed by a Gaussian window:
w! (t) = (o:Vm) ™ exp (—t?/ 20,%) exp (—i2m ft) (5)

Morlet wavelets have the convenient property that the gaussian windowing in time, with a
standard deviation g;, translates into a gaussian smoothing in frequency, with standard
deviation oy = (2mo,)™. We used the frequency-domain parametrization described in
previous work (Hipp et al., 2012) while implementing a logarithmically spaced grid of
frequencies ranging from 1 - 64Hz. The spectral smoothing was set to oy = 0.25 octaves.
The spacing of wavelets was set to half the standard deviation, i.e. 0.125 octaves. This
resulted in 49 wavelets. To obtain spectral spectral estimates, we convolved the signal X;

with the complex-valued wavelets w” (t).
X i(t) = xi(8) = w/(0) (6)

The kernels widths were trimmed to 5 standard deviations. For computational efficiency,
convolution results were derived at a lower temporal resolution than the original signals,

i.e., steps of 1/4 of the kernel width. The covariance was then derived as:
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ci=x/XHMc (7)

where (X;/)" is the conjugate transpose and c¢ is a normalizing constant number
representing the number of elements of the convolution result composed of the number
valid convolutions defined by the availability of good data segments multiplied by the
squared £, norm of the wavelet w/ (t), which helps estimating the effective sample size T.
The classical EEG log power-spectral density (PSD) was then derived from the diagonal

of the covariance matrix as

log PSD; = log [diag(C',)", -, diag(C’)"] (8)

Note that this is identical with the log diagonal vectorization used for predictive modeling,
which is detailed below.

To improve the conditioning of covariance matrices across different degrees of
preprocessing and to ensure that the matrices were positive semidefinite, we applied
algorithmic correction to all covariances (Higham, 1988) with a regularization value of 10°

1% and covariances scaled in volts squared (V?).

Prediction algorithms

Our benchmark includes four covariance-based methods (upper, log diagonal, SPoC, and
Riemann) and one Neural Network architecture (ShallowNet). All of the covariance-based
methods consist of a frequency-wise transformation stage followed by a ridge regression
(or classification) stage. The regression (or classification) stage is the same across all
models such that they only differ in the transformation of the covariance matrix features.

The covariance-based algorithms follow previous work (Sabbagh et al., 2019, 2020)
and provide useful baselines as they enjoy guarantees under different assumptions about
the underlying regression function and degree of signal mixing and can lead to competitive
performance in different settings (Table 2). Observed differences in prediction
performance between these models can, therefore, be practically used to guide
interpretation of the underlying regression function and data-generating scenario.

For covariance-based models, we used the ridge regression (Hoerl & Kennard, 1970)

and ridge classification as supervised learning algorithms. Ridge classification uses ridge
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regression to predict class labels {-1, 1}, such that the decision is obtained from the sign
of the prediction. The hyperparameter a was controlled through generalized cross-
validation (Golub & von Matt, 1997) considering a logarithmic grid of 100 candidate values
between 1 x 107> and 1 x 10'°. This configuration was adapted from previous work
(Engemann et al., 2022; Sabbagh et al., 2020). We preferred ridge classification over
logistic regression as a probabilistic treatment of predictions was not necessary for this
study and hyperparameter selection for ridge classification was fast, hence, well suited for

repeated large-scale benchmarking.

Table 2. Models and implied signal-generating hypotheses.

Upper (eq. 9) outcome linear in source power regardless of source mixing

|
log diagonal (eq. 10) outcome linear in log of source power in absence of source mixing

SPoC (eq. 11)

outcome linear in log of source power regardless of source mixing
1

Riemann (eq. 12)

Upper

The upper model (Sabbagh et al., 2019) vectorizes the upper triangular coefficients of the
covariance matrices. This model is thus consistent with a linear relationship between the

power and interaction coefficients and the target variable.

S RPXP — RP(P+1)/2

C’; ~ upper (C)) 9)

Where upper: RP*? — RP(P+1)/2 js an operator that takes as a vector the upper
triangular coefficients of a matrix with off-diagonal terms weighed by a factor v2 so that
the L2 norm of the vector is equal to the Frobenius norm of the matrix. Of note, this leads
to a statistically consistent regression model if no nonlinearity is assumed and the outcome

is linear in the source power and not its log (Sabbagh et al., 2019, 2020).
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Log Diagonal
The log diagonal model (Sabbagh et al., 2020) extracts the diagonal elements of the

covariance matrices (corresponding to the average signal power of each channel) and
applies a log transform. This is consistent with a logarithmic relationship between signal
power and the target variable. Of note, this leads to a statistically inconsistent regression

model if linear mixing is applied (Sabbagh et al., 2019, 2020).

hf . ]RPXP — RP

C/; »logdiag(C’)) (10)

SPoC

The Source Power Comodulation (SPoC) mode (Dahne et al., 2014) aims to learn spatial
filters in order to demix the signal into components with high correlation to the target
variable and can be thought of as a regression version of Common Spatial Patterns (Koles
et al., 1990). This is similar to Blind Source Separation (BSS) approaches like ICA, where
the signal is mapped from sensor space to source space, but special in the sense that the
target variable is directly used in the optimization process to maximize correlations
between the resulting components and the target variable. This leads to a statistically
consistent regression model if the outcome is assumed to be linear in the log of the source

power,

h/:RPXP — RO *Qc

Cif ~ log diag (Wfspoccif W/ Tep0c) s Wispoc € R(@ +Qc)xP (11)

Where W/, is obtained from solving the generalized eigenvalue problem to find the

.
filters W = [wy7,--,w, "] that maximize M‘;/cc.yv:'; with C, denoting the covariances

averaged weighted by the outcome and C the arithmetic mean of all covariances (D&ahne
et al., 2014).
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Riemann

As an alternative to SPoC, the Riemann model projects the covariances to a Riemannian
embedding space, motivated by their positive definite nature. In previous work, this has
been observed to yield high robustness to noise and good model performance even with
minimally preprocessed data. This leads to a statistically consistent regression model if

the outcome is assumed to be linear in the log of the source power.

hf . ]RPXP — RP (P+1)/2 (12)

C;/ ~ upper log (Cf F -2 ¢/¢f ~1/7),

with C/ the geometric mean over the subjects.

Notably, the Riemann model assumes full-rank inputs. In particular, when rank-reducing
preprocessing approaches such as ICA are employed, one should therefore be careful not
to violate this assumption. Here we ensured that the input has full rank after ICA
preprocessing by applying Principal Component Analysis (PCA) as suggested by
(Sabbagh et al., 2019) by choosing the smallest common rank value, which we obtained
from analysis of the eigenvalues of individual covariances.

Of note, it is useful to study both SPoC and Riemann models as — despite expressing
the same signal-generating hypothesis — can behave differently in the face of model
violations and noise (Sabbagh et al., 2019, 2020). The Riemann model tends to be more
robust in the face of noise and model violations. On the other hand, the SPoC model is
computationally lighter and readily provides compact visualizations of its spatial patterns
(Dahne et al., 2014; Mellot et al., 2023), which, taken together, facilitates model

interpretation.

ShallowNet

The ShallowNet architecture proposed in (Schirrmeister et al., 2017) is a convolutional
neural network architecture inspired by the Filter Bank Common Spatial Patterns (FBCSP)
algorithm (Ang et al., 2008), which can be seen as the classification version of SPoC. The

architecture presented by (Schirrmeister et al., 2017) consists of the following operations.

1. Temporal convolution
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Spatial convolution
Square
Mean pooling

Logarithm

A e

Linear regression / classification

And directly maps the raw signal X; € R *T to the outcome. The parameters of each layer
are described in the original publication. We adapted the ShallowNet as a regression
model based on a previous publication (Engemann et al., 2022).

Of note, while a proof has never been formally undertaken to the best of our knowledge,
the ShallowNet expresses the same types of operations as the SPoC model. We can
therefore assume that the ShallowNet can learn the same regression function as the SPoC
model and can, therefore be statistically consistent for the same scenario. As the model
has more trainable parameters and can learn the temporal convolution filters, its
expressive capacity is higher, hence, it can cover additional regression functions that the

SPoC model cannot capture.

Approximate subspace regression and classification

When exploring the relative contribution of peripheral non-brain signals the previous
models are used with alternative data inputs to the different feature extractors h/ . These
are obtained by applying data selection or processing so that the resulting input can be
interpretable as an approximation of the subspaces of interest. In fact, applying the
theoretical results from (Absil et al., 2009; Sabbagh et al., 2019), if predictive latent factors
related to peripheral body signals are fully silenced through low-rank projection, the
remaining subspace leads to a consistent prediction model of brain activity predicting from
covariances. The shape depends on the approximation method but the general form is
X;¢ € RP*T for the CNS subspace

yi =g9(8%) +e (13)

% =g °hX) (14)

= g, ° [hl(xic‘l)J Yy hF(XiC'F)]'
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This can be inverted, and the same reasoning can be used to define non-brain source
models to estimate the relationship between peripheral signals and the outcome. In this

case we have X;” € R”"*T for the subspace of peripheral body signals.

yi =g9(8P) +e (15)

% =g -hXh (16)

= g, ° [hl (Xip’l)' Tty hF (Xip'f)]

We used two different approaches to assess the predictive value of physiological (non-
brain) signals: (1) the signal reconstructions from ICA artifact subspaces and (2) additional

auxiliary channels that were recorded along with the EEG in the TDBRAIN dataset.

Subspace regression & classification with ICA

The artifact ICA subspaces provide a complementary source of physiological information
that can be extracted from any dataset. First, ICA is used to decompose the data into
source components. Next, the components are categorized into brain sources and different
classes of artifacts. This step can be automated with a tool like ICLabel (Pion-Tonachini et
al., 2019). Finally, the signal corresponding to the artifact subspaces can be reconstructed.
For eqs. 13-14, X;° is given by reconstructing the EEG from the subspace of ICA
components that were labeled as brain-related and for egs. 14-16, X;? is given by the

subspace of ICA components labeled as artifact.

Compared to the analysis of auxiliary channels, which requires the acquisition of additional
information during the recording, this approach is more flexible and allows us to also

extract auxiliary information for the TUAB dataset.

Subspace regression & classification from auxiliary-channels

As described in the Dataset section, the TDBRAIN dataset contains auxiliary channels in
addition to the EEG channels. These channels are designed to record physiological signals

including eye movements, (jaw) muscle activity, and cardiac activity.
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For eq. (12), X;¢ is given by reconstructing the EEG after performing autoreject and for eq.

(13), X;?" is given by the P’ = 7 auxiliary channels.

Statistical analyses

Model performance

To estimate and compare generalization performance, we performed 10-fold cross-
validation with reshuffling using a fixed random seed. For the TDBRAIN dataset, which
comes with a high cardinality of psychiatric descriptors and diagnoses, we stratified the
data to approximately equalize the proportion of psychiatric indications across the cross-
validation splits. Of note this only supports qualitative comparisons and cannot be readily
converted into hypothesis tests as cross-validation splits are not statistically independent.
We practically assessed the chance level by all cross-validation splits exceeding an R? of
0 as this score quantifies the improvement over the mean predictor based on the training

data.

Hypothesis testing

To compare types of features or degrees of processing across models and datasets, we
treated the cross-validation estimates for a given model as a random variable. To obtain
uncertainty estimates of pairwise differences in cross-validation performance, we
conducted bootstrap resampling with 9999 iterations using the percentile method. We
further computed an empirical null-distribution through permutation testing with 9999
iterations. For both analyses, we used the bootstrap and permutation_test functions from
scipy (Virtanen et al., 2020).

Software

All analyses were performed using Python 3.9.17. M/EEG data processing, BIDS
conversion and subsequent data analysis steps were carried out with the MNE-Python
software (v1.5, Gramfort et al., 2013, 2014), the MNE-BIDS package (v0.13, Appelhoff et
al., 2019) and Picard (v0.7, Ablin et al., 2018) for an efficient implementation of FastICA.
For artifact removal the Autoreject package (v0.4.2, Jas et al., 2017) and MNE-ICLabel
(v0.4, Li et al., 2022) were used. The joblib (Varoquaux & Grisel, n.d.) library (v1.2) was

used for parallel processing.
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For feature computation, the PyRiemann (v0.4, Barachant, n.d.) and coffeine (v0.3,
Sabbagh et al., 2020) libraries were used. Analyses were composed in custom scripts and
library functions based on the Scientific Python Stack with NumPy (v1.24.4, Harris et al.,
2020), SciPy (v1.9.1, Virtanen et al., 2020), pandas (v.2.0.3, McKinney & Others, 2011)
and polars (v0.18.15).

For classical machine learning, models were implemented using scikit-learn (v1.3.0,
(Pedregosa et al., 2011). Deep learning was implemented using the PyTorch (Paszke et
al., 2019) and braindecode (Schirrmeister et al., 2017) packages.

All visualizations were performed using matplotlib (v3.7.1). Figure 1A was created with

BioRender.com.
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