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ABSTRACT

The colour bimodality of galaxies provides an empirical basis for theories of galaxy evolution. However, the balance of processes

that begets this bimodality has not yet been constrained. A more detailed view of the galaxy population is needed, which we

achieve in this paper by using unsupervised machine learning to combine multidimensional data at two different epochs. We

aim to understand the cosmic evolution of galaxy subpopulations by uncovering substructures within the colour bimodality.

We choose a clustering algorithm that models clusters using only the most discriminative data available, and apply it to two

galaxy samples: one from the second edition of the GALEX-SDSS-WISE Legacy Catalogue (GSWLC-2; z ∼ 0.06), and

the other from the VIMOS Public Extragalactic Redshift Survey (VIPERS; z ∼ 0.65). We cluster within a nine-dimensional

feature space defined purely by rest-frame ultraviolet-through-near-infrared colours. Both samples are similarly partitioned

into seven clusters, breaking down into four of mostly star-forming galaxies (including the vast majority of green valley

galaxies) and three of mostly passive galaxies. The separation between these two families of clusters suggests differences

in the evolution of their galaxies, and that these differences are strongly expressed in their colours alone. The samples are

closely related, with star-forming/green-valley clusters at both epochs forming morphological sequences, capturing the gradual

internally driven growth of galaxy bulges. At high stellar masses, this growth is linked with quenching. However, it is only in

our low-redshift sample that additional, environmental processes appear to be involved in the evolution of low-mass passive

galaxies.

Key words: methods: statistical – galaxies: evolution – galaxies: general – galaxies: star formation – galaxies: statistics –

galaxies: stellar content.

1 IN T RO D U C T I O N

The composition of a galaxy is subject to the influence of an

ever-changing balance of astrophysical and cosmological processes

acting upon it. Hence, chronicling of the evolutionary history of

a galaxy requires a precise knowledge of its present contents. A

galaxy expresses its contents (stars, gas, dust, etc.) in its spectral

energy distribution (SED). Therefore, inventory of the composition

of a galaxy requires measurement of the radiation that it emits as a

� E-mail: seb.turne@gmail.com (ST); msiudek at ifae.es (MS)

function of wavelength (Conroy 2013). It is impractical to measure

full galaxy spectra that span large wavelength ranges (e.g. ultraviolet-

through-infrared), especially for the large number of galaxies needed

for a robust statistical study of galaxy evolution. Instead, their SEDs

must be inferred from curtailed, summary measurements.

Colours are the simplest such measurements. Optical colours have

been used to probe the contents of galaxies since the infancy of

extragalactic astrophysics (Roberts 1963). Early studies matched

sums of individual stellar spectra (i.e. synthetic composite spectra) to

the observed optical colours of galaxies in order to discern their stellar

content (e.g. Spinrad 1962; Spinrad & Taylor 1971; Faber 1972).
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This method was superseded by stellar population synthesis (SPS),

which uses theoretical models of stellar evolution to set astrophysical

constraints upon these synthetic composite spectra (e.g. Bruzual &

Charlot 2003; Maraston 2005). The advancement of the scope of

SPS out to ultraviolet wavelengths and the incorporation of infrared

emission models has facilitated the estimation of the full ultraviolet-

through-infrared SEDs of galaxies from their observed colours (e.g.

Ilbert et al. 2006; Da Cunha, Charlot & Elbaz 2008; Boquien et al.

2019). SEDs spanning these wavelength regimes are governed in

their shapes chiefly by stellar emission, and by attenuation (in the

ultraviolet and optical) and re-emission (in the infrared) of stellar

emission by interstellar dust.

The discovery of a bimodality in the two-dimensional optical

colour distribution of galaxies (Strateva et al. 2001; Baldry et al.

2004) has begotten a simple empirical paradigm of galaxy evolution.

Galaxies generally go from being blue and star-forming to being red

and passive. This change in their colours (and quenching of their

star formation) is accompanied for the most part by a change in

their morphologies from disc- (‘late-type’) to spheroid-dominated

(‘early-type’) and an increase in their local environmental densities

(Baldry et al. 2006; Bamford et al. 2009). A variety of processes

have been proposed as drivers of galaxy evolution (see reviews

by Kormendy & Kennicutt 2004 and Boselli & Gavazzi 2006)

but their interplay is poorly understood. Furthermore, exceptions

to this paradigm (Schawinski et al. 2009; Masters et al. 2010)

complicate the issue. Studies aiming to disentangle the interplay

of evolutionary processes have focused on galaxies between the two

peaks of the colour bimodality (Fritz et al. 2014; Schawinski et al.

2014; Smethurst et al. 2015; Moutard et al. 2016b; Gu et al. 2018;

Manzoni et al. 2021; Krywult et al., in preparation), a region called

the ‘green valley’ (Martin et al. 2007). As galaxies under the direct

influence of evolutionary processes, they are ideally poised to enable

an understanding of how galaxies transition from blue to red.

Bimodalities of galaxies have since also been observed in colours

involving ultraviolet and near-infrared magnitudes (Wyder et al.

2007; Williams et al. 2009; Arnouts et al. 2013). Different colours,

though, yield slightly different bimodalities; for example, galaxies

occupying the blue peak of the g − r bimodality may instead occupy

the green valley of the NUV − r bimodality (Salim 2014), because

optical–optical colours probe star formation over longer time-scales

than ultraviolet-optical colours do. Hence it is clear that, for a

complete description of the evolution of galaxies in the context

of the bimodality and the green valley, several colours spanning

the ultraviolet-through-near-infrared wavelength regime must be

considered simultaneously. Machine learning techniques, which can

parse multiple features at once, are well suited to the task. Ex-

ploration of the multidimensional ultraviolet-through-near-infrared

colour distribution of galaxies may overcome degeneracies that exist

in two-dimensional colour distributions, uncover substructures to the

established bimodality, and reveal the extent to which the ultraviolet-

through-near-infrared colours of galaxies express their evolution and

assembly histories.

The adoption of machine learning techniques within astronomy

and astrophysics was primarily a response to the enormous data

volumes anticipated from forthcoming surveys (e.g. 20 TB per

night from the Legacy Survey of Space and Time; Ivezić et al.

2019). While fulfilling the demand for automated data analysis

methods, these techniques also invite a renewed examination of

our understanding of astrophysics due to their ability to distill

interpretable models from complex, multidimensional input data that

may be difficult to fully visualize. Supervised techniques are useful

for mapping existing domain knowledge on to new data. A supervised

classification algorithm, for example, may assign labels to previously

unseen observations after being trained on pre-labelled observations.

Unsupervised techniques, on the other hand, demonstrate substantial

promise for exploration and discovery because they are less reliant

on prior knowledge than supervised techniques. An unsupervised

clustering algorithm, for example, assigns labels to observations in

accordance with their intrinsic similarity to one another (i.e. the

distances between observations in terms of the features used to

represent them). Unsupervised techniques, then, construct models

that are driven purely by the structure of input data, and require

no training. They may therefore be said to express the ‘natural’

structure of the input data rather than expressing structures imposed

upon it by assumptions that are explicitly built into the use of

supervised techniques. The use of unsupervised techniques does,

though, incorporate implicit assumptions, and the precise definition

of similarity can vary between techniques. Ensuring the astrophysical

utility of these models hence requires carefully considered choices

of algorithm and features.

A growing literature has emerged in recent years, reporting the

results of the application of unsupervised techniques to various

astrophysical contexts (see Baron 2019 and Ball & Brunner 2010

for comprehensive reviews). Clustering has been used, for example,

to partition galaxies on the basis of their pixel data (Hocking et al.

2017, 2018; Martin et al. 2020), their spectra (Sánchez Almeida et al.

2010; de Souza et al. 2017), their SEDs (Siudek et al. 2018a, b), and

their derived astrophysical features (Barchi et al. 2016; Turner et al.

2019). Dimensionality reduction, which can extract important or dis-

criminative information from large ensembles of input features, has

been used, for example, to produce simplified projections of galaxy

samples based on their multiwavelength photometry (Steinhardt et al.

2020) and their estimated SEDs (Davidzon et al. 2019; Hemmati et al.

2019), and to classify their spectra (Yip et al. 2004; Marchetti et al.

2013).

In this paper, we describe work that builds on that of Siudek

et al. (2018a, b). They applied a clustering algorithm to partition

galaxies observed by the VIMOS Public Extragalactic Redshift

Survey (VIPERS; Scodeggio et al. 2018). They chose the Fisher

Expectation-Maximization (FEM) algorithm, which implements a

clustering approach called the ‘Discriminative Latent Mixture’

(DLM) model. The algorithm incorporates dimensionality reduc-

tion as it iterates rather than as a part of any preparation of the

input data ahead of clustering. This ensures that improvements to

the estimated parameters of the model are adaptive, and that the

clustering uses only the most important information available from

the input features. They aimed to establish the ability of FEM to

determine a naturally defined, astrophysically meaningful partition

in a feature space of high dimensionality (i.e. containing more

potentially discriminative information than lower dimensionalities).

Their feature space was defined by spectroscopic redshifts and 12

rest-frame ultraviolet-through-near-infrared colours. The 12 clusters

that they determined revealed substructure to the established colour

bimodality of galaxies, distinguishing subpopulations of galaxies that

overlapped in two-dimensional colour distributions. In addition, their

clusters correlated with a variety of astrophysical features including

stellar masses, morphologies, and emission-line strengths.

We adapt the approach of Siudek et al. (2018a, b) to compare

samples of galaxies at two different redshifts. Our aim is to use

clustering to characterize the structures of the samples in a common

feature space of high dimensionality, to examine similarities and

differences between these structures at the two cosmic epochs, and to

interpret these similarities and differences in the context of theories

of galaxy evolution. While each cluster will constitute a class of
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galaxies that are intrinsically similar to one another, connections

between clusters will chart the evolution of galaxies through the

feature space. Hence, we also aim to establish how strongly the

evolutionary histories of galaxies, which are ordinarily inferred

using a combination of various types of features (e.g. photometric,

spectroscopic, morphological), are encoded in just their ultraviolet-

through-infrared colours. Our sample of galaxies at low redshift (z ∼

0.06) is drawn from the second edition of the GALEX-SDSS-WISE

Legacy Catalogue (GSWLC-2; Salim, Boquien & Lee 2018), and

our sample of galaxies at intermediate redshift (z ∼ 0.65) is based on

the VIPERS sample of Siudek et al. (2018b). We prepare our samples

carefully to ensure a fair comparison of galaxies from different

cosmic epochs and different surveys, and to mitigate methodological

influences on the clustering outcomes. We also adjust the input

features, defining nine neighbouring rest-frame colours that, together,

represent the shapes of the ultraviolet-through-near-infrared SEDs

of the galaxies in our samples, and thus enable insight into their

evolution.

The remainder of this paper proceeds as follows. In Section 2, we

introduce our samples, the data we use to represent and analyse

the galaxies that they contain (including the estimation of their

SEDs), and the measures that we take to ensure a fair comparison

between them. In Section 3, we explain the DLM model and howFEM

algorithm implements it, and we describe the feature space within

which we cluster our samples. In Section 4, we present the outcomes

of the clustering, and in Section 5, we offer our interpretation thereof.

Finally, in Section 6, we summarize, make concluding statements,

and suggest future directions for our work. Where required, we

assume a (H0, �m, ��) = (70 km s−1 Mpc−1, 0.3, 0.7) cosmology

for our calculations.

2 DATA

2.1 GALEX-SDSS-WISE Legacy Catalogue 2

The second edition of the GALEX-SDSS-WISE Legacy Catalogue

(GSWLC-2; Salim et al. 2016, 2018) was assembled using Data

Release 10 (DR10; Ahn et al. 2014) of the Sloan Digital Sky Survey

(SDSS; York et al. 2000). GSWLC-2 aimed to characterize the star

formation activity and dust content of galaxies in the local Universe.

It contains all SDSS DR10 galaxies that meet the following criteria:

(i) have apparent r-band Petrosian magnitudes <18,

(ii) have spectroscopic redshifts within the range 0.01 < z < 0.3,

(iii) lie within the Galaxy Evolution Explorer (GALEX; Martin

et al. 2005; Morrissey et al. 2007) observation footprint, whether

they were detected by GALEX or not.

The lower redshift limit was imposed to exclude foreground stars,

and particularly close galaxies with potentially unreliable photometry

and/or distance estimates. Retaining galaxies that were not actually

detected by GALEX itself preserves the optical selection of SDSS. In

all, these criteria select 659 229 SDSS DR10 galaxies.

u-, g-, r-, i-, and z-band optical photometry for galaxies in

GSWLC-2 was drawn from SDSS. modelMag magnitudes, which

are based on profile fits, were selected due to the accuracy of their

colours. These modelMagmagnitudes were corrected for extinction

due to Milky Way dust using the empirical Yuan, Liu & Xiang (2013)

coefficients.

The SDSS optical photometry was supplemented with near- (NUV)

and far-ultraviolet (FUV) photometry from GALEX’s final data

release (GR6/7). GALEX conducted surveys at varying depths: an

All-sky Imaging Survey (which observed several targets per orbit), a

Medium Imaging Survey (one target per orbit), and a Deep Imaging

Survey (several orbits per target). These surveys were nested, such

that it is possible for a galaxy to have been observed at more than one

depth (although an observation of a galaxy at a given depth does not

guarantee an observation of the same galaxy at shallower depths).

Here, we use the UV photometry for galaxies in GSWLC-2 based on

the deepest available observation of each galaxy (catalogue GSWLC-

X2). Salim et al. (2016) applied corrections to mitigate systematic

offsets between the SDSS and GALEX photometry, which arose

mostly due to the blending of sources in GALEX’s low-resolution

images. Peek & Schiminovich (2013) corrections for extinction

due to Milky Way dust were applied to the UV photometry. UV

photometry in at least one of GALEX’s two bands (almost always

NUV if just one) is available for 65 per cent of GSWLC-2 galaxies,

and for 80 per cent of the galaxies in our final GSWLC-2 sample

(Section 2.1.2).

Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010)

observations at 12 and 2 µm (channels W3 and W4, respectively)

were used to provide mid-infrared (MIR) photometry for GSWLC-

2 galaxies. Salim et al. (2018) opted for unWISE (Lang, Hogg &

Schlegel 2016) forced photometry, which was based directly on

SDSS source positions and profiles. MIR photometry in at least one

of channels W3 and W4 is available for 78 per cent of GSWLC-2

galaxies, and for 87 per cent of the galaxies in our final GSWLC-2

sample (Section 2.1.2).

2.1.1 GSWLC-2 rest-frame SEDs

The rest-frame SEDs of GSWLC-2 galaxies were estimated using

the Code Investigating GALaxy Emission (CIGALE; Noll et al.

2009; Boquien et al. 2019). Synthetic spectra generated by CIGALE

were validated against the available observed UV-through-optical

photometry in order to constrain the SEDs. Details of this fitting

procedure are described at length in Salim et al. (2016, 2018); here,

we offer a brief summary.

Synthetic spectra were generated using Bruzual & Charlot (2003)

simple stellar population templates, based on a Chabrier (2003)

initial mass function and with metallicities of log10(Z) = −2.4,

−2.1, −1.7 (∼Z�), or −1.3. These templates were combined with

Myr-resolution star formation histories (SFHs) consisting of two

exponentially declining episodes of star formation, producing an old

and a young population. Absorption of stellar emission by dust was

implemented via a Noll et al. (2009) generalization of the Calzetti

et al. (2000) attenuation curve, modified to allow its slope to vary

and to add a UV bump (see section 3.4 of Salim et al. 2018).

The SED estimation was additionally constrained by the galaxies’

total IR luminosities (i.e. matching the energy absorbed by the dust

within galaxies with the energy it re-emits; see section 3.2 of Salim

et al. 2018). Total IR luminosities were derived from the 22µm WISE

photometry (if available, 12 µm if not) using Chary & Elbaz (2001)

templates, further corrected based on Herschel (Valiante et al. 2016)

IR photometry (see section 3.1 of Salim et al. 2018). The overall

quality of fit was measured by its reduced chi-squared value (χ2
r ).

Astrophysical features including rest-frame absolute magnitudes,

colour excesses [E(B − V)], stellar masses (M∗), stellar metallicities

(Z), mass-weighted stellar ages (MWSA), and specific star formation

rates [sSFR (SED)] were derived from the full ensemble of possible

synthetic spectra via a Bayesian approach (Salim et al. 2007). The

likelihood of the fit of each synthetic spectrum to the photometry of

each galaxy was used to generate a probability density function for

each feature, with the likelihood-weighted means of the functions

MNRAS 503, 3010–3031 (2021)
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being quoted as the best estimates of the features, and the likelihood-

weighted standard deviations as the errors.

2.1.2 Final low-redshift sample

Our final GSWLC-2 sample is subject to the following selections.

First, we only retain galaxies whose best-fitting CIGALE SEDs

produce χ2
r <= 11.07 (i.e. the mean plus two standard deviations

of the logarithmic GSWLC-2 distribution in χ2
r ), in order to omit

particularly poorly constrained fits. Spectroscopic redshifts are lim-

ited to the range 0.02 < z < 0.08, and stellar masses (as estimated

via Bayesian analysis of the synthetic CIGALE spectra) to >109.5 M�.

These two restrictions ensure completeness above the imposed stellar

mass limit. Finally, broad-line active galactic nuclei are removed by

asserting flag sed= 0. Our final GSWLC-2 sample has a median

redshift of 0.06 and contains 177 362 galaxies.

As additional, CIGALE-independent indicators of the stellar popu-

lations in GSWLC-2 galaxies, we invoke Brinchmann et al. (2004)

specific star formation rates [sSFR (ind.)] and 4000 Å break strengths

[D(4000)]. The SFRs sum two components: a spectroscopic fibre

SFR, and a photometric SFR outside the fibre, given by an optical

SED fit (Salim et al. 2007). The fibre SFR is given by either

a H α calibration (Charlot & Longhetti 2001) or, in the case of

spectra that have a contribution from an active galactic nucleus, a

D(4000)-based estimate (itself calibrated on the emission lines of

pure star-forming galaxies). These SFRs are then normalized by

photometrically determined stellar masses to give sSFR (ind.). The

time-scale probed by sSFR (ind.) lies between the 10 Myr time-scale

of the H α-calibrated fibre SFRs, and the 1 Gyr time-scale of optical

SED-based SFRs (Salim et al. 2016). The D(4000) measurements

apply to fibre region only. Both of these features are available for

97 per cent of the galaxies in our GSWLC-2 sample.

We obtain Sérsic indices (ng) and circularized half-light radii (R1/2)

for the galaxies in our GSWLC-2 sample from catalogues assembled

by Simard et al. (2011). Both were derived from fits of singular

Sérsic (1963, 1968) profiles to r-band images of galaxies in SDSS.

The Sérsic indices have minimum and maximum allowed values

of 0.5 and 8, respectively. Sérsic indices and half-light radii are

available for 96.2 per cent of the galaxies in our final GSWLC-2

sample. We also use Simard et al. (2011) r-band bulge-to-total ratios

(B/Tr) for these galaxies, which were based on fits consisting of two

components: a Sérsic bulge (fixed at an index of 4) and an exponential

disc. Local environmental densities, available for 92.1 per cent of our

GSWLC-2 galaxies, come from Baldry et al. (2006). They averaged

the surface densities of SDSS galaxies with respect to their fourth-

and fifth-nearest density-defining neighbour within 1000 km s−1

along the line of sight. We calculate local overdensities (δ) using

δ = (� − �̄)/�̄, where � is the local surface density and �̄ the

average surface density of the sample.

2.2 VIPERS

The VIMOS Public Extragalactic Redshift Survey (VIPERS; Garilli

et al. 2014; Guzzo et al. 2014; Scodeggio et al. 2018) aimed to

match the statistical fidelity of low-redshift surveys like SDSS, but at

intermediate redshifts (z ∼ 0.7). The survey was conducted using the

VIMOS spectrograph (Le Fèvre et al. 2003) of the European Southern

Observatory’s Very Large Telescope. Its targeting was based on the

Canada–France–Hawaii Telescope Legacy Survey Wide (CFHTLS-

Wide) photometric catalogue,1 with objects qualifying for VIPERS

if they had extinction-corrected i-band magnitudes iAB < 22.5. An

additional ugri colour cut was applied to remove low-redshift (z �

0.5) galaxies from the survey (Guzzo et al. 2014). PDR2, the second

and final public data release of VIPERS, comprises spectroscopy

for 97 414 objects (Scodeggio et al. 2018). 52 114 of these objects

(51 522 galaxies and 592 broad-line active galactic nuclei) have

‘secure’ (>99 per cent confidence) redshifts. This secure-redshift

sample was the subject of the Siudek et al. (2018b) study, and is the

basis of our present VIPERS sample.2

Photometry for this sample was taken from a catalogue prepared by

Moutard et al. (2016a). The CFHTLS-Wide photometric catalogue

(i.e. the basis of the targeting for VIPERS) provided optical photom-

etry for this sample in u∗, g, r, i, and z bands. Moutard et al. (2016a)

derived total magnitudes for the galaxies in this sample by rescaling

their isophotal magnitudes. These isophotal magnitudes were chosen

for the accuracy of their colours with a view to photometric redshift

estimation; this choice now benefits our SED estimation as well.

Like for our GSWLC-2 sample, UV photometry came from

GALEX. Moutard et al. (2016a) supplemented existing Deep Imaging

Survey observations of VIPERS galaxies with deep GALEX obser-

vations of their own in order to improve UV coverage within the

VIPERS footprint. Coverage is complete in the W1 field of VIPERS,

but not in the W4 field (see fig. 1 of Moutard et al. 2016a). UV

photometry was then measured using a Bayesian approach with the

u∗-band profiles of galaxies as priors (Conseil et al. 2011), which

mitigated the confusion of sources due to their blended UV profiles.

UV photometry in at least one of GALEX’s two bands (almost always

NUV if just one) is available for 52 per cent of galaxies in the Siudek

et al. (2018b) sample and in our final VIPERS sample (Section 2.2.2).

Near-infrared (NIR) Ks-band photometry came from a dedicated

CFHT WIRCam (Puget et al. 2004) follow-up survey of VIPERS

galaxies (Moutard et al. 2016a). This Ks-band photometry was vali-

dated against NIR photometry from the VISTA Deep Extragalactic

Observations (VIDEO) survey (Jarvis et al. 2013), exhibiting good

agreement. We also take VIDEO survey Z, Y, J, H, and Ks NIR

photometry for our sample where available (11 per cent of the

Siudek et al. 2018b sample, 10 per cent of our final VIPERS sample;

Section 2.2.2). CFHT Ks-band photometry is available for 91 per cent

of galaxies in the Siudek et al. (2018b) sample, and for 93 per cent

of galaxies in our final VIPERS sample (Section 2.2.2).

2.2.1 VIPERS rest-frame SEDs

The SEDs of VIPERS galaxies are estimated via a full fit of synthetic

CIGALE spectra to the available UV-through-NIR photometry. This

differs slightly from the method used for the GSWLC-2, whose NIR

SEDs were constrained not by their shapes but simply by their total IR

luminosities (Section 2.1.1). While we use the same stellar templates

(Bruzual & Charlot 2003, with Chabrier 2003 initial mass functions

and metallicities of 0.004, 0.008, 0.02, or 0.05) for VIPERS as were

used for GSWLC-2 , the SFHs are adjusted to reflect the change

in cosmic epoch between samples and to account for the possibility

1http://www.cfht.hawaii.edu/Science/CFHLS
2The use of these secure redshifts is recommended by Garilli et al. (2014)

and Scodeggio et al. (2018) for scientific analyses. Approximately 75 per cent

of all VIPERS galaxies within and throughout the redshift range of our

final VIPERS sample (see Section 2.2.2) have secure redshifts (see fig. 9 of

Scodeggio et al. 2018).
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of very recent bursts of star formation.3 Astrophysical features are

derived for VIPERS galaxies using the same Bayesian approach as

for GSWLC-2 galaxies (see Section 2.1.1).

2.2.2 Final intermediate-redshift sample

We make the following selections to yield our final VIPERS

sample. Galaxies are kept if the χ2
r of their best-fitting CIGALE

SED has a value less than or equal to the mean plus two standard

deviations (=18.85) of the overall logarithmic VIPERS distribution.

Spectroscopic redshifts are restricted to being within the range 0.5

< z < 0.8, balancing our intent to define a co-eval population of

galaxies against the need to keep the sample as large as possible.

Like our GSWLC-2 sample, stellar masses are limited to >109.5

M� with a view to mass completeness (though see Sections 4.4.2

and 5.2, where we discuss shortcomings). Broad-line active galactic

nuclei and serendipitous secondary spectral sources are removed

using zflag <10. Ultimately, this gives us a final VIPERS sample

consisting of 31 889 galaxies, with a median redshift of 0.65.

Emission-line SFRs, which are independent of our CIGALE SED

estimation, were calculated from the [O II] λ3727 fluxes of the

galaxies in our VIPERS sample using the calibration (which includes

empirical stellar-mass-based corrections) of Gilbank et al. (2010,

2011a, b). These [O II] λ3727 fluxes are available for 27 537 of the

galaxies in our VIPERS sample, and they probe short time-scales of

star formation (∼10 Myr). We normalize these [O II] SFRs by our

CIGALE stellar masses to yield specific star formation rates4 [sSFR

(ind.)]. D(4000) was measured from VIPERS spectra by Garilli et al.

(2014), using the same Balogh et al. (1999) method as was used

for SDSS (Brinchmann et al. 2004). Sérsic indices and circularized

half-light radii for the galaxies in our VIPERS sample are given

by Krywult et al. (2017), who fitted the i-band light distributions

of galaxies with single Sérsic (1963, 1968) profiles. These features

are available for 96.2 per cent of the galaxies in our final VIPERS

sample. We winsorize the Sérsic indices to values of 0.5 and 8 in order

to match our GSWLC-2 sample. The overdensities of 91.7 per cent

VIPERS galaxies were derived by Cucciati et al. (2017), based on

fifth-nearest neighbour surface densities.

3 C L U S T E R I N G M E T H O D

We apply the FEM algorithm, which estimates the parameters of

the DLM model. Bouveyron & Brunet (2012) offer full, rigorous,

mathematical derivations of both the DLM model and the FEM

algorithm in their paper; here, we offer brief summaries of the

model (Section 3.1), and of its implementation via the algorithm

(Section 3.2). In Section 3.3, we discuss some additional relevant

practicalities to the use of the model and algorithm, and in Section 3.4,

we describe the shared feature space within which we cluster our two

samples.

3Consequences of this adjustment are discussed in Section 4.4.2; the

properties of most VIPERS galaxies appear accurate, except for those a

subpopulation of passive VIPERS galaxies.
4Our use of stellar masses given by CIGALE means that these sSFR (ind.)

estimates are not entirely independent of CIGALE; however, we expect that

CIGALE’s stellar masses would be consistent with those estimated via other

methods, given that stellar mass estimates are generally quite robust (Bell &

de Jong 2001).

Figure 1. A simple demonstration of the principles behind subspace cluster-

ing. Here, a sample consisting of two clusters (represented by the two blue

ellipses) is represented in a two-dimensional full space defined by features

f1 and f2. Matrix M enables the transformation of the sample to a one-

dimensional subspace, defined by latent feature fl, in which the two clusters

are easily discriminated.

3.1 The DLM model

The DLM model is a clustering approach that incorporates dimen-

sionality reduction on the fly to determine a frugal fit to the structure

of an input sample, which is assumed to consist of k clusters.

Selection of the value of k is discussed in Section 3.3.

The key premise of the DLM model is thus: a sample represented in

a D-dimensional space that is defined by observed features actually

occupies an intrinsic d-dimensional subspace (d < D; the ‘empty

space phenomenon’; Scott & Thompson 1983) that is defined by

unobserved, latent features. Hence, the clustering structure of the

sample should be fitted in this intrinsic subspace.

The subspace has two important properties in the context of

the DLM model. First, of all possible d-dimensional subspaces,

it is the one that best discriminates the k clusters in the sample.

The model assumes 1 ≤ d ≤ k − 1: that k clusters may be

distinguished in k − 1 dimensions or fewer (see Section 3.3 for further

explanation). Secondly, the subspace is linearly related to the full D-

dimensional space, such that the unobserved, latent features are linear

combinations of the observed features. Hence there exists a matrix M,

common to all of the k clusters, that enables the transformation of the

sample between the full space and the subspace. This transformation

matrix is constrained by the condition that the basis vectors of the

subspace must be orthonormal. Estimation of the transformation

matrix M is explained in Section 3.2. Selection of the value of d is

explained in Section 3.3. Fig. 1 demonstrates these two important

properties of the subspace.

The DLM model assumes that the sample is distributed among a

mixture of k Gaussian density functions within the discriminative

latent subspace. The functions, each of which corresponds to a

cluster, are defined by three parameters: a mean vector (μk), a

covariance matrix (�k), and a scalar relative mixture proportion (π k).

The matrix M enables the transformation of these parameters back

to the full space. For the covariances, this includes the addition of

Gaussian ‘noise’ (δk; unique to each of the clusters), which is defined

as non-discriminative structure that exists in the full space but not in

the subspace. While �k captures the cluster covariances inside the

discriminative latent subspace, δk captures the cluster covariances

outside the subspace. Full space covariances are the sum of both.

Estimation of the cluster means, covariances, and noise terms is

discussed in Section 3.2.

Implementation of the DLM model hence requires the estimation

of the following parameters:
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Table 1. Integrated Completed Likelihood (ICL) scores reported by our search over all possible combinations of submodel (see Section 3.1 for further

explanation) and k for our samples. The uncertainties span the full range of ICL scores (i.e. from minimum to maximum) registered over 100 initializations for

each combination. As mentioned in Section 3.3, only nine of the 12 submodels are available in the version of FEM that we use for our fitting. The score of the

best-fitting combination is highlighted using bold text. While submodel �, δ produces the highest score for our GSWLC-2 sample (at k = 9), we reject it for

reasons given in Appendix C. Blank entries correspond to combinations for which FEM did not converge (see Appendix C). The entries listed in this table are

subject to the multipliers at the right-hand side of each section. The ICL scores for our GSWLC-2 sample are systematically higher than those for our VIPERS

sample because it contains more galaxies.

Submodel

�k, δk �k, δ �, δk �, δ αk, j, δk αk, j, δ αk, δk αk, δ α, δ

GSWLC-2 k = 2 1.8 ± 0.0 1.5 ± 0.0 0.4 ± 0.0 −6.2 ± 0.0 1.8 ± 0.0 − 4.7 ± 0.0 1.8 ± 0.0 − 4.7 ± 0.0 − 6.2 ± 0.0 × 105

k = 3 8.2 ± 0.0 7.8 ± 0.0 − 141.0 ± 0.0 0.0 ± 0.0 3.8 ± 0.0 − 5.1 ± 0.0 3.7 ± 0.0 − 5.3 ± 0.0 − 4.5 ± 0.0

k = 4 11.7 ± 0.0 11.3 ± 0.0 2.7 ± 0.0 5.2 ± 0.0 4.9 ± 0.0 − 4.2 ± 0.0 − 3.8 ± 0.0

k = 5 13.4 ± 1.4 13.4 ± 0.2 − 46.2 ± 51.5 8.7 ± 0.4 6.7 ± 1.0 6.0 ± 0.0 − 2.2 ± 0.0 − 5.7 ± 1.3

k = 6 16.7 ± 0.0 9.4 ± 0.0 13.0 ± 0.1 6.8 ± 0.0 0.7 ± 0.0 − 5.2 ± 0.0

k = 7 17.9 ± 0.2 11.8 ± 2.0 14.2 ± 1.6 7.2 ± 0.0 2.3 ± 0.0 − 5.6 ± 0.0

k = 8 16.3 ± 1.3 8.1 ± 0.0 1.1 ± 0.0 − 5.7 ± 0.0

k = 9 17.1 ± 0.0 18.1 ± 0.9 8.0 ± 0.0 3.9 ± 0.0 − 6.0 ± 0.0

VIPERS k = 2 2.1 ± 0.0 4.3 ± 0.0 −8.4 ± 0.0 − 8.0 ± 0.0 − 8.0 ± 0.0 − 8.4 ± 0.0 × 104

k = 3 11.1 ± 0.0 − 421.0 ± 0.0 −0.4 ± 0.0 − 4.7 ± 0.0 6.8 ± 0.0 − 5.3 ± 0.0 − 7.9 ± 0.0

k = 4 − 294.0 ± 0.0 8.3 ± 0.0 − 6.7 ± 0.0 8.3 ± 0.0 − 7.4 ± 0.0 − 9.0 ± 0.0

k = 5 32.9 ± 0.0 32.4 ± 0.0 15.6 ± 0.0 16.3 ± 0.2 10.5 ± 0.0 − 2.9 ± 0.0 − 7.0 ± 0.0

k = 6 20.9 ± 1.5 23.6 ± 0.0 13.0 ± 0.0 2.9 ± 0.0 − 3.8 ± 0.1

k = 7 41.8 ± 0.1 26.4 ± 2.3 15.9 ± 0.8 7.1 ± 0.4 − 6.7 ± 0.0

k = 8 14.6 ± 0.0 3.2 ± 0.0 − 10.8 ± 0.0

k = 9 12.5 ± 0.0 − 10.8 ± 0.0

(i) k − 1 relative mixture proportions (π k; given that one cluster

has a proportion of 1);

(ii) kd parameters for the mean vectors (μk) in the subspace;

(iii) kd(d + 1)/2 parameters for the covariance matrices (�k) in

the subspace (fewer than kd2 parameters because covariance matrices

are symmetric);

(iv) d(D − (d + 1)/2) parameters for the transformation matrix M

(the number of free parameters, given the constraint that the basis

vectors of the subspace must be orthonormal);

(v) k noise terms (δk; given that this non-discriminative structure

is Gaussian and spherical, and may therefore by parametrized by a

single value in reference to the Gaussian density function estimated

for each cluster).

The total number of parameters (qDLM) is most strongly influenced

by the value of d. The maximum qDLM at a certain combination of D

and k is given by setting d to its maximum value of k − 1 (based on

the aforementioned assumption that k clusters may be distinguished

in k − 1 dimensions or fewer). qDLM is smaller than the number of

parameters that must be estimated for a Gaussian Mixture Model in

the full space (qGMM), especially if d � D (qGMM is given by the sum

of k − 1 relative mixture proportions, kD parameters for the mean

vectors, and kD(D + 1)/2 parameters for the covariance matrices).

Parameter qDLM may be further reduced by imposing additional

constraints upon the DLM model. For example, the covariance

matrices (�k) may be assumed to be the same for all Gaussians

(�; the Gaussians all have the same shape). Alternatively, they may

be assumed to be diagonal (αk, j, where the subscript j indicates

a different variance in each dimension of the subspace), meaning

the latent features that define the subspace are uncorrelated. These

diagonal covariance matrices may then also be assumed to be

isotropic (αk; spherical Gaussians in the subspace), the same for

all Gaussians (αj), or both (α). The noise terms (δk) may be assumed

to be the same for all Gaussians (δ) as well. Constraints like these

may be imposed to speed up the clustering, in anticipation of a

particular clustering structure, or (as in our case) to compare fits of

models of varying complexities (see also Section 3.3). The various

combinations of these constraints on the covariance matrices and

noise terms yield 11 submodels of the full �k, δk DLM model. They

are listed in full in table 1 of Bouveyron & Brunet (2012) (and listed

partially in Table 1 of this paper).

3.2 The FEM algorithm

The FEM algorithm estimates the parameters (π k, μk, �k, M, δk) of

the DLM model, fitting a sample of N observations, observed in a D-

dimensional space (the ‘full’ space, defined by D observed features),

with k Gaussian density functions in a d-dimensional discriminative

latent subspace (1 ≤ d ≤ k − 1). FEM comprises the following steps:

(i) Initialization: k starting points are selected within the extent of

the sample in the full space;

(ii) Expectation (E): transform the parameters of the mixture of

Gaussians to the full space, and calculate the probability of each

observation having originated from each Gaussian;

(iii) Fisher (F; based on discriminant analysis): using the observa-

tion probabilities, find the subspace that best separates the Gaussians;

(iv) Maximization (M): update the parameters of the mixture of

Gaussians (including non-discriminative structure, termed ‘noise’)

within the subspace.

The Expectation, Fisher, and Maximization steps are iterated such

that FEM improves its estimates of the DLM model parameters as

it proceeds. FEM is slow to run on our large samples and, unlike

traditional expectation-maximization algorithms, does not always

converge perfectly (such that there are no changes between succes-

sive iterations; due to the Fisher step). We therefore terminate FEM at

the completion of 25 iterations; changes between iterations become

negligible well before this number (see Appendix A). The final output

of FEM is a series of k probabilities for each of the observations:

probabilities of each observation having originated from each of

the k Gaussians. Final cluster labels are given by assigning each
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observation to the Gaussian with the highest probability of having

originated it.

While successive iterations of FEM improve its estimates of the

DLM model parameters, these estimates improve only towards local

maxima of the likelihood function. FEM is hence run with varying

initializations, which may intuitively be considered as ‘exploring

the surface’ of the likelihood function of the model parameters.

This encourages optimization towards different local maxima and,

hopefully among these, the global maximum, corresponding to the

very best estimate of the DLM model parameters.

Initialization techniques may be as simple as a uniform random

selection of k observations from the sample. We opt to use the k-

means algorithm (MacQueen 1967; Lloyd 1982), which implements

a simple centroid-based clustering approach, to generate initializa-

tions for FEM. k-means is an expectation-maximization algorithm

and, like FEM, only optimizes to local maxima. We therefore

initialize k-means itself 100 times in the hope of encouraging

optimization towards the global maximum of its objective function

(which measures how separated the clusters are). Use of varying

initializations provided by a heuristic like k-means leads to ‘pre-

optimization’ of FEM because the separated centroids are likely to

span the full extent of the sample in its full space. This facilitates

improvement of FEM’s estimates of the DLM model parameters

towards the global maximum of their likelihood functions. Following

this initialization, FEM proceeds to the Fisher step, in which it finds

the subspace that best separates the final k-means clusters, and to

the Maximization step, in which it fits the observations with a mixture

of Gaussians within this subspace. FEM then loops back around to

the Expectation step and begins iterating proper.

The Expectation step uses the parameters estimated in the Maxi-

mization step (π k, μk, �k, δk) to calculate the conditional probability

of each observation having originated from each of the k Gaussians.

These parameters are transformed from the subspace, within which

they are estimated in the Maximization step, to the full space using

matrix M, found in the Fisher step.

The Fisher step finds the d-dimensional discriminative latent

subspace that best separates the new partition calculated in the

Expectation step. Bouveyron & Brunet (2012) base this step on

discriminant analysis, which finds the linear combination of the input

features that maximizes the ratio of the scatter between clusters to the

scatter within clusters. Similar principles have been applied for the

visualization of multidimensional clusters as well (e.g. Lisboa et al.

2008). These scatters are weighted by the probabilities calculated

in the Expectation step. A constraint of the DLM model is that

the d basis vectors that define the subspace must be orthonormal,

which is not necessarily a property of the d basis vectors that linear

discriminant analysis (LDA) provides. Bouveyron & Brunet (2012)

assert this constraint by applying the orthonormal discriminant vector

method (ODV; Okada & Tomita 1985). ODV uses LDA to find the

d basis vectors in succession while also ensuring the orthonormality

of each new basis vector with respect to all of those that have already

been calculated. The first basis vector, which is free of this constraint,

is given by the direct application of LDA to the sample in the full

space. The d orthonormal basis vectors constitute the columns of M,

the matrix that enables the transformation of the sample between the

full space and the subspace.

The Maximization step updates the estimates of the means,

covariances, and relative mixture proportions (π k, μk, �k) of the

k Gaussians in order to maximize the likelihood of the fit. These

estimates are measured within the subspace found in the Fisher step,

and are weighted by the probabilities calculated in the Expectation

step. This step also updates the estimates of the noise terms (δk),

which is given by the differences between the full-space variances

(again weighted by the probabilities calculated in the Expectation

step) and the newly updated subspace variances.

3.3 Practicalities

We do not presume a DLM submodel or value of k with which to

fit our samples. Instead, we conduct a search over all of the DLM

submodels and over a range of values of k to determine the best-

fitting combination. Three of the DLM submodels (αj, δk; αj, δ; α,

δk) are not available for use in the version of FEM5 that we use for our

fitting. This reduces the total number of available submodels from

12 (including the full �k, δk model) to nine.

We identify the best-fitting combination of DLM submodel and

value of k by using the Integrated Completed Likelihood criterion

(ICL; Biernacki, Celeux & Govaert 2000):

ICL = ln(L) −
qDLM

2
ln(N ) −

[

−�N
i=1 �k

l=1 zi,l ln(pi,l)
]

, (1)

where L is the likelihood of the fit, pi, l is the probability of observation

i belonging to cluster l, and zi, l denotes cluster membership, taking a

value of 1 when pi, l = max(pi, :) and a value of 0 otherwise. The ICL is

related to the popular Bayesian Information criterion (BIC; Schwarz

1978). While both the BIC and ICL criteria penalize the likelihood

using the number of model parameters (to avoid overfitting), the ICL

criterion also rewards separated clusters (a general aim of clustering).

The combination of submodel and k that returns the highest ICL score

is deemed the best fit.

The dimensionality of the discriminative latent subspace is con-

strained by the number of clusters being fitted: 1 ≤ d ≤ k − 1. The

maximal d = k − 1 case may intuitively be understood as setting the

origin of the subspace at one of the k cluster centres so that the full-

space vectors to each of the remaining k − 1 cluster centres define

the basis vectors of the subspace. If multiple clusters lie along the

same direction in the full space, the number of basis vectors needed to

define the subspace is reduced. In our application ofFEM, we hold d at

its maximum value of k − 1. This is recommended by Bouveyron &

Brunet (2012) to avoid omitting any discriminative structure from

the subspace and to ease convergence of FEM (which may become

unstable or fail to converge if d is too small in comparison with k

and/or D). Hence, the maximum value of k in our model selection

search is 9 (set by d = 8, given D = 9).

3.4 Input features to the clustering

The fitting of the clustering structures of both of our samples is

conducted within a nine-dimensional feature space defined by UV-

through-NIR colours. We opt for colours because of their widespread

use in studies of galaxy evolution, and because of the relative ease

with which they may be measured. While clustering in terms of

derived astrophysical features may facilitate a more direct interpre-

tation of resultant clusters in terms of theories of galaxy evolution,

their derivation is much more model-dependent than that of colours.

Clustering in terms of colours ensures the generalizability of our

outcomes.

The colours that we use are calculated not from the observed

photometry that is used as input to the SED fitting, but from rest-

frame magnitudes estimated by CIGALE. This ensures homogeneity

among the input features, and that the feature space is defined by

5Version 1.5.1, for the R statistical computing environment.
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Figure 2. The relative importance of each of the input features to the

clustering. ‘F’ stands for FUV, and ‘N’ for NUV. The mutual information

(see Section 4.2 and equation 2) of each of the input features with respect

to the cluster labels has been normalized by the sum across all of the input

features for each sample.

rest-frame colours (which is more difficult to ensure using colours

calculated directly from observed photometry). In addition, the SED

estimation can infer the rest-frame magnitudes of galaxies in bands

for which there is no observed photometry. The full list of rest-frame

colours used for the clustering is: FUV − NUV, NUV − u, u − g, g −

i, i − r, r − z, z − J, J − H, and H − Ks. These rest-frame colours are

intended to represent the shape of each galaxy’s UV-through-NIR

SED, and to remove the influence of the intrinsic brightnesses of the

galaxies on the clustering outcomes. The rest-frame magnitudes of

GSWLC-2 galaxies (but not VIPERS galaxies) are subject to some

smoothing (see Appendix B). In addition, the rest-frame NIR colours

of GSWLC-2 galaxies were inferred from UV and optical photometry

(given the lack of input NIR photometry). Use of the term ‘colour’

from this point forward in this paper is intended in reference to these

rest-frame colours, as estimated by CIGALE.

These colours differ from those used by Siudek et al. (2018b);

they used rest-frame colours defined with reference to the rest-frame

i-band magnitudes of galaxies (FUV − i, NUV − i, etc.), also with the

aim of removing the influence of galaxy intrinsic brightnesses on their

clustering outcomes. However, their UV colours, defined across the

largest distances in wavelength among their features, exhibited large

spreads (up to a factor of 10 larger than the spreads of other colours)

and dictated much of their clustering. Preliminary tests of clustering

with these i-band based colours for our present, carefully prepared

samples confirmed this. The αk, j and αk, j submodels achieved the

highest ICL scores for these i-band colours, but gave only relatively

crude segmentations of our samples (see also Appendix C). Our

colours, defined using magnitudes in filters at neighbouring effective

wavelengths, mitigate this effect and encourage FEM to converge to

more detailed partitions (although, as shown in Fig. 2, bluer colours

are still most important).

4 R ESULTS

4.1 FEM submodel selection

As outlined in Section 3.3, we conduct a search for the best-fitting

FEM submodel and number of clusters for our samples. We identify

the best-fitting combination using the ICL criterion (equation 1),

which penalizes the number of parameters of the submodel while

favouring separated clusters. Table 1 lists ICL scores reported for

both samples. The uncertainties on these scores, which span the full

variation (i.e. from minimum to maximum) over 100 initializations,

show that FEM is extremely stable and self-consistent, robustly

converging to highly similar outcomes over successive runs that use

the same combination of submodel and number of clusters. The best-

fitting combinations for each sample are highlighted using bold text.

We briefly describe patterns of behaviour of the various submodels

and explain the large range in ICL scores in Appendix C. Despite

it registering the highest score for the GSWLC-2 sample, we reject

the k = 9, �, δ combination due to its inclusion of empty clusters

(explained further also in Appendix C).

Both samples are best partitioned into seven clusters, within a six-

dimensional discriminative latent subspace. The Gaussian density

functions representing the clusters are each described by their own

unique, full covariance matrices (�k); the clusters each have different

shapes, and the use of full covariance matrices indicates correlations

(as expected) among the input features within the subspaces. While

the best-fitting submodel for the GSWLC-2 sample uses unique noise

terms for each cluster (δk), the best-fitting submodel for the VIPERS

sample does not (δ), owing to the smoother distribution of the

VIPERS sample in the feature space (see e.g. Fig. 3). Submodels �k,

δk and �k, δ report similar ICL scores and produce similar clustering

structures in general and may therefore readily be compared with

one another (see also Appendix C). That FEM has converged to

highlighting these closely related submodels as being optimal for

describing both samples is encouraging, and gives us confidence that

we are conducting a fair comparison.

4.2 Feature importance

In Fig. 2, we show the relative importance of each input feature to

the clustering. Specifically, we calculate the mutual information (MI)

between each input feature and the output cluster labels:

MI (f , l) = DKL(pf ,l ||pf pl). (2)

Here, DKL is the Kullback–Leibler divergence (Kullback & Leibler

1951; also known as the relative entropy) between the joint proba-

bility distribution of input feature f and output label l, and their

independent distributions. For Fig. 2, MIf, l is normalized by its sum

across all input features to give a relative value.

The lines in Fig. 2 are broadly similar, indicating that, on the

whole, FEM uses the nine features in a similar way to determine

its best partitions. This is further confirmed by noting that the

subspaces within which FEM determined these best partitions have

the same dimensionality (6) for both samples. The lines are especially

consistent among the optical colours, which is expected given that

optical photometry is ubiquitously available for galaxies in both

samples. Altogether, the optical regime is the most important to the

clustering. Individually, colours from the UV region of the SEDs of

the galaxies in both samples are most strongly related to the output

cluster labels. This highlights, as expected, the star formation activity

and the dust content of galaxies as major influences on the shapes of

their UV-through-NIR SEDs.

UV colours are slightly more important for the clustering in our

GSWLC-2 sample, which reflects the increased UV coverage of its

galaxies by GALEX (80 per cent, as opposed to 52 per cent for our

VIPERS sample). NIR colours are less important for distinguishing

clusters within our GSWLC-2 sample than within our VIPERS

sample, which is likely due to their having been inferred purely

from UV and optical input photometry. This is in contrast with the

galaxies in our VIPERS sample, whose NIR SEDs (more important

to the clustering) were instead constrained by Ks-band photometry.6

6While the Two Micron All-Sky Survey (Skrutskie et al. 2006) has NIR

photometry for ∼50 per cent of GSWLC-2 galaxies, it is shallow and would

not have provided strong constraints upon their NIR SEDs.
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3018 S. Turner et al.

Figure 3. Projections of both samples on to the two dimensions that best separate their clusters. The axes of each plot are determined by FEM and are unique

to each sample (as indicated by their labels; e.g. SG1 represents the first axis of the subspace of our GSWLC-2 sample), but the resultant projections are mostly

similar none the less. The distributions of clusters within this plane are shown using coloured, filled contours (drawn at a relative density of 0.4), and the

coloured, circular markers show their means. The perpendicular black lines at the lower right of each plot show the extent to which the y-axis has been stretched

relative to the x-axis to yield the projections as shown. The vectors at the upper right of each plot show the projections of the two input features that correlate

most strongly with the axes of these projections.

For galaxies with incomplete photometry, the array of templates and

synthetic spectra with which CIGALE may fit them is reduced, leading

to reduced variation in the shapes of their SEDs. In addition, the rest-

frame magnitudes (and hence, rest-frame colours) that CIGALE must

infer from photometry at other wavelengths have larger uncertainties.

Hence, availability of photometry with which to constrain the SEDs

of galaxies is advantageous to the clustering. Nevertheless, Fig. 2

shows that, for the most part,FEM uses the features similarly to model

both samples despite slight differences in this availability, which is

driven mostly by the ubiquitous availability of optical photometry

for both samples.

4.3 Clustering structures

Table 2 profiles the clusters determined within both samples. Features

are derived from the same SEDs as the colours used for the clustering

(see Sections 2.1.1 and 2.2.1) as well as from ancillary sources (see

Sections 2.1.2 and 2.2.2). Clusters are named using two-part notation

that will be used throughout the remainder of this paper; prefixes ‘G’

or ‘V’ denote clusters determined within the GSWLC-2 and VIPERS

samples, respectively. Clusters names have been ordered by their

mean NUV − r colours for ease of reference.

Fig. 3 shows projections of our samples on to the two principal

dimensions of their respective six-dimensional discriminative sub-

spaces. These projections, which offer direct views of the structures

of the clustering outcomes, are determined uniquely for each sample

by FEM: the axes of the two plots do not correspond exactly to one

another. Nevertheless, these projections are broadly similar in terms

of the shapes of the overall samples within them. Both samples

exhibit continua in these projections, running from the lower right

to the upper left of each plot, which have been segmented by FEM.

That this segmentation is robustly reproducible over successive runs

of FEM (Table 1) indicates that FEM has captured astrophysically

meaningful structures in the samples. In addition, both samples

exhibit a cluster which extends into the sparser region to the upper

right of each plot. This overall similarity suggests that the evolution

of galaxies at the epochs of the two samples is mostly similar. It also

gives us confidence in the success of the measures taken to ensure

a fair comparison between samples at different redshifts and from

different surveys (see Sections 2.1.2 and 2.2.2), and reinforces our

conclusion that FEM has overall used the input features similarly

for both samples in spite of slight differences in the availability of

photometry between them (see Section 4.2). The subtler differences

between clusters in these projections are subject to the distributions of

galaxies within the shapes of their respective samples. We comment

on these differences where relevant in Section 4.4. Cluster colours in

the plots in this paper, like their names, are assigned based on their

mean NUV − r colours.

We break down the analysis of our clusters by using the two-

dimensional colour bimodality of galaxies as a simple framing

device. The colour bimodality is a steady property of the galaxy

population throughout cosmic time, having been observed among

galaxies with redshifts as high as 4 (Wuyts et al. 2007; Williams

et al. 2009; Ilbert et al. 2010, 2013). Hence, we may use it

to separate clusters that are more strongly associated with the

blue peak (containing mostly star-forming galaxies) from clusters

that are more strongly associated with the red peak (contain-

ing mostly passive galaxies) in a way that is independent of

redshift.

This two-dimensional separation is marked by the black lines in

Fig. 4. The NUV − r − Ks colour–colour plane (Arnouts et al. 2013;

Moutard et al. 2016b) is a useful tool to probe galaxy subpopulations

due to its ability to separate star-forming (low NUV − r), passive

(high NUV − r), and also dusty (high r − Ks) galaxies. It has

been applied in several studies of galaxy evolution using data from

VIPERS (e.g. Fritz et al. 2014; Davidzon et al. 2016; Moutard et al.

2016b; Siudek et al. 2017, 2018b; Vergani et al. 2018). The form

of the black lines is inspired by Fritz et al. (2014) and Moutard

et al. (2016b); they are placed independently in each panel, without
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Redshift evolution of galaxy subpopulations 3019

Table 2. Profiles, in terms of averages, of the clusters determined within each of our samples. See the main text for an explanation

of the cluster naming scheme. We list cluster means in columns NUV − r and r − Ks. For the remaining features, which are less

directly linked to the clustering, we opt for medians to mitigate the potential influence of outliers on the cluster profiles. Column

‘%’ lists the percentage of galaxies contained within each cluster for each sample. The data in the next seven columns [NUV − r to

log10(sSFR/yr−1) (SED)] originate from the same CIGALE SEDs as the rest-frame colours that were used as inputs to the clustering.

Features listed in this table include colour excesses [E(B − V)], stellar masses (M∗), stellar metallicities (Z), mass-weighted stellar

ages (MWSA), and specific star formation rates (sSFR). We list sSFRs both determined by CIGALE (SED; averaged over 100 Myr

time-scales) and determined from galaxy spectra (and hence independent of CIGALE; ind.; see Sections 2.1.2 and 2.2.2). Medians

marked with asterisks have unexpected values given their corresponding NUV − r colour and are discussed in Section 4.4.2.

Cluster % NUV − r r − Ks E(B − V) log10(M∗/M�) log10(Z) log10(MWSA/Myr) log10(sSFR/yr−1)

(SED) (ind.)

G1 24.0 2.39 0.42 0.11 9.90 − 2.22 3.80 − 9.87 − 9.87

G2 15.2 3.29 0.91 0.20 10.26 − 1.81 3.85 − 10.02 − 10.19

G3 17.3 3.51 0.78 0.14 10.37 − 2.11 3.89 − 10.38 − 10.47

G4 8.5 4.31 1.16 0.13 10.70 − 1.75 3.92 − 10.87 − 11.22

G5 9.7 5.07 0.67 0.22 10.35 − 2.30 3.90 − 10.78 − 11.97

G6 11.3 5.24 0.78 0.08 10.57 − 2.11 3.93 − 11.92 − 11.93

G7 14.0 5.27 0.73 0.11 10.54 − 2.20 3.93 − 11.85 − 12.02

V1 26.8 1.86 0.25 0.01 9.87 − 2.12 3.52 − 9.34 − 9.25

V2 18.4 2.17 0.60 0.02 10.14 − 1.90 3.55 − 9.22 − 9.34

V3 9.3 2.62 0.75 0.05 10.10 − 1.40 3.52 − 8.99 − 9.35

V4 18.5 3.26 1.05 0.12 10.67 − 1.80 3.58 − 9.71 − 9.92

V5 5.2 4.75 0.91 ∗0.15 10.61 ∗− 1.51 ∗3.52 ∗− 9.43 − 10.09

V6 10.3 4.81 0.90 ∗0.15 10.69 ∗− 1.86 ∗3.61 ∗− 9.90 − 10.29

V7 11.5 4.86 0.96 0.02 10.91 − 2.05 3.74 − 11.27 − 10.42

Figure 4. Colour–colour plots of our samples. Colours are derived from CIGALE SED estimation. The distributions of clusters are shown using coloured, filled

contours (drawn at a relative density of 0.4), and the coloured, circular markers show their means. The black line in each plot (inspired by Moutard et al. 2016b;

see main text) marks the boundary between star-forming galaxies (below the line) and passive galaxies (above the line).

reference to the positions of the clusters, to simply demarcate the star-

forming and passive regions of the NUV − r − Ks plane. Clusters

whose means then lie below the black line in each plot are selected

as ‘blue’, ‘star-forming’ clusters, and clusters whose means then lie

above the black lines are selected as ‘red’, ‘passive’ clusters. As a

result, both samples break down into four blue clusters and three red

clusters. Deviations of the structures of the clusters from this simple

blue/red (star-forming/passive) division that we enforce (e.g. clusters

that overlap or span this division) will highlight limitations of a purely

two-dimensional view of the galaxy population and its bimodality.

The separation between these two main families of clusters suggests

differences in the evolution processes influencing the galaxies that

they contain.

The blue peak of the bimodality corresponds closely with the

star-forming main sequence (SFMS; Noeske et al. 2007; Salim

et al. 2007), which is the tight correlation between the SFRs and

the stellar masses of actively star-forming galaxies. The SFMS,

like the bimodality, is ubiquitous throughout cosmic time (Speagle

et al. 2014). It has a lower normalization with decreasing redshift;

this cosmological decline of star formation (Madau et al. 1996;

Madau & Dickinson 2014; Driver et al. 2018) is visible as a

vertical offset between the samples in Fig. 4. In this paper, the
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3020 S. Turner et al.

Figure 5. A comparison of the shapes of the mean (± standard deviation)

estimated SEDs of galaxies in clusters G3, G4, and G5. Clusters G3 and G5

are chosen as they neighbour G4 in terms of their average NUV − r colour.

The estimated SEDs of individual galaxies are normalized by their r-band

magnitudes (the effective wavelength of which is marked by a dashed black

line) before the mean estimated SEDs are calculated. The y-axis applies to

the mean SED of G5; those of G3 and G4 are vertically offset by −1 and −2,

respectively, to more clearly show the differences in their shapes.

terms ‘blue peak’ and ‘SFMS’ are synonymous, and we use them

interchangeably.

The stronger NUV − r split between star-forming and passive

VIPERS clusters in comparison with those of GSWLC-2 (Figs 4

and 3) is likely to result from two factors. First is the difference in

the rest-frame wavelength coverage of GALEX photometry for the

two samples; some rest-frame UV emission is redshifted out of the

bandwidths of GALEX’s filters at z ∼ 0.65. Second is the difference

in the completeness of UV photometry for each sample. GALEX

observations exist for ∼80 per cent of galaxies in clusters G1–4.

This proportion falls to ∼55 per cent in clusters G5–7, but this is

expected given that these galaxies would be fainter in the UV regime.

Meanwhile, ∼65 per cent of V1, V2, and V4 galaxies were observed

by GALEX. Interestingly, only ∼20 per cent of galaxies in V3 have

observed UV photometry, which may explain its separation from the

other star-forming VIPERS clusters. Passive VIPERS clusters are

∼25 per cent complete in observed UV photometry. Together, these

factors mean we are likely to miss low levels of UV emission from

more evolved VIPERS galaxies with more intermediate colours. On

the other hand, Fig. 2 shows that rest-frame NUV − u colours are

similarly important to the clustering structures of both samples, with

NUV emission expected to be a particularly accurate tracer of star

formation (Salim 2014).

4.4 Cluster identities

4.4.1 Clusters of star-forming galaxies

Our NUV − r − Ks cut (Section 4.3) yields the following blue

clusters: G1, G2, G3, and G4 for the GSWLC-2 sample; and V1,

V2, V3, and V4 for the VIPERS sample. While dominated by blue

galaxies, clusters G4 and V4 also contain a significant number of

galaxies with green or red NUV − r colours (including the vast

majority of green valley galaxies). Fig. 5 shows that the SEDs of G4

galaxies are generally more similar to those of actively star-forming

galaxies, being flatter in the UV regime (e.g. G3 galaxies) than those

of typically passive galaxies (e.g. G5 galaxies). Hence, in terms

of the influence of their evolutionary histories on the shapes of their

SEDs, G4 galaxies appear more closely related to G1–3 galaxies than

to G5–7 galaxies, despite some G4 galaxies occupying the passive

region of the NUV − r − Ks plane in Fig. 4. Similarly, the SEDs

of V4 galaxies more closely resemble those of V1–3 galaxies rather

than V5–7 galaxies (not shown).

Given that the SFMS is a smooth continuum, it is important where

possible to establish why FEM has distinguished clusters within it,

and to interpret the significance of these distinctions in terms of

galaxy evolution. The position of a galaxy along the NUV − r − Ks

SFMS (Fig. 4) is governed by a combination of its stellar mass and its

dust content (Moutard et al. 2016a, b). The lobe at high r − Ks, which

preferentially consists of edge on galaxies, is known to capture the

excess reddening of high-mass star-forming galaxies (Arnouts et al.

2013), but it is more difficult to disentangle this combination of stellar

mass and dust elsewhere within the SFMS. Hence, we see an overlap

of star-forming clusters in Fig. 4. In Fig. 3, though, these clusters are

more clearly separated.

G1 and V1 capture equivalent subpopulations of galaxies. Both

clusters contain the galaxies with the bluest colours and the lowest

masses (Fig. 4, Table 2) within their respective samples; star-forming

galaxies at relatively early stages of their evolution. The remaining

star-forming clusters have higher masses and lie further along the

SFMSs of each sample.

Clusters G2 and G3 overlap with one another in the left-hand panel

of Fig. 4, as do clusters V2 and V3 in the right-hand panel of the

same figure. Fig. 3 shows that G2 and V3 both extend away from the

main continua within the subspace projections of their respective

samples. The feature vector projections in Fig. 3 show that the

galaxies in these clusters have particularly red FUV − NUV colours

in comparison with other SFMS clusters. However, the astrophysical

meaning behind this is unclear. CIGALE alternately attributes this

reddening to high colour excesses for galaxies in G2 and to higher

metallicities for galaxies in V3 (Table 2), suggesting that it has not

fully resolved the degeneracy between the influences of dust and

metallicity upon the colours of these galaxies. However, CIGALE is

consistent in assigning G2 and V3 galaxies similar stellar masses

and mass-weighted stellar ages to G3 and V2 galaxies (Table 2),

which occupy similar regions of the NUV − r − Ks plane. Stellar

mass estimates are not strongly affected by an inability to resolve

this degeneracy between the influences of dust and metallicity (e.g.

Bell & de Jong 2001). Clusters G3 and V2, lying on the main continua

in Fig. 3, seem to be intermediate between clusters G1 and G4, and

V1 and V4, respectively.

The star-forming clusters along the SFMS of our GSWLC-2

sample exhibit a gradient in their star formation activity. Taking their

increasing average stellar masses as a point of reference, clusters

G1–4 exhibit a corresponding increase in their average NUV − r

colours (Table 2, Fig. 4). decrease in their average sSFRs (both SED

and ind.; Table 2), and increase in their average D(4000) (Fig. 6).

High-mass galaxies in our GSWLC-2 sample do not form stars as

readily as low-mass galaxies. This gradient is weaker for clusters V1–

3 (particularly with regard to their median sSFRs; Table 2), though

we note that clusters V2 and V3 have lower average stellar masses

than G2 and G3. It is only in V4 that we see a rise in average stellar

mass accompanied by a decrease in average sSFR, and an increase

in D(4000).

The large median sizes and low-to-intermediate median Sérsic

indices of star-forming clusters from both samples indicate that

they are dominated by disc galaxies (Table 3). Clusters G1–4

exhibit a rise in their median ng to intermediate values along their

SFMSs, indicating increasingly concentrated morphologies among

their galaxies. In Fig. 7, these clusters form morphological sequences

that are separate from the distributions of passive clusters in the

same plane. The sequence of V1–4 is not as strong as that of G1–4;

again, it is only in V4 that we see a significant change, with the

higher stellar masses of its galaxies met with intermediate Sérsic

indices.
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Figure 6. Smoothed kernel density estimates in D(4000) (logarithmically

distributed) for each of the clusters from both outcomes. Here, D(4000)

was measured from the spectra of galaxies (Brinchmann et al. 2004; Garilli

et al. 2014) using a method introduced by Balogh et al. (1999), and is hence

independent of CIGALE’s estimated SEDs.

Table 3. Profiles, in terms of averages of ancillary features, of the clusters

determined within each of our samples. See the main text for an explanation

of the cluster naming scheme. We list the median values of the galaxies

that the clusters contain for each of the features. Column ‘%’ lists the

percentage of galaxies contained within each cluster for each sample. Features

listed in this table include Sérsic indices (ng), half-light radii (R1/2), and

environmental overdensities (δ). The data are drawn from ancillary sources

(see Sections 2.1.2 and 2.2.2).

Cluster % ng log10(R1/2/kpc) log10(1 + δ)

G1 24.0 1.04 0.57 0.40

G2 15.2 1.34 0.50 0.51

G3 17.3 1.57 0.55 0.55

G4 8.5 2.38 0.61 0.59

G5 9.7 4.09 0.40 0.85

G6 11.3 4.18 0.45 0.80

G7 14.0 4.25 0.44 0.83

V1 26.8 0.92 0.49 0.29

V2 18.4 0.95 0.48 0.29

V3 9.3 1.11 0.50 0.36

V4 18.5 1.53 0.55 0.35

V5 5.2 3.31 0.42 0.40

V6 10.3 3.29 0.40 0.40

V7 11.5 3.40 0.43 0.43

While there are slight trends in the median local environmental

overdensities of the star-forming clusters in both samples (Ta-

ble 3), Fig. 8 shows that their distributions thereof have very large

spreads and exhibit a great deal of overlap with the distributions

of other SFMS clusters from the same sample. Therefore, we

cannot attribute the reduction in the star formation activity of SFMS

galaxies at higher masses to mainly environmental causes for either

sample.

4.4.2 Clusters of passive galaxies

Our red clusters, selected in two dimensions using the NUV − r −

Ks plots in Fig. 4, are: G5, G6, and G7 for our GSWLC-2 sample,

and V5, V6, and V7 for our VIPERS sample. The colour that best

separates the passive clusters in both samples is FUV − NUV. For

G5–7, this separation corresponds with the higher sSFRs and lower

masses of G5 galaxies, and differences in the metallicities of G6

and G7 galaxies (Table 2). V7 has been distinguished due to the

high masses and low sSFRs of its galaxies. However, CIGALE’s

estimation of the astrophysical properties of V5 and V6 galaxies is

less reliable (see below). In general, galaxies in the passive clusters

are offset to redder NUV − u colours than those in the SFMS clusters

(Section 4.4.1).

Galaxies in clusters G6, G7, and V7 are alike with respect to most

features. They share high stellar masses, low sSFRs, large D(4000)

(Fig. 6), and early-type morphologies (Table 2), all of which are typ-

ical of canonically passive galaxies. CIGALE attributes the difference

in the FUV − NUV colours of G6 and G7 galaxies (i.e. the feature that

best separates these clusters) to their metallicity distributions. While

G6 peaks strongly at Z ∼ −2.1, G7 is split evenly between peaks at Z

∼ 2.1 and Z ∼ −2.4. The metallicities of passive GSWLC-2 galaxies

are discretized by the input Bruzual & Charlot (2003) grid, and due

to a lack of any input NIR photometry during their SED estimation

(see Appendix B); with more precise metallicities, their distributions

might overlap more. V7 also has low metallicities in comparison

with other clusters determined in its sample. We note that these sub-

solar metallicities are unexpected for high-mass passive galaxies

(e.g Gallazzi et al. 2006), indicating difficulties of breaking the age-

dust-metallicity degeneracy with photometry alone, and suggesting

that these metallicities are not entirely reliable. Altogether though,

these clusters contain the oldest, most evolved galaxies among their

respective samples: a subpopulation that is in place at the epoch of

our VIPERS sample.

Galaxies in cluster G5, while also passive and early-type, have

lower stellar masses than those in clusters G6 and G7. We also note

a difference in the G5 median sSFRs as reported by CIGALE (SED)

and by the Brinchmann et al. (2004) calibration (ind.; Table 2).

G5 may contain post-starburst galaxies (PSBs; Wild et al. 2009),

with this difference in sSFRs possibly arising due to the different

time-scales probed by these two measures (see section 7 of Salim

et al. 2016). While the fibre component of sSFR (ind.) is a more

instantaneous measure of star formation activity (∼10 Myr, based

on H α emission), CIGALE averages star formation over a longer

period of time (100 Myr, matching the time-scale traced by UV

emission). Hence, even if the tail of a declining central burst

of star formation activity is not captured by sSFR (ind.), it may

still be captured by sSFR (SED). The spheroidal morphologies

(Fig. 7, Table 3) and enhanced local environmental densities of

G5 galaxies suggest an external influence upon their evolution (see

Section 5.2), which is consistent with previous studies which link

PSBs with mergers (Zabludoff et al. 1996; Yang et al. 2008; Almaini

et al. 2017).

Clusters V5 and V6 present conflicting identities in terms of

features estimated by CIGALE (Table 2). While their galaxies have

very similar stellar masses and morphologies to those in V7 (Table 3),

they have unusually high colour excesses, metallicities, and sSFR

(SED). This is in contrast with the sSFR (ind.) and observed D(4000)

values of these galaxies (Table 2, Fig. 6), which show that they are

indeed passive. The large spread in D(4000) of V5 may be due to

some minor contamination of the cluster by star-forming galaxies;

its NUV − r − Ks contour extends below the black line in Fig. 4,

into the region containing dusty star-forming galaxies. This may also

drive its median E(B − V) to a higher value.

The inability of CIGALE to properly resolve the age-dust-

metallicity degeneracy for V5 and V6 galaxies is due to the UV
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3022 S. Turner et al.

Figure 7. Sérsic index versus stellar mass for the galaxies in our samples. Sérsic indices were determined by Simard et al. (2011) for our GSWLC-2 sample,

and Krywult et al. (2017) for our VIPERS sample. The distributions of clusters are shown using coloured, filled contours (drawn at a relative density of 0.4),

and the coloured, circular markers show their medians. We have winsorized the Sérsic indices of the galaxies in our VIPERS sample to values of 0.5 and 8 in

order to match the limits of our GSWLC-2 sample.

Figure 8. Smoothed kernel density estimates in local environmental over-

density (δ) for each of the clusters from both outcomes. For both samples,

these overdensities are based on fifth-nearest neighbour surface densities

(Baldry et al. 2006; Cucciati et al. 2017).

regions of their SEDs. Fig. 9 shows that V5 and V6 have steeper

average UV SEDs than V7. To explain the red UV colours (especially

FUV − NUV) of their galaxies, CIGALE invokes high colour excesses

and metallicities rather than low sSFR (SED). This appears to be

a consequence of CIGALE’s two-burst SFHs, which may not be a

realistic description of the SFHs of most passive VIPERS galaxies.

These SFHs were adjusted for the epoch of our VIPERS sample by

setting the formation time of the old population to 6.5 Gyr ago instead

of 10 Gyr, and including the possibility of a particularly recent burst

of star formation (<50 Myr). However, a trial of the use of a gradual

1 Gyr quenching episode instead led to improvements in the quality of

fit of passive SEDs (with low sSFR) to the photometry of the majority

Figure 9. A comparison of the shapes of the mean (± standard deviation)

estimated SEDs of galaxies in clusters V5, V6, and V6. The estimated SEDs of

individual galaxies are normalized by their r-band magnitudes (the effective

wavelength of which is marked by a dashed black line) before the mean

estimated SEDs are calculated. The y-axis applies to the mean SED of V7;

those of V5 and V6 are vertically offset by −1 and −2, respectively, to more

clearly show the differences in their shapes.

of V5 and V6 galaxies. Hence, it seems that further adjustments to

CIGALE’s SFH prescription are required when applying it at higher

redshifts.7

Galaxies contained within the passive clusters of our VIPERS

sample tend to have higher stellar masses than those contained within

the passive clusters of our GSWLC-2 sample (Table 2). This is likely

to be driven by stellar mass incompleteness of our VIPERS sample.

Davidzon et al. (2013) show that, even at its lower redshift limit of

z = 0.5, our VIPERS sample is incomplete8 in passive galaxies below

7LePhare (Ilbert et al. 2006) SED estimation for the same galaxies (Moutard

et al. 2016b; Siudek et al. 2018b) used single exponentials for its SFHs and

reported lower colour excesses, metallicities, and sSFR.
8Our ‘secure’ redshift criterion (Section 2.2) may contribute slightly to this

incompleteness (i.e. by selecting against faint, passive VIPERS galaxies that

lack emission lines or strong absorption lines). However, Davidzon et al.

(2013) used a more relaxed criterion, so we do not expect our use of this

criterion to significantly influence stellar mass completeness.
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∼1010 M�. Furthermore, their completeness threshold increases with

redshift to 1010.75 M� at our upper limit of z = 0.8, and thus skews our

clusters of passive VIPERS galaxies towards higher stellar masses.9

Hence, where the GSWLC-2 sample has two lobes of passive galaxies

in Fig. 3 (see also Appendix B), which differ in average stellar mass

by ∼0.5 dex, the VIPERS sample has only one. Though our VIPERS

sample does contain some passive galaxies with low stellar masses

(e.g. Fig. 7), they are not substantial enough in number for FEM to

model them with a dedicated cluster (i.e. like G5).

Passive clusters in both samples have high Sérsic indices and

compact sizes (Table 3), indicating spheroid-dominated morpholo-

gies. They occupy separate regions of the plots in Fig. 7 to their

respective SFMS clusters. Fig. 7 also shows that the ng distributions

for passive clusters are highly consistent with one another. While

the passive clusters in our GSWLC-2 sample exhibit a slight offset

to higher density environments in comparison with star-forming

GSWLC-2 clusters, the environments of passive VIPERS clusters

are consistent with those of star-forming VIPERS clusters. This

difference between the two samples is, in part, expected, due to

the emergence of environments of especially high densities over

cosmic time (e.g. Marinoni et al. 2008; Kovač et al. 2010; Fossati

et al. 2017). However, factors such as spectroscopic fibre collisions

and the aforementioned incompleteness of passive VIPERS galaxies

may also reduce the completeness of VIPERS at high densities. This

incompleteness does not appear to have strongly affected clusters

elsewhere in the feature space (Fig. 3).

5 D ISCUSSION

Our clusters have been determined on the basis of the rest-frame

colours of galaxies alone. In this section, we aim to discern what

the trends of these purely colour-based clusters with other, ancillary

features (see Sections 4.4.1 and 4.4.2) tell us about how strongly the

SEDs of their constituent galaxies encode their evolution.

5.1 Internally driven evolution

Alongside being closely related in terms of the shapes of their SEDs

(see Section 4.4.1), both sets of star-forming clusters – G1–4 and

V1–4 – form clear morphological sequences in Fig. 7. In Fig. 10,

we examine the bulge-to-total ratios of GSWLC-2 galaxies using

two-component Simard et al. (2011) fits (no such data exist for

VIPERS). The G1–4 sequence is apparent here as well, capturing

the rising prominences of the bulges of their galaxies. It does not

extend to the highest B/Tr values, despite G4 also containing some

quenching and quenched galaxies. This indicates that G1–4 galaxies

retain their discs as they evolve and that some G1–4 galaxies become

passive without fully transforming their morphologies. The changing

bulge–disc balance appears to be captured also in the large spread

in D(4000) of G4 galaxies in particular (Fig. 6). The overlapping

environmental distributions of star-forming clusters in both samples

(Fig. 8) suggest that these morphological sequences of gradual bulge

growth are more likely to be due to internal processes (i.e. that act in

all environments). We assume that our interpretation in this paragraph

applies to galaxies in V1–4 as well.

Bar-driven inflows of star-forming gas (Sheth et al. 2005) – an

internal process that acts over long time-scales – constitute a likely

candidate process. These inflows are commonly invoked to explain

the formation of dynamically cold ‘pseudobulges’ (ncl � 2) rather

9Star-forming galaxies and clusters are affected to a much lesser degree.

Figure 10. Bulge-to-total ratio (B/Tr) versus stellar mass for the galaxies in

our GSWLC-2 sample. Here, the subscript ‘r’ denotes the r-band photometry

from which the ratios were derived (Simard et al. 2011; based on two-

component fits). The distributions of clusters are shown using coloured, filled

contours (drawn at a relative density of 0.4), and the coloured, circular markers

show their means.

than the dynamically hot ‘classical’ (ncl � 2) bulges that the Simard

et al. (2011) two-component fits assume (Kormendy & Kennicutt

2004; Fisher & Drory 2008; Mishra, Wadadekar & Barway 2017).

However, an increase in the prominence of pseudobulges would none

the less be expected to be captured by the single-component fits which

yield the Sérsic indices in Table 3 and Fig. 7. We do not rule out that

SFMS galaxies may have undergone major and/or minor mergers or

clump migration (a faster, more violent internal process; Elmegreen,

Bournaud & Elmegreen 2008; Bournaud et al. 2011; Tonini et al.

2016) in their pasts; some have high total ng values, which may

capture classical bulges formed as a result of these processes. Instead,

we proffer that the processes do not contribute to the gradual of the

bulges of these galaxies. It has been shown, for example, that the

remnant of a gas-rich merger can reform a disc and continue to form

stars, thus rejoining the SFMS (Hopkins et al. 2009a, b).

The falling sSFRs of galaxies along the sequences G1–4 and

V1–4 suggests that their morphologies are also linked with their

quenching. This could be due to morphological quenching (i.e. the

gravitational influence of the morphological components of galaxies

upon star formation; Martig et al. 2009). It is more likely, though,

that the prominences of the bulges among these galaxies are a marker

of nuclear activity. More massive bulges host more massive black

holes at their centres (Häring & Rix 2004), which supply more

feedback energy to their surrounding galaxies. This feedback can

inhibit further star formation by ejecting star-forming gas (Croton

et al. 2006; Gabor et al. 2011; Vergani et al. 2018) or by preventing the

cooling of newly accreted gas (above the ‘transition mass’, ∼1010.5

M� at z ∼ 0; Kauffmann et al. 2003; Dekel & Birnboim 2006; Kereš

et al. 2009; Moutard et al. 2020).

Fig. 11 shows the distributions of clusters G1–4 within the

Lamareille (2010) emission-line classification diagram. This diagram

is chosen with a view to its applicability to galaxies at higher

redshifts as well. The equivalent widths of the relevant emission lines

were determined by Brinchmann et al. (2004), and are available for
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Figure 11. A diagram for the classification of emission-line galaxies

(Lamareille 2010) in our GSWLC-2 sample. Different regions, labelled and

demarcated by black lines, correspond to different types of galaxy: ‘Sy2’ to

type 2 Seyfert galaxies, ‘SF’ to purely star-forming galaxies, ’SF/Sy2’ to a

mixture of type 2 Seyfert and star-forming galaxies, ‘LINERs’ to galaxies

containing low-ionization nuclear emission-line regions, and ‘Comp.’ to a

mixture of LINERs and star-forming galaxies. The distributions of clusters

are shown using coloured, filled contours (drawn at a relative density of 0.4),

and the coloured, circular markers show their medians.

94 per cent of the galaxies in G1–4. Spectroscopy of these emission

lines exists for some VIPERS galaxies as well (Garilli et al. 2014),

but only for 34 per cent of them, such that we would not be confident

in the significance of any trend of our VIPERS clusters within the

diagram. We note, however, that the few VIPERS galaxies for which

this spectroscopy does exist tend to lie within the ‘SF’ region of the

plot, above the ‘Comp.’ region (i.e. as in fig. 10 of Siudek et al.

2018b). Hence, we tentatively suggest a minimal influence of active

galactic nuclei upon their current evolution, but reiterate that more

data are needed to confirm this.

Clusters G1–4 are all centred in the ‘Comp.’ region of Fig. 11,

indicating that galactic nuclei are prevalent throughout them. G4

in particular extends well into the ‘LINERs’ region of the diagram.

Given the enhancement in the Sérsic indices of G4 galaxies over G1–

3 galaxies (Table 3, Fig. 7), this is consistent with previous studies

which find that low-ionization nuclear emission-line regions are

more common in galaxies with earlier type morphologies (Heckman

1980). In addition, this increase in nuclear activity for G4 galaxies

coincides with their decrease in sSFR in comparison with G1–3

galaxies (Table 2), supporting the suggestion that supermassive black

holes are involved in their quenching.

That the sSFRs of V1–3 galaxies do not decline as strongly as

those of G1–3 galaxies may be tied to their morphologies; all three

also have very low median ng. This suggests that their bulges and/or

supermassive black holes have not yet grown to the extent that they

can effectively inhibit star formation. This would be consistent with

Fang et al. (2013) and Bluck et al. (2014), who find that bulges must

exceed a threshold in mass or central density before they become

associated with quenching. For V4 galaxies, the reduction in sSFR

is met with a rise to intermediate median ng, suggesting that this

threshold bulge mass has been achieved in some V4 galaxies.

Altogether, G1–4 and V1–4 galaxies (which include the vast

majority of green valley galaxies) appear to evolve slowly and

secularly (Schawinski et al. 2014; Ilbert et al. 2015; Moutard et al.

2016b; Pacifici et al. 2016). This is reflected in the similarity of

their SEDs, which all feature relatively flat UV regions that suggest

a gradual reduction in their star formation over time. It is also

reflected in the morphological sequences that their clusters exhibit.

The rising bulge prominences and declining star formation rates of

these galaxies suggests that nuclear feedback, fuelled by bar-driven

inflows, is the main mechanism driving their evolution (Gabor et al.

2011; Moutard et al. 2020). While this mechanism appears to act at

the epochs of both samples, the connection between morphologies

and star formation is stronger at lower redshifts. This may be linked

with the long time-scales over which these internal processes act,

such that the gradual evolution of V1–4 galaxies may eventually

lead to the more evolved distribution of galaxies given by clusters

G1–4, which we assume to be their descendants. Hence, the rising

prevalence of bulges grown by internal processes over cosmic time

(e.g. Bruce et al. 2012; Gu et al. 2019) would appear to be linked to

the cosmic decline of cosmic star formation activity. This connection

between the bulges and the star formation of SFMS galaxies has

previously been established (Cheung et al. 2012; Fang et al. 2013;

Bluck et al. 2014; Cano-Dı́az et al. 2019; McPartland et al. 2019), but

in our case it emerges purely from our clustering of galaxy colours,

with morphologies invoked post-clustering for interpretation. Our

clustering also appears to demonstrate that the SFMS is a two-

dimensional projection of this pathway which, in the full nine-

dimensional colour space, extends continuously to also include high-

mass passive galaxies (as revealed by G4 in particular) that retain

their discs, but are degenerate with other passive galaxies in two

dimensions.

5.2 Satellite quenching at low redshifts

The uniformly red NUV − u colours and the uniformly high Sérsic

indices of galaxies in clusters G5–7 and V5–7 imply a strong link

between their passiveness and their concentrated morphologies.

At high masses, this link may be obfuscated by a contribution

from the internally driven evolutionary pathway that we propose

in Section 5.1. We note that cluster V7 in particular, containing

VIPERS galaxies with the highest masses, seems to align well with

the sequence of clusters V1–4 in Fig. 7, such that it could partially

be an extension of this evolutionary pathway consisting of the oldest

galaxies with the most prominent bulges. This is in agreement with

previous studies which find that the inner stellar density of galaxies

is a successful predictor of its having been quenched (Cheung et al.

2012; Fang et al. 2013; Bluck et al. 2014).

However, other passive clusters are separated from their respective

sequences of star-forming clusters in Fig. 7. Clusters G7, G6, and

especially G5 (the latter containing the lowest mass passive galaxies

in our GSWLC-2 sample) have high median ng in comparison

with other clusters centred at similar stellar masses (G2, G3). This

separation invites the interpretation that their galaxies are subject to

alternative or additional evolutionary processes. That these clusters

contain those GSWLC-2 galaxies that occupy the highest density

environments (Fig. 8) suggests an additional influence of external

processes. Hence, we suspect that a significant proportion of galaxies

among G5–7 are satellite galaxies (occupying the haloes of more

massive central galaxies; Ilbert et al. 2010; Muzzin et al. 2013;

Moutard et al. 2018). There is a weaker morphological separation

for V5–7, and no environmental offset, which we attribute mostly

to the incompleteness of low-mass passive galaxies in our VIPERS
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sample; these would also be expected to trace high-density environ-

ments. Hence, our following discussion on the influence of external

processes upon satellite galaxies is conducted with reference to G5–

7 only. Fully establishing whether external processes influence the

evolution of low-mass passive galaxies at z ∼ 0.65 in the same way

requires a more complete sample.

Major and minor mergers (Toomre 1977; Barnes 1988, 1992;

Walker, Mihos & Hernquist 1996) and harassment (Moore et al.

1996; Smith et al. 2015), more common in environments of higher

densities (Renzini 1999; Tonini et al. 2016), are external processes

which can increase the Sérsic indices of galaxies by transform-

ing their morphologies from disc- to spheroid-dominated (Aceves,

Velázquez & Cruz 2006; Naab & Trujillo 2006; Fisher & Drory

2008). Fig. 10 shows a range of bulge-to-total ratios among galaxies

in G5–7, which may be capturing the varying degrees to which these

processes disrupt their morphologies. While most G5–7 galaxies

are strongly spheroid-dominated, others (while still having high

Sérsic indices) retain a disc component (with B/Tr values as low

as ∼0.3). Whether these processes are also responsible for the

quenching of G5–7 galaxies is unclear. Gravitational interactions

between merging galaxies can induce central starbursts which rapidly

exhaust their supplies of star-forming gas (e.g. PSBs, which we

suggest comprise G5), and/or can catalyse nuclear activity which

inhibits further star formation (Mihos & Hernquist 1994a, b, 1996;

Di Matteo, Springel & Hernquist 2005; Springel, Di Matteo &

Hernquist 2005a, b). However, a sufficiently gas-rich major merger

may instead lead its remnant to form with a disc and continue forming

stars (Barnes 2002; Hopkins et al. 2009a, b, 2010). In addition, a

merger remnant may accrete new gas such that it can form a new

disc and renew star formation (Salim & Rich 2010; Gabor et al.

2011). Generally, mergers cannot be unequivocally linked with the

quenching of galaxies (see also Weigel et al. 2017), and so it is more

likely that galaxies are quenched mainly by other processes.

Several external processes have been proposed to explain the

quenching of star-forming galaxies as they become satellites. Exam-

ples include ram-pressure stripping (Gunn & Gott 1972; McCarthy

et al. 2008), thermal evaporation (Cowie & Songaila 1977; Nipoti &

Binney 2007), and viscous stripping (Nulsen 1982; Kraft et al. 2017),

all of which invoke the removal of the cold interstellar medium of a

galaxy via its hydrodynamical interaction with the hot intergalactic

medium of high-density environments as the reason for quenching.

These processes are correlated with the velocity of a galaxy as

it travels through its environment, and generally quench galaxies

quickly. Gas may also be removed from the extended halo of a galaxy

at the outskirts of a dense environment, by the gravitational influence

of that environment as a whole (‘strangulation’ or ‘starvation’;

Larson, Tinsley & Caldwell 1980; Peng, Maiolino & Cochrane

2015). The galaxy then quenches slowly by exhausting any remaining

gas in its disc. The balance of these processes is not yet known

(Bahé & McCarthy 2015; Peng et al. 2015; Smethurst et al. 2017), but

recent studies advocate for a general ‘delayed-then-rapid’ quenching

pathway (Wetzel, Tinker & Conroy 2012; Wetzel et al. 2013; Muzzin

et al. 2014; Moutard et al. 2018). Galaxies initially quench slowly at

the outskirts of the environment, then quickly as they approach its

core, where the conditions for the aforementioned hydrodynamical

interactions are expected. This delay could also explain the large

spreads in the environmental distributions among all of our clusters in

Fig. 8. These quenching processes are, in turn, unlikely to transform

the morphologies of low-mass passive galaxies (Bekki, Couch &

Shioya 2002; Boselli et al. 2009; Zinger et al. 2018).

In all, the separation of clusters G5–7 from G1–4 in terms

of both their galaxies’ colours (i.e. those use as an input to the

clustering, in particular their NUV − u and NUV − r colours) and

morphologies (i.e. their higher Sérsic indices), implies that their

galaxies are subject to additional evolutionary processes. Hence,

we suggest that the strong overlap between the passivity and the

morphologies of G5–7 galaxies appears to be a product of different

sets of environmental processes, which drive their quenching and

morphological transformation separately (Poggianti et al. 1999;

Kelkar et al. 2019). In addition, it implies that the quenching of

galaxies precedes, or at least be simultaneous to, their morphological

transformation (Schawinski et al. 2014; Woo et al. 2017). While

the merger of two gas-rich, star-forming galaxies may produce

a rejuvenated remnant, mergers between passive progenitors will

invariably produce passive remnants with increasingly spheroidal

morphologies, ranging from lenticular galaxies with classical bulges

(Mishra et al. 2017; Mishra, Wadadekar & Barway 2018, 2019)

through to pure spheroids.

5.3 Clusters in the size-mass plane

Fig. 12 shows the size-mass distribution of the clusters in each of our

samples. The stellar masses originate from the same CIGALE SEDs

that were used to generate the colours with which we represent the

galaxies for the clustering, and the half-light radii from fits of single

Sérsic profiles (see Sections 2.1.2 and 2.2.2). The size of a galaxy, in

the context of its stellar mass and its morphology, is another important

record of its assembly history. The positions and distributions of both

sets of clusters in these plots match well with broader blue versus red,

and early- versus late-type distinctions made in the same (or similar)

plane(s) by other studies (Shen et al. 2003; van der Wel et al. 2014;

Lange et al. 2015). This result again demonstrates that FEM, via just

the nine input colours, is able to identify subpopulations that are

degenerate in two dimensions and that are ordinarily distinguished

using a combination of photometric and morphological information.

The most significant difference between the two plots in Fig. 12 is

the absence of compact massive galaxies in our GSWLC-2 sample

in comparison with our VIPERS sample. The canonical explanation

for the growth of these galaxies is ongoing minor merger activity

and accretion (Naab, Johansson & Ostriker 2009; Hopkins et al.

2010). The resultant shift between the passive VIPERS clusters

and the passive GSWLC-2 clusters is approximately in accordance

with the expected redshift evolution of the size–mass relation for

early-type, passive galaxies (van Dokkum et al. 2015), though the

mass-incompleteness of passive VIPERS galaxies means that we are

unlikely to have precisely captured this shift in this paper. The large

overlap of G4 and V4 with their respective passive clusters in Fig. 12

seems to support the additional ‘late-track’ (late with respect to

cosmic time rather than to morphology) of galaxy evolution proposed

by Barro et al. (2013) to yield disc-dominated passive galaxies (Ilbert

et al. 2010; Carollo et al. 2013; Schawinski et al. 2014). Both sets

of SFMS clusters are similarly distributed, capturing the minimal

evolution of the sizes of star-forming galaxies between their two

redshifts (Lilly et al. 1998; van der Wel et al. 2014).

6 SU M M A RY A N D C O N C L U S I O N S

We present results from the application of the FEM clustering

algorithm to samples of galaxies at low (z ∼ 0.06, from GSWLC-

2) and intermediate (z ∼ 0.65, from VIPERS) redshifts. Galaxies

are represented using nine UV-through-NIR broadband rest-frame

colours, derived from fits of ensembles of synthetic spectra to

observed photometry with CIGALE. Using unsupervised machine
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3026 S. Turner et al.

Figure 12. Half-light radius versus stellar mass for the galaxies in our samples. Circularized half-light radii are calculated from single Sérsic fits by Simard

et al. (2011) for our GSWLC-2 sample, and Krywult et al. (2017) for our VIPERS sample. The distributions of clusters are shown using coloured, filled contours

(drawn at a relative density of 0.4), and the coloured, circular markers show their medians.

learning to characterize the structures of our samples in this nine-

dimensional feature space, our aims (following Siudek et al. 2018b)

were to understand the evolution of subpopulations of galaxies in

terms of these colours over cosmic time, and to establish how strongly

these colours alone encode the assembly histories of galaxies. An

advantage of FEM is its incorporation of dimensionality reduction on

the fly, which ensures that it determines clusters using only the most

important and discriminative information available among the input

features. We summarize our results as follows:

(i) Our cluster evaluation search reveals that both of our samples

are best partitioned into seven clusters (Table 1). In addition, the best-

fitting submodels to each of our samples, identified independently,

are closely related, both allowing variation in the shapes of clusters

and differing only in their treatment of ‘noise’ among the input

features. For both samples, these seven clusters break down into four

‘blue’ clusters containing mostly star-forming galaxies (and the vast

majority of green valley galaxies), and three ‘red’ clusters containing

mostly passive galaxies (Fig. 4). These two families of clusters are

clearly separable, both in terms of the input colours to the clustering

as well as in terms of ancillary features, which suggests differences

in the evolution of their galaxies. Clustering outcomes in general are

highly robust and reproducible.

(ii) Overall, FEM uses the nine rest-frame colours similarly to

determine the partitions (Fig. 2), reducing the dimensionality of

the feature space to 6 in both cases. Altogether, optical colours

are most important to the clustering; individually, UV colours are.

The availability of photometry with which to constrain the SEDs of

galaxies is advantageous to the clustering. UV colours are slightly

more important to the clustering in our GSWLC-2 sample, which

has more GALEX coverage than our VIPERS sample. Similarly,

the lack of any NIR coverage for our GSWLC-2 sample means

that NIR colours are less important to its clustering. However,

given the broader overall similarity between the clustering structures

of the samples (Fig. 3), it appears that clustering (a statistical

method) combined with SED estimation (which can infer rest-frame

magnitudes from incomplete photometry) has enabled us to partially

‘fill the gaps’ of missing data in our samples.

(iii) Blue clusters (containing mostly star-forming galaxies and

the vast majority of green valley galaxies) in both samples form

clear morphological sequences (Fig. 7). The correlation between their

median Sérsic indices and their median stellar masses captures the

growth of the bulges of their galaxies along the SFMS (Fig. 10). At the

highest masses, this growth corresponds with a drop in sSFRs. Hence,

the quenching of high-mass galaxies is influenced by their inner

stellar densities, above a certain threshold, which appears to be linked

with nuclear activity (Fig. 11). The retention of discs by the highest

mass galaxies along this morphological sequence indicates that some

galaxies quench without fully transforming their morphologies. The

lack of a strong trend of these clusters with local environmental

overdensity (Fig. 8) suggests that this evolutionary pathway is

dominated by internal processes. This pathway, prominent at the

epochs of both samples, appears consistent with ‘mass quenching’,

as proposed by Peng et al. (2010). In addition, the SFMS appears

to be a two-dimensional projection of this pathway which, in nine

dimensions, extends all of the way to high-mass passive galaxies

that retain their discs. We expect that the long time-scales involved

would ultimately lead the VIPERS star-forming clusters to resemble

the GSWLC-2 star-forming clusters by the present day.

(iv) Red clusters (containing mostly passive galaxies) are clearly

separate from their corresponding sequences of blue clusters. Galax-

ies in red clusters in both samples have uniformly high Sérsic

indices, indicating a fundamental link between centrally concentrated

morphologies and passiveness (Fig. 7). Passive clusters in our

low-redshift sample are separated from their respective sequence

of star-forming clusters, particularly towards lower stellar masses

(Figs 7 and 10). We assume that this separation originates from the

influence of alternative or additional processes to those that dictate

the evolution of actively star-forming galaxies. Invoking the offset

of these low-redshift passive clusters to high local environmental

overdensities (Fig. 8), we suggest that some of their galaxies are

satellites, and subject to external processes. The homogeneity of their

early-type morphologies implies that their quenching precedes, or is

at least simultaneous to, their morphological transformation. In all,

this pathway appears consistent with ‘environment quenching’ (Peng

MNRAS 503, 3010–3031 (2021)
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et al. 2010). This morphological separation is not as apparent for the

passive clusters in our VIPERS sample (Fig. 7), which is mainly

due to incompleteness of low-mass passive galaxies (which would

also be expected to trace high-density environments). Hence, we are

prohibited from commenting on the prevalence of this evolutionary

pathway at intermediate redshifts.

Our study appears to confirm the existence of two distinct evo-

lutionary pathways of galaxies through the green valley (Poggianti

et al. 1999; Faber et al. 2007; Peng et al. 2010; Barro et al. 2013;

Fritz et al. 2014; Schawinski et al. 2014; Moutard et al. 2016b). We

re-emphasize that while much of our interpretation involves the use

of ancillary features (and especially morphological information), the

separation of the clusters into two main families of blue/green and

red clusters originates in the colours used as inputs to the clustering.

Hence, these pathways appear to be strongly encoded within the

SEDs of galaxies. Our results invite further investigation into the

extent to which a galaxy’s assembly history may be discerned purely

from its SED.

The use of further ancillary features would be instrumental in

further substantiating and constraining these pathways. A wealth of

such features are available for our GSWLC-2 sample, due to its basis

in SDSS. Examples include Galaxy Zoo 2 morphologies (Willett et al.

2013) which include bar and merger classifications, and Yang et al.

(2007) group memberships to enable a distinction between central

and satellite galaxies. A more detailed analysis of our low-redshift

sample in this manner is reserved for a future study. We note that

the Galaxy And Mass Assembly project (Driver et al. 2009) could

provide an alternative low-redshift sample, given its panchromatic

data release (Driver et al. 2016) and its rich library of value-added

catalogues (Baldry et al. 2018). The upcoming Deep Extragalactic

VIsible Legacy Survey (DEVILS; Davies et al. 2018), which aims

to improve completeness at 0.3 < z < 1.0, could be the basis

for an improved intermediate-redshift sample upon its completion.

Furthermore, the Legacy Survey of Space and Time (Ivezić et al.

2019), which will provide galaxy colours and morphologies together,

constitutes a particularly promising foundation for a future follow-up

study.

The incompleteness of low-mass passive galaxies at intermediate

redshifts would be alleviated by moving to deeper surveys such

as G10-COSMOS (Andrews et al. 2017) and 3D-HST (Momcheva

et al. 2016), both of which also have panchromatic photometric data

releases. This would enable an examination of environment quench-

ing at earlier epochs, and of its proposed increase in prevalence at

lower redshifts (Fossati et al. 2017; Moutard et al. 2018; Papovich

et al. 2018). Surveys like this could also extend our comparison to

redshifts as high as z ∼ 2, thus facilitating the constraint of the

changing balance of evolutionary pathways, informed by clustering

of rest-frame colours, over a greater extent of cosmic time.
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Sérsic J. L., 1963, Boletin de la Asociacion Argentina de Astronomia La Plata

Argentina, 6, 41
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A P P E N D I X A : I T E R AT I O N S O F FEM

In Fig. A1, we show ICL scores reported at each of up to 25 iterations

by various combinations of submodel and k for our GSWLC-2

sample. These ‘iteration profiles’ are mostly quite flat; hence, 25

iterations are more than sufficient for allowing FEM to stabilize

to an outcome. In addition, the bulk of the clustering structure
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Figure A1. ICL scores reported at iterations 1 through 25 by various

combinations of submodel and k for our GSWLC-2 sample. For each

submodel, we show the value of k which yields the highest ICL score.

These iteration profiles are generally quite flat, indicating that FEM quickly

converges to a stable outcome. The large changes exhibited by �, δk, k = 9

are due to the emptying of clusters as it iterates.

appears to be determined during the k-means initialization step,

which spreads the cluster centres out ahead of the first iteration. The

ICL criterion rewards separated clusters, so k-means initializations

are particularly well suited to yielding useful clustering outcomes.

Trials of the use of uniform random initializations resulted in more

combinations of submodels and k failing to converge.

Variations in the ICL values reported by individual combinations

of submodel and k over successive iterations arise due to the Fisher

step of FEM, in which the subspace within which the clusters are to

be modelled is found. Hence, the updating of the model parameters

during the Maximization step is indirectly related to the probabilities

calculated in the Expectation step. For traditional EM algorithms,

these steps are directly related and thereby guarantee convergence.

The large changes between successive iterations exhibited by some

combinations (e.g. �, δk, k = 9) are most often due to the emptying

of clusters; a reduction in the number of clusters used by FEM leads,

in these cases, to a sudden increase in ICL.

A P P E N D I X B: SM O OTH I N G O F F E ATU R E DATA

FOR O UR GSWLC-2 SAMPLE

Preliminary tests revealed that a truncated, bimodal substructure

among passive galaxies within the nine-dimensional colour space

representing our GSWLC-2 sample (see the left-hand plot of Fig. B1;

also visible in Fig. 3) led to an inability of FEM to converge for

the majority of submodels and values of k. This truncated bimodal

substructure is due to the lack of input NIR photometry to the CIGALE

SED estimation of GSWLC-2 galaxies, such that their NIR SEDs

must be inferred from UV and optical photometry. This, in turn,

leads to poorly constrained, discretized metallicities: galaxies at r −

Ks � 0.67 peak strongly at log10(Z) ∼ −2.4, and those at r − Ks

� 0.67 at log10(Z) ∼ −2.1. The NIR SEDs of VIPERS galaxies, on

the other hand, are constrained by Ks-band photometry and hence

have slightly more freedom to vary. This smooths their colour and

metallicity distributions.

We hence opt to apply a small level of Gaussian smoothing to

the GSWLC-2 distributions of the rest-frame absolute magnitudes

reported by CIGALE. The smoothing scale for the rest-frame absolute

magnitude of a given galaxy is given by its Bayesian error. These

errors are winsorized at the mean value of the logarithmic distribution

Figure B1. The effect of our smoothing on the distribution of GSWLC-2

galaxies in the passive region of the NUV − r − Ks colour–colour plane.

Substructures in the distribution of galaxies within this region are preserved

post-smoothing.

of errors (i.e. errors larger than the mean value are set to the

mean value). This winsorization ensures that the smoothing scale

is kept small enough to avoid the potential loss of astrophysically

meaningful substructures, while still enabling FEM to converge more

readily. The absolute rest-frame magnitude most affected by this

smoothing is FUV, whose errors are winsorized at a maximum

value of 0.25 (all other magnitudes have a maximum error <0.1

after winsorization). The right-hand plot of Fig. B1 demonstrates the

effect of our smoothing, showing that the bimodality in the colours of

passive galaxies is retained post-smoothing. While this bimodality

is likely to be an artefact, trends in the astrophysical features of

galaxies between its peaks are still likely to be genuine (see also

Section 4.4.2).

A P P E N D I X C : B E H AV I O U R O F T H E VA R I O U S

S U B M O D E L S O F FEM FOR O UR SA MPLE S

Our model selection approach considers ICL scores for 72 different

combinations of submodel and k for each of our samples. The

comparison of these 72 combinations is simplified greatly by the

realization that several submodels exhibit consistent patterns of

behaviour across all values of k.

FEM is unable to converge to an outcome for several combinations

of submodel and k. The most common diagnosis made by FEM in

the case of non-convergence is that a cluster has become empty

(i.e. that it no longer contains galaxies). Table 1 shows that several

submodels are unable to converge beyond a maximum value of k,

suggesting a limit to their ability to properly partition the samples.

Alternatively, submodels that converge at k, but fail to converge at k

− 1 and k + 1 appear to be striking a ‘sweet spot’ in terms of this

ability. Different combinations are generally very consistent with

respect to convergence, converging for either all or none of our 100

initializations.

Given their flexibility and their high levels of parametrization,

the �k, δk and �k, δ submodels offer the greatest promise among

all of the FEM submodels for yielding detailed and astrophysically

meaningful partitions of our samples. The outcomes they produce

are similar; they exhibit near-identical trends in their ICL scores for

k = 2 through k = 5 for our GSWLC-2 sample in Table 1. They differ

only in their treatment of the noise terms, which appears to be a minor

detail in comparison with their shared use of full, unique covariance

matrices. Outcomes at higher values of k generally consist of splits

of clusters present in outcomes at lower values of k.

Submodels featuring non-unique covariance matrices for the

Gaussian density functions representing the clusters (i.e. submodels

with � and α, such that they all have the same shape) consistently

produce clusters with highly disparate sizes. Some clusters are large,
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containing 30 to 60 per cent of the galaxies in our samples each (and

each often spanning both blue and red galaxies); others are empty or

nearly empty, containing �1 per cent of the galaxies in our samples

each. Nearly empty clusters appear to capture small, undesirable

artefacts in the structure of our samples within their input feature

spaces. While it is unclear why FEM registers a valid ICL score

for these outcomes when they include empty clusters (often cited

as a cause for the failure of FEM; see above), it is clear that these

submodels are too crude to return more than a very broad partition

of our samples, and that their outcomes are limited in their capacity

for astrophysical interpretation. All of this is also true for the �,

δ clustering outcome at k = 9 for our GSWLC-2 sample, which

achieved the highest ICL score in our model selection search despite

including empty and nearly empty clusters. For these reasons, we

reject this outcome for analysis.

A general property of clustering outcomes reported by submodels

which assume diagonal covariance matrices (αk, j, αk) for the Gaus-

sian density functions within the discriminative latent subspace is

that they segment our samples principally along a single dimension.

Several representative examples of their clustering structures are

shown in Fig. C1, revealing that this single dimension is most strongly

associated with the UV colours among our nine input features, with

little-to-no distinction made between galaxies based on their NIR

colours. We note that these submodels scored highest when we tested

clustering of our samples using i-band magnitudes of galaxies as a

reference point for defining colours (as in Siudek et al. 2018b; see also

Section 3.4), producing the same striping pattern within the NUV − r

− Ks plane. While this simple segmentation does correspond broadly

with incremental changes in the star formation activity of galaxies

within our samples, other submodels (with �k) return more detailed

partitions and achieve higher ICL scores anyway.

The large spread in the ICL scores reported in Table 1 arises

directly from a large spread in the log-likelihood values of the fits.

This large spread in the log-likelihood values arises, in turn, primarily

from a 1/δk coefficient in the log-likelihood function of DLM model

(which may be seen in full in appendix 2 of Bouveyron & Brunet

2012). Submodels which yield very large but negative log-likelihood

(and hence, ICL) values tend to have very small δk values for most

(if not all) of their clusters; usually 0.001, which is the floor that FEM

imposes upon the value of δk. Very small values of δk produce very

large, positive values of 1/δk, and (via a −1/2 coefficient of the log-

likelihood function) very large, negative values of the log-likelihood

and, thus, of the ICL criterion. The addition of this especially low-

variance noise to subspace Gaussians leads to highly peaked full

space Gaussians which are unlikely to reflect the more continuous

distributions of both samples (see Fig. 3).

Figure C1. Examples of the clustering structures determined by αk, j and αk

submodels for our GSWLC-2 sample, shown in the NUV − r − Ks colour–

colour plane. The combination of submodel and k for each outcome is shown

to the lower right of each plot. Individual galaxies are coloured in accordance

with the cluster to which they belong. The choice of colours in this figure is not

intended to imply any trends within or between plots. The horizontal striping

pattern exhibited by these examples in these plots, which is a general property

of αk, j- and αk-based outcomes, indicates segmentation mainly along a single

axis.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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