

The circadian clock and extracellular matrix homeostasis in ageing and age-related diseases

DOI:

[10.1152/ajpcell.00122.2023](https://doi.org/10.1152/ajpcell.00122.2023)

Document Version

Accepted author manuscript

[Link to publication record in Manchester Research Explorer](#)

Citation for published version (APA):

Dudek, M., Swift, J., & Meng, Q. (2023). The circadian clock and extracellular matrix homeostasis in ageing and age-related diseases. *American Journal of Physiology-Cell Physiology*. Advance online publication. <https://doi.org/10.1152/ajpcell.00122.2023>

Published in:

American Journal of Physiology-Cell Physiology

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [<http://man.ac.uk/04Y6Bo>] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

1 The circadian clock and extracellular matrix homeostasis in ageing and age-related
2 diseases

3 **Michał Dudek, Joe Swift and Qing-Jun Meng***

4 Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative
5 Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road,
6 Manchester, UK

7 *Corresponding author: Email: Qing-Jun.Meng@manchester.ac.uk

8 **Abstract:** The extracellular matrix (ECM) is the non-cellular scaffolding component present within all
9 tissues and organs. It provides crucial biochemical and biomechanical cues to instruct cellular
10 behaviour and has been shown to be under circadian clock regulation, a highly conserved cell-
11 intrinsic time keeping mechanism that has evolved with the 24-hour rhythmic environment. Ageing
12 is a major risk factor for many diseases, including cancer, fibrosis and neurodegenerative disorders.
13 Both ageing and our modern 24/7 society disrupt circadian rhythms, which could contribute to
14 altered ECM homeostasis. Understanding the daily dynamics of ECM and how this mechanism
15 changes with age will have profound impact on tissue health, disease prevention and improving
16 treatments. Maintaining rhythmic oscillations has been proposed as a hallmark of health. On the
17 other hand, many hallmarks of ageing turn out to be key regulators of circadian timekeeping
18 mechanisms. In this review, we summarise new work linking the ECM with circadian clocks and
19 tissue ageing. We discuss how the changes in the biomechanical and biochemical properties of ECM
20 during ageing may contribute to circadian clock dysregulation. We also consider how dampening of
21 clocks with age could compromise daily dynamic regulation of ECM homeostasis in matrix rich
22 tissues. This review aims to encourage new concepts and testable hypotheses about the two-way
23 interactions between circadian clocks and ECM in the context of ageing.

24

25 **The extracellular matrix and ageing**

26 The evolution of multi-cellular organisms from single cell organisms was one of the most significant
27 transitions in the evolution of life on Earth. This evolutionary step was critical to enabling organisms
28 to escape predation, colonize new environments and store and share oxygen and food. A key
29 mediator of metazoan multi-cellularity is the extracellular matrix (ECM), which is required to bridge
30 between cells to form specialised functional tissues and organs, for communication, and to support
31 cell survival and differentiation (1, 2). The ECM is an intricate network of multi-domain
32 macromolecules forming a biochemical and biomechanical local cellular microenvironment for cells
33 to function within. Broadly speaking, animals have two types of ECM: the specialised basement
34 membrane for epithelial tissues, and the interstitial matrix. Major components of the ECM are
35 collagens, elastin, proteoglycans and cell-binding glycoproteins. The composition, structure and
36 mechanical properties of the ECM maintain the size, shape and function of tissues and organs (3). In
37 addition to being important structural components, the ECM also contains a reservoir of growth
38 factors and bioactive molecules that are critical regulators of cell signalling. Through direct
39 interactions between cells and matrix components and through the effects of adhesion signalling
40 receptors, the ECM is critical for physiological tissue functioning. The ECM is a highly dynamic entity
41 and vital to control the most fundamental behaviours of cells, instructing cells how to orient
42 themselves (adhesion and polarity), whether and when to divide (proliferation), move (migration)
43 and die (apoptosis), where to deposit molecules (secretion), what cells to develop into
44 (differentiation) and how to respond to external cues. Abnormal functioning of the ECM underpins

45 many of the pathologies associated with advancing age and therefore represents a promising
46 therapeutic avenue for the treatment of fibrosis, cancer and wound healing (4–9).

47

48 During ageing, the integrity of the ECM declines through the accumulation of fragmented collagens,
49 oxidation, glycation, and protein aggregates, resulting in the deterioration of ECM dynamics and
50 subsequent tissue fibrosis (10–14). ECM stiffness increases with age due to the progressive increase
51 of enzymatic and stochastic non-enzymatic intra-intermolecular covalent bonds (crosslinks) between
52 molecules with slow rates of turnover, such as fibrillar collagens and elastin (15). Interestingly, dual
53 inhibition of crosslinking enzymes lysyl oxidase like 2 and 3 (LOXL2 and LOXL3) was sufficient to
54 normalise collagen fibrillogenesis, reducing tissue stiffness. Thus, inhibition of collagen crosslinking
55 can maintain mechano-homeostasis to limit the self-sustaining effects of ECM on progressive fibrosis
56 and aging (16). Of note, while increased ECM stiffness might drive the senescent phenotype in aging
57 and chronic fibrotic diseases, ECM derived from young human fibroblasts induces a youthful state in
58 aged senescent cells (17, 18). The fibrotic process is promoted by excessive secretion of
59 transforming growth factor beta (TGF β) and nuclear translocation of the transcription factor yes-
60 associated protein 1 (YAP1) and its paralog WW domain-containing transcription regulator protein 1
61 (TAZ) with an increase of matrix stiffness (19). The YAP/TAZ molecules act as mechano-transducers
62 and trigger the expression of pro-fibrotic genes such as transglutaminase-2 and lysyl oxidases (17).
63 However, the link between ageing and the YAP/TAZ signalling is not as straightforward and may be
64 dependent on tissue context as genetic inactivation of YAP/TAZ in stromal cells causes accelerated
65 aging, while sustaining YAP function rejuvenates old cells and prevents the emergence of aging
66 features by controlling “inflammaging” (20)

67

68 **Circadian biology**

69 Circadian ('circa', about; 'dia', day) clocks are molecular mechanisms that allow organisms to
70 synchronize their internal biological processes with the external day-night cycles of their
71 environment. These clocks are evolutionarily conserved and found in virtually all organisms, ranging
72 from bacteria, fungi, plants to mammals including humans. The circadian clocks operate through a
73 cell-intrinsic and permissive biochemical mechanism that enable the adaptation and anticipation of
74 environmental changes (21). The circadian system is composed of a network of central and
75 peripheral clocks, which respond to rhythmic input pathways (zeitgeber, or time cue) and control
76 diverse targets by rhythmic regulation of clock-controlled genes (CCGs). Peripheral clocks are
77 synchronized by a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus,
78 which receives light input from the retina. The peripheral clocks in various tissues and organs also
79 receive input from other cues such as food, body temperature, and hormones. The output from the
80 circadian clocks is complex and tissue-specific, regulating a wide range of physiological processes
81 including metabolism, hormone secretion, and immune function (22, 23). The circadian clock is
82 comprised of a transcriptional-translational feedback loop (Figure 1). This loop involves a set of core
83 clock genes, including *Period* (*Per*), *Cryptochrome* (*Cry*), *Clock* and *Bmal1*. These genes form a
84 regulatory network that oscillates over a 24-hour period and drives the expression of CCGs. The
85 transcriptional-translational feedback loop is tightly regulated by post-translational modifications,
86 including phosphorylation, acetylation, and ubiquitination (24–27).

87

88

89 **Circadian clock and ageing, reciprocal regulation**

90 Ageing is associated with a number of changes in the circadian clock system. Phase advance and
91 amplitude dampening are well-established changes during human ageing, which can be observed in
92 melatonin secretion, body temperature, and fibroblast rhythms (28). Studies in animals have also
93 demonstrated a decline in the robustness of behavioural rhythmicity, dampening of the amplitude
94 and changes in circadian phase of various tissue clocks with age (29–32). This age-related decline in
95 circadian rhythm leads to impaired sleep, altered metabolic processes and increased susceptibility to
96 disease (28). Ageing also leads to a profound reprogramming of the circadian targets in skin and
97 muscle stem cells to cope with the different needs of aged cells. In aged mice, epidermal and muscle
98 stem cells retain a robustly rhythmic core circadian machinery, but the rhythmic transcriptome is
99 extensively reprogrammed, switching from genes involved in homeostasis to those involved in
100 tissue-specific stresses, such as DNA damage or inefficient autophagy (33). Similarly, liver from aged
101 mice also showed genome-wide reprogramming, which was proposed to contribute to the
102 progression of age-related diseases, such as cancer and neurodegeneration (33–35). Several well-
103 established hallmarks of ageing (36) are known to regulate the circadian clock and are themselves
104 under circadian clock control, forming feedback loops. For instance, the enzyme sirtuin 1 (Sirt1) has
105 been implicated in regulating the circadian clock through deacetylation of key clock proteins (24,
106 37), while nicotinamide phosphoribosyl transferase (NAMPT), the rate-limiting enzyme for NAD⁺
107 salvage pathway, is a rhythmically expressed protein under clock transcriptional control (38). The
108 protein complex mechanistic target of rapamycin complex 1 (mTORC1) regulates the circadian clock
109 through phosphorylation of BMAL1 by its effector kinase S6K1, while its activity is also affected by
110 circadian clock dampening in aging (39, 40). The nutrient sensing/AMPK pathway has been shown to
111 affect the circadian clock through degradation of PERs and CRYs (41, 42). The circadian clock
112 undergoes significant alterations in both cell-intrinsic mechanisms such as senescence, autophagy,
113 and the unfolded protein response, as well as systemic changes in hormone levels, temperature
114 regulation, and neuroendocrine signalling (28, 43).

115 Studies in various clock knockout and mutant models have demonstrated accelerated tissue ageing
116 and reduced lifespan. Most notably, *Bmal1* knock-out mice are extremely short lived and display
117 conditions related to ageing, e.g., sarcopenia, cataracts, cornea inflammation, osteoporosis, ectopic
118 calcification of joints and premature hair loss (44). Mice with mutations in *Clock*, *Per1* and *Per2* also
119 show reduced lifespan and age-related diseases such as cataracts, hypoinsulinaemia and diabetes,
120 early decline in fertility, kyphosis and increased tumour incidence (45–47). Disruptions to circadian
121 clocks in mice have also been associated with fibrotic diseases in tissues such as lung, kidney, heart
122 and adipose (48–51). Rotating shift work (and by extension chronic jet lag) that disrupts circadian
123 rhythms has been proposed as risk factors for a wide range of human conditions (52–54). Most
124 notably, epidemiological studies of shift workers revealed increased prevalence of breast cancer,
125 metabolic syndrome, cardiovascular disease, osteoporosis, and bone fractures (55–59). This effect is
126 recapitulated in animal experiments by prolonged environmental disruption of the circadian rhythm
127 through frequent shifting of the light/dark phases or misalignment of feeding with normal activity
128 phase. Animals with rhythm disruptions showed increased incidences of metabolic syndrome,
129 premature cellular ageing, immune senescence, shortened lifespan, increased cancer risk and
130 osteoarthritis (60–64). In humans, even short experimental protocols of circadian misalignment
131 result in decreased leptin, increased arterial mean pressure and glucose level and post-prandial
132 response resembling pre-diabetic state (65). While chronic misalignment caused by exposure to
133 artificial light at night or residency in polar regions was also found to be deleterious to human health
134 (66, 67). On the other hand, circadian clock disruption may be part of the disease process. For
135 example, disrupted circadian rhythms and sleep are an early warning sign for a range of age-related

136 neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's (68). Expression of
137 circadian clock genes was found to be dysregulated in mouse model of induced osteoarthritis and in
138 human cartilage from osteoarthritis patients undergoing joint replacement (69–71). Severity of
139 human intervertebral disc degeneration is correlated with downregulation of clock genes, while
140 experimental approaches suggest that abnormal mechanical load negatively affects the clock which
141 may contribute to loss of tissue homeostasis (72, 73). A range of pulmonary diseases, including age
142 related pulmonary fibrosis, show time of day dependent symptoms, response to treatment and a
143 striking correlation with dysregulated clock gene expression (74). However, it is still challenging to
144 disentangle the cause and effect relationship between circadian clock disruption and age-related
145 diseases.

146

147 **Circadian control of ECM homeostasis in matrix-rich tissues**

148 As an integral temporal regulator of tissue physiology throughout the 24-hour day, the circadian
149 regulation of ECM homeostasis is especially salient in matrix-rich tissues (Figure 2). In the skin,
150 cutaneous circadian clocks have been shown to control cell migration and proliferation, stem cell
151 differentiation and susceptibility to oxidative stress or UV damage (75). Of note, dermal fibroblasts,
152 the main ECM-synthesising cell type in the skin, have been widely used as a model of peripheral
153 circadian clocks (76). The cell-autonomous clock in fibroblasts was shown to drive a temporal
154 proteomic program that imposed rhythmic regulation upon the actin cytoskeleton, such as
155 cytoskeletal regulators, such as cofilin 2 and RhoA (76). Critically, the fibroblast circadian clock
156 modulates the efficiency of actin-dependent processes, including cell migration and adhesion,
157 leading to a time-of-day dependent wound healing response in cells, skin explants and in patients
158 with burns (76). In collagen-rich tendon tissue, the circadian clock was shown to control endoplasmic
159 reticulum-to-plasma membrane procollagen transport by the sequential rhythmic expression of
160 SEC61, TANGO1, PDE4D and VPS33B. In addition, collagen degradation also appears to be rhythmic,
161 attributed to the rhythmic levels of the enzyme cathepsin K (77). It was proposed that the daily
162 homeostasis of persistent collagen network in tendon is maintained by a rhythmic sacrificial pool of
163 dynamic and newly synthesized collagen I (77). Moreover, tendon-derived fibroblasts exhibit a
164 circadian rhythm in composition of released extracellular vesicles with notable circadian control of
165 matrix metalloproteinase 14 (MT1-MMP) (78).

166 Articular cartilage is a highly specialised connective tissue that lines the surface of long bones in the
167 joints. It consists of a dense ECM and sparsely populated chondrocytes. The circadian rhythm in
168 articular cartilage acts to temporally segregate the activities of ECM-related anabolic and catabolic
169 molecules to optimal times of the day, as revealed by time series transcriptomics profiling (31, 70).
170 Most rhythmic genes peaked during subjective daytime (resting phase in mice), including processes
171 related to extracellular matrix and proteolysis e.g., Mmp14 and Adamts4 proteinases, Timp4
172 proteinase inhibitor, key chondrocyte transcription factor Sox9, and genes encoding two major
173 cartilage structural components Acan (the proteoglycan aggrecan) and Col2a1 (collagen type II alpha
174 I), among others). At protein level, time-resolved proteomics revealed a circadian rhythm in
175 adhesion related molecules and matrisome proteins such as growth factors CTGF and CYR61 which
176 are essential in cartilage homeostasis, SERPINE1 (a protease involved in regulation of inflammatory
177 response), as well as enzymes PLOD1 and PLOD2 (responsible for hydroxylation of lysine during
178 collagen synthesis) (79). These findings are consistent with circadian control of ECM molecules in
179 human chondrocytes, where knocking down of BMAL1 led to an increase in the expression of
180 catabolic genes (such as MMP1, MMP3, MMP13, ADAMTS5 proteinase genes) and dysregulated
181 TGFB signalling (71, 80–82). Interestingly, environmental disruption or chondrocyte-specific genetic

182 deletion of the circadian clock mechanism resulted in impaired cartilage homeostasis,
183 disorganisation of the matrix structure and progressive degeneration (31, 63). Similar findings were
184 also reported in another ECM-rich tissue of the skeletal system, the intervertebral disc (IVD), with
185 rhythmic regulation of genes relating to ECM turnover (e.g. *Adamts1*, *Timp4*, *Itgb1*) and ER stress
186 (e.g. *Pak1*, *Atf6*) (30). *Col2a1-Bmal1* knockout mice show age-related ECM phenotypes in the IVD,
187 including collagen fibril thinning, disorganisation and ossification (83).

188

189 **ECM regulation of circadian clocks**

190 Recent studies have shown that biochemical and biomechanical cues from the ECM can regulate
191 circadian clocks in a manner specific to cell and tissue type, and that these cues may contribute to
192 tissue ageing and age-related diseases (Figure 2). Biochemical matrix-derived signalling pathways,
193 such as those mediated by TGF β , have been implicated as peripheral coupling factors that mediate
194 paracrine phase adjustment of molecular clocks through transcriptional regulation of core-clock
195 genes (84). Disruption of TGF β signalling leads to desynchronization of oscillator networks among
196 cells, with reduced amplitude and increased sensitivity toward external time cues (84).

197 Biomechanical regulation of circadian clocks is an emerging area of research that has potential
198 implications for understanding tissue ageing (Figure 2). Recent studies have shown that the
199 biomechanical properties of the ECM can influence circadian pacemaking of cells in a tissue and cell
200 type specific manner. The circadian clock and the mechanical properties of the microenvironment
201 both play critical roles in mammary gland ageing. Aged mammary gland was shown to have a less
202 robust circadian clock and a stiffer mechano-microenvironment, as measured by atomic force
203 microscopy. Mammary epithelial cells cultured in a soft environment had a stronger circadian
204 rhythm in expression of clock genes compared to those in stiffer, while stromal fibroblasts from the
205 same tissue showed an inverse response (32). This inverse relationship between epithelial and
206 stromal cells was also demonstrated in other tissues such as lung and skin (32). Thus, it appears that
207 cell-intrinsic clocks are regulated through the biophysics of the cellular microenvironment and local
208 cell-matrix interactions. The stiffness of the cellular microenvironment seems to have a much bigger
209 impact on circadian clock activity than the composition of the ECM (32). The effect of matrix stiffness
210 on the clock is largely mediated by the cytoskeleton. Vinculin knockdown, disruption of the
211 cytoskeleton, and Rho/ROCK-mediated activation of actomyosin contractility all influenced core
212 clock transcription factors. A ROCK inhibitor improved the circadian rhythm amplitude in mammary
213 epithelial cells cultured within a stiff environment in a dose-dependent manner, and increased clock
214 amplitude in older mammary tissue (32, 85). Actin polymerization in response to external signals
215 released MRTF from G-actin sequester, which activated SRF-mediated transcription of clock genes
216 *Per1*, *Per2*, *Nr1d1* and *Nfil3*. By altering actin dynamics using Cytochalasin D and Latrunculin B
217 (inhibitors of actin polymerization) or Jasplakinolide (actin stabilizer), or by blockade of integrin
218 (which provides anchoring of the cells to the ECM and transmits stiffness information to the
219 cytoskeleton), it was possible to modulate the expression of clock genes and regulate the circadian
220 clock (86). These findings suggest that the mechanical properties of the ECM may play an important
221 role in regulating circadian clocks, dysregulation of which could contribute to age-related disease.

222

223 **Conclusions and future directions**

224 The 24-hour rest/activity rhythm puts time-of-day dependent demands on most organs, tissues,
225 cells, all the way down to cellular organelles and molecular pathways in the body. As a result, many

226 metabolic processes are controlled by the circadian clock and temporally separated allowing
227 segregation of often opposing biochemical reactions. Considering the dynamic nature of ECM
228 remodelling, it is reasonable to predict that some of the involved processes will be separated in
229 circadian time. This may be the case particularly in tissues which are subject to diurnal mechanical
230 loading, and where the ECM comprises a large proportion of the volume of the tissue, such as in
231 cartilage, IVD or tendons. For these ECM-rich tissues, separating clean-up of damaged matrix from
232 assembly and deposition of new matrix could be beneficial.

233 Disruptions of clock mechanisms are linked to an increased risk of diseases, especially those
234 associated with ageing. In light of these findings, it is highly likely that chronic circadian disruption as
235 experienced by long term rotating shift work or in ageing could contribute to loss of ECM structural
236 integrity and homeostasis, accelerate ageing and predispose to disease. Despite prominent circadian
237 regulation, the roles of the microenvironments in which cells reside have been largely neglected in
238 mammalian circadian biology, partly attributable to the common practice of culturing cells on stiff
239 plastics which have limited physiological relevance. The recent discovery of ECM-dependent clocks
240 highlights the need to consider the niche and cell type-dependent circadian functions. The
241 biomechanical properties of different tissues range from soft (brain, bone marrow and adipose
242 tissue) to stiff tissues (tendon, cartilage and bone) (87). One intriguing question that remains is
243 whether the clock mechanism has evolved to adapt to their specific microenvironment. When the
244 tissue stiffness starts changing, for instance during ageing, fibrosis or cancer, the circadian clock
245 system may lose precision and compromise its rhythmic regulation, further exacerbating the
246 diseases. The cell-specific regulation of circadian timing mechanism by the ECM also highlights the
247 need to investigate clocks in a cell-specific manner and not to generalise findings. Future work
248 should aim to address the scale and extent of ECM-dependent circadian clocks in other tissues and
249 cell types and their implications for disease. The ECM is a dynamic and constantly remodelling
250 structure, and the fragmentation of ECM proteins can result in the release of peptide cytokines, or
251 matrikines, that can have diverse effects on cellular function. These matrikines have been implicated
252 in regulating inflammation, tissue remodelling, and wound healing. However, their potential effects
253 on the circadian clock have not been extensively studied (88). Given age-related changes in ECM
254 composition and remodelling, further research is necessary to test whether matrikines could
255 influence circadian clock functions, a new effector of ECM signalling that could contribute to age-
256 related disease.

257 Delineating the complexities of how the biophysical and biochemical properties of the ECM influence
258 cellular clocks and the underlying intracellular molecular mechanisms are clearly warranted and will
259 aid our understanding of how disrupted clocks contribute to disease processes and ageing. In
260 addition to rhythmic changes in gene and protein expression, future work should aim to better
261 characterise diurnal changes in ECM physiology at tissue level. Although many rhythmic matrix genes
262 and proteins have been found (by time-resolved RNA-seq and mass spectrometry proteomics
263 experiments, respectively), the correlation between the two is limited, suggesting post-
264 transcriptional or even post-translational circadian control. Indeed, as mentioned earlier, collagen I
265 synthesis and secretion is under circadian control, so is the composition of extracellular vesicles,
266 suggesting multiple levels of rhythmic control over ECM homeostasis. Importantly, recent work has
267 suggested that post-transcriptional and post-translational mechanisms of regulating protein levels
268 are abrogated in ageing and senescent cells (89, 90). Pulse-chase heavy-isotope labelled mass
269 spectrometry experiments could help accurately quantify rates of accumulation and degradation of
270 proteins according to circadian time (91). Moreover, zymography and degradomic studies utilising N-
271 terminal labelling of proteins before tryptic digest, which distinguishes peptides cleaved by
272 proteases *in situ* from tryptic peptides, performed as a circadian time-series experiments could

273 reveal the dynamics of ECM proteases. Inclusion of tissue specific circadian clock knockout samples
274 may help determine the extent to which the local circadian clock mechanism is involved in daily
275 maintenance of the tissues and how much tissue physiology revolves around the diurnal rest/activity
276 cycle. Live imaging approaches of fluorescently-tagged individual ECM molecules could shine light on
277 circadian processes within the matrix. There is also opportunity to investigate whether clock
278 targeting using small molecules could be a new way of modulating the ECM dynamics. Finally, it is
279 imperative to take into account the time-of-day for experimental design and standardization of
280 biomarker detections that involves ECM (e.g., matrikines). Answering these questions will not only
281 reveal new aspects of ECM tissue biology, but also help us understand how disrupted clocks
282 contribute to illness and to ageing. It is the intention of the authors to stimulate efforts to address
283 these new ideas, which will provide new avenues of research into the crossover between
284 extracellular microenvironment and intracellular time-keeping mechanisms throughout the life
285 course.

286

287 **Figure legends:**

288 **Figure 1. The molecular mechanism driving the circadian clock.** The circadian clock mechanism is
289 composed of a transcriptional-translational negative feedback loop (TTFL). BMAL1 and CLOCK
290 constitute the positive arm of the clock. The BMAL1/CLOCK complex bind to E-box sequences in
291 promoter regions of target genes to drive rhythmic expression of other clock components (e.g., *Per*
292 and *Cry*). PERs and CRYs form the negative arm of the feedback loop. After being synthesised in the
293 cytoplasm, they form a heterodimer and translocate back to the nucleus at night to suppress the
294 transcriptional activity of BMAL1/CLOCK. The cellular localisation and stability of PERs and CRYs are
295 controlled by post-translational modifications via CK1 δ/ϵ , GSK-3 β and AMPK kinases. Among the
296 clock target genes, RORs and REV-ERBs regulate the transcription of *Bmal1* gene by competing for
297 ROR Response Elements (RRE) to make the oscillator more robust. RORs are transcriptional
298 activators, while REV-ERBs are transcriptional repressors. PERs and CRYs are subsequently
299 ubiquitinated and degraded by the 26S proteasome, allowing the new cycle to start again. The whole
300 process takes roughly 24 hours to complete.

301 **Figure 2. Processes involved in reciprocal regulation between the circadian clock and the ECM are
302 affected by aging.** The circadian clock controls aspects of matrix homeostasis including rhythmic
303 secretion and degradation of collagen, expression of signalling molecules, proteases and their
304 inhibitors. Conversely, the biochemical and biomechanical properties of the ECM influence the
305 strength of circadian rhythm in a cell type specific manner. During aging, the ECM properties are
306 altered and the circadian clocks are dampened, leading to irregular sleep/wake cycle, dampening
307 and misalignment of circadian rhythms in body temperature and hormone levels. On the molecular
308 level, ageing reprograms global rhythmic gene expression patterns to cope with changing needs. This
309 will inevitably affect expression of ECM genes and further propel degenerative changes in ECM
310 composition.

311

312 **Funding:** MRC project grants MR/T016744/1 and MR/P010709/1 (QJM); Versus Arthritis Senior
313 Fellowship Award 20875 (QJM); Wellcome Trust Grant for the Wellcome Centre for Cell-Matrix
314 Research 088785/Z/09 (JS and QJM); BBSRC sLoLa grant BB/T001984/1 (JS and QJM); a RUBICON
315 secondment fellowship to MD (European Union funded project H2020-MSCA-RISE-2015_690850).

316 **References:**

317 1. **Bich L, Pradeu T, Moreau J-F.** Understanding Multicellularity: The Functional Organization of
318 the Intercellular Space [Online]. *Front Physiol* 10, 2019.
319 <https://www.frontiersin.org/articles/10.3389/fphys.2019.01170> [26 Mar. 2023].

320 2. **Özbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC.** The Evolution of
321 Extracellular Matrix. *Mol Biol Cell* 21: 4300–4305, 2010. doi: 10.1091/mbc.E10-03-0251.

322 3. **Frantz C, Stewart KM, Weaver VM.** The extracellular matrix at a glance. *J Cell Sci* 123: 4195–
323 4200, 2010. doi: 10.1242/jcs.023820.

324 4. **Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y.** Extracellular matrix and its
325 therapeutic potential for cancer treatment. *Signal Transduct Target Ther* 6: 1–24, 2021. doi:
326 10.1038/s41392-021-00544-0.

327 5. **Lampi MC, Reinhart-King CA.** Targeting extracellular matrix stiffness to attenuate disease:
328 From molecular mechanisms to clinical trials. *Sci Transl Med* 10: eaao0475, 2018. doi:
329 10.1126/scitranslmed.aao0475.

330 6. **Tracy LE, Minasian RA, Caterson EJ.** Extracellular Matrix and Dermal Fibroblast Function in the
331 Healing Wound. *Adv Wound Care* 5: 119–136, 2016. doi: 10.1089/wound.2014.0561.

332 7. **Venning FA, Wullkopf L, Erler JT.** Targeting ECM Disrupts Cancer Progression [Online]. *Front
333 Oncol* 5, 2015. <https://www.frontiersin.org/articles/10.3389/fonc.2015.00224> [29 Mar. 2023].

334 8. **Walton KL, Johnson KE, Harrison CA.** Targeting TGF- β Mediated SMAD Signaling for the
335 Prevention of Fibrosis [Online]. *Front Pharmacol* 8, 2017.
336 <https://www.frontiersin.org/articles/10.3389/fphar.2017.00461> [29 Mar. 2023].

337 9. **Wight TN, Potter-Perigo S.** The extracellular matrix: an active or passive player in fibrosis? *Am J
338 Physiol-Gastrointest Liver Physiol* 301: G950–G955, 2011. doi: 10.1152/ajpgi.00132.2011.

339 10. **Boyd NF, Li Q, Melnichouk O, Huszti E, Martin LJ, Gunasekara A, Mawdsley G, Yaffe MJ,
340 Minkin S.** Evidence That Breast Tissue Stiffness Is Associated with Risk of Breast Cancer. *PLOS
341 ONE* 9: e100937, 2014. doi: 10.1371/journal.pone.0100937.

342 11. **Fiorino S, Di Saverio S, Leandri P, Tura A, Birtolo C, Silingardi M, de Biase D, Avisar E.** The role
343 of matricellular proteins and tissue stiffness in breast cancer: a systematic review. *Future Oncol*
344 14: 1601–1627, 2018. doi: 10.2217/fon-2017-0510.

345 12. **Handorf AM, Zhou Y, Halanski MA, Li W-J.** Tissue Stiffness Dictates Development,
346 Homeostasis, and Disease Progression. *Organogenesis* 11: 1–15, 2015. doi:
347 10.1080/15476278.2015.1019687.

348 13. **Nakasaki M, Hwang Y, Xie Y, Kataria S, Gund R, Hajam EY, Samuel R, George R, Danda D, M. J.
349 P, Nakamura T, Shen Z, Briggs S, Varghese S, Jamora C.** The matrix protein Fibulin-5 is at the
350 interface of tissue stiffness and inflammation in fibrosis. *Nat Commun* 6: 8574, 2015. doi:
351 10.1038/ncomms9574.

352 14. **Sherratt MJ.** Tissue elasticity and the ageing elastic fibre. *AGE* 31: 305–325, 2009. doi:
353 10.1007/s11357-009-9103-6.

354 15. **Birch HL.** Extracellular Matrix and Ageing. In: *Biochemistry and Cell Biology of Ageing: Part I
355 Biomedical Science*, edited by Harris JR, Korolchuk VI. Springer, p. 169–190.

356 16. **Jones MG, Andriots OG, Roberts JJ, Lunn K, Tear VJ, Cao L, Ask K, Smart DE, Bonfanti A,**
357 **Johnson P, Alzetani A, Conforti F, Doherty R, Lai CY, Johnson B, Bourdakos KN, Fletcher SV,**
358 **Marshall BG, Jogai S, Brereton CJ, Chee SJ, Ottensmeier CH, Sime P, Gauldie J, Kolb M,**
359 **Mahajan S, Fabre A, Bhaskar A, Jarolimek W, Richeldi L, O'Reilly KM, Monk PD, Thurner PJ,**
360 **Davies DE.** Nanoscale dysregulation of collagen structure-function disrupts mechano-
361 homeostasis and mediates pulmonary fibrosis. *eLife* 7: e36354, 2018. doi: 10.7554/eLife.36354.

362 17. **Selman M, Pardo A.** Fibroageing: An ageing pathological feature driven by dysregulated
363 extracellular matrix-cell mechanobiology. *Ageing Res Rev* 70: 101393, 2021. doi:
364 10.1016/j.arr.2021.101393.

365 18. **Blokland KEC, Pouwels SD, Schuliga M, Knight DA, Burgess JK.** Regulation of cellular
366 senescence by extracellular matrix during chronic fibrotic diseases. *Clin Sci* 134: 2681–2706,
367 2020. doi: 10.1042/CS20190893.

368 19. **Panciera T, Azzolin L, Cordenonsi M, Piccolo S.** Mechanobiology of YAP and TAZ in physiology
369 and disease. *Nat Rev Mol Cell Biol* 18: 758–770, 2017. doi: 10.1038/nrm.2017.87.

370 20. **Sladitschek-Martens HL, Guarnieri A, Brumana G, Zanconato F, Battilana G, Xiccato RL,**
371 **Panciera T, Forcato M, Bicciato S, Guzzardo V, Fassan M, Ulliana L, Gandin A, Tripodo C,**
372 **Foiani M, Brusatin G, Cordenonsi M, Piccolo S.** YAP/TAZ activity in stromal cells prevents
373 ageing by controlling cGAS-STING. *Nature* 607: 790–798, 2022. doi: 10.1038/s41586-022-
374 04924-6.

375 21. **Patke A, Young MW, Axelrod S.** Molecular mechanisms and physiological importance of
376 circadian rhythms. *Nat Rev Mol Cell Biol* 21: 67–84, 2020. doi: 10.1038/s41580-019-0179-2.

377 22. **Albrecht U.** Timing to Perfection: The Biology of Central and Peripheral Circadian Clocks.
378 *Neuron* 74: 246–260, 2012. doi: 10.1016/j.neuron.2012.04.006.

379 23. **Finger A-M, Kramer A.** Peripheral clocks tick independently of their master. *Genes Dev* 35:
380 304–306, 2021. doi: 10.1101/gad.348305.121.

381 24. **Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW,**
382 **Schibler U.** SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation. *Cell*
383 134: 317–328, 2008. doi: 10.1016/j.cell.2008.06.050.

384 25. **Narasimamurthy R, Virshup DM.** The phosphorylation switch that regulates ticking of the
385 circadian clock. *Mol Cell* 81: 1133–1146, 2021. doi: 10.1016/j.molcel.2021.01.006.

386 26. **Stojkovic K, Wing SS, Cermakian N.** A central role for ubiquitination within a circadian clock
387 protein modification code [Online]. *Front Mol Neurosci* 7, 2014.
388 <https://www.frontiersin.org/articles/10.3389/fnmol.2014.00069> [16 Mar. 2023].

389 27. **Takahashi JS.** Transcriptional architecture of the mammalian circadian clock. *Nat Rev Genet* 18:
390 164–179, 2017. doi: 10.1038/nrg.2016.150.

391 28. **Hood S, Amir S.** The aging clock: circadian rhythms and later life. *J Clin Invest* 127: 437–446,
392 2017. doi: 10.1172/JCI90328.

393 29. **Bonaconsa M, Malpeli G, Montaruli A, Carandente F, Grassi-Zucconi G, Bentivoglio M.**
394 Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and
395 heart of aged mice. *Exp Gerontol* 55: 70–79, 2014. doi: 10.1016/j.exger.2014.03.011.

396 30. **Dudek M, Yang N, Ruckshanthi JP, Williams J, Borysiewicz E, Wang P, Adamson A, Li J,**
397 **Bateman JF, White MR, Boot-Handford RP, Hoyland JA, Meng Q-J.** The intervertebral disc
398 contains intrinsic circadian clocks that are regulated by age and cytokines and linked to
399 degeneration. *Ann Rheum Dis* 76: 576–584, 2017. doi: 10.1136/annrheumdis-2016-209428.

400 31. **Dudek M, Gossan N, Yang N, Im H-J, Ruckshanthi JPD, Yoshitane H, Li X, Jin D, Wang P,**
401 **Boudiffa M, Bellantuono I, Fukada Y, Boot-Handford RP, Meng Q-J.** The chondrocyte clock
402 gene Bmal1 controls cartilage homeostasis and integrity. *J Clin Invest* 126: 365–376, 2016. doi:
403 10.1172/JCI82755.

404 32. **Yang N, Williams J, Pekovic-Vaughan V, Wang P, Olabi S, McConnell J, Gossan N, Hughes A,**
405 **Cheung J, Streuli CH, Meng Q-J.** Cellular mechano-environment regulates the mammary
406 circadian clock. *Nat Commun* 8: 14287, 2017. doi: 10.1038/ncomms14287.

407 33. **Solanas G, Peixoto FO, Perdiguero E, Jardí M, Ruiz-Bonilla V, Datta D, Symeonidi A,**
408 **Castellanos A, Welz P-S, Caballero JM, Sassone-Corsi P, Muñoz-Cánoves P, Benitah SA.** Aged
409 Stem Cells Reprogram Their Daily Rhythmic Functions to Adapt to Stress. *Cell* 170: 678–
410 692.e20, 2017. doi: 10.1016/j.cell.2017.07.035.

411 34. **Sato S, Solanas G, Peixoto FO, Bee L, Symeonidi A, Schmidt MS, Brenner C, Masri S, Benitah**
412 **SA, Sassone-Corsi P.** Circadian Reprogramming in the Liver Identifies Metabolic Pathways of
413 Aging. *Cell* 170: 664–677.e11, 2017. doi: 10.1016/j.cell.2017.07.042.

414 35. **Wolff CA, Gutierrez-Monreal MA, Meng L, Zhang X, Douma LG, Costello HM, Douglas CM,**
415 **Ebrahimi E, Pham A, Oliveira AC, Fu C, Nguyen A, Alava BR, Hesketh SJ, Morris AR, Endale**
416 **MM, Crislip GR, Cheng K-Y, Schroder EA, Delisle BP, Bryant AJ, Gumz ML, Huo Z, Liu AC, Esser**
417 **KA.** Defining the age-dependent and tissue-specific circadian transcriptome in male mice. *Cell*
418 *Rep* 42: 111982, 2023. doi: 10.1016/j.celrep.2022.111982.

419 36. **López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G.** Hallmarks of aging: An
420 expanding universe. *Cell* 186: 243–278, 2023. doi: 10.1016/j.cell.2022.11.001.

421 37. **Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi**
422 **P.** The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin
423 Remodeling and Circadian Control. *Cell* 134: 329–340, 2008. doi: 10.1016/j.cell.2008.07.002.

424 38. **Wijnen H.** A Circadian Loop asSIRTs Itself. *Science* 324: 598–599, 2009. doi:
425 10.1126/science.1174132.

426 39. **Khapre RV, Kondratova AA, Patel S, Dubrovsky Y, Wrobel M, Antoch MP, Kondratov RV.**
427 BMAL1-dependent regulation of the mTOR signaling pathway delays aging. *Aging* 6: 48–57,
428 2014. doi: 10.18632/aging.100633.

429 40. **Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A, Güttler T, Davis**
430 **F, Asara JM, Sahin M.** The Circadian Protein BMAL1 Regulates Translation in Response to S6K1-
431 Mediated Phosphorylation. *Cell* 161: 1138–1151, 2015. doi: 10.1016/j.cell.2015.04.002.

432 41. **Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon**
433 **H, Panda S, Shaw RJ, Thompson CB, Evans RM.** AMPK Regulates the Circadian Clock by
434 Cryptochrome Phosphorylation and Degradation. *Science* 326: 437–440, 2009. doi:
435 10.1126/science.1172156.

436 42. **Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH.** Activation of 5'-AMP-
437 activated Kinase with Diabetes Drug Metformin Induces Casein Kinase I ϵ (CKI ϵ)-dependent
438 Degradation of Clock Protein mPer2 *. *J Biol Chem* 282: 20794–20798, 2007. doi:
439 10.1074/jbc.C700070200.

440 43. **Liu F, Chang H-C.** Physiological links of circadian clock and biological clock of aging. *Protein Cell*
441 8: 477–488, 2017. doi: 10.1007/s13238-016-0366-2.

442 44. **Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhanovets OV, Antoch MP.** Early aging and
443 age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock.
444 *Genes Dev* 20: 1868–1873, 2006. doi: 10.1101/gad.1432206.

445 45. **Dubrovsky YV, Samsa WE, Kondratov RV.** Deficiency of circadian protein CLOCK reduces
446 lifespan and increases age-related cataract development in mice. *Aging* 2: 936–944, 2010. doi:
447 10.1863/aging.100241.

448 46. **Lee CC.** The Circadian Clock and Tumor Suppression by Mammalian Period Genes. In: *Methods*
449 in *Enzymology*, edited by Young MW. Academic Press, p. 852–861.

450 47. **Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S,**
451 **Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi**
452 **JS, Bass J.** Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia
453 and diabetes. *Nature* 466: 627–631, 2010. doi: 10.1038/nature09253.

454 48. **Cunningham PS, Meijer P, Nazgiewicz A, Anderson SG, Borthwick LA, Bagnall J, Kitchen GB,**
455 **Lodyga M, Begley N, Venkateswaran RV, Shah R, Mercer PF, Durrington HJ, Henderson NC,**
456 **Piper-Hanley K, Fisher AJ, Chambers RC, Bechtold DA, Gibbs JE, Loudon AS, Rutter MK, Hinz B,**
457 **Ray DW, Blaikley JF.** The circadian clock protein REVERB α inhibits pulmonary fibrosis
458 development. *Proc Natl Acad Sci U S A* 117: 1139–1147, 2020. doi: 10.1073/pnas.1912109117.

459 49. **Pekovic-Vaughan V, Gibbs J, Yoshitane H, Yang N, Pathirana D, Guo B, Sagami A, Taguchi K,**
460 **Bechtold D, Loudon A, Yamamoto M, Chan J, van der Horst GTJ, Fukada Y, Meng Q-J.** The
461 circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant
462 defense pathway to modulate pulmonary fibrosis. *Genes Dev* 28: 548–560, 2014. doi:
463 10.1101/gad.237081.113.

464 50. **Xiong X, Lin Y, Lee J, Paul A, Yechoor V, Figueiro M, Ma K.** Chronic circadian shift leads to
465 adipose tissue inflammation and fibrosis. *Mol Cell Endocrinol* 521: 111110, 2021. doi:
466 10.1016/j.mce.2020.111110.

467 51. **Yoshida Y, Matsunaga N, Nakao T, Hamamura K, Kondo H, Ide T, Tsutsui H, Tsuruta A, Kurogi**
468 **M, Nakaya M, Kurose H, Koyanagi S, Ohdo S.** Alteration of circadian machinery in monocytes
469 underlies chronic kidney disease-associated cardiac inflammation and fibrosis. *Nat Commun*
470 12: 2783, 2021. doi: 10.1038/s41467-021-23050-x.

471 52. **Brum MCB, Filho FFD, Schnorr CC, Bottega GB, Rodrigues TC.** Shift work and its association
472 with metabolic disorders. *Diabetol Metab Syndr* 7: 45, 2015. doi: 10.1186/s13098-015-0041-4.

473 53. **Costa G.** Shift Work and Health: Current Problems and Preventive Actions. *Saf Health Work* 1:
474 112–123, 2010. doi: 10.5491/SHAW.2010.1.2.112.

475 54. **Wang X-S, Armstrong MEG, Cairns BJ, Key TJ, Travis RC.** Shift work and chronic disease: the
476 epidemiological evidence. *Occup Med Oxf Engl* 61: 78–89, 2011. doi: 10.1093/occmed/kqr001.

477 55. **Feskanich D, Hankinson SE, Schernhammer ES.** Nightshift work and fracture risk: the Nurses'
478 Health Study. *Osteoporos Int* 20: 537–542, 2009. doi: 10.1007/s00198-008-0729-5.

479 56. **Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME.** Breast cancer and circadian
480 disruption from electric lighting in the modern world. *CA Cancer J Clin* 64: 207–218, 2014. doi:
481 10.3322/caac.21218.

482 57. **Pietroiusti A, Neri A, Somma G, Coppeta L, Iavicoli I, Bergamaschi A, Magrini A.** Incidence of
483 metabolic syndrome among night-shift healthcare workers. *Occup Environ Med* 67: 54–57,
484 2010. doi: 10.1136/oem.2009.046797.

485 58. **Quevedo I, Zuniga AM.** Low Bone Mineral Density in Rotating-Shift Workers. *J Clin Densitom*
486 13: 467–469, 2010. doi: 10.1016/j.jocd.2010.07.004.

487 59. **Morris CJ, Purvis TE, Hu K, Scheer FAJL.** Circadian misalignment increases cardiovascular
488 disease risk factors in humans. *Proc Natl Acad Sci* 113: E1402–E1411, 2016. doi:
489 10.1073/pnas.1516953113.

490 60. **Grosbellet E, Zahn S, Arrivé M, Dumont S, Gourmelen S, Pévet P, Challet E, Criscuolo F.**
491 Circadian desynchronization triggers premature cellular aging in a diurnal rodent. *FASEB J Off
492 Publ Fed Am Soc Exp Biol* 29: 4794–4803, 2015. doi: 10.1096/fj.14-266817.

493 61. **Hadadi E, Taylor W, Li X-M, Aslan Y, Villote M, Rivière J, Duvallet G, Auriau C, Dulong S,
494 Raymond-Letron I, Provot S, Bennaceur-Griscelli A, Acloque H.** Chronic circadian disruption
495 modulates breast cancer stemness and immune microenvironment to drive metastasis in mice.
496 *Nat Commun* 11: 3193, 2020. doi: 10.1038/s41467-020-16890-6.

497 62. **Inokawa H, Umemura Y, Shimba A, Kawakami E, Koike N, Tsuchiya Y, Ohashi M, Minami Y,
498 Cui G, Asahi T, Ono R, Sasawaki Y, Konishi E, Yoo S-H, Chen Z, Teramukai S, Ikuta K, Yagita K.**
499 Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in
500 mice. *Sci Rep* 10: 2569, 2020. doi: 10.1038/s41598-020-59541-y.

501 63. **Kc R, Li X, Voigt RM, Ellman MB, Summa KC, Vitaterna MH, Keshavarzian A, Turek FW, Meng
502 Q-J, Stein GS, van Wijnen AJ, Chen D, Forsyth CB, Im H-J.** Environmental Disruption of
503 Circadian Rhythm Predisposes Mice to Osteoarthritis-Like Changes in Knee Joint. *J Cell Physiol*
504 230: 2174–2183, 2015. doi: 10.1002/jcp.24946.

505 64. **Mukherji A, Kobiita A, Damara M, Misra N, Meziane H, Champy M-F, Chambon P.** Shifting
506 eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock
507 and leads to a metabolic syndrome. *Proc Natl Acad Sci* 112: E6691–E6698, 2015. doi:
508 10.1073/pnas.1519807112.

509 65. **Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA.** Adverse metabolic and cardiovascular
510 consequences of circadian misalignment. *Proc Natl Acad Sci* 106: 4453–4458, 2009. doi:
511 10.1073/pnas.0808180106.

512 66. **Cao M, Xu T, Yin D.** Understanding light pollution: Recent advances on its health threats and
513 regulations. *J Environ Sci* 127: 589–602, 2023. doi: 10.1016/j.jes.2022.06.020.

514 67. **Arendt J.** Biological Rhythms During Residence in Polar Regions. *Chronobiol Int* 29: 379, 2012.
515 doi: 10.3109/07420528.2012.668997.

516 68. **Colwell CS.** Defining circadian disruption in neurodegenerative disorders. *J Clin Invest* 131, 2021. doi: 10.1172/JCI148288.

518 69. **Soul J, Dunn SL, Anand S, Serracino-Ingott F, Schwartz J-M, Boot-Handford RP, Hardingham TE.** Stratification of knee osteoarthritis: two major patient subgroups identified by genome-wide expression analysis of articular cartilage. *Ann Rheum Dis* 77: 423–423, 2018. doi: 10.1136/annrheumdis-2017-212603.

522 70. **Gossan N, Zeef L, Hensman J, Hughes A, Bateman JF, Rowley L, Little CB, Piggins HD, Rattray M, Boot-Handford RP, Meng Q-J.** The circadian clock in murine chondrocytes regulates genes controlling key aspects of cartilage homeostasis. *Arthritis Rheum* 65: 2334–2345, 2013. doi: 10.1002/art.38035.

526 71. **Snelling SJB, Forster A, Mukherjee S, Price AJ, Poulsen RC.** The chondrocyte-intrinsic circadian clock is disrupted in human osteoarthritis. *Chronobiol Int* 33: 574–579, 2016. doi: 10.3109/07420528.2016.1158183.

529 72. **Wang D, Peng P, Dudek M, Hu X, Xu X, Shang Q, Wang D, Jia H, Wang H, Gao B, Zheng C, Mao J, Gao C, He X, Cheng P, Wang H, Zheng J, Hoyland JA, Meng Q-J, Luo Z, Yang L.** Restoring the dampened expression of the core clock molecule BMAL1 protects against compression-induced intervertebral disc degeneration. *Bone Res* 10: 1–13, 2022. doi: 10.1038/s41413-022-00187-z.

533 73. **Ding S-L, Zhang T-W, Zhang Q-C, Ding W, Li Z-F, Han G-J, Bai J-S, Li X-L, Dong J, Wang H-R, Jiang L-B.** Excessive mechanical strain accelerates intervertebral disc degeneration by disrupting intrinsic circadian rhythm. *Exp Mol Med* 53: 1911–1923, 2021. doi: 10.1038/s12276-021-00716-6.

537 74. **Giri A, Wang Q, Rahman I, Sundar IK.** Circadian molecular clock disruption in chronic pulmonary diseases. *Trends Mol Med* 28: 513–527, 2022. doi: 10.1016/j.molmed.2022.04.002.

539 75. **Sherratt MJ, Hopkinson L, Naven M, Hibbert SA, Ozols M, Eckersley A, Newton VL, Bell M, Meng Q-J.** Circadian rhythms in skin and other elastic tissues. *Matrix Biol* 84: 97–110, 2019. doi: 10.1016/j.matbio.2019.08.004.

542 76. **Hoyle NP, Seinkmane E, Putker M, Feeney KA, Krogager TP, Chesham JE, Bray LK, Thomas JM, Dunn K, Blaikley J, O'Neill JS.** Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. *Sci Transl Med* 9: eaal2774, 2017. doi: 10.1126/scitranslmed.aal2774.

545 77. **Chang J, Garva R, Pickard A, Yeung C-YC, Mallikarjun V, Swift J, Holmes DF, Calverley B, Lu Y, Adamson A, Raymond-Hayling H, Jensen O, Shearer T, Meng QJ, Kadler KE.** Circadian control of the secretory pathway maintains collagen homeostasis. *Nat Cell Biol* 22: 74–86, 2020. doi: 10.1038/s41556-019-0441-z.

549 78. **Yeung C-YC, Dondelinger F, Schoof EM, Georg B, Lu Y, Zheng Z, Zhang J, Hannibal J, Fahrenkrug J, Kjaer M.** Circadian regulation of protein cargo in extracellular vesicles. *Sci Adv* 8: eabc9061, 2022. doi: 10.1126/sciadv.abc9061.

552 79. **Dudek M, Angelucci C, Pathirangage D, Wang P, Mallikarjun V, Lawless C, Swift J, Kadler KE, Boot-Handford RP, Hoyland JA, Lamande SR, Bateman JF, Meng Q-J.** Circadian time series proteomics reveals daily dynamics in cartilage physiology. *Osteoarthritis Cartilage* 29: 739–749, 2021. doi: 10.1016/j.joca.2021.02.008.

556 80. **Akagi R, Akatsu Y, Fisch KM, Alvarez-Garcia O, Teramura T, Muramatsu Y, Saito M, Sasho T, Su AI, Lotz MK.** Dysregulated circadian rhythm pathway in human osteoarthritis: NR1D1 and BMAL1 suppression alters TGF- β signaling in chondrocytes. *Osteoarthritis Cartilage* 25: 943–951, 2017. doi: 10.1016/j.joca.2016.11.007.

560 81. **Khurana S, Bokkers A, Geijs DJ, Schivo S, Karperien M, Post JN.** In silico validation of a cartilage specific circadian clock: mutation of BMAL1 increased MMP expression. *Osteoarthritis Cartilage* 27: S193–S194, 2019. doi: 10.1016/j.joca.2019.02.297.

563 82. **Yang G, Chen L, Grant GR, Paschos G, Song W-L, Musiek ES, Lee V, McLoughlin SC, Grosser T, Cotsarelis G, FitzGerald GA.** Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. *Sci Transl Med* 8: 324ra16-324ra16, 2016. doi: 10.1126/scitranslmed.aad3305.

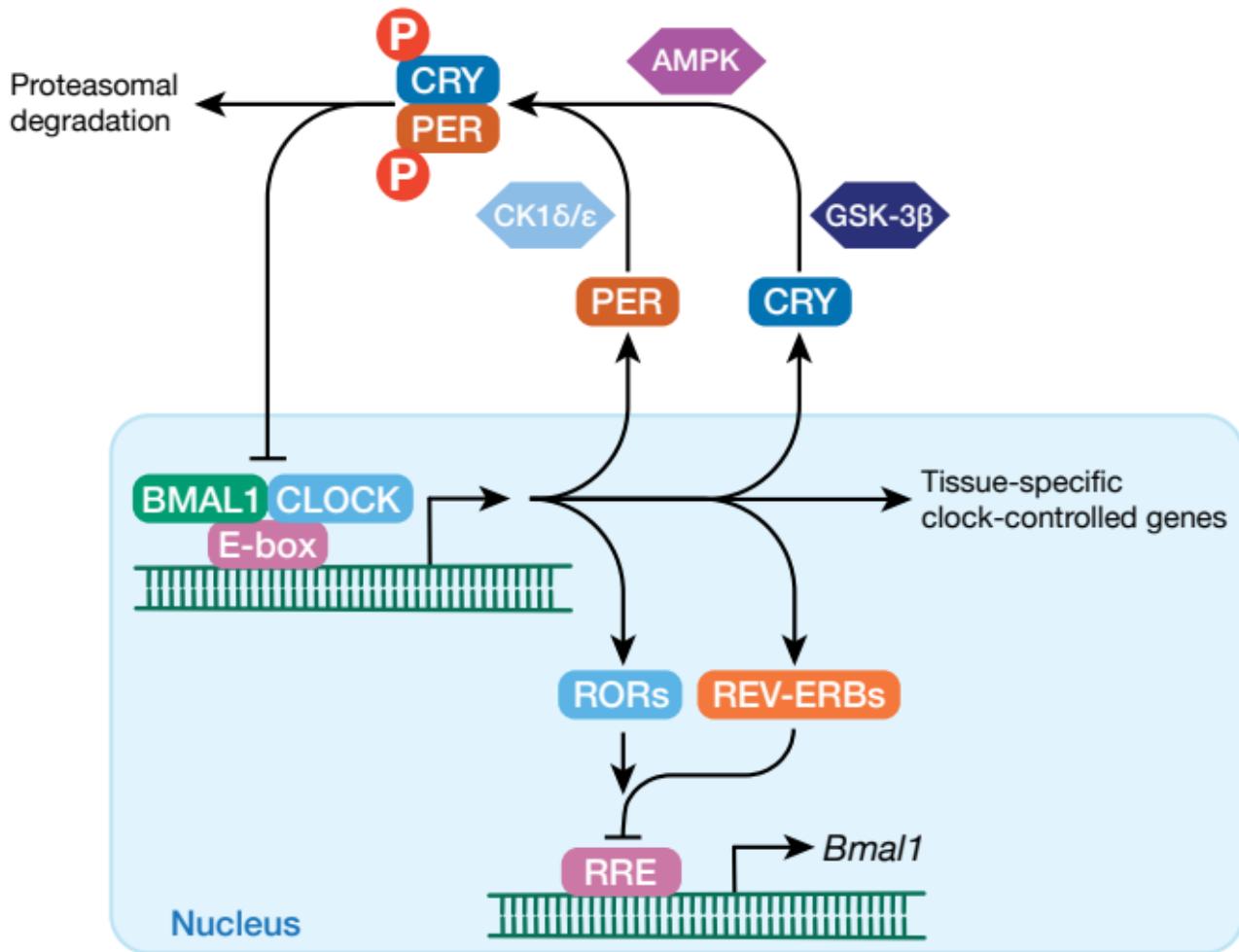
567 83. **Dudek M, Morris H, Rogers N, Pathiranaage DR, Chan D, Kadler KE, Hoyland J, Meng Q-J.** The clock transcription factor BMAL1 is a key regulator of extracellular matrix homeostasis and cell fate in the intervertebral disc. *bioRxiv*: 2023.02.12.528214, 2023.

570 84. **Finger A-M, Jäschke S, Del Olmo M, Hurwitz R, Granada AE, Herzl H, Kramer A.** Intercellular coupling between peripheral circadian oscillators by TGF- β signaling. *Sci Adv* 7: eabg5174, 2021. doi: 10.1126/sciadv.abg5174.

573 85. **Williams J, Yang N, Wood A, Zindy E, Meng Q-J, Streuli CH.** Epithelial and stromal circadian clocks are inversely regulated by their mechano-matrix environment. *J Cell Sci* 131: jcs208223, 2018. doi: 10.1242/jcs.208223.

576 86. **Xiong X, Li W, Nam J, Qu M, Kay SA, Ma K.** The actin cytoskeleton-MRTF/SRF cascade transduces cellular physical niche cues to entrain the circadian clock. *J Cell Sci* 135: jcs260094, 2022. doi: 10.1242/jcs.260094.

579 87. **Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin J-W, Tewari M, Rehfeldt F, Speicher DW, Discher DE.** Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. *Science* 341: 1240104, 2013. doi: 10.1126/science.1240104.


583 88. **Jariwala N, Ozols M, Bell M, Bradley E, Gilmore A, Debelle L, Sherratt MJ.** Matrikines as mediators of tissue remodelling. *Adv Drug Deliv Rev* 185: 114240, 2022. doi: 10.1016/j.addr.2022.114240.

586 89. **Kelmer Sacramento E, Kirkpatrick JM, Mazzetto M, Baumgart M, Bartolome A, Di Sanzo S, Caterino C, Sanguanini M, Papaevgeniou N, Lefaki M, Childs D, Bagnoli S, Terzibasi Tozzini E, Di Fraia D, Romanov N, Sudmant PH, Huber W, Chondrogianni N, Vendruscolo M, Cellerino A, Ori A.** Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. *Mol Syst Biol* 16: e9596, 2020. doi: 10.15252/msb.20209596.

591 90. **Llewellyn J, Mallikarjun V, Appleton E, Osipova M, Gilbert H, Richardson S, Hubbard S, Swift J.** Loss of regulation of protein synthesis and turnover underpins an attenuated stress response in senescent human mesenchymal stem cells. .

594 91. **Ariosa-Morejon Y, Santos A, Fischer R, Davis S, Charles P, Thakker R, Wann AK, Vincent TL.** Age-dependent changes in protein incorporation into collagen-rich tissues of mice by in vivo pulsed SILAC labelling. *eLife* 10: e66635, 2021. doi: 10.7554/eLife.66635.

- Crosslinking
- Advanced glycation end products
- Increased TGF β signalling
- Fibrosis

Ageing

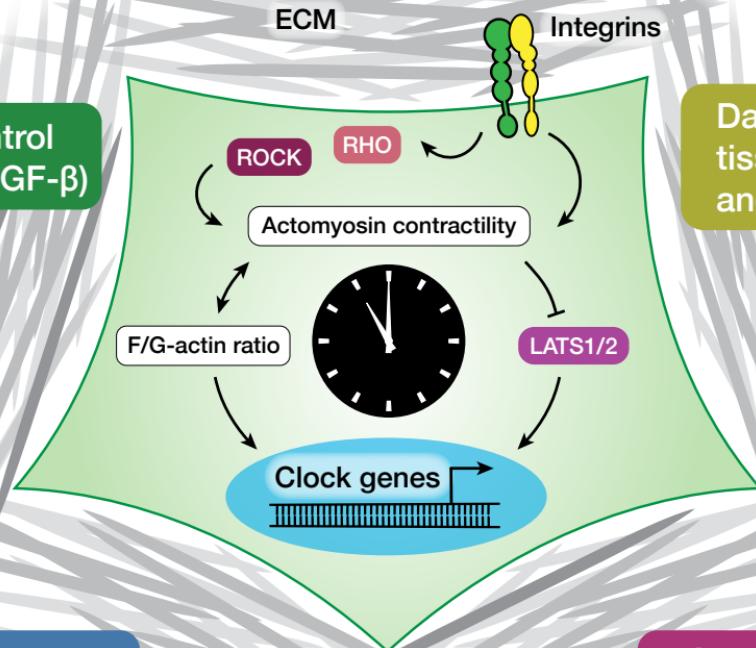
- Dampening of clock amplitude
- Misalignment of circadian phase
- Reprogramming of rhythmic transcriptome

Matrix-dependent clocks

Biomechanical signalling
(stiffness-RhoA/ROCK, F/G-actin,
MRTF/SRF, Yap/Taz)
Biochemical signalling (e.g., TGF β)

Clock control of matrix homeostasis

Collagen secretion and degradation
CTGF, CYR61 and SERPINE1
Extracellular vesicles
MMPs and TIMPs


Mechano-control of circadian clocks

Biochemical control of clocks (e.g., TGF- β)

Daily phases of tissue maintenance and repair

Ageing ECM

Age-related clock dampening

