

1 **Transgenerational effects of early life stress on the fecal microbiota in mice**

2 Nize Otaru^{1,2}, Lola Kourouma^{3,4}, Benoit Pugin², Florentin Constancias², Christian Braegger¹,
3 Isabelle M. Mansuy^{3,4†*}, Christophe Lacroix^{2†*}

4

5 **Affiliations:**

6 ¹ Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland

7 ² Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH
8 Zürich, Zürich, Switzerland

9 ³ Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University
10 of Zurich, and Institute for Neuroscience, Department of Health Science and Technology of the
11 ETH Zurich, Zurich, Switzerland

12 ⁴ Center for Neuroscience Zürich, ETH and University Zürich, Switzerland

13

14 † These authors jointly supervised this work

15

16 ***Corresponding authors:**

17 Prof. Dr. Ing. Christophe Lacroix

18 E-mail: christophe.lacroix@hest.ethz.ch

19

20 Prof. Dr. Isabelle M. Mansuy

21 Email: mansuy@hifo.uzh.ch or imansuy@ethz.ch

22 **Abstract**

23 Stress in early life can affect the progeny and increase the risk to develop psychiatric and
24 cardiometabolic diseases across generations. The cross-generational effects of early life stress
25 have been modeled in mice and demonstrated to be associated with epigenetic factors in the
26 germline. While stress is known to affect gut microbial features, whether its effects can persist
27 across life and be passed to the progeny is not well defined. Here we show that early postnatal
28 stress in mice shifts the fecal microbial composition (binary Jaccard index) throughout life.
29 Further effects on fecal microbial composition and structure (weighted Jaccard index) are
30 detected in the progeny across two generations. These effects are not accompanied by changes
31 in bacterial metabolites and related predicted metabolic pathways in any generation. These
32 results suggest that changes in the fecal microbial community induced by early life traumatic
33 stress can be perpetuated from exposed parent to the offspring.

34 **Introduction**

35 It has long been established, that early life is a critical developmental window in which
36 individuals are primed for life ^{1,2}. Traumatic stress in early life is one of the major causes of
37 mental and physical diseases, particularly psychiatric disorders. These diseases often not only
38 affect individuals directly exposed to early life stress but also sometimes their offspring ³⁻⁵.
39 Alterations in signaling pathways *via* the gut-brain axis have been suggested to contribute to
40 the consequences of stress exposure ⁶. Signaling *via* gut-brain axis is thought to occur by
41 bacterially produced metabolites, such as short chain fatty acids (SCFAs) and γ -aminobutyric
42 acid ^{7,8}. Since gastrointestinal tract maturation and the establishment of the gut microbiota occur
43 in parallel with brain development ⁹, alterations in the gut microbiome may contribute to brain
44 dysfunctions later in life. Experiments with germ free mice have indeed suggested the
45 involvement of gut microbes in anxiety like behavior and behavioral despair induced by early
46 life stress ¹⁰. Early life stress has been shown to induce distinct gut microbial alterations in
47 rodent models including the decrease of *Lactobacillaceae* species and increase in *Enterococcus*
48 species. Though, observed changes are heterogenous and differ substantially between studies
49 ^{11,12}. Similar observations exist in humans, though observed stress effects on the gut microbiota
50 remain correlative and cannot be distinguished from confounding effects such as diet and
51 lifestyle ^{11,13,14}.

52 Previous research has mainly focused on changes in gut microbial composition rather than
53 changes in function. In the few available human studies referring to gut microbial metabolic
54 changes associated with early life stress, socioeconomic risk exposure explained a significant
55 amount of the functional gut microbial diversity ¹⁵ and a decrease of four gut metabolites (i.e.
56 glutamate gamma-methyl ester, 5-oxoproline, malate, and urate) was observed when comparing
57 exposed with non-exposed individuals ¹³. Given the effects of early life stress on brain functions
58 and health in the progeny, it is conceivable that early life stress induced alterations in the gut

59 microbial community can also affect the offspring. Today, a potential intergenerational effect
60 of early life stress on the gut microbiota has not been carefully examined.

61 The mouse model of unpredictable maternal separation combined with unpredictable maternal
62 stress (MSUS) distinguishes itself from other rodent models of stress by applying
63 unpredictability as traumatic factor and by combining stress of mothers and of pups ¹⁶. This
64 model has been extensively characterized and shown to induce behavioral, metabolic and
65 physiological alterations across generations ^{17,18}. Epigenetic factors in the germline have been
66 proposed as mediators of transmission and expression of phenotypes, and sperm RNA was
67 causally demonstrated to be a vehicle of transmission between exposed father and offspring and
68 grand-offspring ^{16,19,20}. Although, the MSUS paradigm has been shown to induce visceral
69 sensitivity ²¹, the effects of early life stress on the gut microbial community across generations
70 has not been evaluated before. Here, we show that postnatal traumatic stress modifies the fecal
71 microbial community in directly exposed mice but also in their offspring.

72 **Results**

73

74 **Dynamics of fecal microbiota across life in healthy mice**

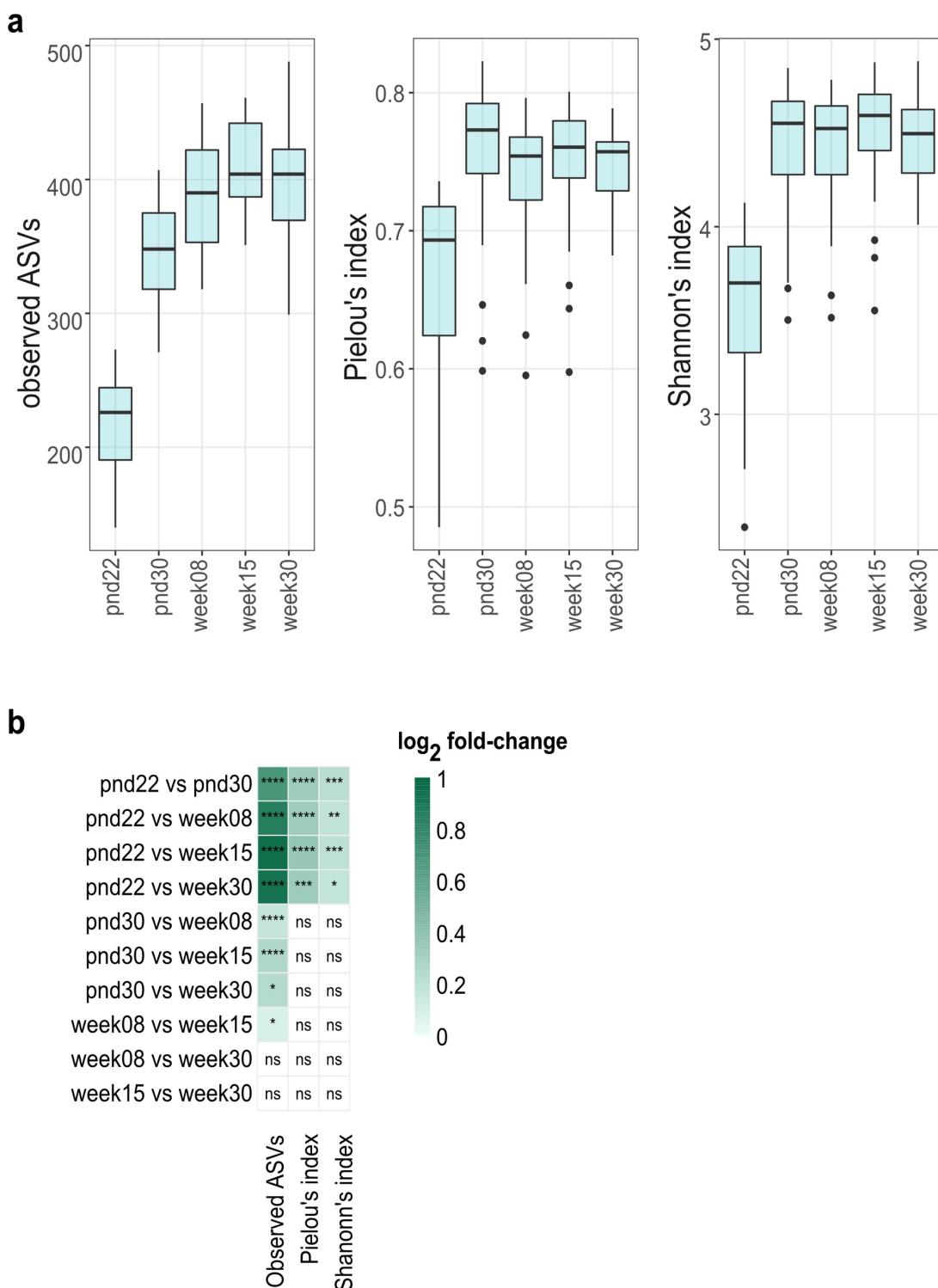
75 To determine the dynamics of the fecal microbial community and its functionality across life in
76 mice, the fecal microbiota from late postnatal to adult stages was analyzed.

77

78 Fecal microbial richness increases across life

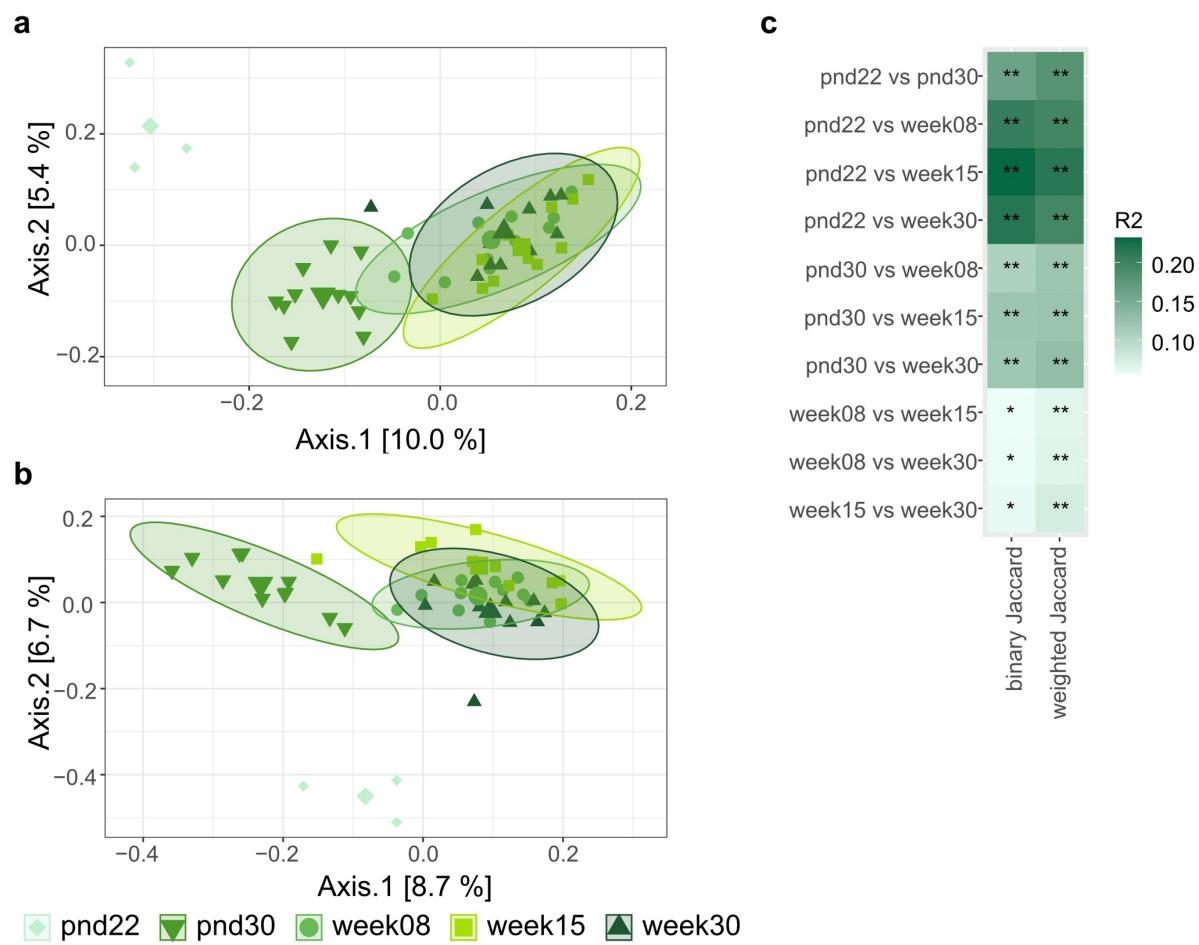
79 Fecal microbial alpha diversity – the diversity within a community – was determined by
80 assessing the richness and evenness of the community. Richness was defined as observed
81 amplicon sequencing variants (ASVs) in a sample. Evenness was assessed with the Pielou's
82 index, a measure indicating how evenly ASVs are distributed in a sample. Shannon diversity
83 combines both richness and evenness in one function.

84 After weaning, microbial richness rapidly increased from median values of 226 (iqr: 54) to
85 348 (iqr: 57) observed ASVs in 22-day-old mice and 30-day-old mice, respectively
86 (**Figure 1a**). Richness continued to increase across life span, although at a lower rate (\log_2 fold-
87 change), and reached a plateau in 15-week-old mice (**Figure 1**). In contrast, Pielou's and
88 Shannon's index were the highest in 30-day-old mice but did not change thereafter (**Figure 1**).


89

90 Fecal microbial structure and composition changes across life

91 Beta diversity – diversity between communities – was evaluated using qualitative (binary
92 Jaccard index) and quantitative (weighted Jaccard index) metrics. Fecal microbial composition
93 was investigated *via* binary Jaccard index, and microbial structure was investigated *via*
94 weighted Jaccard index.


95 Both, microbial composition and structure rapidly changed after weaning ($p < 0.01$ FDR-
96 adjusted; $R^2 = 0.162$ and $R^2 = 0.180$) from 22-day-old to 30-day-old mice (**Figure 2**).
97 Significant ($p < 0.05$, FDR-adjusted) differences in microbial composition and structure were

98 observed throughout life span, with lower effect size (determination coefficient; R^2) with
99 increasing age (**Figure 2c**). In addition, 402 uniquely differently abundant ASVs ($p < 0.05$,
100 FDR-adjusted) were detected across life (**Supplementary Figure 1**). In concurrence with
101 changes observed in beta diversity, most differently abundant ASVs were observed comparing
102 22-day-old to older mice. Approximately half (176 ASVs) of differently abundant ASVs
103 belonged to the family *Lachnospiraceae* (**Supplementary Figure 1**).

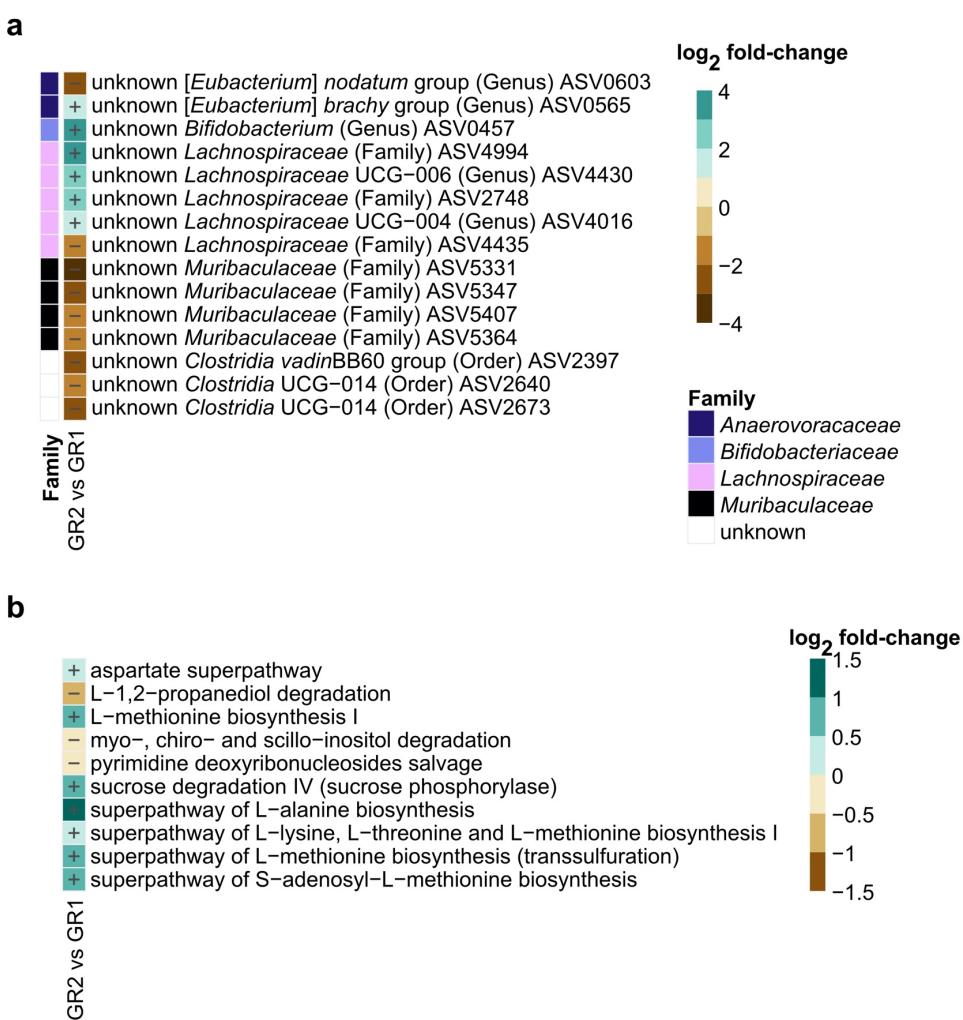
104

105 **Figure 1: Effect of age on alpha diversity metrics of control mice fecal microbiota.** (a) 106 Fecal microbial richness (observed ASVs), evenness (Pielou's index), and Shannon-diversity 107 across life. Boxplot with box elements showing upper and lower quantile and median. Whiskers 108 extend from the hinge to ± 1.5 times the interquartile range or the highest/lowest value. Outliers 109 are indicated as black points. (b) Log₂ fold-change in alpha diversity metrics per pairwise 110 comparison of different ages. Significance was calculated using log₂ transformed metrics and 111 generalized mixed effect models with FDR correction. ns: not significant; * $p < 0.05$; 112 ** $p < 0.01$; *** $p < 0.001$; **** $p < 0.0001$

113

114 **Figure 2: Effect of age on beta diversity metrics of control mice fecal microbiota.**
115 Visualization as principal correspondence analysis of (a) binary (microbial composition) and
116 (b) weighted (microbial structure) Jaccard index. Individual symbols display aggregated
117 microbiota per litter (pnd22) or cage (pnd30, week08, week15, and week30), large symbols
118 display centroids, ellipses indicate 95% of confidence intervals. (c) Heatmap of R² for pairwise
119 comparison of different ages. Significance was calculated using PERMANOVA including FDR
120 correction. Pairwise comparison of different dispersions between ages are listed in
121 **Supplementary Table 2**. pnd: postnatal day; * p < 0.05 ; ** p < 0.01

122 Predicted fecal metabolic pathways change across life


123 To characterize the metabolic potential of the fecal microbiota throughout life, a functional
124 prediction based on 16S rRNA amplicon sequences was performed. Accuracy of prediction was
125 investigated *via* the abundance-weighted nearest sequenced taxon index (NSTI) which
126 summarizes the extent to which ASVs in a sample are related to reference 16S rRNA genes.
127 Low values indicate close relation, while large values indicate far relation to reference 16S
128 rRNA gene.

129 Median of abundance-weighted average NSTI values was 0.18 (iqr: 0.03), indicating that on
130 average prediction was performed based on taxa with 82% similarity. In total, 258 unique
131 pathways were differentially abundant ($p < 0.05$, FDR-adjusted) at various time points
132 (**Supplementary Figure 2**), suggesting functional changes in fecal bacterial community across
133 life. In line with observations on beta diversity and differentially abundant ASVs, most
134 differentially abundant pathways were identified comparing 22-day-old to older mice
135 (**Supplementary Figure 2**).

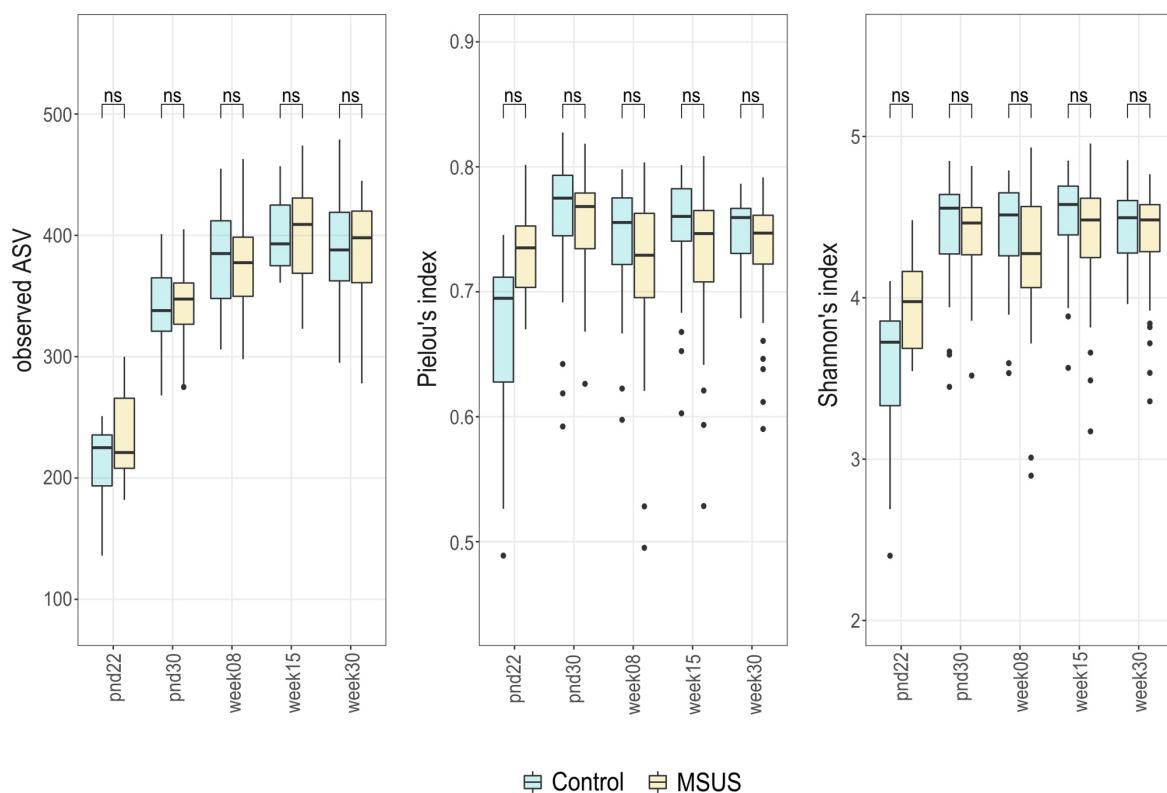
136 Influence of the combination of behavioral testing and breeding on the fecal microbial
137 community

138 To evaluate the effect of the temporal succession of behavioral testing and breeding, fecal
139 microbiota of 30-week-old mice was examined in 2 different conditions: behavioral
140 phenotyping conducted before breeding (GR1) or breeding conducted before behavioral testing
141 (GR2). No significant differences in alpha diversity (richness, evenness, and Shannon's
142 diversity) and beta diversity (binary and weighted Jaccard index) were observed between
143 groups (**Supplementary Table 2**). However, 15 differentially abundant ASVs ($p < 0.05$, FDR-
144 adjusted) were identified, all different in the range of 1.3 to 3.4 \log_2 fold-changes (**Figure 3a**).
145 Relative abundance of these ASVs was generally low, with individual microbiota values
146 ranging from 0% to 7.3% (**Supplementary Figure 3**).

147 In addition, 10 predicted metabolic pathways, related to carbohydrate and amino acid
148 metabolism, were differentially abundant between groups ($p < 0.05$, FDR-adjusted), all
149 different in the range of 0.4 to 1 \log_2 fold-changes (Figure 3b). In contrast, no differences in
150 measured cecal bacterial organic acids, amino acids and amines were detected (Supplementary
151 Data; Supplementary Figure 4; Supplementary Figure 5).

152

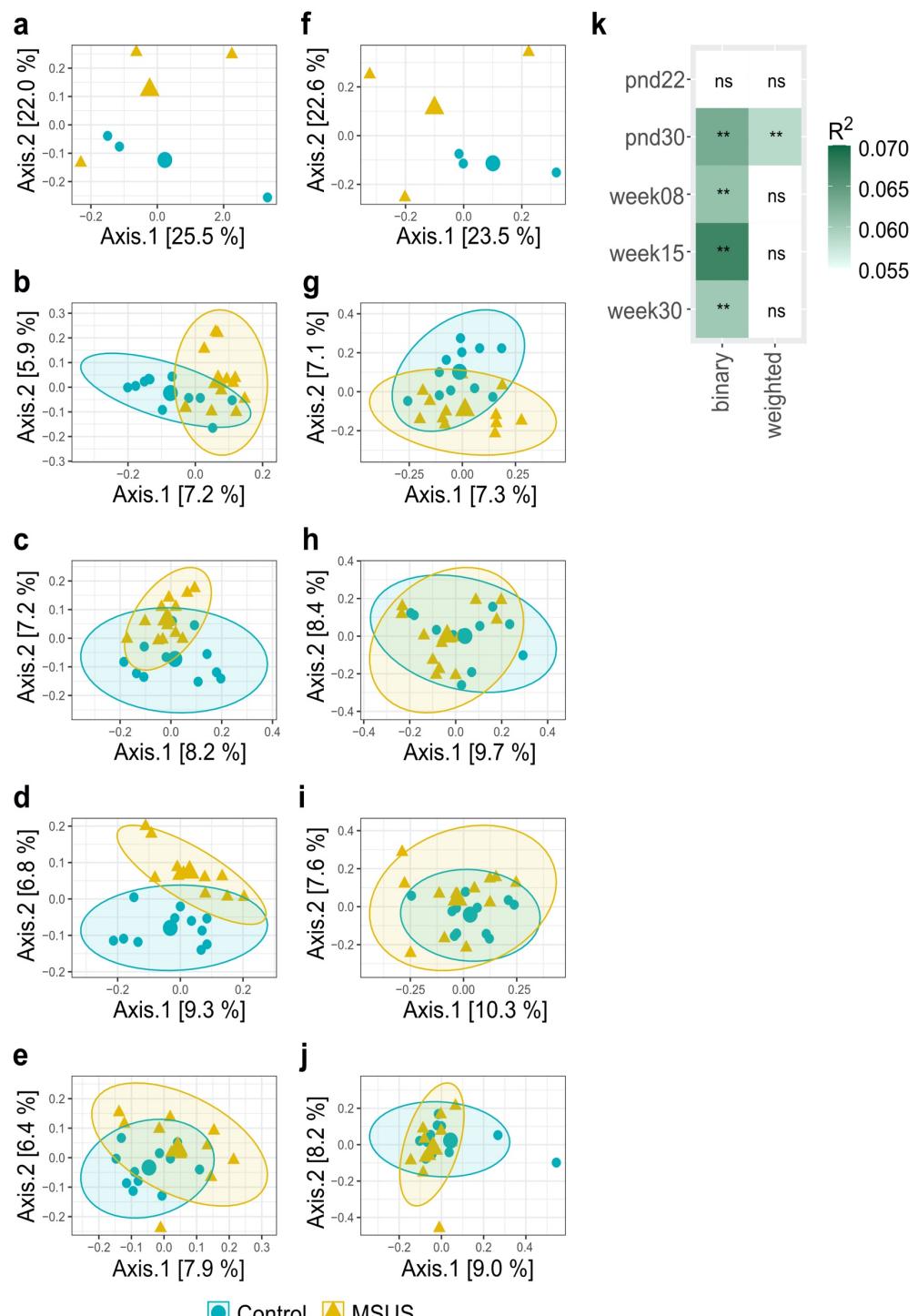
153 **Figure 3: Effect of temporal succession of behavioral phenotyping and breeding on 30-**
154 **week-old control mice fecal microbiota.** Comparison of phenotyping group 2 (GR2; breeding
155 before behavioral phenotyping) *versus* group 1 (GR1; behavioral phenotyping before breeding)
156 microbiota. (a) \log_2 fold-change in specific ASVs significantly ($p < 0.05$, FDR-adjusted)
157 decreased or increased in GR2 compared to GR1. Taxonomic information is indicated at family
158 level. Relative abundances of individual ASVs are depicted in Supplementary Figure 3. (b)
159 \log_2 fold-change in predicted fecal bacterial metabolic pathways significantly ($p < 0.05$, FDR-
160 adjusted) decreased or increased in GR2 compared to GR1. Significance was calculated using
161 \log_2 transformed abundance counts and generalized mixed effect models with FDR correction.


162 **Early life stress induces a shift in fecal microbial community in directly exposed mice**
163 **across life**

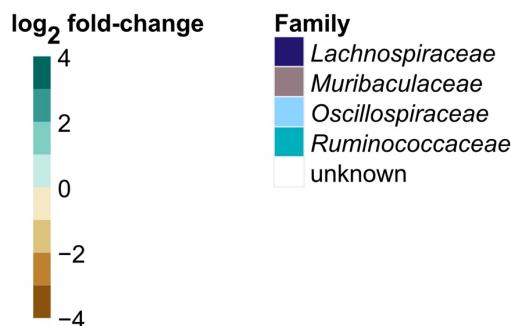
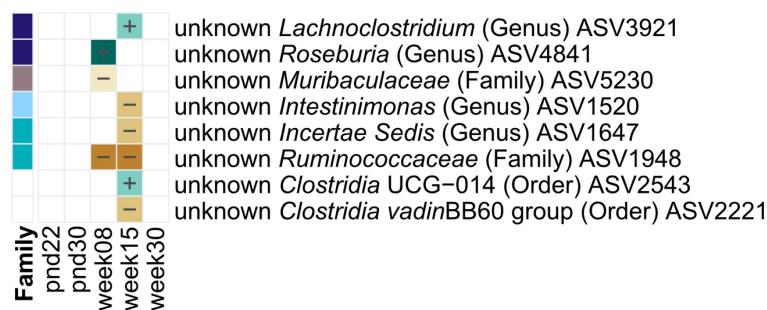
164 To investigate if early life stress (MSUS paradigm) has a long-lasting effect on the fecal
165 microbial community across life, the fecal microbiota was compared between F1 MSUS and
166 control mice across the life span from 22 days till 30 weeks of age. In addition, animal weight
167 was monitored in mice from 8 weeks to 30 weeks of age. Development of mice weight was not
168 different between MSUS and controls ($p > 0.05$, FDR-adjusted) at different ages
169 **(Supplementary Figure 6).**

170

171 Fecal microbial richness and evenness do not differ between F1 MSUS and controls across
172 life


173 Different alpha diversity metrics were compared between F1 MSUS and control groups at
174 different ages. No significant differences ($p > 0.05$, FDR-adjusted) in fecal microbial richness,
175 evenness, and Shannon's diversity index between MSUS and controls were observed, with
176 comparable median values for both groups at different ages **(Figure 4).**

177



178 **Figure 4: Comparison of different alpha diversity metrics between F1 MSUS and control**
179 **fecal microbiota across life span.** Comparison of richness (observed ASV), evenness (Pielou's
180 index), and Shannon-diversity between MSUS and controls per time point. Boxplot with box
181 elements showing upper and lower quantile and median. Whiskers extend from the hinge to
182 ± 1.5 times the interquartile range or the highest/lowest value. Outliers are indicated as black
183 points. Significance was calculated using \log_2 transformed metrics and generalized mixed effect
184 models with FDR correction. pnd: postnatal day; ns: not significant

185 Fecal microbial composition differs between F1 MSUS and controls across life
186 Microbiota composition significantly differed between MSUS and controls in 30-day-old, 8-
187 week-old, 15-week-old, and 30-week-old mice (binary Jaccard index; $p < 0.01$, FDR-adjusted;
188 **Figure 5a-e; Figure 5k**). Microbiota structure significantly differed between MSUS and
189 controls in 30-day-old mice (weighted Jaccard index; $p < 0.01$, FDR-adjusted; **Figure 5f-k**).
190 Overall effect size was generally low with determination coefficients (R^2) ranging from 0.058
191 to 0.067 (**Figure 5k; Supplementary Table 3**).
192 Contrary to beta diversity, differentially abundant ASVs ($p < 0.05$, FDR-adjusted) were only
193 detected for 8-week-old and 15-week-old mice, in the range of 0.98 to 3.06 \log_2 fold-changes
194 (**Figure 6**). Yet, overall abundance of these ASVs was low, with individual microbiota values
195 ranging from 0% to 1.9% (**Supplementary Figure 7; Supplementary Figure 8**). One ASV
196 belonging to the Family *Ruminococcaceae* (ASV1948) was persistently decreased in MSUS
197 compared to controls in both 8-week-old and 15-week-old mice.

198

199 **Figure 5: Effect of the MSUS paradigm on beta diversity metrics of fecal microbiota**
200 **across life.** Comparison of MSUS *versus* control mice is displayed. Visualization as principal
201 correspondence analysis of (a-e) binary (microbial composition) and (f-j) weighted Jaccard
202 index (microbial structure). (a,f) pnd22, (b,g) pnd30, (c,h) week08, (d,i) week15, and
203 (e,j) week30 are depicted. Small symbols display aggregated microbiota per litter (pnd22) or cage
204 (pnd30, week08, week15, and week30), large symbols display centroids, ellipses indicate 95%
205 of confidence intervals. (k) Heatmap of R^2 for comparison between MSUS and control at
206 different time points. Significance was calculated using PERMANOVA including FDR
207 correction. Comparisons of different dispersions between MSUS and controls at different time
208 points are listed in **Supplementary Table 3**. pnd: postnatal day; ns: not significant; ** $p < 0.01$

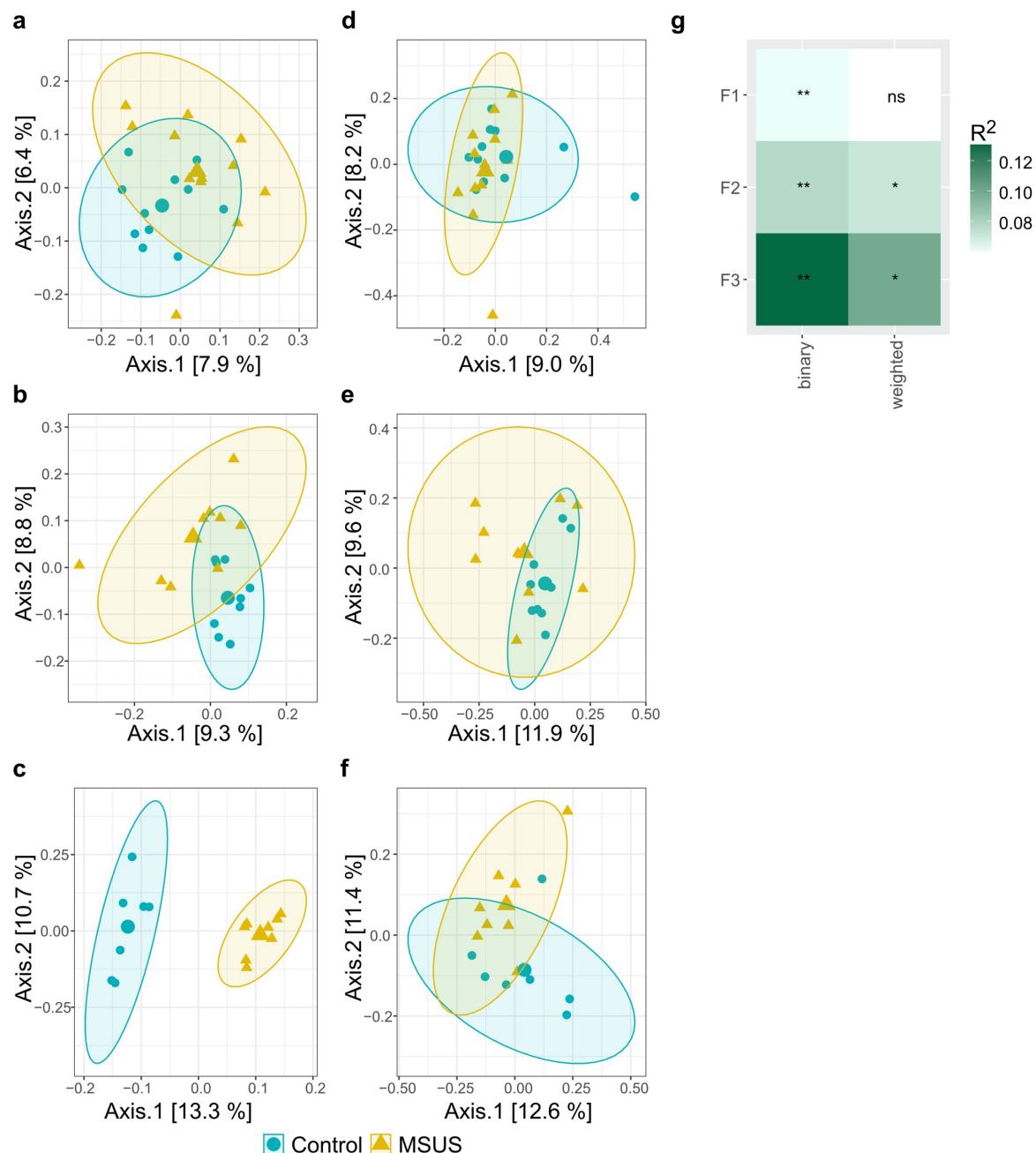
209

210 **Figure 6: Log₂ fold-change in specific ASVs significantly ($p < 0.05$, FDR-adjusted)**
211 **decreased or increased in F1 MSUS compared to controls over life.** Taxonomic information
212 is indicated at family level. Relative abundances of individual ASVs are depicted in
213 **Supplementary Figure 7** and **Supplementary Figure 8**. Significance was calculated using
214 log₂ transformed abundance counts and generalized mixed effect models with FDR correction.

215

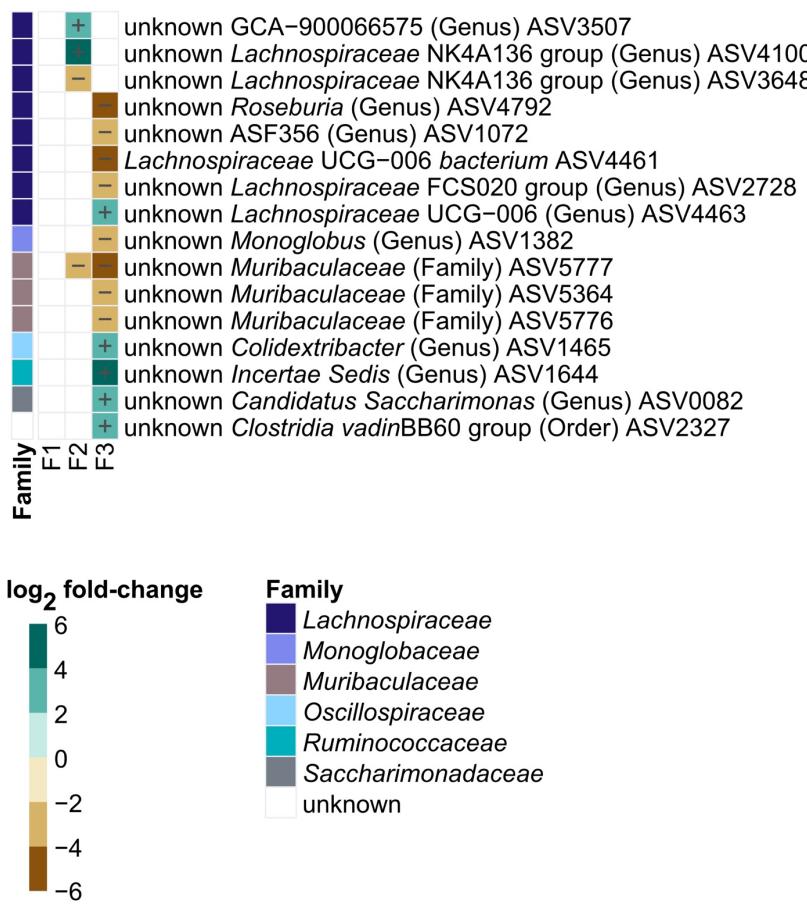
216 Metabolic potential does not differ between F1 MSUS and controls across life

217 As a read out for the bacterial metabolic potential, metabolic pathways were predicted based on
218 16S rRNA amplicon sequences. Resulting median average-weighted NSTI value was
219 0.17 (iqr: 0.03), indicating that on average prediction was performed based on taxa with 83%
220 similarity. In total, 287 unique bacterial metabolic pathways were predicted, with no significant
221 ($p > 0.05$, FDR-adjusted) differences between MSUS and control mice for all tested ages. To
222 further elaborate on metabolic potential, cecal bacterial organic acids, amino acids, and amines
223 were evaluated for 30-week-old mice. Similarly, no significant ($p > 0.05$, FDR-adjusted)
224 differences between MSUS and controls were observed, with comparable median values for
225 both groups (**Supplementary Figure 9**; **Supplementary Figure 10**).


226 **Early life stress shifts the trajectory of fecal microbial community across two generations**
227 To investigate if early life stress in F1 alters the fecal microbial community in the progeny,
228 fecal microbiota of mature adult MSUS and control mice (aged 28 or 30 weeks) were compared
229 in the patriline (F2 and F3). It must be noted, that F3 mice were not direct offspring of
230 investigated F2 mice, but of a subset of F2 mice which were not included in this study
231 (**Figure 10**). Akin to results observed for F1 mice across life (**Supplementary Figure 5**),
232 development of mice in terms of animal weight was consistent between MSUS and control mice
233 in F2 and F3 (**Supplementary Figure 11**).

234

235 Fecal microbial composition and structure differ between MSUS and controls across two
236 generations
237 To characterize the fecal microbial community, alpha diversity, beta diversity and differentially
238 abundant ASVs were evaluated for each generation. Similar to results observed in F1 across
239 life, fecal microbial richness, evenness, and Shannon's diversity did not significantly differ
240 between MSUS and controls for F2 and F3 (**Supplementary Figure 12**). As F1, F2, and F3
241 were sequenced in different runs (confounding factor), alpha diversity between generations was
242 not directly compared.


243 Contrary to observations in mature adult F1 mice, where only an effect of the MSUS paradigm
244 on microbiota composition (binary Jaccard index) was observed, both fecal microbial
245 composition and structure significantly differed (weighted Jaccard index; $p < 0.05$, FDR-
246 adjusted) between MSUS and controls in the patriline (F2 and F3; **Figure 7**). Effect size was
247 highest in F3 with determination coefficients (R^2) of 0.130 and 0.099 for binary and weighted
248 Jaccard index, respectively. This was approximately 2-fold higher when compared to F1 and
249 F2 (**Figure 7g; Supplementary Table 4**). While no differently abundant ASVs were identified
250 for mature adult F1 mice, in the patriline differently abundant ASVs ($p < 0.05$, FDR-adjusted),
251 different in the range of 2.1 to 5.7 \log_2 fold-changes (**Figure 8**). Yet, overall abundance of these

252 ASVs was low, with individual microbiota values ranging from 0% to 2.7% (**Supplementary**
253 **Figure 13; Supplementary Figure 14**). Half of observed uniquely differentially abundant
254 ASVs, belonged to the family *Lachnospiraceae*. One ASV, belonging to the family
255 *Muribaculaceae* (ASV5777), was persistently decreased in MSUS compared to controls in both
256 F2 and F3 (**Figure 8**).

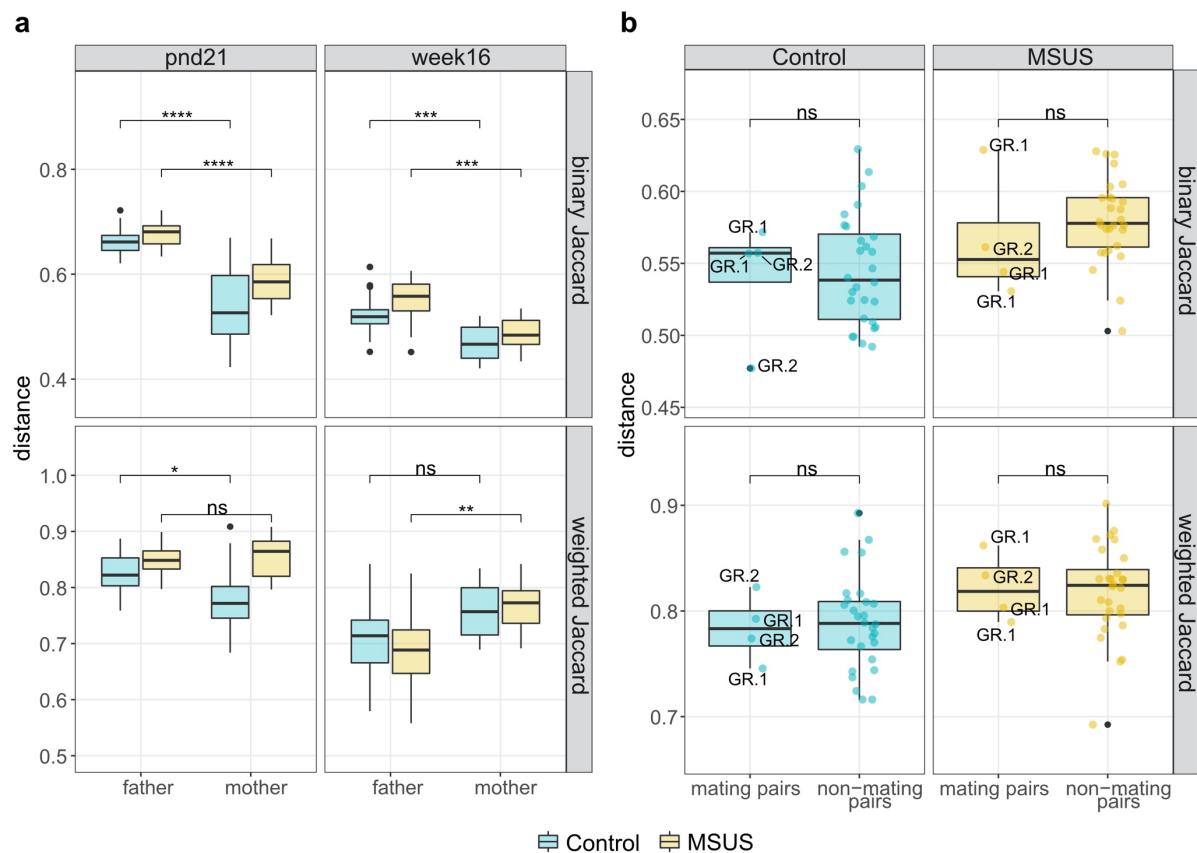
257

258 **Figure 7: Effect of the MSUS paradigm on beta diversity metrics of F1, F2, and F3 mice**
259 **microbiota.** Comparison of MSUS *versus* control mice. Visualization as principal
260 correspondence analysis of (a-c) binary (microbial composition) and (d-f) weighted Jaccard
261 index (microbial structure). Small symbols display aggregated microbiota per cage, large
262 symbols display centroids, and ellipses indicate 95% of confidence intervals. Microbial beta
263 diversity of 30-week-old mice is depicted for (a,d) F1 and (c, f) F3, and microbial beta diversity
264 of 28-week-old mice is depicted for (b, e) F2. (g) Heatmap of R^2 for comparison between MSUS
265 and control across different generations. Significance was calculated using PERMANOVA
266 including FDR correction. Comparisons of different dispersions between MSUS and controls
267 at different time points are listed in **Supplementary Table 4**. ns: not significant; * $p < 0.05$; **
268 $p < 0.01$

269

270 **Figure 8: Log₂ fold-change in specific ASVs significantly ($p < 0.05$, FDR-adjusted)**
271 **decreased or increased in MSUS compared to controls in F1, F2, and F3.** Differentially
272 abundant ASVs of 30-week-old mice are depicted for F1 and F3, and differentially abundant
273 ASVs of 28-week-old mice are depicted for F2. Taxonomic information is indicated at family
274 level. Relative abundances of individual ASVs are depicted in **Supplementary Figure 13** and
275 **Supplementary Figure 14.** Significance was calculated using \log_2 transformed abundance
276 counts and generalized mixed effect models with FDR correction.

277


278 Metabolic potential does not differ between MSUS and controls across two generations
279 To investigate, if observed differences in fecal microbial community result in function changes,
280 metabolic pathways were predicted based on 16S rRNA amplicon sequences. Resulting median
281 abundance-weighted average NSTI value was 0.20 (iqr: 0.04), indicating that on average
282 prediction was performed based on taxa with 80% similarity. In total, 286, 277, and 284 unique
283 pathways were predicted for F1, F2, and F3, respectively. No significant difference ($p > 0.05$,
284 FDR-adjusted) in pathway abundance between MSUS and controls were observed in all
285 generations. Akin to observations in F1, no significant differences in cecal bacterial organic

286 acid, amino acid, and amine concentrations were detected in 28-week-old mice of F2
287 (**Supplementary Figure 15; Supplementary Figure 16**). Cecal bacterial metabolites were not
288 evaluated in F3.

289

290 **Fecal microbial community in offspring is not directly influenced by the father microbiota**
291 To investigate, if observed differences in F2 MSUS *versus* controls stem from a transmission
292 of fecal microbiota of MSUS-fathers to mothers and subsequently to offspring, beta diversity
293 distances between pups and their parents, and between mating and non-mating pairs was
294 evaluated. To minimize a potential effect of different phenotyping groups, father microbiota
295 was evaluated before breeding or phenotyping, when mice were 16 weeks old.

296 Fecal microbial composition of 21-day-old pups was significantly (binary Jaccard index;
297 $p < 0.0001$; FDR-adjusted) closer to mother microbiota than father microbiota for both MSUS
298 and controls. Fecal microbial structure (weighted Jaccard index) was either as close to mother
299 and father microbiota or significantly ($p < 0.05$; FDR-adjusted) closer to mother microbiota,
300 for MSUS and control pups, respectively (**Figure 9a**). The older the pups (from 22-days-old to
301 16-weeks-old), the more similar the fecal microbial composition and structure got to parent
302 microbiota, displayed by overall lower distances between microbiota. Microbial composition
303 of 16-week-old pups remained significantly ($p < 0.001$; FDR-adjusted) closer to mothers than
304 fathers. Microbial structure was either significantly ($p < 0.01$; FDR-adjusted) closer to father
305 than mother microbiota, or as close to father and mother microbiota, for MSUS or control pups,
306 respectively (**Figure 9a**). Mating and non-mating pairs showed no significant ($p > 0.05$; FDR-
307 adjusted) difference in fecal microbial composition and structure. The temporal differences
308 between sample collection and mating did not have an effect on observed distances, as indicated
309 by absence of clustering according to phenotyping group (**Figure 9b**).

310

311 **Figure 9: Comparison of different beta diversity metrics (binary and weighted Jaccard**
 312 **index) between F2 pups and their parents, and between mating pairs and non-mating**
 313 **pairs. (a) Distance between mother or father and respective pup microbiota at pup age pnd21**
 314 **and week16. (b) Distance between mating pairs (n = 4) and non-mating pairs (n = 28). Boxplot**
 315 **with box elements showing upper and lower quantile and median. Whiskers extending from the**
 316 **hinge to +/- 1.5 times the interquartile range or the highest/lowest value. Colored points display**
 317 **individual distances and black points indicate outliers. Phenotyping group of fathers is indicated**
 318 **for mating pairs. Significance was calculated using Wilcoxon rank-sum test including FDR**
 319 **correction. pnd: postnatal day; ns: not significant; *p < 0.05; ** p < 0.01; *** p < 0.001; ****p**
 320 **< 0.0001; GR1: behavioral phenotyping before breeding; GR2: breeding before behavioral**
 321 **phenotyping**

322

323 **Discussion**

324 Early life traumatic stress induces metabolic, and behavioral alterations across generations^{17,18}.

325 This study presents the first in-depth assessment of the effect of early life traumatic stress on

326 the gut microbial community and metabolic functions in MSUS mice, while also addressing a

327 transgenerational effect.

328 Early life stress has previously been shown to alter the fecal microbial community in studies

329 focusing on a single time point after exposure^{12,22,23}. Here we show in a longitudinal study that

330 early life traumatic stress in mice results in significant changes in fecal microbial community

331 composition (binary Jaccard index) persistent across life. However, significantly differentially

332 abundant ASVs were largely different across life, with only one ASV being persistently

333 decreased at two measured time points. ASVs belonging to the genus *Lachnolostridium* were

334 previously shown to be enriched in early life maternally separated mice¹², which we confirm

335 here. Some previous studies found significant decreases in alpha diversity metrics upon early

336 life stress exposure, while no significant difference in fecal microbial alpha diversity between

337 early life stress exposed and non-exposed rodents were detected in the present and other studies

338^{12,22,24,25}. These substantial differences between studies may result from different stress

339 paradigms applied (i.e. maternal separation and/or early weaning or limited bedding and

340 nesting), or from mouse husbandry factors, such as cage ventilation, chow, and bedding, which

341 have previously been shown to substantially affect the gut microbial community²⁶⁻²⁸. Here we

342 report no significant changes in fecal SCFAs, amines, amino acids, and predicted bacterial

343 metabolic pathways between early life stress exposed and non-exposed mice across life. In

344 contrary, in the only available study where the gut bacterial metabolome in mice was

345 investigated upon early life stress exposure, a decrease in fecal lactate and an increase in cholic acid

346 in early life stressed mice compared to controls was observed²⁹.

347 Previous studies have shown the change of gut microbial features upon exposure to acute stress
348 (e.g. heat, light, cold water, and restraint stress) in adult rodents³⁰⁻³³. Thus, it is conceivable
349 that the applied stresses mothers are exposed to during the MSUS paradigm (i.e. restraint and
350 acute swim stress) induce similar changes in the gut microbial community. These changes may
351 then affect offspring, as it has been shown that disruption of mother's gut microbiota by
352 antibiotics during nursing altered fecal microbial community and adaptive immunity in
353 offspring³⁴. Nevertheless, Kemp and colleagues (2021) suggest that gut microbial alterations
354 due to early life stress occur independent of maternal microbiota inheritance.

355 The present study shows a transgenerational effect of early life traumatic stress induced changes
356 on the fecal microbial community. Significant differences in fecal microbial composition
357 (binary Jaccard index), structure (weighted Jaccard index), and relative abundances of several
358 ASVs, between MSUS and control mice up to F3 were observed. We also show an increase in
359 effect size with increasing number of generations (F1 to F3). However, only one ASV belonging
360 to the family *Muribaculaceae* was persistently decreased in MSUS compared to controls in F2
361 and F3, suggesting different shifts in fecal bacterial community in MSUS mice of different
362 generations.

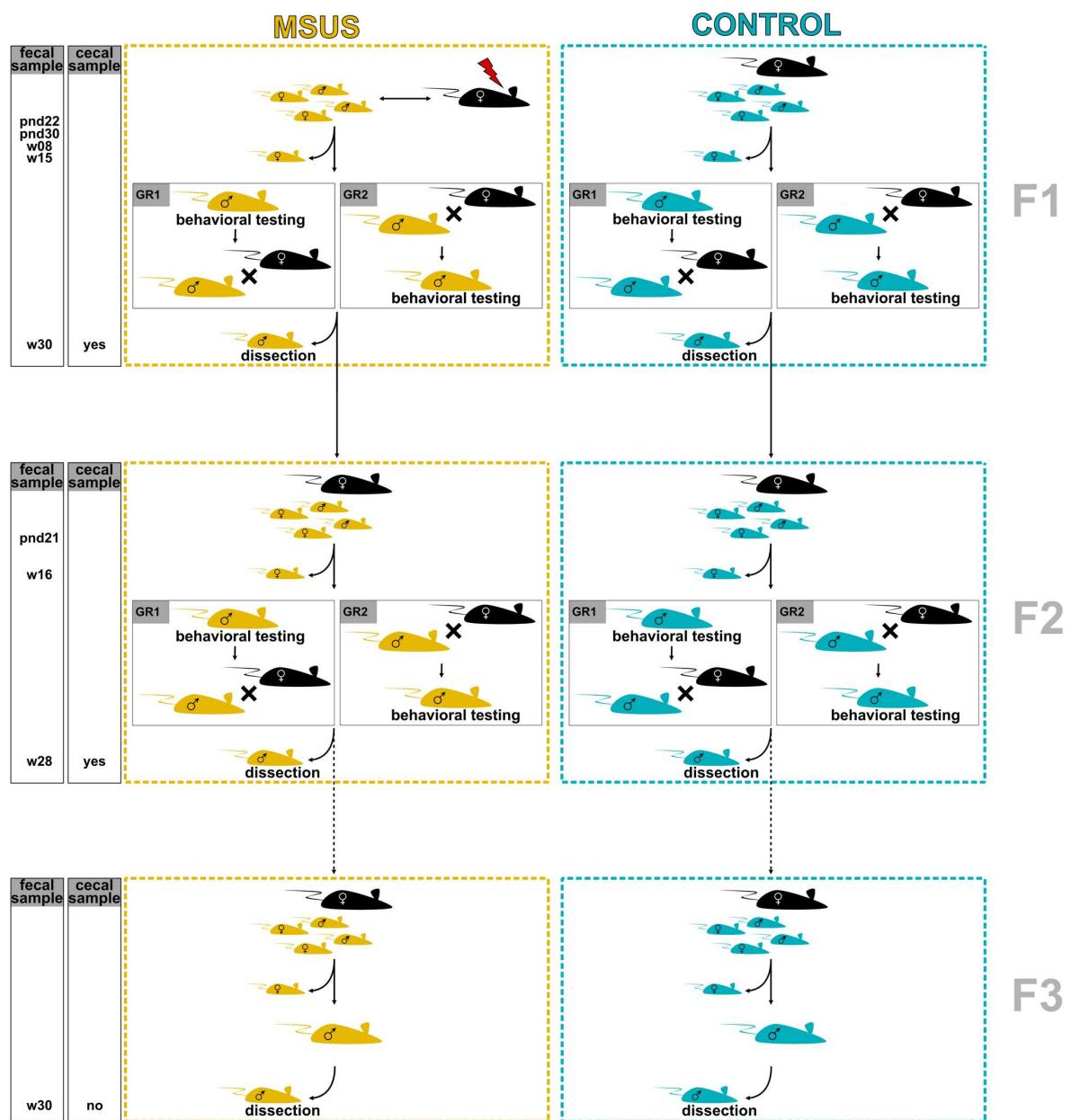
363 Experiments with germ free mice have suggested a crucial involvement of gut microbes in
364 anxiety like behavior and behavioral despair induced by early life stress¹⁰. Furthermore, after
365 colonization of early life stressed germ-free mice distinct shifts in gut microbiota profiles were
366 observed, which were not present in unstressed controls¹⁰. These observations suggest that
367 early life stress exposure alters host factors, which modulate gut microbes, which then
368 themselves signals back to the host exhibiting phenotypic changes. This notion could be present
369 in F2 and F3 MSUS mice explaining observed gut microbial changes without directly
370 experiencing early life traumatic stress beforehand. One candidate of communication between
371 host and gut microbes independent of genetic background, might be non-coding RNAs. Long

372 non-coding RNA in gut tissue has been shown to substantially differ between conventionalized
373 and different gnotobiotic mice ³⁵. In addition, small non-coding RNA such as microRNA are
374 being released by intestinal epithelial cells and have been shown to be common in the gut lumen,
375 where they may enter gut microbes and modulate gene expression and bacterial growth ³⁶.
376 Conversely, gut microbes are thought to modulate intestinal epithelial microRNA expression
377 most likely *via* excreted metabolites ³⁷⁻⁴⁰. Thus, luminal microRNA has been suggested as a
378 marker for host-microbiota homeostasis ^{41,42}. However, whether these non-coding RNAs are
379 truly involved in the transgenerational effect on gut microbial community observed in the
380 MSUS model remains highly speculative and would need to be addressed in future studies.

381 Though, the present study exhibits various strength, including relatively large sample size,
382 monitoring of fecal microbial changes over time, and addressing the coprophagous nature of
383 rodents (i.e. cage effect) it also has limitations. Fecal samples only serve as a proxy of the gut
384 microbial community and functionality in the gastrointestinal tract. Akin to humans, pH and
385 the gut microbial community varies along the gastrointestinal tract of mice and is thus
386 considerably different from fecal samples ⁴³. In addition, a previous study has illustrated that
387 the murine colon mucosa-associated and lumen microbial community are differentially affected
388 by stress ⁴⁴. Thus, observations in the present study may not be directly extrapolated to all niches
389 of the gastrointestinal tract. Biological relevance of observed microbial changes needs to be
390 addressed in future studies. Direct cecal bacterial metabolite quantification was limited to one
391 timepoint each in F1 and F2. In addition, bacterial metabolic pathway prediction *via* PICRUSt2
392 has several restrictions, especially for non-human samples. A recent study revealed that
393 PICRUSt2 performs substantially worse for murine compared to human samples ⁴⁵. In addition,
394 further bias is introduced due to the inability to detect strain specific functionality and the strong
395 dependency on reference genomes ⁴⁶. The relatively large NSTI values observed in the present
396 study, which are approximately 3.5-fold higher than values observed for the Human

397 Microbiome Project ⁴⁶, suggest a lack of suitable sequences in the reference space. Together
398 with the notion, that murine gut bacterial species are only in the process of being annotated and
399 characterized ⁴⁷, results need to be interpreted with caution. High-resolution techniques (i.e.
400 metabolomics, shotgun metagenomics, or RNA sequencing) are warranted to address potential
401 functional changes in gut microbiota between MSUS and controls over different generations.

402 In conclusion, the MSUS paradigm not only changes the fecal microbial community in directly
403 exposed mice but also in their offspring. Further well-designed studies are warranted to validate
404 and extend on present results, using high-resolution techniques and addressing host factors
405 responsible for gut microbial modulation. Though, our distance based analyses (based on binary
406 and weighted Jaccard index) suggested that the fecal microbial community in F2 mice were not
407 directly linked to the father's microbiota. Further carefully designed experiments are warranted
408 to entirely omit potential direct transmission of gut microbes from parents to offspring. For
409 instance, assisted reproductive techniques such as artificial insemination could be used to avoid
410 interactions between parents and eliminate related social confounds ⁴⁸. Previous research has
411 shown that early life stress modulates the murine gut microbial community in a sex-dependent
412 manner ⁴⁹. Whether changes in gut microbial features observed in the present study are also
413 detectable in matrilines remains to be explored.


414 **Material and Methods**

415 **Mouse husbandry and MSUS paradigm**

416 Ethical approval was given by the Swiss cantonal regulations for animal experimentation under
417 license numbers ZH057/15 and ZH083/18. All C57Bl/6J mice were kept in a temperature- and
418 humidity-controlled facility under a reverse 12 h light/dark cycle with access to food and water
419 *ad libitum*. Cage change took place once a week. First generation (F1) control and MSUS mice
420 were obtained by breeding 3-month-old C57Bl/6J primiparous females with age-matched
421 males. Pairs were kept in the same cage for one week. After birth, litters/dams were randomly
422 assigned to control and MSUS groups. For MSUS group, dams were unpredictably separated
423 from their pups for 3 h per day from postnatal day (pnd) 1 to 14, during which each mother was
424 randomly exposed to restrain stress (20 min restraint in a tube) or acute swim stress (5 min in
425 cold water, 18 °C). Controls were left undisturbed. At weaning (pnd 21) male pups were
426 assigned to cages according to treatment and only including mice from different dams per cage,
427 resulting in 3-5 mice per cage. After cage assignment, mice were tagged to allow for
428 identification of individual mice throughout life. F1 control and MSUS mice were bred to naïve
429 primiparous females to obtain second generation (F2) mice. Akin, F2 control and MSUS mice
430 with no prior behavior testing were bred to naïve primiparous females to obtain third generation
431 (F3) mice (**Figure 10**). Mice of F3 were not bred.

432 The present study was part of a bigger experiment, where behavior (i.e. risk-taking behavior
433 and behavioral despair) was evaluated *via* elevated plus maze and forced swim test as described
434 previously ¹⁹. To evaluate effect of temporal succession of behavioral phenotyping and
435 breeding, after fecal collection cages with 15-week-old (F1) and 16-week-old (F2) mice were
436 randomly assigned to group 1 (GR1; behavioral phenotyping before breeding) or group 2 (GR2;
437 breeding before behavioral phenotyping; **Figure 10**).

438

439

440 **Figure 10: Experimental setup of mouse model.** Setup and sample collection indicated across
441 three generations. F3 mice are not direct offspring of displayed F2 mice (indicated by dashed
442 line), but of a subset of F2 mice, which were not behaviourally phenotyped. Phenotyping group
443 1 (GR1): behavioral phenotyping before breeding. Phenotyping group 2 (GR2): breeding before
444 behavioral phenotyping. pnd: postnatal day; w: week

445

446 **Assessment of animal weight and collection of fecal and cecal samples**

447 Animal weight was assessed for F1 mice at 8, 15, and 30 weeks of age, and for F2 and F3 mice
448 at 28 and 30 weeks of age, respectively. For fecal sample collection, individual mice were
449 placed on sterilized gloves worn by animal caretaker and let to defecate. At day of sacrifice,

450 fecal samples were directly collected from colon. For F1 mice fecal samples were collected for
451 22-day-old (after weaning), 30-day-old (after tagging), 8-week-old, 15-week-old, and 30-week-
452 old (at day of sacrifice) mice (**Supplementary Table 4**). For F2 mice fecal samples were
453 collected for 21-day-old (after weaning), 16-week-old, and 28-week-old (at day of sacrifice)
454 mice (**Supplementary Table 4**). For both generations, cecal samples were collected at day of
455 sacrifice. Mice were sacrificed approximately two months after behavioral testing. For F3, fecal
456 samples were collected for 30-week-old (at day of sacrifice) mice only (**Supplementary**
457 **Table 4**). Cecal samples of F2 dams (control: n = 4; MSUS: n= 6) were collected at day of
458 sacrifice. All samples were frozen in liquid nitrogen immediately after collection and stored at
459 -80 °C until analysis.

460

461 **Cecal bacterial metabolite quantification**

462 To determine bacterial metabolites in cecum content, samples were homogenized with 100 mM
463 HClO₄ at a 1:3 ratio (w/v) followed by two centrifugation steps (6000 x g, 20 min and 14000 x
464 g, 15 min, 4 °C). Resulting supernatant samples were stored at -80 °C until analysis. Samples
465 were passed through a 0.2 µm nylon membrane prior to analysis with liquid chromatography as
466 described previously⁵⁰. Separation for organic acid quantification (i.e. SCFAs and intermediate
467 metabolites) was conducted on a LaChrom HPLC-System (Merck-Hitachi, Japan) using a
468 SecurityGuard Cartridges Carbo-H (4 × 3.0 mm; Phenomenex Inc., Torrance, CA, United
469 States) connected to a Rezex ROA-Organic Acid H+ (300 × 7.8 mm; Phenomenex Inc.) column.
470 Injection volume was 40 µl and elution was carried out at 40 °C under isocratic conditions,
471 using 10 mM H₂SO₄ as eluent and a flow rate of 0.4 ml/min. Separated compounds were
472 quantified using a refractive index detector L-2490 (Merck Hitachi). Raw data was analyzed
473 using the EZChrom software (Agilent, Santa Clara, CA, United States).

474 For quantification of cecal amine, amino acid, and ammonia a pre-column derivatization was
475 performed. In short, 100 μ l of supernatant sample were mixed with 175 μ l borate buffer (1 M
476 H_3BO_3 adjusted to pH 9 with NaOH), 75 μ l methanol, 4 μ l internal standard (2 g/l L-2-
477 amino adipic acid, Sigma-Aldrich Chemie GmbH, Buchs, Switzerland), and 3.5 μ l diethyl
478 ethoxymethylenemalonate (VWR International AG, Dietikon, Switzerland) and incubated at
479 room temperature in an ultrasonic bath for 45 min. Subsequently, samples were heated at 70 °C
480 for 2 h to stop the derivatization reaction and passed through a 0.2 μ m nylon membrane filter.
481 Separation was carried out on an ACQUITY UPLC H-Class System (Waters Corp., Milford,
482 MA, United States) using an ACQUITY BEH C18 column (1.7 μ m particle size; 2.1 \times 100 mm;
483 Waters Corp.). Injection volume was 1 μ l and elution was carried out at 40 °C with a flow rate
484 of 0.46 ml/min, applying a gradient of 25 mM acetate buffer (pH 6.6), 100% methanol, and
485 100% acetonitrile as described previously⁵⁰. Separated compounds were quantified using a
486 diode array detector at 280 nm. Raw data was analyzed using the Empower 2 software (Waters
487 Corp.).

488

489 **Metabarcoding of bacterial community**

490 DNA from fecal or cecal samples was extracted using the FastDNA Spin kit for soil (MP
491 Biomedicals, Illkirch, France) according to manufacturer's instructions. The V4 16S rRNA
492 gene region was amplified using the primers 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and
493 806R (5'-GGACTACHVGGGTWTCTAAT-3'). Subsequently, a tag-encoded MiSeq-based
494 (Illumina, CA, USA) high throughput sequencing was performed, using an Illumina MiSeq
495 System v2 including a flow cell with 2 \times 250-bp paired-end Nextera chemistry supplemented
496 with 10% (v/v) of PhiX as sequencing control. Samples from F1 were randomized in three
497 different sequencing runs. Samples from F2 and F3 were sequenced in two separate runs.

498 All raw Illumina sequencing data was processed using the R package metabaRpipe ⁵¹. In short,
499 adaptors and V4 primers were removed using Atropos ⁵² and ASVs were constructed using the
500 DADA2 pipeline ⁵³. Taxonomic assignment was performed using DADA2 formatted SILVA
501 reference base (v138.1) with confidence threshold set to 50%. Raw Illumina sequences were
502 deposited on the European Nucleotide Archive with the accession number PRJEB57336.

503

504 **Statistics and reproducibility**

505 Data and statistical analysis was carried out in R (v4.2.0) ⁵⁴ using the packages, vegan (v2.5.7)
506 ⁵⁵, ape (v5.5) ⁵⁶, ampvis2 (v2.7.9) ⁵⁷, speedyseq (v0.5.3.9018) ⁵⁸, Maaslin2 (v1.10.0) ⁵⁹, and
507 DivComAnalyses (v0.9) ⁶⁰. To calculate significance between two groups without confounders
508 a Wilcoxon rank-sum test was performed. To calculate significance between groups and
509 controlling for confounders generalized mixed effect models with false discovery rate (FDR)
510 correction, using the Benjamini and Hochberg method, were applied. When applicable, cage,
511 litter and sequencing run were treated as random effects while treatment (MSUS *versus*
512 control), age, and phenotyping group were treated as fixed effects. Models were applied *via*
513 Microbiome Multivariable Associations with Linear Models (MaAsLin 2) with minimal
514 prevalence set to 0.25.

515 For alpha and beta diversity analyses sequences were rarified to equal sequencing depth. For
516 comparison of alpha diversity indices generalized mixed effect models were applied *via*
517 MaAsLin 2 using \log_2 transformed values. For beta diversity a linear model was fitted to various
518 distance metrics. Homogeneity was investigated using a permutation test and effect of
519 individual fixed effects was investigated *via* permutational multivariate analysis of variance
520 (PERMANOVA). As random effects cannot be accounted for in PERMANOVA, an
521 aggregation of samples per cage was performed prior to analysis to account for cage and litter
522 effect (prior randomization of litter mates per cage).

523 Differential abundance testing was performed with MaAsLin 2 using \log_2 transformed relative
524 abundance counts. Bacterial metabolic pathway prediction was performed using the
525 Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
526 (PICRUSt2) software⁴⁶ and calculating MetaCyc pathway abundances⁶¹. MaAsLin2 with \log_2
527 transformed relative abundance counts was used to investigate differences between groups.
528 Accuracy of PICRUSt2 prediction was investigated *via* the abundance-weighted NSTI.
529 Differences in cecal metabolites were evaluated *via* MaAsLin2 with \log_2 transformed raw
530 concentrations.

531 Significance level was set to $p \leq 0.05$. Median values are stated including interquartile range
532 (iqr) in brackets. In boxplots, outliers are indicated and defined as values greater than 1.5 times
533 the iqr over the 75th percentile and values smaller than 1.5 iqr under the 25th percentile. Data
534 visualization was performed in R using ggplot2 (v3.3.5)⁶² and ComplexHeatmap (v2.13.1)⁶³.

535 **References**

- 536 1. Nelson, C. A., Zeanah, C. H. & Fox, N. A. How early experience shapes human
537 development: the case of psychosocial deprivation. *Neural Plast* **2019**, 1–12 (2019).
- 538 2. Ratsika, A., Codagnone, M. C., O’Mahony, S., Stanton, C. & Cryan, J. F. Priming for
539 life: early life nutrition and the microbiota-gut-brain axis. *Nutrients* **13**, 423 (2021).
- 540 3. Gershon, A., Sudheimer, K., Tirouvanziam, R., Williams, L. M. & O’Hara, R. The
541 long-term impact of early adversity on late-life psychiatric disorders. *Curr Psychiatry
542 Rep* **15**, (2013).
- 543 4. McEwen, B. S. Understanding the potency of stressful early life experiences on brain
544 and body function. *Metabolism* **57**, 11–15 (2008).
- 545 5. Bowers, M. E. & Yehuda, R. Intergenerational Transmission of Stress in Humans.
546 *Neuropsychopharmacol* **41**, 232–244 (2016).
- 547 6. Clarke, G., O’Mahony, S. M., Dinan, T. G. & Cryan, J. F. Priming for health: gut
548 microbiota acquired in early life regulates physiology, brain and behaviour. *Acta
549 Paediatr* **103**, 812–819 (2014).
- 550 7. O’Riordan, K. J. *et al.* Short chain fatty acids: Microbial metabolites for gut-brain axis
551 signalling. *Mol Cell Endocrinol* **546**, 111572 (2022).
- 552 8. Mazzoli, R. & Pessione, E. The neuro-endocrinological role of microbial glutamate and
553 GABA signaling. *Front Microbiol* **7**, 1–17 (2016).
- 554 9. Jena, A. *et al.* Gut-brain axis in the early postnatal years of life: a developmental
555 perspective. *Front Integr Neurosci* **14**, 1–18 (2020).
- 556 10. De Palma, G. *et al.* Microbiota and host determinants of behavioural phenotype in
557 maternally separated mice. *Nat Commun* **6**, 7735 (2015).
- 558 11. Hantsoo, L. & Zemel, B. S. Stress gets into the belly: early life stress and the gut
559 microbiome. *Behav Brain Res* **414**, 113474 (2021).
- 560 12. Kemp, K. M., Colson, J., Lorenz, R. G., Maynard, C. L. & Pollock, J. S. Early life
561 stress in mice alters gut microbiota independent of maternal microbiota inheritance. *Am
562 J Physiol Integr Comp Physiol* **320**, R663–R674 (2021).
- 563 13. Coley, E. J. L. *et al.* Early life adversity predicts brain-gut alterations associated with
564 increased stress and mood. *Neurobiol Stress* **15**, 100348 (2021).
- 565 14. Callaghan, B. L. *et al.* Mind and gut: associations between mood and gastrointestinal
566 distress in children exposed to adversity. *Dev Psychopathol* **32**, 309–328 (2020).
- 567 15. Flannery, J. E. *et al.* Gut feelings begin in childhood: the gut metagenome correlates
568 with early environment, caregiving, and behavior. *mBio* **11**, e02780-19 (2020).
- 569 16. Franklin, T. B. *et al.* Epigenetic transmission of the impact of early stress across
570 generations. *Biol Psychiatry* **68**, 408–415 (2010).
- 571 17. van Steenwyk, G. *et al.* Involvement of circulating factors in the transmission of
572 paternal experiences through the germline. *EMBO J* **39**, e104579 (2020).

573 18. van Steenwyk, G., Roszkowski, M., Manuella, F., Franklin, T. B. & Mansuy, I. M.
574 Transgenerational inheritance of behavioral and metabolic effects of paternal exposure
575 to traumatic stress in early postnatal life: evidence in the 4th generation. *Environ*
576 *Epigenet* **4**, dvy023 (2018).

577 19. Gapp, K. *et al.* Alterations in sperm long RNA contribute to the epigenetic inheritance
578 of the effects of postnatal trauma. *Mol Psychiatry* **25**, 2162–2174 (2020).

579 20. Gapp, K. *et al.* Implication of sperm RNAs in transgenerational inheritance of the
580 effects of early trauma in mice. *Nat Neurosci* **17**, 667–669 (2014).

581 21. Moloney, R. D. *et al.* Early-life stress induces visceral hypersensitivity in mice.
582 *Neurosci Lett* **512**, 99–102 (2012).

583 22. Reemst, K. *et al.* The role of the gut microbiota in the effects of early-life stress and
584 dietary fatty acids on later-life central and metabolic outcomes in mice. *mSystems* **7**,
585 e0018022 (2022).

586 23. Usui, N., Matsuzaki, H. & Shimada, S. Characterization of early life stress-affected gut
587 microbiota. *Brain Sci* **11**, 913 (2021).

588 24. Karen, C., Shyu, D. J. H. & Rajan, K. E. *Lactobacillus paracasei* supplementation
589 prevents early life stress-induced anxiety and depressive-like behavior in maternal
590 separation model-possible involvement of microbiota-gut-brain axis in differential
591 regulation of microRNA124a/132 and glutamate Rec. *Front Neurosci* **15**, 719933
592 (2021).

593 25. Enqi, W., Jingzhu, S., Lingpeng, P. & Yaqin, L. Comparison of the gut microbiota
594 disturbance in rat models of irritable bowel syndrome induced by maternal separation
595 and multiple early-life adversity. *Front Cell Infect Microbiol* **10**, 581974 (2021).

596 26. Bidot, W. A., Ericsson, A. C. & Franklin, C. L. Effects of water decontamination
597 methods and bedding material on the gut microbiota. *PLoS One* **13**, e0198305 (2018).

598 27. Ericsson, A. C. *et al.* The influence of caging, bedding, and diet on the composition of
599 the microbiota in different regions of the mouse gut. *Sci Rep* **8**, 4065 (2018).

600 28. Franklin, C. L. & Ericsson, A. C. Microbiota and reproducibility of rodent models. *Lab*
601 *Anim (NY)* **46**, 114–122 (2017).

602 29. Riba, A. *et al.* Early life stress in mice is a suitable model for irritable bowel syndrome
603 but does not predispose to colitis nor increase susceptibility to enteric infections. *Brain*
604 *Behav Immun* **73**, 403–415 (2018).

605 30. Qu, Q. *et al.* Effects of heat stress on gut microbiome in rats. *Indian J Microbiol* **61**,
606 338–347 (2021).

607 31. Zhang, Y. *et al.* Acute cold water-immersion restraint stress induces intestinal injury
608 and reduces the diversity of gut microbiota in mice. *Front Cell Infect Microbiol* **11**,
609 706849 (2021).

610 32. Kim, Y.-M. *et al.* Light-stress influences the composition of the murine gut
611 microbiome, memory function, and plasma metabolome. *Front Mol Biosci* **6**, 108
612 (2019).

613 33. Bassett, S. A. *et al.* Metabolome and microbiome profiling of a stress-sensitive rat
614 model of gut-brain axis dysfunction. *Sci Rep* **9**, 14026 (2019).

615 34. Nyangahu, D. D. *et al.* Disruption of maternal gut microbiota during gestation alters
616 offspring microbiota and immunity. *Microbiome* **6**, 124 (2018).

617 35. Liang, L., Ai, L., Qian, J., Fang, J.-Y. & Xu, J. Long noncoding RNA expression
618 profiles in gut tissues constitute molecular signatures that reflect the types of microbes.
619 *Sci Rep* **5**, 11763 (2015).

620 36. Liu, S. *et al.* The host shapes the gut microbiota via fecal microRNA. *Cell Host*
621 *Microbe* **19**, 32–43 (2016).

622 37. Nakata, K. *et al.* Commensal microbiota-induced microRNA modulates intestinal
623 epithelial permeability through the small GTPase ARF4. *J Biol Chem* **292**, 15426–
624 15433 (2017).

625 38. Williams, M. R., Stedtfeld, R. D., Tiedje, J. M. & Hashsham, S. A. MicroRNAs-based
626 inter-domain communication between the host and members of the gut microbiome.
627 *Front Microbiol* **8**, 1896 (2017).

628 39. Zhao, Y. *et al.* Probiotics and microRNA: their roles in the host–microbe interactions.
629 *Front Microbiol* **11**, 604462 (2021).

630 40. Hu, S. *et al.* The microbe-derived short chain fatty acid butyrate targets miRNA-
631 dependent p21 gene expression in human colon cancer. *PLoS One* **6**, e16221 (2011).

632 41. Moloney, G. M., Viola, M. F., Hoban, A. E., Dinan, T. G. & Cryan, J. F. Faecal
633 microRNAs: indicators of imbalance at the host-microbe interface? *Benef Microbes* **9**,
634 175–183 (2018).

635 42. Viennois, E. *et al.* Host-derived fecal microRNAs can indicate gut microbiota
636 healthiness and ability to induce inflammation. *Theranostics* **9**, 4542–4557 (2019).

637 43. Lkhagva, E. *et al.* The regional diversity of gut microbiome along the GI tract of male
638 C57BL/6 mice. *BMC Microbiol* **21**, 44 (2021).

639 44. Galley, J. D. *et al.* The structures of the colonic mucosa-associated and luminal
640 microbial communities are distinct and differentially affected by a prolonged murine
641 stressor. *Gut Microbes* **5**, 748–760 (2014).

642 45. Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome
643 prediction tools varies across sample types and functional categories. *Microbiome* **8**, 46
644 (2020).

645 46. Douglas, G. M. *et al.* PICRUSt2 for prediction of metagenome functions. *Nat*
646 *Biotechnol* **38**, 685–688 (2020).

647 47. Lagkouvardos, I. *et al.* Sequence and cultivation study of Muribaculaceae reveals novel
648 species, host preference, and functional potential of this yet undescribed family.
649 *Microbiome* **7**, 28 (2019).

650 48. Bohacek, J., von Werdt, S. & Mansuy, I. M. Probing the germline-dependence of
651 epigenetic inheritance using artificial insemination in mice. *Environ Epigenet* **2**,
652 dvv015 (2016).

653 49. Park, H. J., Kim, S. A., Kang, W. S. & Kim, J. W. Early-life stress modulates gut
654 microbiota and peripheral and central inflammation in a sex-dependent manner. *Int J
655 Mol Sci* **22**, 1899 (2021).

656 50. Otaru, N. *et al.* GABA production by human intestinal *Bacteroides* spp.: prevalence,
657 regulation, and role in acid stress tolerance. *Front Microbiol* **12**, (2021).

658 51. Constancias, F. & Mahé, F. fconstancias/metabaRpipe: v0.9 (v0.9). Zenodo. (2022)
659 doi: 10.5281/zenodo.6423397.

660 52. Didion, J. P., Martin, M. & Collins, F. S. Atropos: specific, sensitive, and speedy
661 trimming of sequencing reads. *PeerJ* **5**, e3720 (2017).

662 53. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina
663 amplicon data. *Nat Methods* **13**, 581–583 (2016).

664 54. R Core Team. R: A Language and Environment for Statistical Computing. R
665 Foundation for Statistical Computing, Vienna, Austria (2022).

666 55. Oksanen, J. *et al.* vegan: community ecology package. [https://CRAN.R-
667 project.org/package=vegan](https://CRAN.R-project.org/package=vegan) (2020).

668 56. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and
669 evolutionary analyses in {R}. *Bioinformatics* **35**, 526–528 (2019).

670 57. Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R
671 package to analyse and visualise 16S rRNA amplicon data. *bioRxiv* (2018).

672 58. McLaren, M. speedyseq: faster implementations of phyloseq functions.
673 <https://github.com/mikemc/speedyseq> (2021).

674 59. Mallick, H. *et al.* Multivariable association discovery in population-scale meta-omics
675 studies. *PLoS Comput Biol* **17**, 1–27 (2021).

676 60. Constancias, F. & Sundar, S. fconstancias/DivComAnalyses: v0.9 (v0.9). Zenodo.
677 (2022) doi:10.5281/zenodo.6473394.

678 61. Caspi, R. *et al.* The MetaCyc database of metabolic pathways and enzymes and the
679 BioCyc collection of pathway/genome databases. *Nucleic Acids Res* **44**, D471–D480
680 (2016).

681 62. Wickham, H. *ggplot2: elegant graphics for data analysis.* (Springer-Verlag New York,
682 2016).

683 63. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in
684 multidimensional genomic data. *Bioinformatics* **32**, 2847–2849 (2016).

685

686 **Data Availability**

687 Raw sequences generated and analyzed during the current study are available in the European
688 Nucleotide Archive repository under accession number PRJEB57336,
689 <https://www.ebi.ac.uk/ena/browser/view/PRJEB57336>.

690 **Acknowledgements**

691 We thank Alfonso Die and Adam Krzystek for assistance with liquid chromatography analyzes.
692 Illumina sequencing data were generated in collaboration with the Genetic Diversity Centre
693 (GDC), ETH Zürich.

694 This work was supported by own resources (ETH Zürich and University Children's Hospital
695 Zürich).

696 The Mansuy lab is funded by the University Zürich, the ETH Zürich, the Swiss National
697 Science Foundation grant number 31003A_175742/1, the National Centre of Competence in
698 Research (NCCR) RNA&Disease funded by the Swiss National Science Foundation (grant
699 number 182880/Phase 2 and 205601/Phase 3), ETH grants (ETH-10 15-2 and ETH-17 13-2),
700 European Union Horizon 2020 Research Innovation Program Grant number 848158, European
701 Union projects FAMILY and HappyMums funded by the Swiss State Secretariat for Education,
702 Research and Innovation (SERI), FreeNovation grant from Novartis Forschungsstiftung, and
703 the Escher Family Fund.

704 **Author contributions**

705 CL, IM, CB, NO and BP designed the study. NO and LK performed the experiments. NO and
706 FC performed the data analysis. CB, CL, and IM provided financial support. NO, BP, and CL
707 drafted, and all authors critically reviewed the manuscript.

708 **Competing interests**

709 The authors declare that they have no competing interests.