

1 **High-energy demand and nutrient exhaustion in MTCH2 knockout cells**

2
3
4 Sabita Chourasia^{1*}, Christopher Petucci², Hu Wang³, Xianlin Han³, Ehud Sivan⁴, Alexander
5 Brandis⁴, Tevie Mehlman⁴, Sergey Malitsky⁴, Maxim Itkin⁴, Ron Rotkopf⁴, Limor Regev¹,
6 Yehudit Zaltsman¹, and Atan Gross^{1*}

7
8
9 ¹Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Israel
10 76100
11 ²Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of
12 Pennsylvania, Philadelphia, PA 19104, USA
13 ³Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of
14 Texas Health Science Center at San Antonio, San Antonio, TX 78229

15 ⁴Department of Life Sciences Core Facilities, Weizmann Institute of Science, Israel 76100
16
17
18
19
20
21

22 *To whom correspondence should be addressed:
23
24 Sabita Chourasia and Atan Gross, PhD
25 Department of Immunology and Regenerative Biology
26 Weizmann Institute of Science
27 Rehovot, Israel 76100
28 Emails:
29 sabita.chourasia@weizmann.ac.il
30 atan.gross@weizmann.ac.il

31

32 **Abstract**

33 Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics,
34 and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-
35 body energy utilization, and protection from diet-induced obesity. We now show using temporal
36 metabolomics that MTCH2 deletion results in a high ATP demand, an oxidized environment, a
37 high lipid/amino acid/carbohydrate metabolism, and in the decrease of many metabolites.
38 Lipidomics analyses show a strategic adaptive decrease in membrane lipids and an increase in
39 storage lipids in MTCH2 knockout cells. Importantly, all the metabolic changes in the MTCH2
40 knockout cells were rescued by MTCH2 re-expression. Interestingly, this imbalance in energy
41 metabolism and reductive potential triggered by MTCH2-deletion inhibits adipocyte
42 differentiation, an energy consuming reductive biosynthetic process. In summary, loss of MTCH2
43 results in an increase in energy demand that triggers a catabolic and oxidizing environment, which
44 fails to fuel the anabolic processes during adipocyte differentiation.

45

46

47 **Introduction**

48 Energy homeostasis is a fundamental physiological process crucial for the survival and well-being
49 of organisms. The energy homeostasis of the organism is fine-tuned by dynamic processes that
50 maintain the balance between energy intake and expenditure^{1,2}. AMP-activated protein kinase
51 (AMPK), sirtuins (such as SIRT1) and mTOR, act as cellular energy sensors, influencing
52 metabolic pathways and promoting energy conservation during low energy states³⁻⁶.

53 At the core of this intricate system lies the mitochondria that plays a pivotal role in energy
54 production, sensing, adapting, and responding to the cellular energy demands. Mitochondria are
55 the primary sites of cellular respiration, where the process of oxidative phosphorylation
56 (OXPHOS) converts nutrients into adenosine triphosphate (ATP)⁷⁻¹⁰. Redox cofactors, the
57 oxidized (NAD⁺) and reduced (NADH) forms of nicotinamide, act as “fuel” for the
58 mitochondria¹¹⁻¹³. The mitochondrial NAD⁺/NADH pool are substrates for OXPHOS, where 90%
59 of cellular ATP production takes place. Along with ADP¹³, NAD⁺ also plays an important role in
60 the regulation of the Krebs cycle. The mitochondrial-redox cofactor/fuel relationship dictates the
61 metabolic status and sets the entire blueprint for cellular bioenergetics and cell behavior¹⁴.

62 Mitochondria are dynamic entities: they undergo constant fission and fusion processes
63 known as mitochondrial dynamics. This dynamic behavior is essential for maintaining a healthy
64 mitochondrial population, responding to energy demands, and orchestrating adaptability in the
65 face of changing metabolic states^{8,9,15,16}. In addition, mitochondria biogenesis is intricately linked
66 to energy homeostasis. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
67 (PGC-1 α) is a master regulator that coordinates mitochondrial biogenesis in response to energy
68 demand, environmental cues, and cellular stress^{17,18}. Mitochondria maintain their health by a

69 delicate balance between biogenesis of new mitochondria and clearance of old and dysfunctional
70 mitochondria by mitophagy¹⁹.

71 Metabolism plays a crucial role in cell differentiation and adaptation during cellular energy
72 stress. The dynamic shift from glycolysis to OXPHOS during cellular differentiation underscores
73 the adaptability and plasticity of cellular metabolism. Glucose metabolism is pivotal for sustaining
74 the energy demands of undifferentiated and proliferating cells (Warburg effect)²⁰. The glycolysis-
75 to-OXPHOS switch stands at the crossroads of metabolism and cell fate, revealing the intimate
76 connection between energy metabolism and cellular differentiation²¹. Adipocyte differentiation,
77 or adipogenesis, involves a finely-tuned balance of energy utilization, demanding dynamic shifts
78 in energy metabolism to support lipid accumulation and storage²². Transcriptional regulators,
79 including PPAR γ , C/EBPs, and AMPK, act as key nodes governing the balance between energy
80 storage and expenditure during adipocyte differentiation. Their intricate interplay shapes the
81 metabolic landscape of adipose tissue²³. NAD $^+$ acts as a critical signaling molecule for activation
82 of PPAR γ and C/EBPs during adipocyte differentiation²⁴. During adipocyte differentiation, the
83 cytoplasmic NAD $^+$ pool is engaged in meeting cellular metabolic demand by regulating glucose
84 metabolism and the nuclear pool involved in gene regulation^{25,26}.

85 Mitochondrial carrier homologue 2 (MTCH2; also named MIMP or SLC25A50), stands
86 out as a unique member of the mitochondrial carrier protein family, positioned at the outer
87 mitochondrial membrane (OMM)²⁷. Initially acknowledged for its role in mediating apoptosis^{28,29}
88 subsequent studies uncovered its multifaceted involvement in regulating mitochondria/whole-
89 body metabolism and hematopoietic stem cell fate^{30,31}. In addition, multiple genome-wide
90 association studies have associated the MTCH2 locus with metabolic disorders such as diabetes
91 and obesity³²⁻³⁶. More recently, MTCH2 has been implicated in the regulation of mitochondrial

92 dynamics, broadening its spectrum of cellular functions^{37,38}. Various investigations, including
93 genetic models in diverse organisms such as *C. elegans*, *Zebrafish*, and mice, have shed light on
94 the involvement of MTCH2 in lipid metabolism³⁹⁻⁴². MTCH2 deletion has been linked to
95 diminished lipid synthesis and storage, underscoring its critical involvement in lipid
96 homeostasis^{30,40,42}. Conversely, increased MTCH2 expression has been associated with elevated
97 lipid storage, highlighting its dynamic regulatory role in lipid metabolism³⁹.

98 A recent study has illuminated the contribution of MTCH2 to mitochondrial fusion,
99 establishing a connection between MTCH2 and the pro-mitochondrial fusion lipid
100 lysophosphatidic acid (LPA)³⁸. This study proposed that MTCH2 plays a pivotal role in the
101 biogenesis and transfer of lipids from the ER to the mitochondria, and that this transfer plays a
102 critical role in mitochondria fusion. In addition, MTCH2 was recently demonstrated to act as a
103 protein insertase⁴³, and possibly also as a scramblase^{44,45}.

104 In our present paper, we show that loss of MTCH2 results in increased energy demand and
105 increased metabolism, across many pathways, most likely to satisfy this demand.

106

107 **Results**

108 **A high ATP demand and an oxidizing environment in MTCH2 knockout cells**

109 To assess MTCH2's metabolic function, we performed temporal targeted metabolomics analyses.
110 The analyses were performed on HeLa stable cell lines, six clones from each genotype: wild type
111 (WT) with empty vector, MTCH2 knockout (MKO), and MKO reconstituted with MTCH2 (MKO-
112 R). All stable lines were cultured in complete media (CM), left to grow overnight, then the media
113 was changed (considered as time 0) and samples were taken at 1, 6, 12, and 18-hrs post media
114 change. Hierarchical clustering and principal component analysis (PCA) based on the differential

115 levels of metabolites between the three groups showed that while WT and MKO-R cells are
116 clustered together, the MKO cells are a distinct sub-population of cells (Fig. 1A). These results
117 suggest that MTCH2 knockout results in a prominent metabolic change, which is largely rescued
118 to the WT metabolic state by re-introducing MTCH2.

119 Detailed analysis of the results revealed that the MKO cells showed: 1) Trend increases in
120 ADP and ATP levels resulting in an increase in the ADP/ATP ratio (Fig. 1B). 2) Trend increases
121 in NAD⁺ and a trend decrease in NADH levels resulting in an increase in the NAD⁺/NADH ratio
122 (Fig. 1C). 3) An increase in NADP⁺ levels (Fig. 1D). 4) An increase in the nicotinamide precursors
123 nicotinamide adenine dinucleotide (NAAD) and nicotinamide (NAM), and a trend decrease in
124 nicotinamide mononucleotide (NAMN) (Fig. 1E), which point to an overall change in nicotinamide
125 metabolism.

126 Importantly, the majority of the metabolic changes measured in the MKO cells were rescued
127 to WT levels in the MKO-R cells (Fig. 1B-E), suggesting that the observed metabolic changes were
128 due to MTCH2 knockout. An increase in the ADP/ATP ratio stimulates OXPHOS; an increase in
129 the NAD⁺/NADH ratio and NADP⁺ levels represent an oxidized environment, which leads to
130 stimulation of glycolysis^{46,47}. Collectively, these results suggest that MTCH2 knockout results in
131 the stimulation of oxidative metabolism and ATP production to meet the increased cellular demand
132 for ATP.

133
134 **An increase in amino acid/lipid/carbohydrate metabolism and a decrease in many metabolites**
135 **in MKO cells**
136 The metabolomics analyses revealed additional important changes in many more nutrient
137 substrates, which included a decrease in most amino acids (Fig. 2A and Fig. S2A). Notably, the

138 most significant change was seen in glutamine (Fig. 2A, left top graph), one of the major amino
139 acid-nutrient sources⁴⁸. A decrease in amino acids usually represents an increase in TCA cycle
140 metabolism⁴⁹. Indeed, we found a decrease of TCA cycle intermediates 18hr post media change in
141 the MKO cells (Fig. S2B).

142 Acyl carnitines are a “readymade” form of fatty acids, which can enter mitochondria for
143 breakdown. Overall, 22 species of acyl carnitines were detected in our metabolomics analyses and
144 among them three were branched chain amino acid (BCAAs)-derived acyl carnitines (C05-2-
145 Methylbutyryl, C05-Isovaleryl, and C04-Isobutyryl), five unsaturated acyl carnitines (C05:1,
146 C16:1, C18:1, C14:2, C22:5) and eight saturated acyl carnitines (Fig. 2B and Fig. S2C). The MKO
147 cells showed a sequential increase in BCAAs and unsaturated short chain (C05:1) acyl carnitines at
148 6- and 12-hrs post media change and an increase in part of the unsaturated acyl carnitines at later
149 stages (Fig. 2B). Most changes in the MKO cells were rescued to WT levels in the MKO-R cells,
150 again suggesting that the observed metabolic changes were due to MTCH2 knockout. The increase
151 in acyl carnitines in the MKO cells is consistent with the idea of an increase in the transport and
152 breakdown of fatty acids in mitochondria to meet the increase in cellular demand for ATP.

153 On the other hand, MKO cells show a decrease in part of the short and long chain saturated
154 acyl carnitines that were rescued to WT levels in the MKO-R cells (Fig. S2C). An interesting
155 comparison can be seen between two of the saturated acyl carnitines, C16 and C18, which their
156 levels are decreased, whereas the levels of their two unsaturated counterpart forms, C16:1 and C18:1,
157 were increased (Fig. 2B). Thus, the acyl carnitine profile suggests that 1- to 12-hrs post media change
158 the MKO cells use BCAAs as a nutrient source, and later shift to unsaturated acyl carnitines,
159 specifically to the C16:1 and C18:1 forms.

160 The levels of acetyl CoA, 3-hydroxybutyrate (3-HBA) and lactate also showed interesting
161 differences. The main function of acetyl CoA is to deliver the acetyl group to the TCA cycle to be
162 oxidized for energy production^{50,51}. 1hr post media change, the levels of acetyl CoA were close to
163 three-fold lower in the MKO cells as compared to WT and MKO-R cells (Fig. 2C). However, by 6-
164 and 12hrs its levels in the MKO cells increased almost two-fold, whereas the levels in the WT and
165 MKO-R cells gradually decreased (Fig. 2C). At 18hrs post media change the picture flipped back
166 again, and the MKO cells showed lower levels of acetyl CoA as compared to the levels in the WT
167 and MKO-R cells (Fig. 2C). These results suggest that there is higher metabolism of acetyl CoA in
168 the MKO cells leading to a bell-shape dynamics (low-high-low levels).

169 A similar bell-shape dynamics was seen in the levels of the ketone body 3-hydroxybutyrate
170 (3-HBA; Fig. 2D). 3-HBA is an alternative product of fatty acid oxidation and can be used as an
171 alternate energy source in the absence of sufficient glucose or in preference towards lipogenic diet
172^{52,53}. A similar bell-shape dynamics was also seen in the levels of lactate (Fig. 2E), although the
173 differences in lactate levels were less pronounced and did not reach statistical significance. In
174 general, a more prominent increase in lactate means a more prominent severity of a condition^{54,55}.
175 The lower levels observed in acetyl CoA, 3-HBA and lactate 18hrs post media change in the MKO
176 cells (Fig. 2C-E), led us to perform untargeted global metabolic profiling of cells 30hrs post media
177 change. This profiling showed a prominent decrease of many metabolites in MKO cells (Fig. S2D
178 and Table 1), metabolites involved in glycolysis, TCA cycle, pentose-phosphate pathway (PPP),
179 and nucleotides. Most of these metabolic changes were largely rescued in the MKO-R cells. As
180 might be expected from the results, the MKO cells showed a ~1.5-fold higher uptake of glucose
181 as compared to WT cells (Fig. 2F).

182 Taken together, the results presented above are consistent with the idea that the increased
183 amino acid/lipid/carbohydrate metabolism and substantial decrease of many metabolites in MKO
184 cells is most likely due to their increased utilization to meet the increased cellular energy demand.

185

186 **Membrane lipids decrease and storage lipids and lipid droplets increase in MKO cells**

187 Nutrient depletion leads to an adaptive process in which cells catabolize membrane lipids,
188 manifested in fatty acids becoming available for energy storage (i.e., triglycerides (TAG)) or for
189 energy production⁵⁶. Targeted lipidomics on cells harvested 20hrs post media change, revealed a
190 prominent decrease in the levels of many membrane lipids in MKO cells (Fig. 3A, left panel, and
191 Table 2). Importantly, these changes in lipids were largely restored in the MKO-R cells (Fig. 3A,
192 left and right panels). The MKO cells also showed a decrease in free fatty acids (FFA), non-
193 esterified fatty acids (NEFA) (Fig. 3A, top right panel, and Fig. S3A). On the other hand, the level
194 of esterified-fatty acids (TAG-fatty acid content) was increased in MKO cells (Fig. 3A, top right
195 panel and Fig. S3B). A Volcano plot showed increased levels of the storage lipids TAG and
196 cholesterol ester (CE) in MKO cells (Fig. 3A, bottom right panel). Interestingly, TAG is mostly
197 composed of C16:0, C16:1 and C18:1 fatty acids, and two of these three were increased in the
198 MKO cells (Fig. 2B).

199 TAGs and CEs are the major components of lipid droplets (LDs). LDs are an “on demand”
200 energy source for the cell and can be mobilized in response to fluctuations in nutrient abundance⁵⁷.
201 In extended phases of nutrient scarcity, cells activate comprehensive strategies to collectively
202 modify their metabolic processes, transitioning from predominantly using glycolysis to breaking
203 down fatty acids through mitochondrial β -oxidation to produce energy. In accordance with the
204 decrease in intracellular nutrients and membrane lipids, and the increase in TAGs and CEs, we

205 found an increase in LD numbers and size in the MTCH2 knockout cells grown in complete media
206 (Fig. 3B and Fig. S3C, respectively), which was further pronounced when cells were grown in
207 HBSS nutrient depletion conditions (Fig. 3C). Notably, the pronounced accumulation of LDs in
208 the MTCH2 knockout cells was accompanied by rearrangement of LDs from dispersed to a highly
209 clustered distribution that was often observed in close proximity to mitochondria (Fig. 3D).
210 Notably, we also found that MTCH2 knockout cells showed accelerated mitochondria elongation
211 (Fig. S3D, top panels), which was further pronounced when cells were grown in HBSS (Fig. S3D,
212 bottom panels).

213 Taken together, the accumulation of LDs in proximity to mitochondria and accelerated
214 mitochondria elongation is likely to enable accelerated transfer and more efficient metabolism of
215 lipid moieties at mitochondria resulting in increased energy production.

216

217 **MTCH2 is critical for adipocyte differentiation**

218
219 Previously, it was reported that MTCH2 mRNA and protein expression are increased in obese
220 women and during adipocyte differentiation⁵⁸. It was also reported that deletion of MTCH2
221 inhibits adipogenesis and lipid accumulation in adipocyte cells^{42,59}. Thus, adipogenesis/
222 lipogenesis is likely to be a physiologically relevant pathway to test the importance of MTCH2.

223 Adipose tissue plays a crucial role in regulating energy balance and glucose levels⁶⁰, and
224 the process of forming functional adipocytes involves the differentiation of preadipocytes into
225 mature adipocytes. Moreover, NAD⁺ biosynthesis effectively integrates cellular metabolism with
226 the adipogenic transcription program²⁵. We used the CRISPR-Cas9 system to generate MTCH2
227 knockout NIH3T3L1 cells, a professional model to study adipogenesis. As expected, MTCH2
228 knockout in NIH3T3L1 cells resulted in mitochondrial fragmentation (Fig. S4A). During the

229 process of differentiation in NIH3T3L1 preadipocytes, the WT proficient cells showed 80%-90%
230 differentiation, based on lipid droplet quantification, whereas the MTCH2 knockout proficient
231 cells showed 5%-10% differentiation on Day 6 (Fig. 4A).

232 As expected from the droplet quantification, Day 6 post-differentiation there was a
233 substantial upregulation of the adipogenic transcription factors and many of their effectors in WT
234 cells, which did not occur in the MTCH2 knockout cells (Fig. 4B and Fig. 4SB, respectively).
235 Targeted metabolic profiling of NAD⁺, NADP⁺, NADH, AMP and ATP in resting preadipocytes
236 prior to differentiation showed increased levels in the MTCH2 knockout cells as compared to the
237 WT cells (Fig. 4C). High levels of ATP and of reducing equivalents are necessary for anabolic
238 processes like lipid synthesis⁶¹. The higher levels of NAD⁺ and NADP⁺ suggests that MTCH2
239 knockout preadipocytes have an oxidizing intracellular environment that is inhibitory to
240 anabolism, and thus inhibitory to reductive lipid biosynthesis⁶¹. Moreover, although MTCH2
241 knockout preadipocytes have higher ATP levels than the WT preadipocytes, their AMP levels
242 were even higher, resulting in an AMP/ATP ratio that is ~8-fold higher in the MTCH2 knockout
243 as compared to the WT preadipocytes (Fig. 4C).

244 These results suggest that the MTCH2 knockout preadipocytes face a cellular energy crisis
245 that is similar to the one seen in the MTCH2 knockout HeLa cells presented earlier. Moreover,
246 targeted metabolomics comparing days 0 and days 6, post-differentiation, showed as expected that
247 the levels of NAD⁺, NADP⁺, and ATP are increased in WT cells for proper signaling and to sustain
248 enhanced anabolism during differentiation, whereas these metabolites are decreased in MTCH2
249 knockout cells (Fig. 4D). Thus, loss of MTCH2 results in a decrease in anabolic processes, like
250 fatty acid biosynthesis, which are essential for adipogenesis.

251

252 Discussion

253 In this study, we focused on understating the role of MTCH2 in metabolism. It is well-established
254 that MTCH2 is a regulator of apoptosis by acting as the mitochondrial receptor for pro-apoptotic
255 BID²⁹, however its roles in regulating mitochondrial fusion and metabolism are less understood.
256 Notably, conditional knockout of MTCH2 in mouse skeletal muscle results in protection from high
257 fat diet-induced obesity, and this protection is likely due to an increase in whole-body energy
258 utilization³⁰.

259 How does loss of MTCH2 increase energy utilization? From our present results, we
260 understood that MTCH2 balances the flow of energy among different metabolic pathways
261 according to the cellular demand. MTCH2 seems to be involved in regulating the activity of several
262 different metabolic pathways (Fig. 5). Proper timing and sustainable use of metabolic
263 intermediates according to the cellular need is an indispensable process to run the cellular growth
264 and proliferation. Under normal growth conditions, MTCH2, stationed on the surface of
265 mitochondria like an antenna, is likely to be involved in the mitochondrial information processing
266 system (MIPS)⁷. Mitochondria are the “headquarters” of cellular metabolism, harboring numerous
267 metabolic inputs and outputs. Thus, MTCH2 might act like a “relay station” by sensing and
268 connecting between metabolic intermediates/pathways and dynamic changes in mitochondria
269 morphology/energy production by receiving and sending Wi-Fi signals (Fig. 5, left panel).

270 The metabolomics analysis revealed that MTCH2 knockout results in an imbalance in
271 several metabolic parameters: 1) Imbalance in the redox cofactors, NAD⁺, NADH and NADP⁺,
272 leading to an oxidative environment. NAD⁺ plays an indispensable role in OXPHOS by acting as
273 a proton acceptor⁶². Along with its role in OXPHOS it also acts as a signaling molecule in many
274 cellular pathways like cell growth⁶³, sirtuin activity⁶⁴, and cell differentiation^{24,25,65}. There is an

275 intimate connection between energy metabolism and redox cofactors¹², and they appear on the
276 front defense line in incidents of mitochondrial insult⁶⁶, cellular stress⁶⁷, nutrient
277 depletion/starvation¹², and high energy demand like during exercise⁶⁸. 2) Imbalance in adenine
278 nucleotides, which results in an increase in the ADP/ATP ratio, representing an increase in energy
279 demand. 3) Imbalance/decrease in many metabolites (carbohydrates, lipids, proteins, amino acids)
280 and an increase in glucose uptake pointing to stimulation of metabolism/catabolism to meet the
281 increased energy demands. Absence of MTCH2, mimicking a scenario of losing a pivotal “relay
282 station” can lead to a disconnection between the cellular energy demand and the cellular energy
283 utilization (Fig. 5, right panel).

284 Energy metabolism, redox potential and sustainable use of available nutrients dictates the
285 “fingerprint” of cellular behavior^{63,69}. Lack of coordination between the three systems will result
286 in improper cellular growth and development⁶⁸, and this might be the reason why MTCH2
287 knockout in mice results in embryonic lethality at E7.5²⁹. In culture, MTCH2 knockout cells may
288 survive at the cost of being smaller in size and growing slower³⁷. The uncoordinated growth may
289 also explain the delayed transition from naïve-to-prime in MTCH2 knockout embryonic stem cells
290 and the increased exit from quiescence of MTCH2 knockout hematopoietic stem cells^{31,37}. In
291 culture, MTCH2 knockout cells seem to adapt by metabolic rewiring, which includes lipid
292 rerouting to storage lipids to energize the cells instead of making membrane lipids for cell growth
293 and proliferation.

294 As described above, oxidative metabolism is not an innate behavior but rather an adaptation
295 of cells during specific conditions of cellular stress like starvation^{70,71}. Since oxidative metabolism
296 is not a canonical scenario and MTCH2 knockout leads to an oxidative environment, it is
297 unfavorable to reductive biosynthesis pathways, like lipid synthesis⁶¹. Reductive biosynthesis

298 pathways require a surplus amount of ATP and of the reducing cofactors NADH and NADPH to
299 proceed^{61,67}. NIH3T3L1 preadipocytes, a model to study white adipocyte physiology, revealed that
300 MTCH2 knockout preadipocytes fail to differentiate into mature adipocytes. There can be at least
301 three possible reasons to explain this phenotype: 1) mitochondrial fragmentation, 2) oxidative
302 environment (increased levels of NAD⁺ and NADP⁺), and 3) shortage of metabolic intermediates.

303 Both the dynamic transition of mitochondria from a fragmented to a tubular state, and the
304 metabolic transition from glycolysis to OXPHOS are important to meet the increased energy
305 demand for anabolic processes during differentiation^{24,65}. To make one molecule of fatty acid,
306 palmitic acid, cells need approximately 14 molecules of NADPH and 7 molecules of ATP along
307 with 16 carbons from 8 molecules of acetyl CoA⁷². Targeted metabolomics of the MTCH2
308 knockout NIH3T3L1 preadipocytes showed higher levels of NAD⁺, NADP⁺, and a higher
309 AMP/ATP ratio, indicating an oxidative and low-energy environment, which is not favorable for
310 differentiation. In addition, the nuclear pool of NAD⁺ acts as a signaling molecule and an increase
311 in the cytoplasmic NAD⁺ levels are used to maintain metabolic intermediates of glucose
312 metabolism during differentiation^{25,65}. Our results show that during differentiation (day 0 to day
313 6) WT cells increase, whereas the MTCH2 knockout cells decrease, their NAD⁺ levels.

314 How does MTCH2 balance the energy flow in cells? It was recently reported that MTCH2
315 regulates mitochondrial fusion by modulating the pro-mitochondrial fusion lipid lysophosphatidic
316 acid (LPA)³⁸. Most recently, we found that MTCH2 cooperates with ER-localized MFN2 and LPA
317 synthesis at the ER to sustain mitochondrial fusion (Goldman et al, *EMBO Rep* in Press). Thus,
318 MTCH2 may play a role in phospholipid transfer from the ER to mitochondria. MTCH2 was also
319 demonstrated to act as an insertase, which aids tail-anchored mitochondrial proteins to integrate
320 into the OMM⁴³. Interestingly, mutations in the central predicated “pore” region of MTCH2 led to

321 either an increase or a decrease in its insertase activity⁴³. It was also reported that insertases can
322 function as scramblases (including MTCH2), which flip phospholipids between the two leaflets of
323 the membrane through their “pore” region^{44,45}. Thus, MTCH2 may balance cellular energy flow
324 by regulating the mitochondria membrane lipid composition. Moreover, this putative lipid-
325 modifying activity might be also related to MTCH2’s apoptotic activity in regulating tBID-induced
326 cytochrome c release from mitochondria.

327 In summary, we show that knockout of MTCH2 results in an unbalanced energy flow in
328 cells. Loss of MTCH2 stimulates many metabolic pathways to meet the unbalanced cellular
329 demand for ATP. These findings are consistent with the idea that MTCH2 is a critical regulator of
330 energy flow in cells.

331
332
333 **Lead contacts and materials availability**

334 Further information and requests for resources and reagents should be directed to and will be
335 fulfilled by the lead contacts Atan Gross (atan.gross@weizmann.ac.il) and Sabita Chourasia
336 (sabita.chourasia@weizmann.ac.il).

337
338 **Experimental model and subject details**

339 **Cell lines**
340 **HeLa Cells:** HeLa cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)
341 containing 4.5 g/l glucose and L-glutamine (cat. # 41965, Gibco), supplemented with sodium
342 pyruvate (cat. # 03-042, Biological Industries) and 10% fetal bovine serum (FBS; cat. # 12657,
343 Gibco), at 37°C and 5% CO₂. Complete media (CM) conditions consisted of DMEM with 4.5 g/l
344 glucose and L-glutamine, supplemented with sodium pyruvate and 10% fetal bovine serum (FBS).

345 Nutrient depletion conditions consisted of growth in Hank's Balancing Salt Solution (HBSS; cat.
346 # 02-015, Biological Industries).

347 **NIH3T3L1 Cells:** NIH3T3L1 Preadipocytes cells (ATCC) were cultured in Dulbecco's Modified
348 Eagle's Medium (DMEM) containing 4.5 g/l glucose and L-glutamine (cat. # 41965, Gibco),
349 supplemented with 10% fetal calf serum (FCS; cat. # 04-102-1A, Biological Industries) at 37°C
350 and 5% CO₂. The cells were cultured in 10 cm tissue culture dishes (TPP) and the medium was
351 replaced every 2 days. The pre-adipocytes never reached densities above 70% confluence unless
352 they were subjected to differentiation (described below).

353

354 **Preparation of adipocyte differentiation medium**

355
356 The differentiation medium utilized in these experiments was comprised of Dulbecco's Modified
357 Eagle's Medium (DMEM; cat. # 41965, Gibco) and 10% fetal bovine serum (FBS; cat. # 12657,
358 Gibco). To induce differentiation, the medium was supplemented with specific reagents: 517
359 mmol/L 3-Isobutyl-1-methylxanthine (IBMX; Sigma-Aldrich), 1 mmol/L dexamethasone (G-
360 biosciences), and 167 nmol/L bovine insulin (Sigma-Aldrich). For the preparation of the
361 differentiation medium, a fresh 100-fold IBMX stock solution was created for each experiment at
362 a concentration of 0.0115 g/mL in 0.5 M KOH (Merck). Bovine insulin was prepared from a
363 10,000-fold stock solution at a final concentration of 10 mg/mL, following the manufacturer's
364 specifications (Sigma-Aldrich). Additionally, a 1,000-fold dexamethasone stock solution was
365 prepared by diluting tenfold the provided 10 mM solution from the manufacturer (G-biosciences)
366 with phosphate-buffered saline solution (PBS; Thermo-Fisher). Before use, the IBMX stock
367 solution was diluted 1:100, the insulin stock solution was diluted 1:10,000, and the dexamethasone

368 stock solution was diluted 1:1,000 in the appropriate volume of DMEM with 10% FBS. All
369 solutions underwent sterile filtration to ensure aseptic conditions throughout the experiments.

370

371 Adipocyte differentiation in 4-well glass bottom imaging plate

372 NIH3T3L1 pre-adipocytes were initially seeded at a density of 10,000 cells per well in 4-well glass
373 bottom imaging plates and cultured for 2 days until they achieved complete confluence. The
374 culture medium was then replaced with fresh DMEM supplemented with 10% FCS. After 48
375 hours, the cells underwent differentiation using the previously detailed differentiation medium.
376 Six days into the differentiation process, the cells were stained with BODIPY 493/503 (cat. #
377 D3922, Thermo Scientific) and Mito Tracker Deep Red (MTDR; cat. # M22426, Invitrogen)
378 before being processed for imaging.

379

380 Adipocyte differentiation in 6 well format

381 NIH3T3L1 pre-adipocytes were seeded at a density of 200,000 cells per well in 6-well plates and
382 cultured for 2 days until they achieved complete confluence. The culture medium was then
383 replaced with fresh DMEM supplemented with 10% FCS. After 48 hours, the cells underwent
384 differentiation using the same protocol employed for 10 cm tissue culture dishes, as described
385 below.

386

387 Adipocyte differentiation in 10 cm tissue culture dishes

388 The cells were maintained following the procedure. To initiate differentiation, cells were cultured
389 until they reached complete confluence and then further incubated for an additional 48 hours. Once
390 the cells achieved 100% confluence after 48 hours, the medium was replaced with the

391 differentiation medium, prepared as previously described. This time point, marking the addition
392 of the differentiation medium, was defined as the start of differentiation (day 0). After two days,
393 the differentiation medium was substituted with DMEM/10% FBS containing 167 nmol/L insulin.
394 On day 4 post-initiation of differentiation, the medium was replaced with DMEM/10% FBS.
395 Finally, at day 6 post-initiation of differentiation, the cells were harvested.

396

397 **Generation of MTCH2 knockout stable cell lines**

398 **Generation of MTCH2 knockout cells using the CRISPR Cas9 lentiviral system**

399 The MTCH2 CRISPR KO cell line was generated in HeLa and NIH3T3L1 cells. Guides were
400 designed using CHOP web application (<https://chopchop.cbu.uib.no/>). The MTCH2 guides-RNAs
401 were F-CACCAGCACTTCACGTACATGAGGT and R-
402 TAAAACCTCATGTACGTGAAAGTGCT. gRNAs were cloned in pKLV-U6gRNA (BbsI)-
403 PGKpuro2ABFP (Plasmid #50946). To generate CRISPR-Cas9 knockout cell lines, HeLa and
404 NIH3T3L1 cells were co-transfected with 1) gRNA containing plasmid and 2) GFP-Cas9
405 (pCas9_GFP, Plasmid #44719). To control for effects of CRISPR-Cas9 expression on HeLa and
406 NIH3T3L1 cells, we generated a CRISPR-Cas9 control cell line expressing the same CRISPR-
407 Cas9 construct, but without gRNA. Positively transduced cells were selected in DMEM, 10% FBS
408 and 2 μ g/ml puromycin for 2 weeks.

409

410 **Generation of MKO-R cells by expressing MTCH2 in MKO cells using a retroviral system**

411 To generate HeLa cells carrying a stable MTCH2 gene, we used a pBaBe based retroviral construct
412 for gene transfer. MTCH2 was sub-cloned into the ENTRY vector (pBaBe; Addgene) using TOPO

413 cloning. Stable cell pools were generated by selecting positively transduced cells with puromycin
414 selection (2 μ g/ml) for two weeks.

415

416 **Production of retroviruses for gene transfer**

417 The retrovirus for gene expression was generated in HEK293T cells. HEK293T cells, maintained
418 in DMEM with 10% FBS and supplemented with sodium pyruvate, were cultured in 6 cm dishes
419 until reaching 70% confluence. Transfection of HEK293T cells was carried out using jet-PI.
420 Briefly, cells were co-transfected for 6 hours with three plasmids: 10 μ g of a plasmid containing
421 the expression constructs, 6.5 μ g of the viral genome packaging plasmid psPAX2, and 3.5 μ g of
422 pMD2.G, a plasmid producing the virus envelope components. The plasmids were mixed in
423 double-distilled water (ddH₂O) to a final volume of 597 μ l. After 30 minutes at room temperature,
424 the transfection mix was added to the cells. The media was changed after 12 hrs and replaced with
425 10 mL of DMEM with 10% FBS. Media was collected and replaced 24 and 48 hrs after
426 transfection. Each fraction was filtered through a 0.45 μ m sterile filter and stored at 4°C until use.
427 To concentrate the virus, all fractions were combined and centrifuged using an ultrafiltration
428 centricon (Amicon "Ultra – 15 centrifugal filter" with a 100 kDa MW cutoff) for 45 minutes at
429 4°C. The filtrate was resuspended in a total volume of 1 mL (DMEM, 10% FBS), which was then
430 used to infect the HeLa MTCH2 KO cells.

431

432 **Plasmid transfection of HeLa and NIH3T3L1 cells**

433 For transfection, HeLa and NIH3T3L1 cells were cultured in 6-well plates with DMEM, 10% FBS
434 to 80% confluence. The cells were then transfected using the transfection reagent Lipofectamine
435 3000 (Thermo-Fisher) following the instructions of the manufacturer. Transfection reagent and

436 DNA were prediluted in Opti-MEM medium (Cat. #31985062, Gibco). The DNA transfection
437 reagent complex was allowed to form for 15 min at room temperature and then transferred
438 dropwise into the culture medium. The cells were incubated in the presence of the transfection mix
439 for another 6 hrs at 37°C in DMEM/10% FBS and then media was replaced by fresh media
440 containing DMEM/10% FBS and on the next day media was replaced by media containing
441 puromycin (2 μ g/ml) followed by 2 weeks of selection.

442

443 **Quantification of the adipocyte differentiation efficiency**

444 Image Processing, analysis, and statistics images were analyzed using ImageJ (NIH). LD size and
445 number were quantified with the ImageJ “analyze particles” function in thresholded images, with
446 size (square pixel) settings from 0.1 to 100 and circularity from 0 to 1. Average area of LDs was
447 analyzed. Data were expressed as means \pm SEM. Statistical analysis among groups was performed
448 using Student’s t test.

449

450 **Quantitative real-time PCR**

451
452 Samples were collected on Day0 and Day7 of differentiation. RNA was extracted using
453 NucleoSpin RNA kit (Macherey-Nagel #740955) following the manufacturer’s instructions. A
454 sample corresponding to 1 μ g RNA from each sample was used to perform cDNA synthesis by the
455 High-Capacity cDNA Reverse Transcription Kit (Cat. # 4368814, Applied Biosystems). qPCR
456 was performed using 0.4 ng/ μ l cDNA and 0.5 μ M of each primer, whose sequences are listed in
457 Table 3.

458
459
460
461

462 **Fluorescence Microscopy**

463

464 **Live imaging**

465

466 For live cell imaging experiments, Hela cells were seeded a day before the experiment. Media was
467 replaced by either fresh Complete Media (CM) or HBSS and considered as time=0. Cells were
468 pre-incubated with 100 nM Mito tracker Deep Red (MTDR; cat. # M22426) for mitochondria
469 staining and with 1 μ g BODIPY 493/503 for LD staining (for 30 min). Since, our aim was to see
470 changes over time, we maintained the same media until the imaging was complete. After staining,
471 cells were stabilized for an additional 30 min at 37°C and 5% CO₂. Cells were then imaged under
472 temperature and CO₂-controlled conditions. Stained cells were analyzed using a Nikon ECLIPSE
473 Ti2-E inverted microscope with a CSW-1 spinning disc system (Yokogawa), and with a x100 CFI
474 Plan Apo100x oil (na 1.45 wd 0.13mm), equipped with temperature and CO₂ control. Cells were
475 incubated at 37°C in a 5% CO₂ humidified chamber and images were taken at 0, 1, 12, 20, 30 hrs
476 for CM and 0, 1, 4, 8, 12 hrs for HBSS.

477

478 **Automated image analysis of live imaging experiments with HeLa cells**

479 All images were analyzed with open-source soft wares and we used Fiji⁷³, StarDist⁷⁴, Ilastik⁷⁵ and
480 Cellpose⁷⁶. Below we describe the main steps taken.

481 **1) Single Cell segmentation by Cellpose**

482 To identify individual cells in the image we trained a Cellpose model using both the mitochondria
483 and dapi channels. The training was done on representative images of different conditions, from
484 both WT and MTCH2 KO groups. We then dilated the identified cells as to include the cell's
485 membrane.

486 **2) LD segmentation and clustering by StarDist and Cellpose**

487 To identify LDs, we used StarDist for the MTCH2 KO group. For the WT group, we used StarDist
488 or Cellpose alternatively since at certain time points (early hours of post-media change), the LDs
489 have low intensity and StarDist fails to identify them. Cellpose segmentation is better at identifying
490 the LDs at these time points, but still has high false positives. To avoid these false positives, we
491 filtered LDs based on their mean intensity (keeping only the top 10-20%). For quantitating LD
492 clustering, we used Fiji's SSIDC cluster indicator plugin.

493 **3) Pixel based mitochondria segmentation by Ilastik**

494 To segment mitochondria, we trained an Ilastik model using representative images of all different
495 conditions from both WT and MTCH2 KO groups.

496 **4) Cell categorization**

497 For each cell identified in each image in, we exported the related LD and Mitochondria information
498 to an Excel spreadsheet. We used the excel spreadsheet to categorize cells according to the size of
499 the mitochondria length and level of LD clustering.

500

501 **LC-MS based targeted metabolomics**

502 Frozen cell lysates were aliquoted and extracted in organic extraction solvents for targeted LC/MS
503 metabolomics (acylcarnitines, amino acids, organic acids, nucleotides, and malonyl and acetyl
504 CoA) according to validated, optimized protocols in our previously published studies^{77,78}. These
505 protocols use cold conditions and solvents to arrest cellular metabolism and maximize the stability
506 and extraction recovery of metabolites. Each class of metabolites was separated with a unique
507 HPLC method to optimize their chromatographic resolution and sensitivity. Quantitation of
508 metabolites in each assay module was achieved using multiple reaction monitoring of calibration

509 solutions and study samples on an Agilent 1290 Infinity UHPLC/6495 triple quadrupole mass
510 spectrometer^{77,78}. Raw data was processed using Mass Hunter quantitative analysis software
511 (Agilent). Calibration curves ($R^2 = 0.99$ or greater) are either fitted with a linear or a quadratic
512 curve with a $1/X$ or $1/X^2$ weighting.

513

514

515 **Non-Targeted (Global) metabolomics**

516

517 **Metabolite extraction**

518

519 Extraction and analysis of polar metabolites were performed as previously described^{79,80} with a
520 few modifications: Samples were lyophilized and extracted with 1ml of a pre-cooled (-20°C)
521 homogenous methanol:methyl-tert-butyl-ether (MTBE) (1:3, v/v) mixture. The tubes were
522 vortexed and then sonicated for 30 min in an ice-cold sonication bath (taken for a brief vortex
523 every 10 min). Then, DDW:methanol (3:1, v/v) solution (0.5ml), containing internal following
524 standards: C13 and N15 labeled amino acids standard mix (Sigma, 767964) (1:500), was added to
525 the tubes followed by vortex and centrifugation. The upper organic phase was removed, and the
526 lower polar phase was re-extracted as described above, with 0.5ml of MTBE, moved to a new
527 Eppendorf tube, dried in speed vac, and stored at -80°C until analysis. For analysis, the polar dry
528 samples were re-suspended in 150µl methanol:DDW (50:50) and centrifuged twice to remove the
529 debris. 125µl were transferred to the HPLC vials for injection.

530

531 **LC-MS polar metabolite analysis**

532 Metabolic profiling of the polar phase was done as described⁷⁹, with minor modifications. Briefly,
533 analysis was performed using Acquity I class UPLC System combined with mass spectrometer Q
534 Exactive Plus Orbitrap™ (Thermo Fisher Scientific) operated in a negative ionization mode. The

535 LC separation was done using the SeQuant Zic-pHilic (150 mm × 2.1 mm) with the SeQuant guard
536 column (20 mm × 2.1 mm) (Merck). The Mobile Phase B: acetonitrile and Mobile Phase A: 20 mM
537 ammonium carbonate with 0.1% ammonia hydroxide in water:acetonitrile (80:20, v/v). The flow
538 rate was kept at 200 μ l* min⁻¹, and the gradient was as follows: 0-2min 75% of B, 14 min 25% of
539 B, 18 min 25% of B, 19 min 75% of B, for 4 min, 23 min 75% of B.

540

541

542 **Polar metabolites data analysis**

543

544 The data was processed using Progenesis QI (Waters) when detected compounds were identified
545 by accurate mass, retention time, isotope pattern, and fragments and verified using an in-house-
546 generated mass spectra library.

547

548 **Shotgun lipidomics**

549

550 Lipid species were analyzed using multidimensional mass spectrometry-based shotgun lipidomic
551 analysis⁸¹. In brief, each cell sample homogenate containing 0.5mg of protein, which was
552 determined with a Pierce BCA assay was accurately transferred to a disposable glass culture test
553 tube. A premixture of lipid internal standards (IS) was added prior to conducting lipid extraction
554 for quantification of the targeted lipid species. Lipid extraction was performed using a modified
555 Bligh and Dyer procedure⁸¹, and each lipid extract was reconstituted in chloroform:methanol (1:1,
556 v:v) at a volume of 400 μ l/mg protein. Phosphoethanolamine (PE), cholesterol (CHL), free fatty
557 acid (FFA) and diacylglycerol (DAG) were derivatized as described previously⁸²⁻⁸⁵ before
558 lipidomic analysis. Lysophospholipids (LPA, LPG, LPI and LPS) in water phase were enriched
559 using HybridSPE cartridge, after washing with methanol, the lysophospholipids were eluted with

560 methanol/ammonia hydroxide (9:1 and 8:2), dried and reconstituted in methanol for lipidomic
561 analysis⁸⁵.

562 For shotgun lipidomics, lipid extract was further diluted to a final concentration of ~500
563 fmol total lipids per μ l. Mass spectrometric analysis was performed on a triple quadrupole mass
564 spectrometer (TSQ Altis, Thermo Fisher Scientific, San Jose, CA) and a Q Exactive mass
565 spectrometer (Thermo Scientific, San Jose, CA), both of which were equipped with an automated
566 nanospray device (TriVersa NanoMate, Advion Bioscience Ltd., Ithaca, NY) as described⁸⁶.
567 Identification and quantification of lipid species were performed using an automated software
568 program^{87,88} Data processing (e.g., ion peak selection, baseline correction, data transfer, peak
569 intensity comparison and quantitation) was performed as described⁸⁸. The results were normalized
570 to the protein content (nmol lipid/mg protein).

571

572 **Targeted metabolomics for ATP, AMP, NAD, NADH, NADP in NIH3T3L1 cells**

573 **Materials**

574 Adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate
575 (AMP), β -Nicotinamide adenine dinucleotide (NAD $^{+}$), β -Nicotinamide adenine dinucleotide
576 reduced (NADH), β -Nicotinamide adenine dinucleotide phosphate (NADP), $^{13}\text{C}_{10}$ -adenosine 5'-
577 triphosphate ($^{13}\text{C}_{10}$ -ATP), $^{15}\text{N}_5$ -adenosine 5'-monophosphate ($^{15}\text{N}_5$ -AMP), and amino acid internal
578 standard mix - all were purchased from Merck.

579

580 **Sample preparation**

581 Dried pellet of 20 million cells was extracted with 400 μ l of 10mM ammonium acetate and 5mM
582 ammonium bicarbonate buffer, pH 7.7 and 600 μ l methanol in bead beater (10Hz, 1min; Retsch

583 MM400) and next in shaker (1,200rpm, 30min; Thermomixer C Eppendorf). Then the extract was
584 centrifuged (19,000g, 10min), the supernatant collected and evaporated under reduced pressure.
585 The obtained residue was re-dissolved in 100 μ l of 50%-aqueous acetonitrile and placed in LC-MS
586 filter vial (0.2-um PES, Thomson).

587
588 **Liquid Chromatography - tandem Mass Spectrometry (LC-MS/MS)**
589 LC-MS/MS analysis was performed using an instrument consisted of Acquity I-class UPLC
590 system (Waters) and Xevo TQ-S triple quadrupole mass spectrometer (Waters).

591 **LC:** Metabolites were separated on an Atlantis Premier Z-HILIC column (2.1 \times 150 mm, 1.7 μ m
592 particle size; Waters). Mobile phase consisted of (A) 20% acetonitrile in 20mM ammonium
593 carbonate buffer, pH 9.25 and (B) acetonitrile. Gradient conditions were: 0 to 0.8 min = 80% B;
594 then to 5.6 min gradient (curve 3) to 25% B; 5.6 to 6 min = hold at 25% B; 6 to 6.4 min = back to
595 80% B. Total run time 9 min. Injection volume was 3 μ l, and flow rate was 0.3ml/min.

596 **MS/MS:** Desolvation temperature 400°C, desolvation gas flow 800L/h, cone gas flow 150L/h
597 nebulizer pressure 4 Bar, capillary voltage 2.49kV, collision gas (argon) flow 0.25 mL/min, source
598 temperature 150°C. The MRM transitions used were: ATP: 507.9 \gt 136 m/z at collision 35V and
599 cone voltage 14V; ADP: 428 \gt 136.05 and 428 \gt 348.1 m/z at collision 25 and 14V, respectively,
600 and cone voltage 25V; AMP: 348 \gt 96.8, 348 \gt 119, and 348 \gt 135.7 m/z at collision 28, 55, and 20V,
601 respectively, and cone voltage 10V; NAD: 664 \gt 136, 664 \gt 428 m/z at collision 37 and 27V,
602 respectively, and cone voltage 10V; NADH: 666 \gt 514, 664 \gt 649 m/z at collision 30 and 20V,
603 respectively, and cone voltage 10V; NADP: 744 \gt 508, 664 \gt 604 m/z at collision 28 and 20V,
604 respectively, and cone voltage 10V; GSH: 308 \gt 179 m/z at collision 17V and cone voltage 10V;
605 GSSG: 613 \gt 355 m/z at collision 32V and cone voltage 10V. Internal standards: $^{13}\text{C}_{10}$ -ATP:

606 518.12>141.07, 518.12>420.1 m/z at collision 35 and 18V, respectively, and cone voltage
607 14V; $^{15}\text{N}_5$ -AMP: 353.1>141.1 m/z at collision 20V and cone voltage 17V. MassLynx and
608 TargetLynx software (v. 4.2 Waters) were applied for quantitative analysis using standard curve
609 in 0.001–10 $\mu\text{g}/\text{ml}$ concentration range for each metabolite. $^{13}\text{C}_{10}$ -ATP and $^{15}\text{N}_5$ -AMP were added
610 to standards and samples as internal standards to get 0.1 and 0.5 μM , respectively.

611

612

613 **Experimental Design**

614

615 Experiments were not done in a blinded fashion. All instances where n replicates are reported had
616 n biological replicates.

617

618 **Quantification and statistical analysis**

619 **Metabolomics and lipidomics**

620 Comparisons of compounds or categories between the 3 groups were done using one-way ANOVA
621 on log2-transformed values, followed by Tukey's post-hoc test. All statistics were done in R, v.
622 4.3.1. Graphs were made in GraphPad Prism 10. Heat maps and Volcano plot were generated using
623 ggplot2, v. 3.4.4. Metabolomics and Lipidomics analyses corrected p-value excel file appear in
624 supplementary Tables 1 and 2, respectively. All instances where n replicates are reported had n
625 biological replicates.

626

627 **Fluorescence Microscopy**

628 Fluorescence microscopy images were acquired using the Nikon ECLIPSE Ti2-E inverted
629 microscope with CSW-1 spinning disc system (Yokogawa), with a x100 CFI Plan Apo100x oil
630 (na 1.45 wd 0.13mm), equipped with temperature and CO₂ control and were quantified using

631 ImageJ software⁷³. Images were thresholded, the area of BODIPY 493/503 stained LDs were
632 quantified from three biological replicates (average of 50-100 cells per replicate), and the mean ±
633 SEM was determined. Statistical significance was evaluated using the student t test with a p-value
634 < 0.05. Data was presented as scattered plot generated in GraphPad Prism Software. Statistical
635 significance was evaluated using the student t test with a p-value < 0.05.

636

637 **RT-qPCR**

638

639 The mean ± SEM was determined from three independent experiments. Statistical significance
640 was evaluated using the student t-test with a p-value < 0.05.

641

642 **Data and code availability**

643 The Fiji macro used to run the analysis, and the Excel template used to categorize the individual
644 cells, together with the trained Ilastik and Cellpose models are deposited and available for
645 download on GitHub (link to be provided upon paper acceptance). Fiji can be downloaded from
646 <https://imagej.net/software/fiji/downloads>. It includes ready to use StarDist and can be configured
647 to run the BioVoxcel plugin that implements the SSCID clustering algorithm; Cellpose can be
648 downloaded from <https://github.com/mouseland/cellpose>; and Ilastik can be downloaded from
649 <https://www.ilastik.org/download>.

650

651 **Author contributions**

652 S. Chourasia performed all the experiments presented in the paper. S. Chourasia and A. Gross
653 planned the experiments and wrote the manuscript. C. Petucci, A. Brandis, S. Malitsky, M. Itkin,
654 and T. Mehlman performed the metabolomics, X. Han performed the lipidomics, E. Sivan and R.

655 Rotkopf assisted with data analyses, and L. Regev and Y. Zaltsman assisted in performing some
656 of the experiments. All authors discussed the results and commented on the manuscript.

657

658 **Acknowledgments**

659 We are grateful to all the members of the Gross lab for their support, insightful discussions, and
660 comments on the manuscript. Also, thank you to Dr. Nishanth Belugali Nataraj for his technical
661 support during certain experiments and Dr. Reeba Jacob for discussion regarding image analysis.

662

663 **Conflict of interest**

664 The authors declare no conflict interests.

665

666 **Figure Legends**

667 **Figure 1**

668 **A high ATP demand and an oxidizing environment in MTCH2 knockout cells**

669 A. PCA plots of WT, MKO and MKO-R cell lines. Ellipses describe 95% confidence intervals.

670 B. Average levels of ADP, ATP, and ADP/ATP ratios in all 3 cell lines at all four time points.

671 C. Average levels of NAD⁺, NADH, and NAD⁺/NADH ratios in all 3 cell lines at all four time
672 points.

673 D. Average levels of NADP⁺ in all 3 cell lines in all four time points.

674 E. Average levels of NAAD, NAM, and NAMN in all 3 cell lines at all four time points.

675 Results in all graphs in A-E are presented as mean \pm SEM (* $p<0.05$, ** $p<0.001$; two-way ANOVA
676 with Dunnett multiple comparison test; n=6 biological replicates).

677

678

679 **Figure 2**

680 **An increase in amino acid/lipid/carbohydrate metabolism in MKO cells**

681 A. Average levels of a set of amino acids in all 3 cell lines at all four time points.

682 B. Average levels of acyl carnitines in all 3 cell lines at all four time points.

683 C, D, E. Average levels of acetyl CoA (C), 3-HBA (D) and lactate (E) in all 3 cell lines at all four
684 time points.

685 F. Glucose uptake from media of WT and MKO cells after a two-hour glucose starvation.

686 Results in all graphs in A-F are presented as mean \pm SEM (* $p<0.05$, ** $p<0.001$, *** $p<0.0003$,
687 *** $p<0.0007$; two-way ANOVA with Dunnett multiple comparison test) (In A-E: n=6 biological
688 replicates; In F: n=3 technical replicates).

689

690 **Figure S2**

691 **An increase in amino acid/TCA cycle/lipid metabolism and a decrease in many metabolites
692 in MKO cells**

693 A. Average levels of a set of amino acids in all 3 cell lines at all four time points.

694 B. Left panel: Schematic representation of the TCA cycle. Right panels: Average levels of a set
695 of TCA cycle intermediates in all 3 cell lines at all four time points.

696 C. Average levels of acyl carnitines in all 3 cell lines at all four time points.

697 Results in all graphs in A-C are presented as mean \pm SEM (* $p<0.05$, ** $p<0.001$, *** $p<0.0003$,
698 *** $p<0.0007$; two-way ANOVA with Dunnett multiple comparison test; n=6 biological
699 replicates).

700 D. A heat map comparing the levels of 70 metabolites in WT, MKO and MKO-R cell lines.

701 Metabolite concentration values (Relative abundance) were log1.5-transformed for statistics. The

702 groups were compared by ANOVA. Values are scaled to z-scores per row (metabolite); n=4
703 Biological Replicates.

704

705 **Figure 3**

706 **Membrane lipids decrease and storage lipids and lipid droplets increase in MKO cells**

707 **A. Left panel:** Heat map comparing the levels of lipids at 20 hrs post media change in all 3 cell
708 lines. Membrane lipids: Total Cholesterol (TC), free Cholesterol (FC), Phosphatidylserine (PS),
709 Phosphatidylinositol (PI), Phosphatidylglycerol (PG), Phosphatidylethanolamine (PE),
710 Phosphatidylcholine (PC), Phosphatidic acid (PA), Lyso-Phosphatidylserine (LPS), Lyso-
711 Phosphatidylinositol (LPI), Lyso-Phosphatidylglycerol (LPG), Lyso-Phosphatidylethanolamine
712 (LPE), Lyso-Phosphatidylcholine (LPC), Lyso-Phosphatidic acid (LPA), Lyso-Cardiolipin (LCL),
713 Cardiolipin (CL), Sphingomyelin (SM). Neutral/Storage lipids: Triglycerides (TAG), Cholesterol
714 ester (CE), Diglycerides (DAG). Fatty acids: esterified fatty acid (FA), free fatty acids (FFA).
715 Cholesterol: Total Cholesterol (TC), Free Cholesterol (FC). We calculated the average value of all
716 species per category per biological replicate. These values were compared between groups using
717 ANOVA. Values in the heat map are scaled to z-scores per row (compound category). **Right top**
718 **panel:** Average levels of esterified FA, FFA, in all 3 cell lines. Results in graphs are presented as
719 mean \pm SEM (**p<0.0003, ****p<0.0007; One-way ANOVA, n=4 biological replicates). **Right**
720 **bottom panel:** A Volcano plot comparing the levels of membrane and storage lipids between the
721 WT and MKO cell lines.

722 B. WT and MTCH2 KO HeLa cells were plated into complete media (CM), left to grow overnight,
723 then media was changed (considered as time 0) and pictures were taken at 0, 12, 20, and 30 hrs
724 post media change (left panel). LDs were labeled using BODIPY 493/503, and mitochondria were

725 labeled using Mito Tracker deep red (MTDR). Right panel: Temporal quantification of the number
726 of LDs in WT and MTCH2 KO cells at the four time points. Results are presented as means \pm SEM
727 ($*p<0.05$, $****p<0.0007$; n=3 biological replicates).

728 C. WT and MTCH2 KO HeLa cells were plated into complete media, left to grow overnight, then
729 media was changed to HBSS (considered as time 0) and pictures were taken at 0, 1, 4, 8, and 12
730 hrs post media change. Right panel: Temporal quantification of the number of LDs in WT and
731 MTCH2 KO cells at the five time points. Data are presented as means \pm SEM ($****p<0.0007$; n=3
732 biological replicates).

733 D. Temporal quantification of the percentage of cells with dispersed, intermediate, or clustered
734 LDs after incubation of cells for the indicated times in either: CM (left panel; pictures of cells
735 appear in B) or HBSS (right panel; pictures of cells appear in C). Results are presented as means
736 \pm SEM. Scale bar=10 μ m.

737

738 **Figure S3**

739 **MTCH2 knockout cells show accelerated mitochondria elongation under nutrient depletion
740 conditions**

741 A, B. The levels of Free fatty acids (NEFA)(A) and esterified fatty acids (B) in all 3 cell lines.
742 Results are presented as mean \pm SEM ($*p<0.05$, $**p, <0.001$, $****p<0.0003$; One-way ANOVA,
743 n=4 biological replicates).

744 C. Quantification of LD average size in WT and MTCH2 KO cells. Results are presented as mean
745 \pm SEM ($**p, <0.001$; One-way ANOVA, n=3 biological replicates).

746 D. Analyses of mitochondria morphology. WT and MTCH2 KO HeLa cells were plated into
747 complete media (CM), left to grow overnight, then media was changed to CM (top) or HBSS

748 (bottom)(considered as time 0) and pictures were taken at 0, 12, 20, and 30 hrs post media change.
749 Mitochondria were labeled using Mito Tracker Deep red (MTDR). Right panels: Mitochondria
750 morphology quantification of cells incubated in either CM (top) or in HBSS (bottom). Results are
751 presented as means \pm SEM (n=3 biological replicates). Scale bar=10 μ m.

752

753 **Figure 4**

754 **MTCH2 is critical for adipocyte differentiation**

755 A. NIH3T3L1 cells were differentiated into adipocytes for 6 days in 4-well glass bottom plates.
756 LDs were stained with Bodipy green and nuclei with Hoechst. The well overview is taken at 10X
757 magnification. One region (marked by a yellow box) was magnified. Right panel: measure of
758 differentiation by quantification of the number of LDs. Results are presented as mean \pm SEM
759 ($***p<0.0003$; One-way ANOVA, n=3 biological replicates).

760 B. RT-PCR of WT and MTCH2 knockout (KO) cells at day 0 and day 6-post differentiation.
761 Components of the adipogenic program Pparg, Cebpa, Cebpb, and Cebpd. Results are presented
762 as mean \pm SEM of one representative out of three independent experiments. Normalization was
763 done by taking geometric mean of three housekeeping genes, Importin, Tubulin and AcTH.

764 C. Levels of NAD⁺, NADH⁺, NADP⁺, AMP, ATP (and AMP/ATP ratio) in undifferentiated WT
765 and MTCH2 KO preadipocyte NIH3T3L1. Results are presented as mean \pm SEM ($*p<0.05$,
766 $**p<0.001$, $***p<0.0003$, $****p<0.0007$, unpaired t-test, n=4 biological replicates).

767 D. Levels of NAD⁺, NADH⁺, NADP⁺, AMP, ATP in WT and MTCH2 KO preadipocyte at day 0
768 and day 6-post differentiation. Results are presented as mean \pm SEM ($*p<0.05$, $**p<0.001$,
769 $****p<0.0007$, Two-way ANOVA with sidak's multiple comparision test, n=4 biological
770 Replicates).

771

772 **Figure S4**

773 **MTCH2 is critical for adipocyte differentiation**

774 A. Mitochondrial morphology in NIH3T3L1 Preadipocytes. MTCH2 knockout (KO) leads to
775 mitochondrial fragmentation (right panel).

776 B. RT-PCR of WT and MTCH2 knockout (KO) cells at day 0 and day 6-post differentiation.

777 Components of the adipogenic effector genes were analyzed: adiponectin (AdipoQ), Adipsin,
778 fatty-acid-binding protein 4 (Fabp4), fatty acid synthase (FASN), pyruvate dehydrogenase
779 (Pdha1), stearyl-CoA desaturase (Scd1), 1-acyl-sn-glycerol-3-phosphate (Agpat),
780 diacylglycerolacyltransferase (Dgat1), perilipin (Plin1), mitoguardin 2 (Miga2), and poly(ADP-
781 ribose) polymerase1(Parp1). Results are presented as mean \pm SD of one representative out of three
782 independent experiments. Normalization was done by taking geometric mean of three
783 housekeeping genes, Importin, Tubulin and AcTH.

784

785 **Figure 5**

786 **Schematic representation comparing the metabolic state of wild type and MTCH2 knockout**
787 **cells**

788 In wild type cells (left panel), MTCH2 might act as a mitochondrial “relay station” by sensing and
789 connecting between metabolic intermediates/pathways and dynamic changes in mitochondria
790 morphology/energy production by receiving and sending Wi-Fi signals. MTCH2 knockout,
791 mimicking a scenario of losing a pivotal “relay station”, can lead to a disconnection between the
792 cellular energy demand and the cellular energy utilization (created with BioRender.com).

793

794 **Table 1**

795 Results of ANOVA per metabolite, followed by Dunnett's post-hoc test to compare KO and
796 Rescue to WT. Each contrast is described by log-fold change, p-value and fdr-corrected p-value
797 (Fig 2SD-Continued).

798 **Table 2**

799 Results of ANOVA per compound group, followed by Tukey's post-hoc test for pairwise
800 comparisons. Each contrast is described by log-fold change, p-value and fdr-corrected p-value(Fig
801 3A).

802 **Table 3**

803 List of primers used in Fig4 and FigS4.

804

805 **References**

- 806 1. Löffler MC, Betz MJ, Blondin DP, et al. Challenges in tackling energy expenditure as
807 obesity therapy: From preclinical models to clinical application. *Mol Metab.* 2021;51.
808 doi:10.1016/j.molmet.2021.101237
- 809 2. Galgani J, Ravussin E. Energy metabolism, fuel selection and body weight regulation. *Int J
810 Obes.* 2008;32:109-119. doi:10.1038/ijo.2008.246
- 811 3. Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1 α Is a Master Regulator of
812 Mitochondrial Lifecycle and ROS Stress Response. *Antioxidants.* 2023;12(5).
813 doi:10.3390/antiox12051075
- 814 4. Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug
815 development. *Nat Rev Drug Discov.* 2019;18(7):527-551. doi:10.1038/s41573-019-0019-2

816 5. Crosas-Molist E, Graziani V, Maiques O, et al. AMPK is a mechano-metabolic sensor
817 linking cell adhesion and mitochondrial dynamics to Myosin-dependent cell migration. *Nat*
818 *Commun.* 2023;14(1). doi:10.1038/s41467-023-38292-0

819 6. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. *Cell*.
820 2017;168(6):960-976. doi:10.1016/j.cell.2017.02.004

821 7. Picard M, Shirihi OS. Mitochondrial signal transduction. *Cell Metab.* 2022;34(11):1620-
822 1653. doi:10.1016/J.CMET.2022.10.008

823 8. Han M, Bushong EA, Segawa M, et al. Spatial mapping of mitochondrial networks and
824 bioenergetics in lung cancer. *Nature*. 2023;615(11):17. doi:10.1038/s41586-023-05793-3

825 9. Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial
826 science beyond function and dysfunction. *Nat Metab.* 2023;5(4):546-562.
827 doi:10.1038/s42255-023-00783-1

828 10. Berry BJ, Pharaoh GA, Marcinek DJ. From mitochondria to cells to humans: Targeting
829 bioenergetics in aging and disease. *Int J Biochem Cell Biol.* 2023;157:106391.
830 doi:10.1016/J.BIOCEL.2023.106391

831 11. Xie N, Zhang L, Gao W, et al. NAD⁺ metabolism: pathophysiologic mechanisms and
832 therapeutic potential. *Signal Transduct Target Ther.* 2020;5(1). doi:10.1038/s41392-020-
833 00311-7

834 12. Yang Y, Sauve AA. NAD⁺ metabolism: Bioenergetics, signaling and manipulation for
835 therapy. *Biochim Biophys Act.* 2016;1864(12):1787-1800.
836 doi:10.1016/j.bbapap.2016.06.014

837 13. Formentini L, Macchiarulo A, Cipriani G, et al. Poly(ADP-ribose) catabolism triggers

838 AMP-dependent mitochondrial energy failure. *J Biol Chem.* 2009;284(26):17668-17676.

839 doi:10.1074/jbc.M109.002931

840 14. Hu Q, Wu D, Walker M, Wang P, Tian R, Wang W. Genetically encoded biosensors for
841 evaluating NAD+/NADH ratio in cytosolic and mitochondrial compartments. *Cell Reports
842 Methods.* 2021;1(7). doi:10.1016/j.crmeth.2021.100116

843 15. Youle RJ, Van Der Bliek AM. Mitochondrial Fission, Fusion, and Stress. *Science (80-).*
844 2012;337(6098):1062-1065.

845 16. Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and
846 energy expenditure. *Cell Metab.* 2013;17(4):491-506. doi:10.1016/j.cmet.2013.03.002

847 17. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family
848 regulatory network ☆. *Biochim Biophys Acta.* 2010;1813(7):1269-1278.
849 doi:10.1016/j.bbamcr.2010.09.019

850 18. Handschin C, Spiegelman BM. Peroxisome Proliferator-Activated Receptor Coactivator 1
851 Coactivators, Energy Homeostasis, and Metabolism. *Endocr Rev.* 2006;27(7):728-735.
852 doi:10.1210/er.2006-0037

853 19. Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy
854 to maintain mitochondrial homeostasis. *J Biomed Sci 2023 301.* 2023;30(1):1-19.
855 doi:10.1186/S12929-023-00975-7

856 20. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The
857 Metabolic Requirements of Cell Proliferation. *Science (80-).* 2009;324(5930):1029-1033.
858 Accessed December 4, 2023. <https://www.science.org>

859 21. Folmes CDL, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis

860 and differentiation. *Cell Stem Cell*. 2012;11(5):596-606. doi:10.1016/j.stem.2012.10.002

861 22. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. *Nat Rev Mol*
862 *Cell Biol*. 2006;7(12):885-896. doi:10.1038/nrm2066

863 23. Vernoche C, Damilano F, Mourier A, et al. Adipose tissue mitochondrial dysfunction
864 triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and
865 cardiovascular complications. *FASEB J*. 2014;28(10):4408. doi:10.1096/FJ.14-253971

866 24. Barile M, Singh BK, Kristian T, et al. NAD+ Metabolism Regulates Preadipocyte
867 Differentiation by Enhancing α -Ketoglutarate-Mediated Histone H3K9 Demethylation at
868 the PPAR γ Promoter. *Front Cell Dev Biol*. 2020;24;8:586179.
869 doi:10.3389/fcell.2020.586179

870 25. Ryu KW, Nandu T, Kim J, Challa S, DeBerardinis RJ, Lee Kraus W. Metabolic regulation
871 of transcription through compartmentalized NAD+ biosynthesis. *Science* (80-).
872 2018;360(6389). doi:10.1126/science.aan5780

873 26. Osawa S, Kato H, Maeda Y, Takakura H, Ogasawara J, Izawa T. Metabolomic Profiles in
874 Adipocytes Differentiated from Adipose-Derived Stem Cells Following Exercise Training
875 or High-Fat Diet. *Int J Mol Sci Artic*. Published online 2021. doi:10.3390/ijms22020966

876 27. Robinson AJ, Kunji ERS, Gross A. Mitochondrial carrier homolog 2 (MTCH2): The
877 recruitment and evolution of a mitochondrial carrier protein to a critical player in apoptosis.
878 *Exp Cell Res*. 2012;318(11):1316-1323. doi:10.1016/J.YEXCR.2012.01.026

879 28. Grinberg M, Schwarz M, Zaltsman Y, et al. Mitochondrial Carrier Homolog 2 Is a Target
880 of tBID in Cells Signaled To Die by Tumor Necrosis Factor Alpha. *Mol Cell Biol*.
881 2005;25(11):4579-4590. doi:10.1128/MCB.25.11.4579-4590.2005

882 29. Zaltsman Y, Shachnai L, Yivgi-Ohana N, et al. MTCH2/MIMP is a major facilitator of tBID
883 recruitment to mitochondria. *Nat Cell Biol.* 2010;12(6):553-562. doi:10.1038/ncb2057

884 30. Buzaglo-Azriel L, Kuperman Y, Tsoory M, et al. Loss of Muscle MTCH2 Increases Whole-
885 Body Energy Utilization and Protects from Diet-Induced Obesity. *Cell Rep.*
886 2016;14(7):1602-1610. doi:10.1016/J.CELREP.2016.01.046

887 31. Maryanovich M, Zaltsman Y, Ruggiero A, et al. An MTCH2 pathway repressing
888 mitochondria metabolism regulates haematopoietic stem cell fate. *Nat Commun* .
889 2015;6(7901). doi:10.1038/ncomms8901

890 32. Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal
891 18 new loci associated with body mass index. *Nat Genet.* 2010;42(11):937-948.
892 doi:10.1038/ng.686

893 33. Wu J, Zhao Y. Machine learning technology in the application of genome analysis: A
894 systematic review. *IEEE Access.* 2022;10. doi:10.1016/j.gene.2019.04.062

895 34. Shahrouki P, Larsson E, Jin P, et al. The non-coding oncogene: a case of missing DNA
896 evidence? *Front Genet.* 2012;3(170). doi:10.3389/fgene.2012.00170

897 35. van Vliet-Ostaptchouk J V., Nuotio ML, Slagter SN, et al. The prevalence of metabolic
898 syndrome and metabolically healthy obesity in Europe: A collaborative analysis of ten large
899 cohort studies. *BMC Endocr Disord.* 2014;14(1):1-13. doi:10.1186/1472-6823-14-9

900 36. Willer CJ, Speliotes EK, F Loos RJ, et al. Six new loci associated with body mass index
901 highlight a neuronal influence on body weight regulation The Wellcome Trust Case Control
902 Consortium. *Nat Genet.* 2009;41(1):25-34. doi:10.1038/ng.287

903 37. Bahat A, Goldman A, Zaltsman Y, et al. MTCH2-mediated mitochondrial fusion drives exit

904 from naïve pluripotency in embryonic stem cells. *Nat Commun.* 2018;9(1).

905 doi:10.1038/s41467-018-07519-w

906 38. Labbé K, Mookerjee S, Vasseur M Le, Gibbs E, Lerner C, Nunnari J. The modified
907 mitochondrial outer membrane carrier MTCH2 links mitochondrial fusion to lipogenesis. *J
908 Cell Biol.* 2021;220(11). doi:10.1083/jcb.202103122

909 39. Kulyté A, Rydé M, Mejhert N, et al. MTCH2 in Human White Adipose Tissue and Obesity.
910 *J Clin Endocrinol Metab.* 2011;96(10):E1661-5. doi:10.1210/jc.2010-3050

911 40. Landgraf K, Strobach A, Kiess W, Körner A. Loss of mtch2 function impairs early
912 development of liver, intestine and visceral adipocytes in zebrafish larvae. *FEBS Lett.*
913 Published online September 1, 2016:2852-2861. doi:10.1002/1873-3468.12330

914 41. Latorre-Muro P, O'Malley KE, Bennett CF, et al. A cold-stress-inducible PERK/OGT axis
915 controls TOM70-assisted mitochondrial protein import and cristae formation. *Cell Metab.*
916 2021;33(3):598-614.e7. doi:10.1016/J.CMET.2021.01.013

917 42. Rottiers V, Francisco A, Platov M, et al. MTCH2 is a conserved regulator of lipid
918 homeostasis. *Obesity.* 2017;25(3):616-625. doi:10.1002/OBY.21751

919 43. Guna A, Stevens TA, Inglis AJ, et al. MTCH2 is a mitochondrial outer membrane protein
920 insertase. *Science (80-).* 2022;378(6617):317-322. doi:10.1126/SCIENCE.ADD1856

921 44. Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general
922 feature of protein insertases. *bioRxiv [Preprint]* 0901555937. Published online 2023.
923 doi:10.1101/2023.09.01.555937

924 45. Bartoš L, Menon AK, Vácha R. Insertases Scramble Lipids: Molecular Simulations of
925 MTCH2. *bioRxiv.* Published online August 14, 2023:2023.08.14.553169.

926 doi:10.1101/2023.08.14.553169

927 46. Hopp AK, Grüter P, Hottiger MO. Regulation of glucose metabolism by NAD+ and ADP-
928 ribosylation. *Cells*. 2019;8(8). doi:10.3390/cells8080890

929 47. Hikosaka K, Iketani M, Shito M, et al. Deficiency of Nicotinamide Mononucleotide
930 Adenylyltransferase 3 (Nmnat3) Causes Hemolytic Anemia by Altering the Glycolytic
931 Flow in Mature Erythrocytes. *J Biol Chem*. 2014;289(21):14796-14811.
932 doi:10.1074/jbc.M114.554378

933 48. Yang C, Ko B, Hensley CT, et al. Glutamine oxidation maintains the TCA cycle and cell
934 survival during impaired mitochondrial pyruvate transport. *Mol Cell*. 2014;56(3):414-424.
935 doi:10.1016/j.molcel.2014.09.025

936 49. Shiratori R, Furuichi K, Yamaguchi M, et al. Glycolytic suppression dramatically changes
937 the intracellular metabolic profile of multiple cancer cell lines in a mitochondrial
938 metabolism-dependent manner. *Sci Rep*. 2019;9(1). doi:10.1038/s41598-019-55296-3

939 50. Owen OE, Kalhan SC, Hanson RW. The Key Role of Anaplerosis and Cataplerosis for
940 Citric Acid Cycle Function. *J Biol Chem*. 2002;277:30409-30412.
941 doi:10.1074/jbc.R200006200

942 51. Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology
943 and disease. *Nat Commun*. 2020;11(102). doi:10.1038/s41467-019-13668-3

944 52. Nishitani S, Fukuhara A, Tomita I, et al. Ketone body 3-hydroxybutyrate enhances
945 adipocyte function. *Sci Reports*. 2013;12:10080. doi:10.1038/s41598-022-14268-w

946 53. Nishitani S, Fukuhara A, Shin J, Okuno Y, Otsuki M, Shimomura I. Metabolomic and
947 microarray analyses of adipose tissue of dapagliflozin-treated mice, and effects of 3-

948 hydroxybutyrate on induction of adiponectin in adipocytes. *Sci Rep.* 2018;8(1).

949 doi:10.1038/s41598-018-27181-y

950 54. Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. *Nat Metab.*
951 2020;2(7):566-571. doi:10.1038/s42255-020-0243-4

952 55. Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. *Signal*
953 *Transduct Target Ther.* 2022;7(1). doi:10.1038/s41392-022-01151-3

954 56. Hosios AM, Wilkinson ME, McNamara MC, et al. mTORC1 regulates a lysosome-
955 dependent adaptive shift in intracellular lipid species. *Nat Metab.* Published online
956 December 1, 2022. doi:10.1038/s42255-022-00706-6

957 57. Nguyen TB, Louie SM, Daniele JR, et al. DGAT1-Dependent Lipid Droplet Biogenesis
958 Protects Mitochondrial Function during Starvation-Induced Autophagy. *Dev Cell.*
959 2017;42(1):9-21.e5. doi:10.1016/J.DEVCEL.2017.06.003

960 58. Fischer JA, Monroe TO, Pesce LL, et al. Opposing effects of genetic variation in MTCH2
961 for obesity versus heart failure. *Hum Mol Genet.* 2023;32(1):15-29.
962 doi:10.1093/hmg/ddac176

963 59. Jiang Q, Sun B, Liu Q, et al. MTCH2 promotes adipogenesis in intramuscular preadipocytes
964 via an m6A-YTHDF1-dependent mechanism. *FASEB J.* 2019;33(2):2971-2981.
965 doi:10.1096/FJ.201801393RRR

966 60. Cristancho AG, Lazar MA. Forming functional fat: A growing understanding of adipocyte
967 differentiation. *Nat Rev Mol Cell Biol.* 2011;12(11):722-734. doi:10.1038/nrm3198

968 61. Chen L, Zhang Z, Hoshino A, et al. NADPH production by the oxidative pentose-phosphate
969 pathway supports folate metabolism. *Nat Metab* 2019 13. 2019;1(3):404-415.

970 doi:10.1038/s42255-019-0043-x

971 62. Pehar M, Harlan BA, Killoy KM, Vargas MR. Nicotinamide Adenine Dinucleotide
972 Metabolism and Neurodegeneration. *Antioxid Redox Signal*. 2018;28(18):1652-1668.
973 doi:10.1089/ars.2017.7145

974 63. Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD⁺ metabolism and its roles in cellular
975 processes during ageing. *Nat Rev Mol Cell Biol*. 2021;22(2):119-141. doi:10.1038/s41580-
976 020-00313-x

977 64. Anderson KA, Madsen AS, Olsen CA, Hirschey MD. Metabolic control by sirtuins and
978 other enzymes that sense NAD⁺, NADH, or their ratio. *Biochim Biophys Acta - Bioenerg*.
979 2017;1858(12):991-998. doi:10.1016/j.bbabi.2017.09.005

980 65. Sánchez-Ramírez E, Ung TPL, Alarcón Del Carmen A, et al. Coordinated metabolic
981 transitions and gene expression by NAD⁺ during adipogenesis. *J Cell Biol*. 2022;221(12).
982 doi:10.1083/jcb.202111137

983 66. Stein LR, Imai SI. The dynamic regulation of NAD metabolism in mitochondria. *Trends
984 Endocrinol Metab*. 2012;23(9):420-428. doi:10.1016/j.tem.2012.06.005

985 67. Xiao W, Wang RS, Handy DE, Loscalzo J. NAD(H) and NADP(H) Redox Couples and
986 Cellular Energy Metabolism. *Antioxidants Redox Signal*. 2018;28(3):251-272.
987 doi:10.1089/ars.2017.7216

988 68. Cantó C, Menzies KJ, Auwerx J. NAD⁺ Metabolism and the Control of Energy
989 Homeostasis: A Balancing Act between Mitochondria and the Nucleus. *Cell Metab*.
990 2015;22(1):31-53. doi:10.1016/j.cmet.2015.05.023

991 69. Mitchell SJ, Bernier M, Aon MA, et al. Nicotinamide Improves Aspects of Healthspan, but

992 Not Lifespan, in Mice. *Cell Metab.* 2018;27(3):667-676.e4.
993 doi:10.1016/j.cmet.2018.02.001

994 70. Finn PF, Dice JF. Proteolytic and lipolytic responses to starvation. *Nutrition*. 2006;22(7-8):830-844. doi:10.1016/J.NUT.2006.04.008

995 71. Cantó C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK and SIRT1 for
996 Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle. *Cell Metab.*
997 2010;11(3):213-219. doi:10.1016/j.cmet.2010.02.006

998 72. Xu M, Ding L, Liang J, et al. NAD kinase sustains lipogenesis and mitochondrial
999 metabolism through fatty acid synthesis. *Cell Rep.* 2021;37(13).
1000 doi:10.1016/j.celrep.2021.110157

1001 73. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: An open-source platform for
1002 biological-image analysis. *Nat Methods*. 2012;9(7):676-682. doi:10.1038/nmeth.2019

1003 74. Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-Convex Polygons.
1004 *Lect Notes Comput Sci*. 2018;LNIP11071. doi:10.1007/978-3-030-00934-2_30

1005 75. Berg S, Kutra D, Kroeger T, et al. ilastik: interactive machine learning for (bio)image
1006 analysis. *Nat Methods*. 2019;16:1226-1232. doi:10.1038/s41592-019-0582-9

1007 76. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for
1008 cellular segmentation. *Nat Methods*. 2021;18:100-106. doi:10.1038/s41592-020-01018-x

1009 77. Lanfear DE, Gibbs JJ, Li J, et al. Targeted Metabolomic Profiling of Plasma and Survival
1010 in Heart Failure Patients. *JACC Hear Fail*. 2017;5(11):823-832.

1011 78. Hahn VS, Petucci C, Kim MS, et al. Myocardial Metabolomics of Human Heart Failure
1012 With Preserved Ejection Fraction. *Circulation*. 2023;147(15):1147-1161.

1014 doi:10.1161/CIRCULATIONAHA.122.061846

1015 79. Zheng L, Cardaci S, Jerby L, et al. Fumarate induces redox-dependent senescence by
1016 modifying glutathione metabolism. *Nat Commun* . 2015;6(6001).
1017 doi:10.1038/ncomms7001

1018 80. Malitsky S, Ziv C, Rosenwasser S, et al. Viral infection of the marine alga *Emiliania huxleyi*
1019 triggers lipidome remodeling and induces the production of highly saturated triacylglycerol.
1020 *New Phytol.* 2016;210(1):88-96. doi:10.1111/NPH.13852

1021 81. Wang M, Han X. Multi-dimensional Mass Spectrometry-based Shotgun Lipidomics.
1022 *Methods Mol Biol.* 2014;1198:203-20. doi:10.1007/978-1-4939-1258-2_13

1023 82. Han X, Yang K, Cheng H, Fikes KN, Gross RW. Shotgun lipidomics of
1024 phosphoethanolamine-containing lipids in biological samples after one-step in situ
1025 derivatization. *J Lipid Res.* 2005;46(7):1548-1560. doi:10.1194/jlr.D500007-JLR200

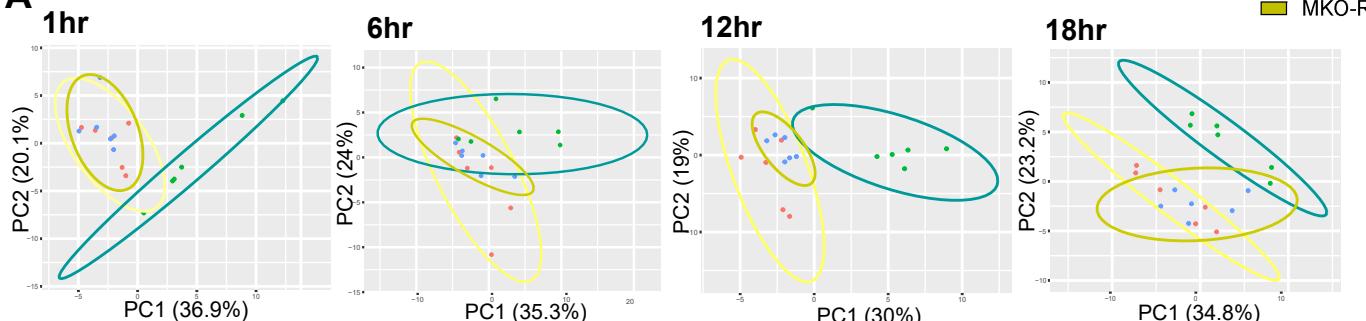
1026 83. Wang M, Han RH, Han X. Fatty acidomics: global analysis of lipid species containing a
1027 carboxyl group with a charge-remote fragmentation assisted approach. *Anal Chem.*
1028 2013;85(19):9312-9320. doi:10.1021/ac402078p

1029 84. Wang M, Hayakawa J, Yang K, Han X. Characterization and Quantification of
1030 Diacylglycerol Species in Biological Extracts after One-step Derivatization: A Shotgun
1031 Lipidomics Approach. *Anal Chem.* 2014;86(4):2146-2155. doi:10.1021/ac403798q

1032 85. Wang C, Wang M, Han X. Comprehensive and quantitative analysis of lysophospholipid
1033 molecular species present in obese mouse liver by shotgun lipidomics HHS Public Access.
1034 *Anal Chem.* 2015;87(9):4879-4887. doi:10.1021/acs.analchem.5b00410

1035 86. Han X, Yang K, Gross RW. Microfluidics-based electrospray ionization enhances the

1036 intrasource separation of lipid classes and extends identification of individual molecular
1037 species through multi-dimensional mass spectrometry: Development of an automated high-
1038 throughput platform for shotgun lipidomics. *Rapid Commun Mass Spectrom.*
1039 2008;22(13):2115-2124. doi:10.1002/rcm.3595


1040 87. Wang M, Wang C, Han RH, Han X. Novel Advances in Shotgun Lipidomics for Biology
1041 and Medicine HHS Public Access. *Prog Lipid Res.* 2016;61:83-108.
1042 doi:10.1016/j.plipres.2015.12.002

1043 88. Yang K, Cheng H, Gross RW, Han X. Automated Lipid Identification and Quantification
1044 by Multi-dimensional Mass Spectrometry-Based Shotgun Lipidomics. *Anal Chem* .
1045 2009;81(11):4356-68. doi:10.1021/ac900241u

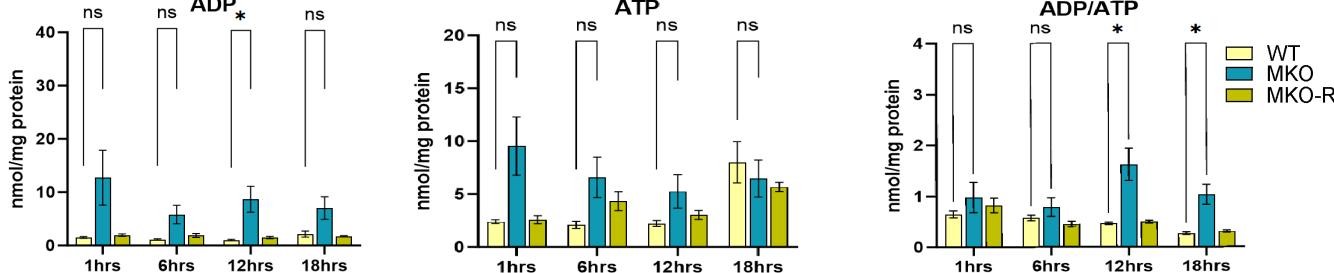
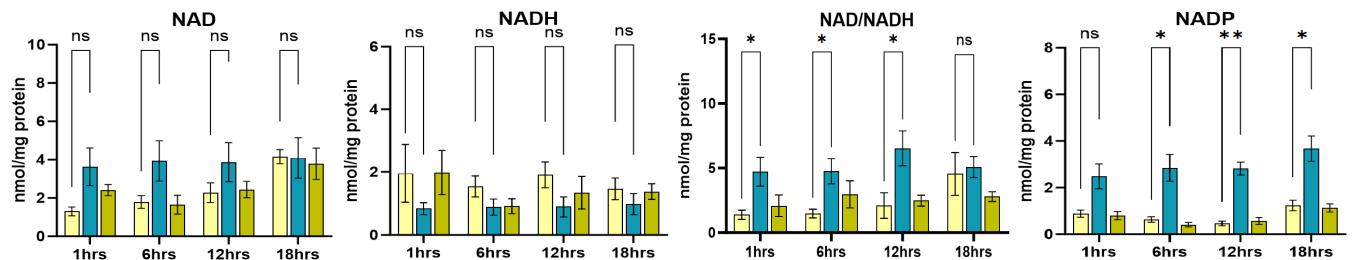
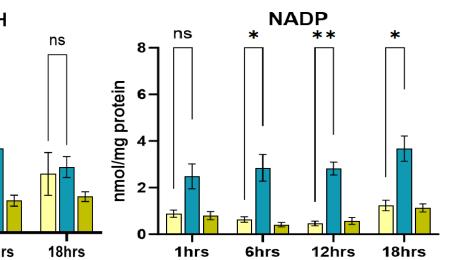
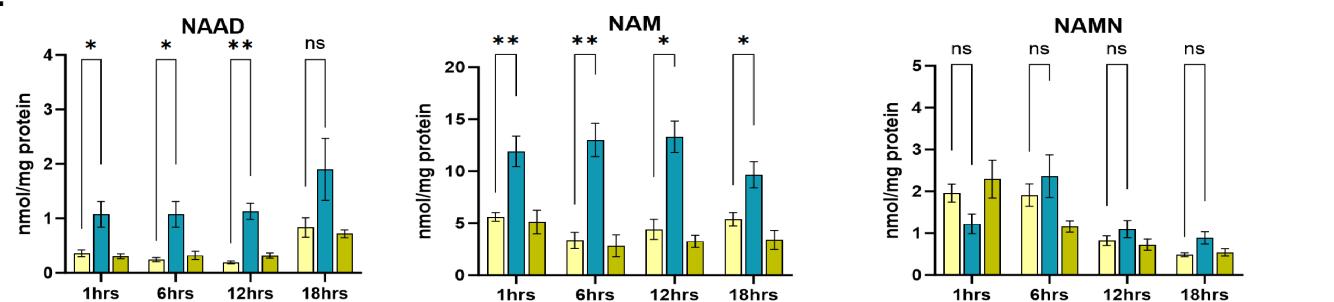

1046

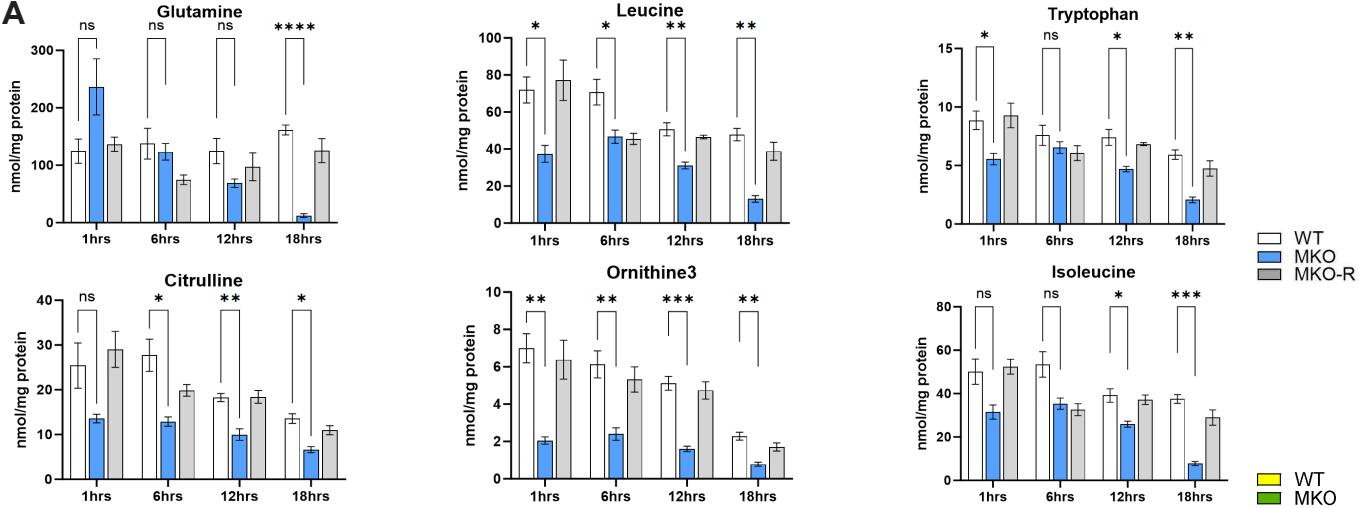
Figure 1


A


B


C

D



E

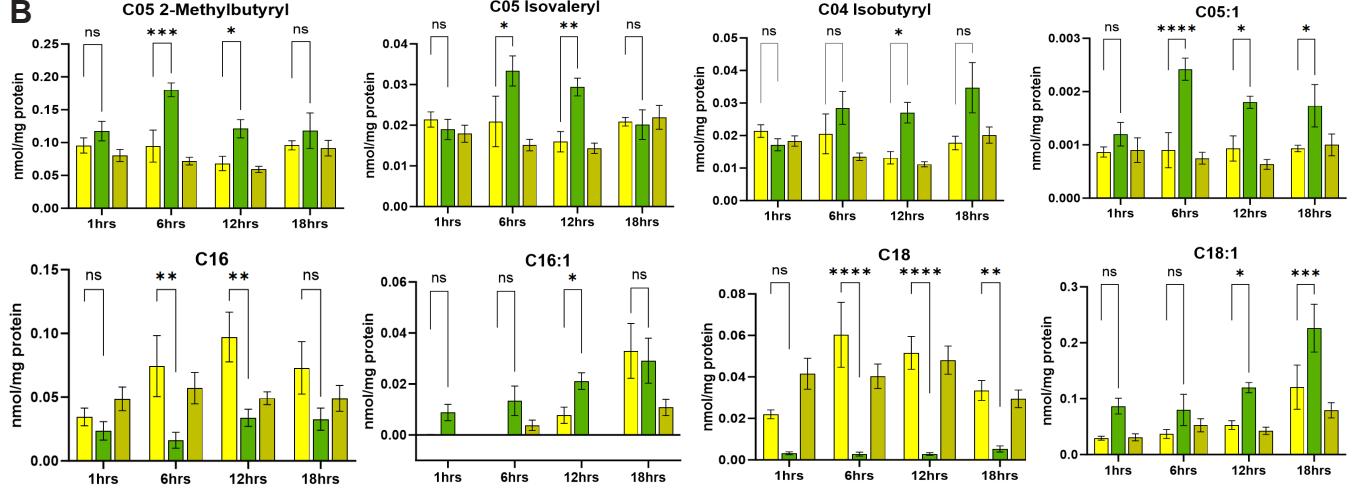
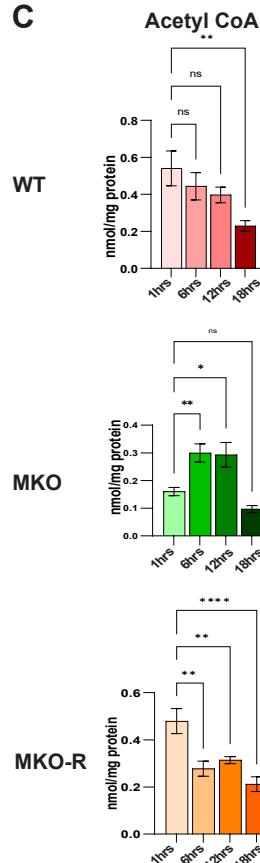
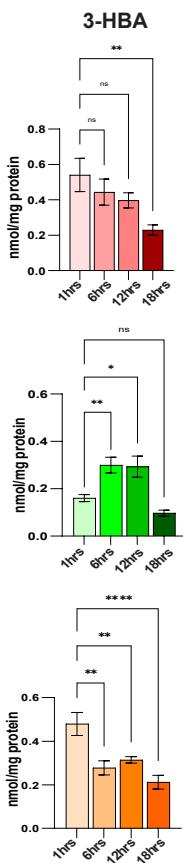
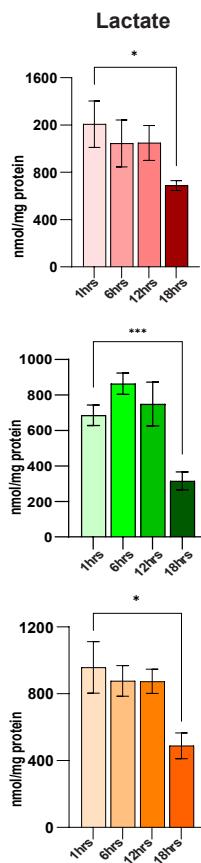
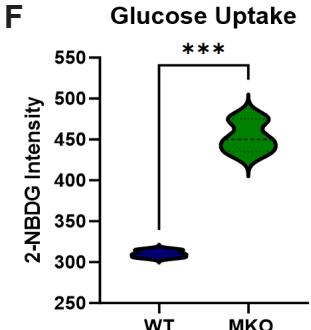


Figure 2

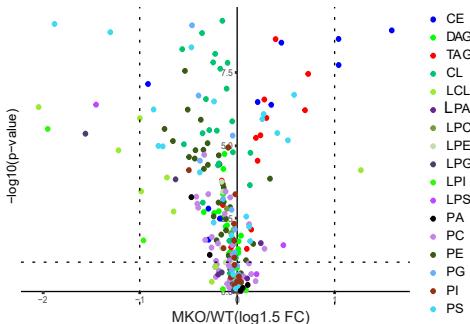
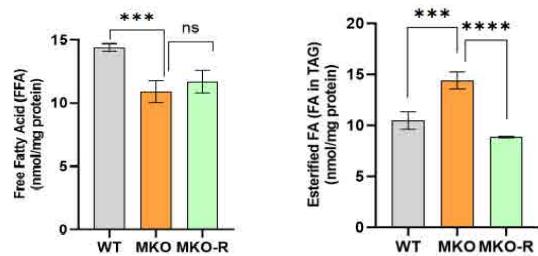
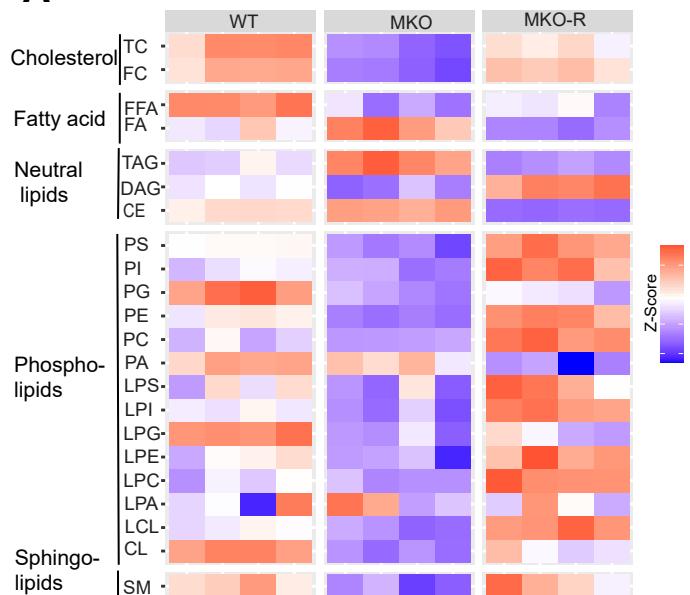

A


B


C


D

E

F

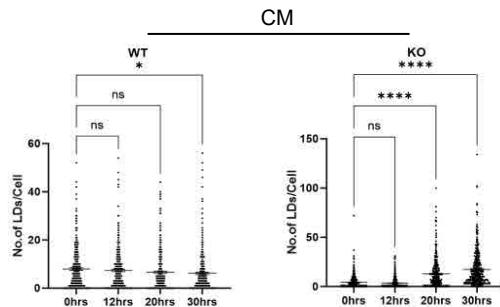
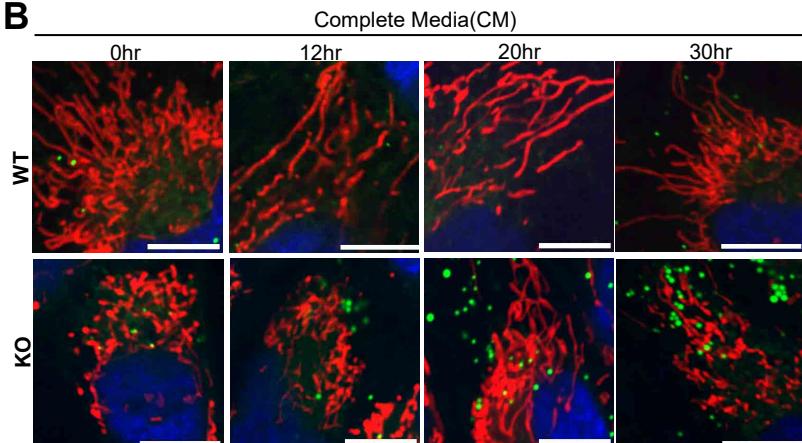
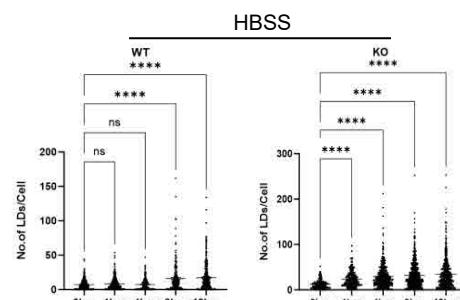
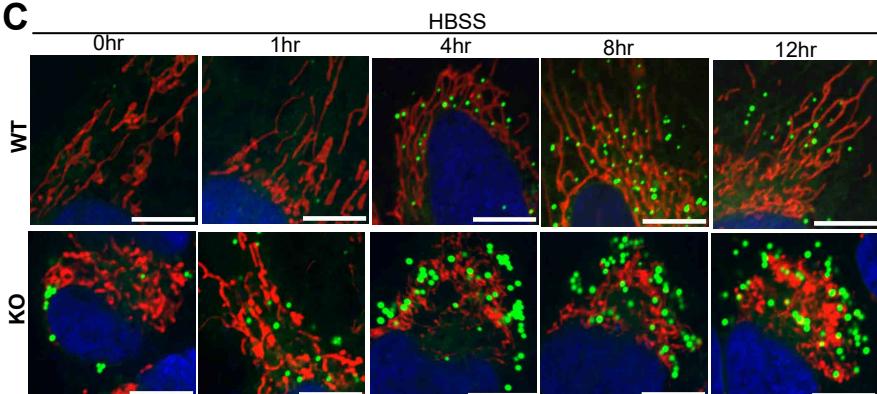
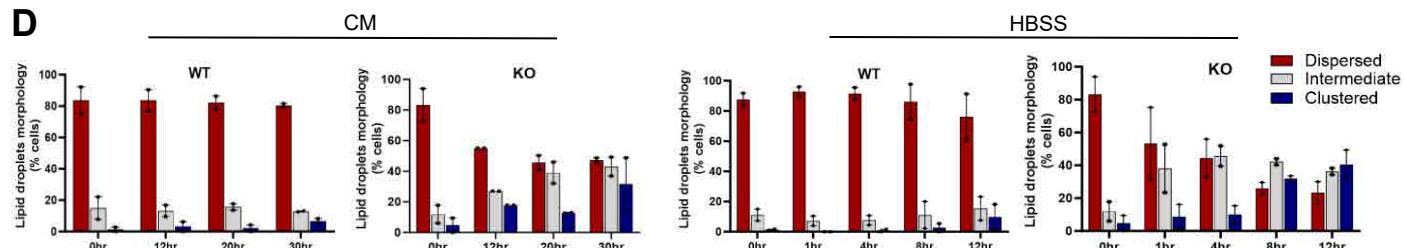
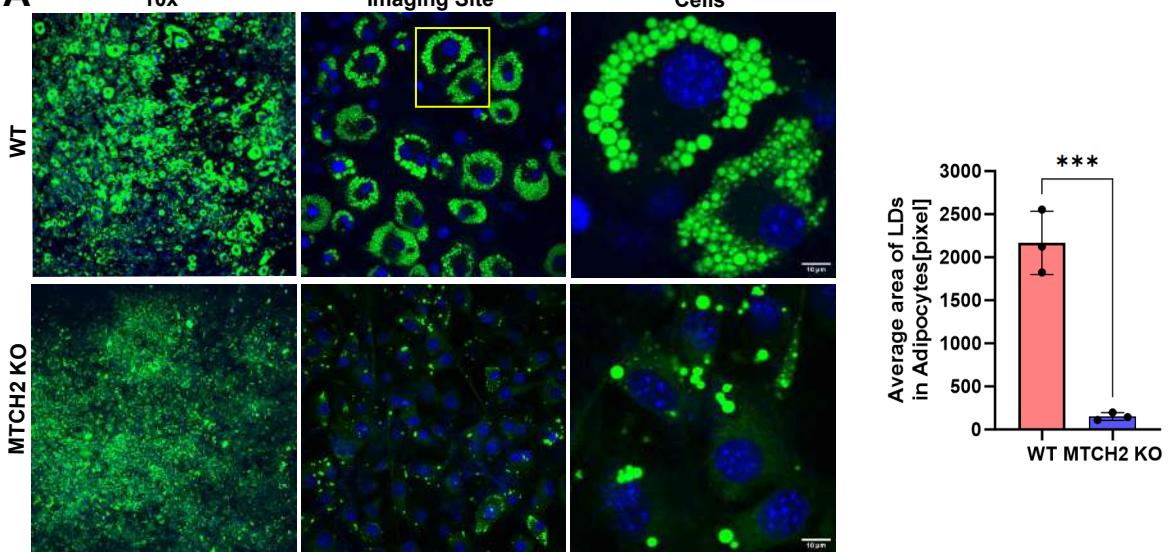



Figure 3



A


B

C



D

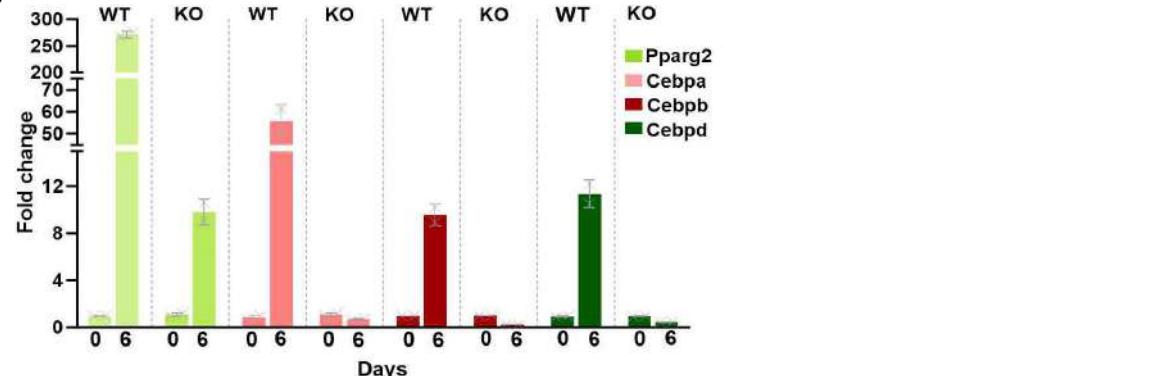
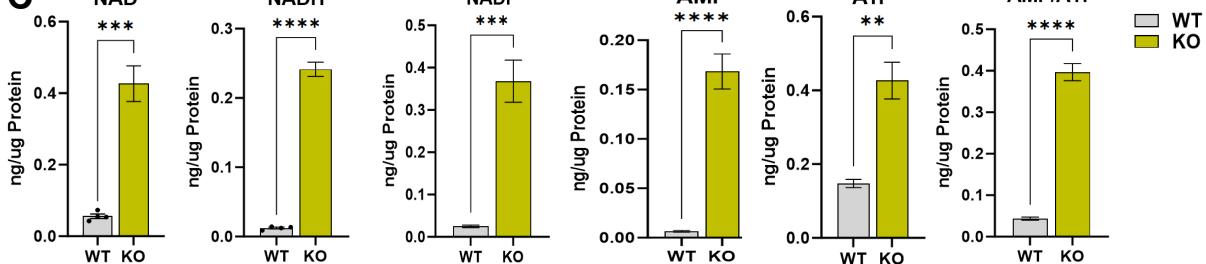
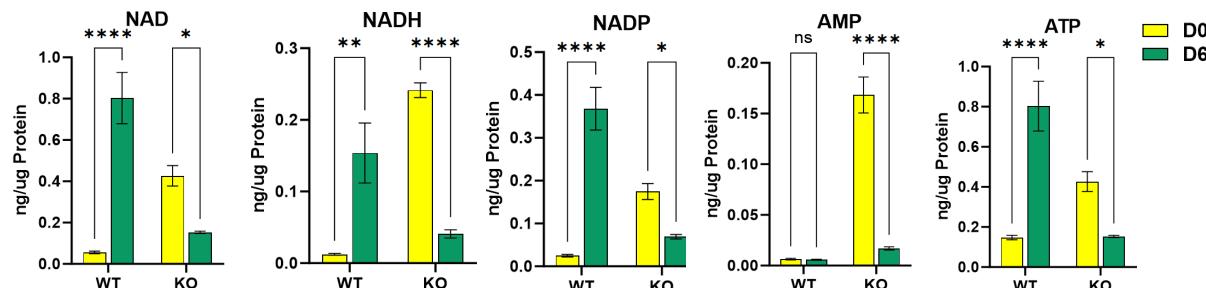
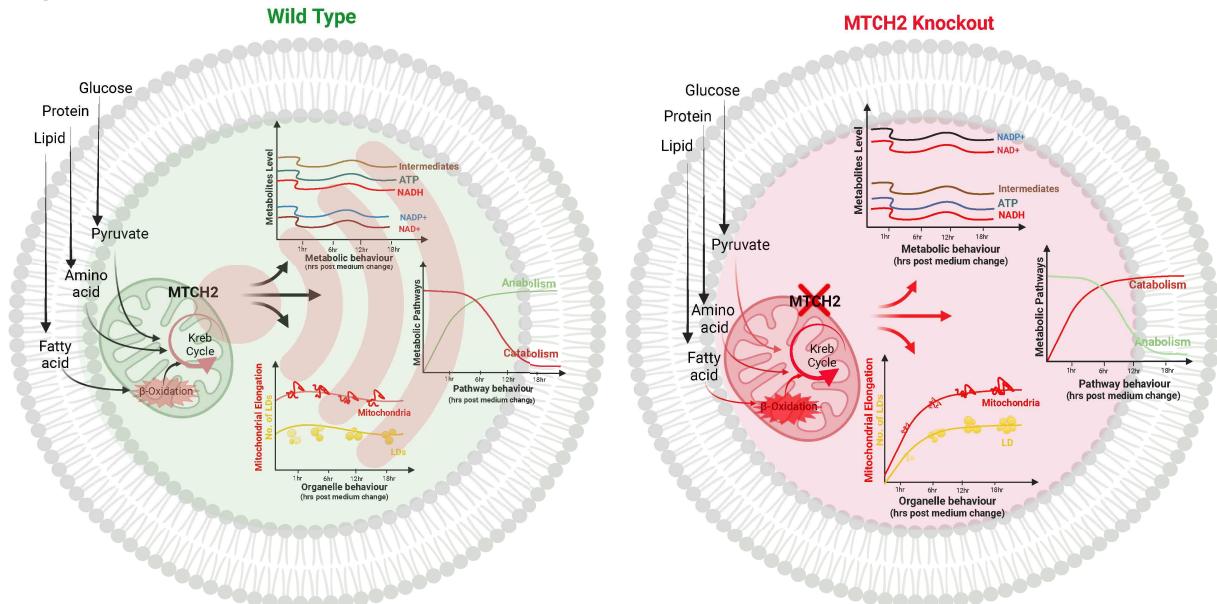


Figure 4


A


B


C

D

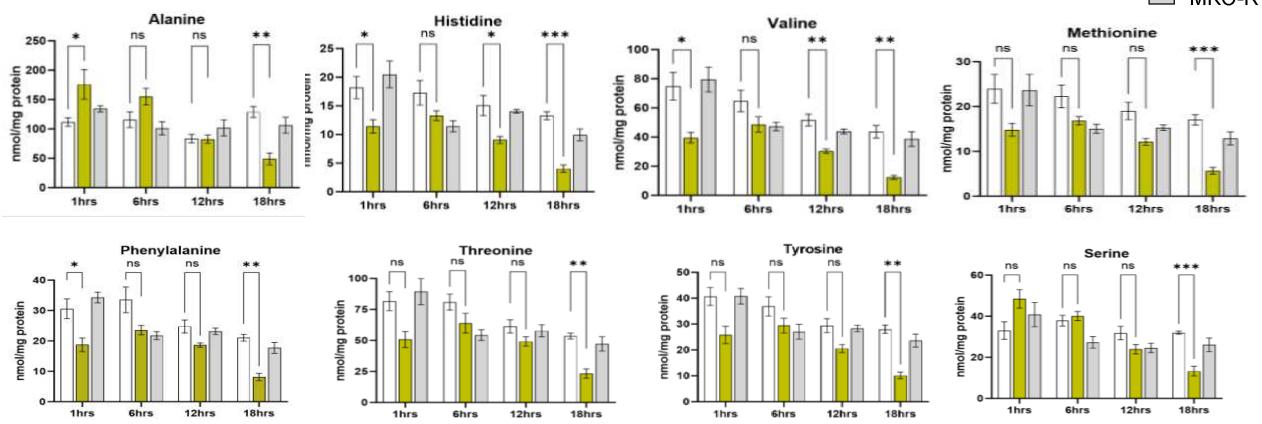


Figure 5

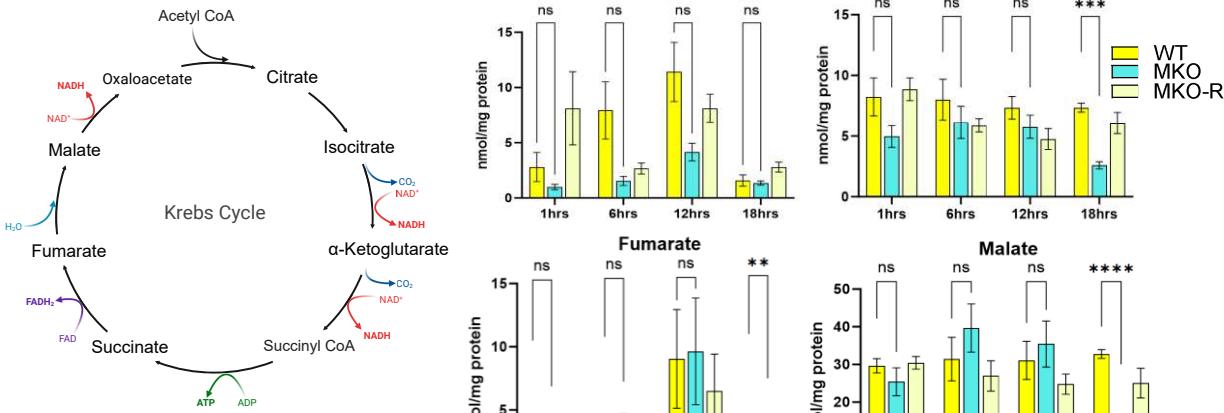
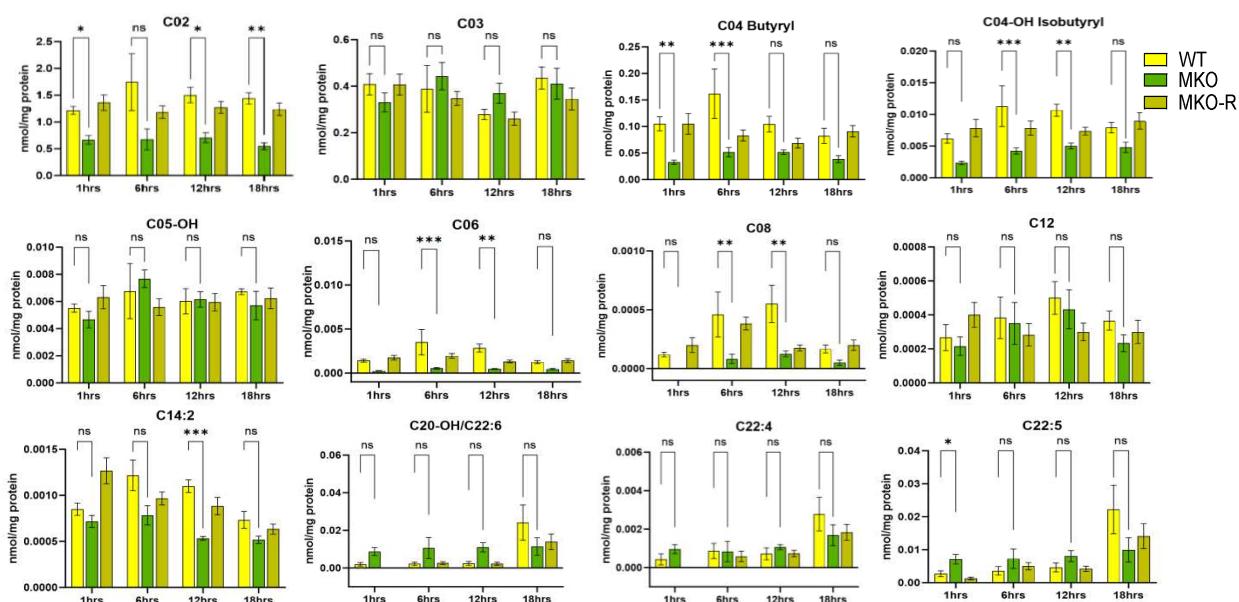
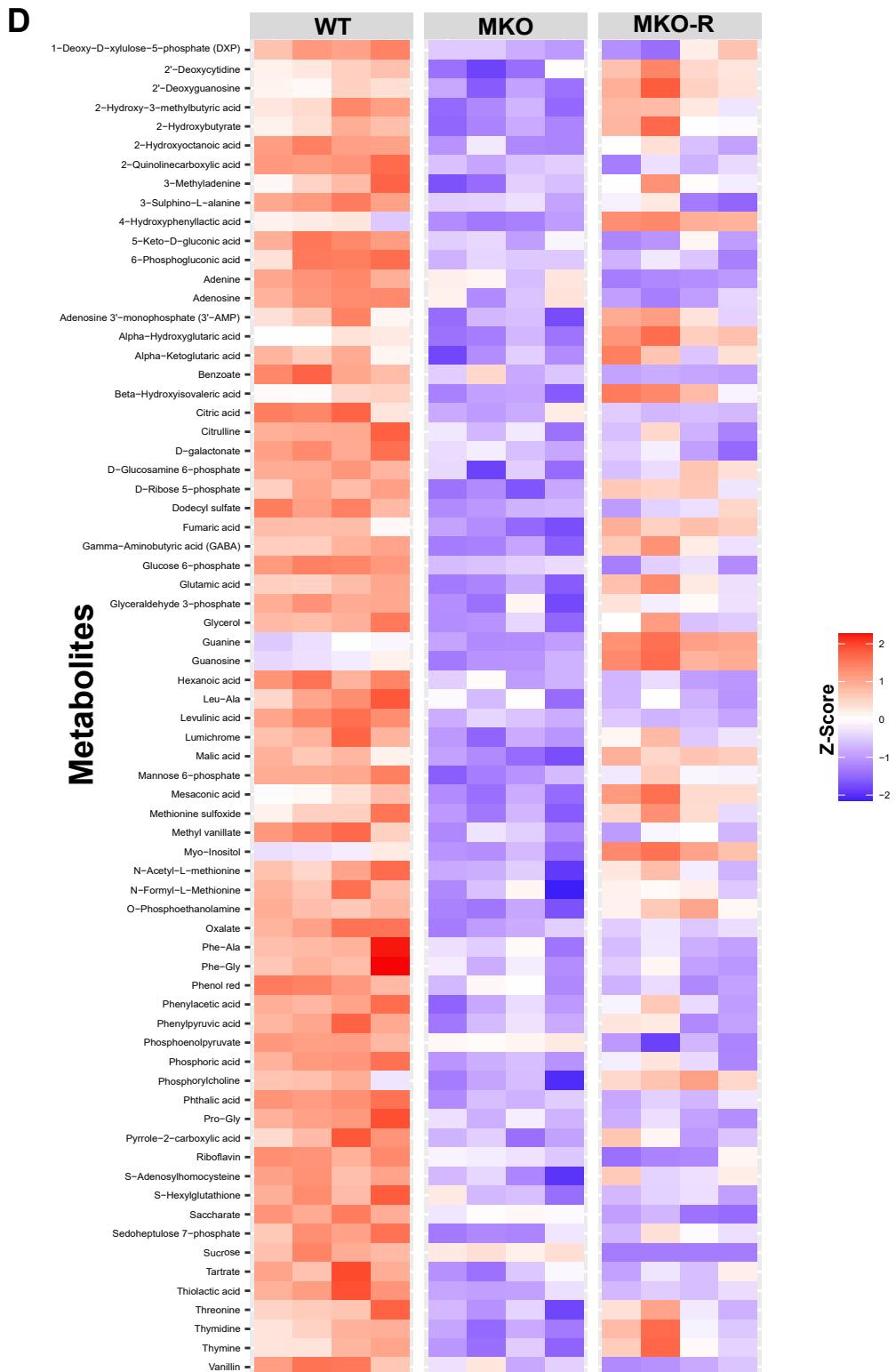


Figure S2


A


B

C

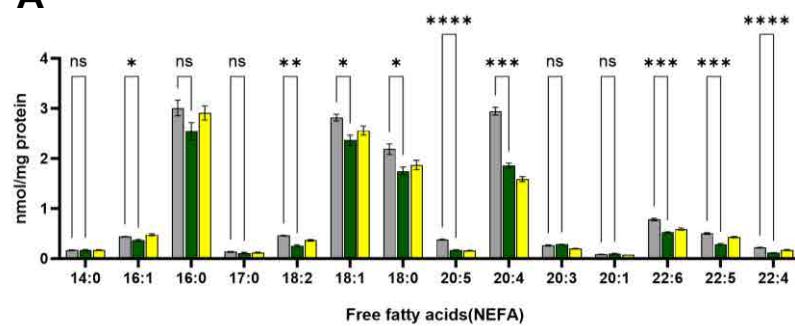


Figure S2_Continued

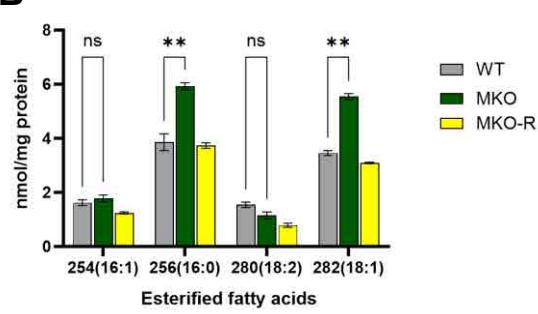
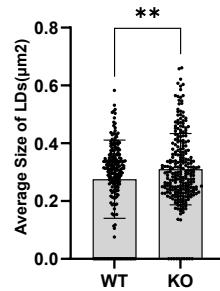
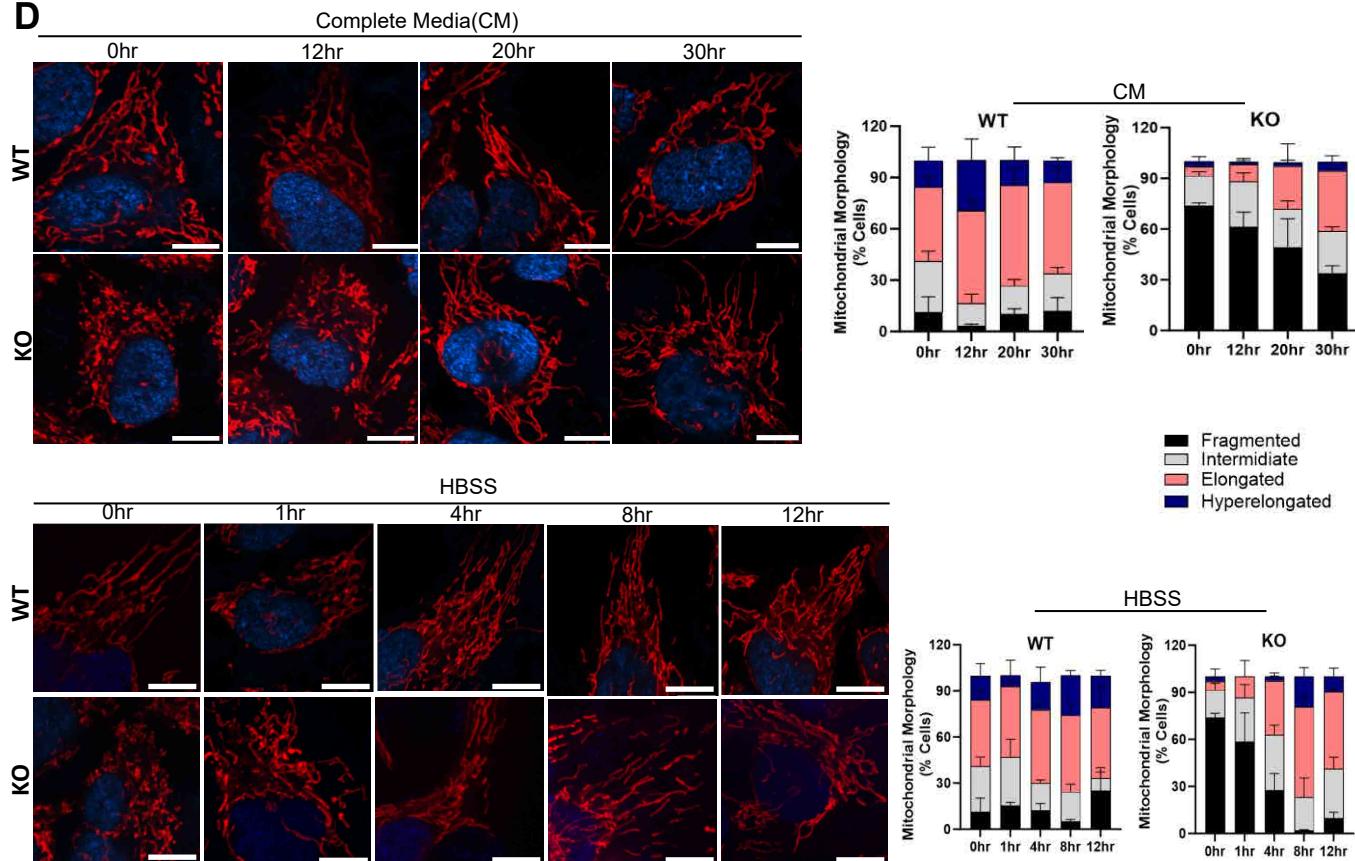
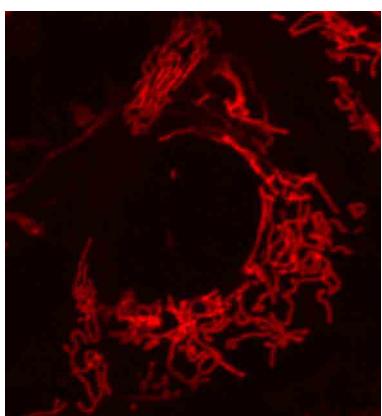


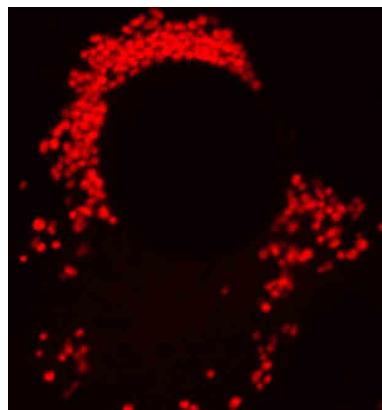
Figure S3


A

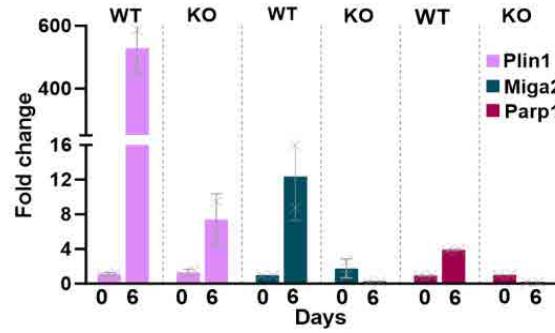
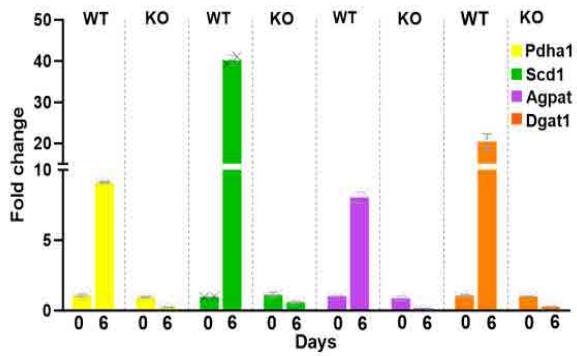
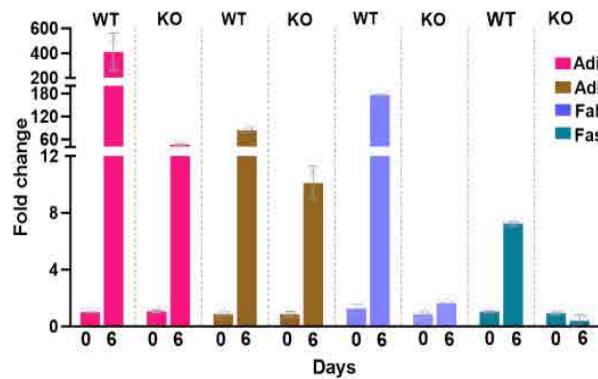

B

C


D


Figure S4

A




WT

MTCH2_KO

B

