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Abstract

This study examines the effect of changes in the number of shipping lines on port
charges and profits. A two-stage noncooperative game-theoretic model with two
ports and multiple identical shipping lines is developed. In the first stage, the ports
decide their container handling charges, and in the second stage, the shipping lines
decide on the number of calls to make at each port, given the port charges. The model
is then applied to the case of competition between two ports in New Zealand, the
Port of Tauranga and the Port of Auckland, to derive managerial insights. Our study
extends the literature on port competition by incorporating competition between
shipping lines. We also demonstrate that a decrease in the number of shipping lines
may force ports to increase their handling charges. Furthermore, we show that each
shipping line ships more cargo than the industry optimal via the port with lower

COsSts.
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1 | INTRODUCTION

Container shipping is critical to international trade and global
economic development because container ports are the gate-
ways for a country’s foreign trade and a key interface between
sea transport and land transport. Shipping lines are strate-
gically important customers of container ports. Competition
among neighboring ports has intensified in recent years as
shipping companies can easily change their ports of call (Cul-
linane & Song, 2006; Song et al., 2016). A shipping line’s
decision to switch from one port to another negatively impacts
the former port but positively impacts the latter. The chosen
port benefits from the additional cargo, which in turn bene-
fits its hinterland economy. Conversely, the other port suffers
reduced connectivity that drastically reduces its competitive-
ness and container throughput (Notteboom & Yap, 2012). The

container shipping, Cournot competition, game theory, port competition, transport

relationship between the Port of Tanjung Pelepas (Malaysia;
PTP) and the Port of Singapore is the best example that illus-
trates the dependence of port operators on shipping lines (Bae
et al., 2013). In 2000, the international container shipping
company Maersk Line shifted its transshipment operations
from the Port of Singapore to PTP, resulting in a dramatic drop
of approximately 9.2% in the container throughput of the Port
of Singapore in 2001, which was equivalent to approximately
1.57 million twenty-foot equivalent units (TEUs) (Tongzon,
2009). At the same time, PTP’s throughput increased to
approximately 1.63 million TEUs, nearly five times its ear-
lier volume. Maersk Line’s relocation sparked grave concern
about the potential ripple effects of one shipping line’s deci-
sions on the related business decisions of other shipping
lines (Kleywegt et al., 2002). Indeed, Maersk Line’s deci-
sion to change its transshipment port of call led to similar
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decisions among other international carriers. In 2002,
Evergreen Marine, a Taiwanese container shipping company,
switched most of its container operations from the Port of
Singapore to PTP, which amounted to 1-1.2 million TEUs of
annual container throughput.

From the perspective of the shipping lines, competi-
tion is much more intense than before, and shippers have
become more demanding and expect more frequent and reli-
able schedules and quicker service at lower rates (Notte-
boom, 2006). Therefore, the number of mergers and acqui-
sitions among shipping lines has increased to respond to
this intense competition. The consolidation wave was started
by AP Moller—-Maersk with the purchase of P&O Nedl-
loyd in August 2005 and Hamburg Siid in 2017 (Meersman
et al., 2018). In 2016, COSCO Shipping, a former Chinese
state-owned shipping company, merged with China Shipping,
also a former Chinese state-owned shipping conglomerate,
to form a new company—China COSCO Shipping—which
later acquired OOCL, a Hong-Kong based container ship-
ping company, in 2018. In 2016, CMA CGM, a French
container shipping company, acquired NOL, Southeast Asia’s
largest container shipping company. In 2017, the three
largest Japanese container shipping companies, NYK, MOL,
and K Line, merged to form one company—Ocean Net-
work Express. These mergers and acquisitions resulted
in the top 20 shipping companies controlling 89% of
the global market share in 2020, compared with 54% in
1999, 41.6% in 1992, and 26% in 1980 (Alphaliner, 2020;
Notteboom, 2008).

The current trend of mergers and acquisitions among inter-
national shipping lines reduces the number of shipping lines
and makes port operators more dependent on shipping com-
panies. Therefore, the following question arises: What is the
effect of a change in the number of shipping lines on port
charges and profits? Moreover, how does asymmetry in the
sizes of shipping lines affect port charges and profits?

To address the above questions, we propose a game-
theoretic model to study the behavior of two competing ports
and multiple identical shipping lines. This study extends the
work of Song et al. (2016) by incorporating competition
between shipping lines. Specifically, we develop a noncoop-
erative model that has the following characteristics: (i) there
is Cournot competition among N identical shipping lines;
(ii) two container ports compete for the same market; and
(iii) in the first stage, each port decides its container han-
dling charge and in the second stage, given the port charges,
each shipping line makes its port of call decision (i.e., the
number of calls at each port) to maximize its profit. Other
shipping lines’ port of call decisions are also considered as
these decisions affect port congestion. The case of the PTP
(Malaysia) and the Port of Singapore shows the strong depen-
dence of port operators on shipping lines. New Zealand ports
face a similar situation, as illustrated by the recent shift-
ing of Maersk Line’s Southern Star service from the Port
of Auckland (POA; formally known as Ports of Auckland

as it operates two separate facilities in Auckland; this study
refers to it as POA for the sake of simplicity) to the Port of
Tauranga (POT). The switch between the two largest con-
tainer ports in New Zealand resulted in an annual revenue loss
of nearly NZD 20 million for POA (Skeller, 2011). There-
fore, we apply our model to the case of inter-port competition
between POT and POA to derive managerial insights.

This study makes two main contributions. First, we build
a two-stage non-cooperative Cournot competition game and
derive its unique equilibrium. Our model provides a frame-
work for analyzing Cournot competition among shipping
lines. It illustrates that under a two-stage noncooperative
Cournot game model, shipping lines only consider the nega-
tive effect of switching from one port to another on their own
output and not the effect on total output. Hence, each ship-
ping line tends to ship more cargo than the industry optimal
via the port with lower costs. Second, the case study of port
competition between POT and POA reveals an unexpecting
and exciting result: the decrease in the number of compet-
ing shipping lines forces the competing ports to increase their
handling charges. We also provide a theoretical explanation
for this interesting result.

The remainder of this paper is organized as follows.
Section 2 presents the literature review. Section 3 describes
the noncooperative game-theoretic model of the study, while
Section 4 presents the case study and discussion of the model.
Section 5 concludes the research and outlines the directions
for future research.

2 | LITERATURE REVIEW

Game theory is a well-known mathematical framework
used to study the interactions between intelligent, rational
decision-makers to achieve optimal payoffs (Myerson, 1999).
Game theory is a powerful tool in port research (Ishii
et al., 2013). Bobrovitch (1982) is the first to apply game
theory to port competition by developing a Cournot model
to capture competition between two ports. Later, Zan (1999)
analyzes a Stackelberg game to examine the interactions
among shippers, ocean carriers, and container port manage-
ment policy.

In the research on port pricing decisions, Van
Reeven (2010) uses Hotelling’s model to analyze port compe-
tition. The study focuses on the vertical integration decision
and incorporates competition between service providers.
Another study on port pricing is that of Zhang et al. (2010),
which applies a Bertrand game-theoretic model to analyze
price competition between the Port of Hong Kong and the
Port of Shenzhen. The authors propose three strategies to
reduce the “price war” between the two ports: service differ-
entiation, coopetition, and cost-leadership. Basso et al. (2017)
further explore port pricing strategy in the presence of multi-
ple shippers, but their model incorporates a single port and a
monopolistic shipping company.
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In their research on the pricing and investment problems of
container ports, De Borger et al. (2008) develop a two-stage
game theoretic model to study the interactions between opti-
mal investment policies, pricing decisions, and the hinterland
capacity of competing ports. In a later paper, Ishii et al. (2013)
expands the model further by developing a non-cooperative
game-theoretic model with stochastic demand to analyze the
pricing decisions of two competing ports under different tim-
ings for port capacity expansion. The model is then applied to
the case of competition between the Port of Kobe, Japan and
the Port of Busan, South Korea. The authors suggest that ports
should set lower port charges when demand elasticity is high
and that a longer time interval between capacity investments
increases the Nash equilibrium port rates.

Saeed and Larsen (2010) build a two-stage game model for
analyzing the effects of cooperation among competing ports
and explore possible coalitions among three container termi-
nals at the Port of Karachi in Pakistan. In the first stage, the
three terminals decide whether to join a coalition or operate
independently. The second stage is the Bertrand model, where
the resulting coalitions compete with nonmembers. The study
concludes that the “grand coalition” is the only coalition that
is stable for all players. However, the real winners in the game
are the terminals at other ports that earn a higher payoff with-
out participating in the coalition and end up playing the role
of the “orthogonal free-rider.”

While previous studies on port competition focus on ports’
decisions, Bae et al. (2013) consider the decisions of both the
ports and the shipping lines and show that shipping lines tend
to make more calls at ports with larger capacities and cheaper
rates and the effect of the price difference between two com-
peting ports is greater when there is less port congestion.

Song et al. (2016) initially model ocean carriers’ port of
call and port pricing decisions in the context of a transporta-
tion chain by considering the ocean freight cost, feeder service
cost, port charges, and hinterland transport cost simultane-
ously. Their game-theoretic model provides many insights
into the competition between the Port of Southampton and
the Port of Liverpool in the United Kingdom. The model
only considers a single shipping line and does not address the
competitive dynamics between shipping lines and the effect
of a change in the number of shipping lines on port charges
and profits. Therefore, the authors call for future research
to expand their model to include multiple identical shipping
lines.

This study responds to the call of Song et al. (2016) to
extend their work by including Cournot competition among
multiple shipping lines. The next section describes the model
in detail.

3 | THENONCOOPERATIVE
GAME-THEORETIC MODEL

Before presenting the model, we first list the notations used
in the article below.

WILEY—

Indices

i the index of a shipping line; i = 1,2, ... ,N,

J theindex of a port; j = 1,2.

Parameters

a; apositive coefficient that represents the congestion
cost in dollars incurred by shipping lines when
utilization at Port j reaches its effective capacity,

¢j the average cost per container ($/TEU) for a shipping
line when it calls at Port j; ¢; does not include the
congestion cost at a port,

ki the unit operating cost at Port j (§/TEU),

K; the effective handling capacity at Port j (TEUs/year),

L; the lower bound on the port unit container handling
price,

m; the unit handling capacity investment at Port j ($/TEU),

N the number of shipping lines,

p  the unit shipment price of a container, which is the
price charged by shipping lines to shippers ($/TEU)
(it is assumed that the return shipment price is included
in p and all shipping lines charge shippers the same
price, p),

U; the upper bound on the port unit container handling
price,

V  the annual total cargo volume shipped by all shipping
lines via both ports (TEUs/year),

v?  the annual cargo volume shipped by each shipping line
via both ports (TEUs/year); V = N - 0.

Decision variables

C; the unit port congestion cost incurred by Shipping Line
i at Port j ($/TEU),

F; the annual number of container lifts carried out at Port
Jj (G = 1,2) for Shipping Line i (TEUs/year),

F; the annual total number of container lifts carried out at
Port j (j = 1, 2) for all shipping lines (TEUs/year),

g the fraction of ports of call made by Shipping Line i at
Port j,

r  the average number of port operations per container,

v the annual cargo volume transported by Shipping Line
i via Port j (TEUs/year),

v;  the annual cargo volume transported by all shipping
lines via Port j (TEUs/year),

w; the container handling charge ($/TEU) at Port j.

Functions
#! Shipping Line i’s profit function ($/year),

z;  Port’s profit function ($/year).

This study considers a two-stage noncooperative
game-theoretic model consisting of N identical shipping
lines (i = 1,2, ... ,N) and two container ports (j = 1,2),
where the two ports compete for the same market. In the first
stage, each port determines its container handling charge, w;
($/TEU), that maximizes its profit. In the second stage, each
shipping line decides the value of g;, which is the fraction
of the ports of call made by the vessels of Shipping Line i at
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Port j, such that 0 < ¢; < 1 and gi» = 1 — g;1, to maximize
its profit by observing the port charges, congestion costs,
mother vessel’s fuel cost, and feeder vessel’s fuel cost. We
assume that all transportation is operated by the shipping
lines (Song et al., 2016).

3.1 | General setup of the model

We define V as the annual total cargo volume transported by
all N shipping lines via both ports (TEUs/year); V is assumed
to be fixed. This assumption is in line with that of past stud-
ies (e.g., Bae et al., 2013; Song et al., 2016) because often
there is no feasible alternative to maritime transportation. For
example, even if both ports were to increase their handling
charges, it is unlikely that the total volume of cargo trans-
ported will change drastically. We define v as the annual
cargo volume transported by each shipping line via both ports
(TEUs/year) and V = N - v*. We assume v’ to be equal, and
its split between the two ports is proportional to the ports’
decision on the splitting of ports of call by vessels, denoted
by g;. This assumption is adopted from Bae et al. (2013).
The values of g; can be the same as or different from each
other depending on how the shipping lines interact with one
another to optimize their profits, as illustrated in Figure 1. We
assume that all shipping lines make their port-of-call deci-
sions simultaneously (Cournot competition for N shipping
lines).

Let v; be the annual cargo volume transported by Shipping
Line i via Port j(TEUs/year), which is the decision related
to qij:

vir =V - qan, (n

vo=v-qn=v"-(1-qu). 2)

We define v; as the hinterland volume transported by all
shipping lines via Port j per year (TEUs/year). Then the total

Port | Shipping line |

- - -

B

N
Ve = Zvu

volume transported by all shipping lines via both ports per
year, V, can also be written as follows:

N

2 N
V= ZV] =V +Vv = ZV,‘] + ZV,‘Q. 3)
=1 1 i=1

i=

From Equations (1)—(3), we have:

vi= Y vi= Y qu, @)

NS
I
M=
<
[~}
I
M=
<@‘
S
[v]
I
M=
<W‘
-
!
S
o

=1
N
OI'V2=V—V]=V—ZVb'q,‘1. (5)

3.2 | Congestion cost function

For ease of exposition, we focus on the head-haul direc-
tion of containerized cargo trade. For example, for an
import-oriented country, the head-haul direction is the direc-
tion of the flow of import cargo, and the ports and vessels
handle the same volume of container flow (export containers
or empty containers) in the opposite direction. This approach
is adopted from Song et al. (2016).

Specifically, an importing transshipment container is first
unloaded from the mother vessel to the port and then loaded
onto a feeder vessel from the port. After the feeder vessel
reaches the destination port, the container is discharged and
unpacked and becomes empty. This empty container may be
reloaded with new goods for export or returned as an empty
container; the returned container is then unloaded from the
feeder vessel to the port and loaded onto a mother vessel
from the port. Therefore, one transshipment container trans-
lates into a total of four port operations when considering its
contribution to port congestion.

b _ . b
VP =0y + VU =V7q1 TV

qi1+ g, =1and0< g, <1

VP = vy + vy, = 0Py +vPq,

im Shipping line 2
[ ,m .i.)..;ﬁ' 921+ Gz =1and0 < gy, <1
Port 2

b — — b b

B e . vV =vny Uy =V +v
Shipping line N Nt e U Uz
e + =1and0 < <1

< e ......,..:ﬁ' qn1 T 9nz qn1

e

e

vy =

i=1

; — Nub — _yN N
Viz V=Nv’ =v +v, =XV + X1 Vi

FIGURE 1 General setup of the model (The subscript numbers, letters in red, refer to the index of shipping lines. The subscript numbers, letters in blue,

refer to the index of ports)
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Likewise, an importing hinterland container is first
unloaded from the vessel onto a truck or train. It is then dis-
charged and unpacked at the destination. The empty container
may be reloaded with new goods for export or returned as an
empty container; the returned container is then unloaded from
the truck or train onto the vessel. Therefore, one hinterland
container translates into a total of two port operations when
considering its contribution to port congestion. Let r denote
the average number of port operations per container, where
its value depends on the ratio of transshipment containers to
hinterland containers.

Next, we define F; as the number of container lifts per year
conducted at Port j (j = 1, 2) for Shipping Line i (TEUs/year).
Let r be the average number of port operations per container.
Hence, Fj; can be written as follows:

Fy=rva=n"-qu, (6)
Fp=rvp=n"-qo=nr"-(1-gq). @)

Furthermore, let F; be the total annual number of port
operations of containers carried out at Port j (j = 1,2)
for all shipping lines (TEUs/year). Then, we have the
following

=z

Fi=rvi=r- Y qu, 8)

i=1

N
F2=rv2=r(V—v1)=r<V—va‘Qi1>. ©)]

i=1

Let C; be the unit port congestion cost incurred by a ship-
ping line at Port j ($/TEU), which can be written as follows
(De Borger & Van Dender, 2006):

Fj ‘

Cj=aj- <E>, for]=1,2, (10)
J

where g; is a positive coefficient that represents the con-

gestion cost in dollars when utilization at Port j reaches its

effective capacity, and K; is the effective handling capacity at

Port j (TEUs/year). Generally, we have F; < K;. Therefore, %

J

can be interpreted as Port j’s utilization.

3.3 | Profit function of the shipping lines

The main purpose of this study is to determine the equilibrium
value of g;; for each shipping line, given the value of w; set by
the two ports in the first stage.

We need the following additional parameters to analyze
the shipping lines’ profit functions: ¢; is the average cost
per container ($/TEU), which may comprise the feeder ves-
sel and hinterland transportation costs; p is the unit shipment
price, which is the price charged by shipping lines to ship-
pers ($/TEU). Similar to Song et al. (2016), we assume that
the return shipment price is included in p and all shipping
lines charge shippers the same price, p. The shipment price is
fixed in our model as it is largely based on the shipping lines’

available capacity and the total demand for shipping services,
which are exogenous to our model. Hence, the profit function
of Shipping Line i is given as follows:

2
7=, ((p=c=w)vi—GFy), (1)
=
S.t.
0<g; <1, (12)
qn =1-q, (13)
Fj=rv;= rqu,-j. (14)

The first term on the right-hand side of Equation (11) rep-
resents the annual total net revenue earned by Shipping Line
i by transporting v; volume via Port j. The second term is the
annual total port congestion cost paid by Shipping Line i for
transporting v; volume via Port j.

By expanding the last term on the right-hand side of
Equation (11) at Port j after substituting Equations (6), (7),
and (10) into the two terms, they become:

ajr (ZszlVkaj> g
- e .
The total congestion cost at Port j depends on both the frac-
tion of vessels’ ports of call, g;, of Shipping Line i and the

decisions made by all shipping lines, Zi]:l - This shows that
the decisions of different shipping lines are interrelated.

3.4 | Profit functions of the ports

To formulate the profit functions of the ports, we define k; as
the unit operating cost at Port j ($/TEU), m; as the unit han-
dling capacity investment at Port j ($/TEU), and L; and U; as
the lower and upper bounds, respectively, on the port unit con-
tainer handling price (Song et al., 2016). The profit functions
(j = 1,2) of the ports are adopted from Song et al. (2016) as
follows:

7= (wj = k) - Fj —m; - K; (15)
where L; <w; < Uj.

The first term on the right-hand side of Equation (15) rep-
resents the annual profit of Port j from handling F; number
of containers. The second term represents the annual total
investment by Port j for capacity expansion to keep up with
the growth in cargo throughput in the future. We examine the
ports’ capacity expansion decision in Section 5.3.

Summarizing the model, in the first stage, the two
ports decide on their container handling prices to opti-
mize Equation (15). In the second stage, N shipping lines
decide on how to split the vessels’ ports of call to optimize
Equation (11). We use the backward induction method (Bae
et al., 2013) to solve this game-theoretic model. We first start
with the second stage to find the subgame Nash equilibrium
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fraction of ports of call, q;"j, of each shipping line. The
equilibrium port-of-call decision, q;, is a function of the port
prices, w;. After that, the Nash equilibrium port container han-
dling prices, wj’.‘, can be obtained using equilibrium qj‘j in the
second stage. Last, we substitute w! back into the equilibrium
port of call, q; to eliminate w; from the result.

3.5 | Equilibrium outcome

Next, we solve the game starting with q as outlined
above. The following lemma ensures the un1queness of the

equilibrium:

Lemma 1 For the given port prices, w; and
wa, the profit function of Shipping Line i, ﬂf, is
concave with respect to g;\in the interval [0, 1].
Lemma 1 indicates that for the given port prices, w; and w,,
1
7 is a monotonic decreasing function in g;; in the interval

[Oi] 1]. Hence, there is a unique optimal solution of q; in the
7!
interval [0, 1]. Specifically, g, = 0 if ;T’ < Ofor any ¢;; €
il
7[[
[0.11; g;, = 1if 2= > O for any g € [0,1]; and g}, € (0, 1)
il
otherwise.

Lemma 2 For the given port prices, wi and
wa, each shipping line’s Nash equilibrium frac-
tion of ports of call, q;, is the same (‘177 =

q;j = .. = q;,j) and given by:
0 ifD; <0
Gy =D if0<D <1,
1 ifD;>1
where D| = (WDayr ) ~(er 4w ==y )Ko K,

(N+1)yr2ve(ay Ky+a,K))

Using the Nash equilibrium port-of-call decision, q[*j‘., in
Lemma 2, the Nash equilibrium port unit container handling
prices, wj* can then be derived in the first stage. Next, wj* is
substituted back into the equilibrium port of call, q* to elim-
inate w;from the result. The main results of the game model
are summarized in the following proposition.

Proposition 1  The Nash equilibrium fraction
of ports of call, qj.]‘. (q’;‘j = q;j = = ql";,j)
and the Nash equilibrium port unit container
handling prices, w;k, are given by (with g7, =

l-q):
@) If Di < 0 then g, = 0; wj
and w; are given by (w Wz) =

max{ wiw)| Ly £wy S ULy Swy < Uy,
(N+l)a2r2vb
K, :
* —_ .
1 then g, = 1;

and wj are given by (wl,w2)

x{ wWiw)| Ly £wy KU, Ly Swy < Uy,

(N+1)a, r2vb
K, ’

Wy —w; <Ccp—C—
i) If Dy >

_§*

Wy —WwWip >cCp—C+

(iii) IfO<D1 1,Li <w; <UL, <wy <
U,, then ql.l, wl and w2 are given by

((c2 = ¢1 +2ky + k) Ky + 2(N + Dayrv?) Ky + a7V (N + DK,

"= 3K,K, ’
(16)
. (1= +k +2k) Ky + (N + Daxr®v?) Ky +2a;7v (N + DK,
"2 = 3K,K, ’
(17)
. (- +k—k) Ky +2(N + Dayriv?) Ky + a v (N + 1)1<2
4, =

3r2v0(N + 1) (a1 K, + a2 K)
18)

Points (i) and (ii) of Proposition | represent the case where
one of the two ports gains all the market share and the
other gets nothing, which is unusual. If the shipping lines
move all of their cargo via one port only, the hinterland
transport congestion cost and port congestion cost increase
significantly due to the capacity constraint, which in turn
makes the decision uneconomical. Consequently, shipping
lines must balance the vessels’ ports of call between the
two ports.

Point (iii) of Proposition 1 represents a more realistic sce-
nario and provides the Nash equilibrium fraction of ports of
call, q* and the Nash equilibrium port unit container han-
dling prices, w , to the non-cooperative game model. The
three COHdlthl’lS in Proposition (iii), 0 < D; < 1, L; <
w; < U, Ly £ wy < Uy, can also be rewritten to explic-
itly show the relationships between the model parameters
as follows:

((c1 =) Ky + Bay — ay) (N + Drv?) Ky — apr (N + DK,

<k, —k
KIKZ 2 1
((c1 = ) Kz + 2(N + Dar*V?) Ky — a; v (N + DK,
< , (19)
KK,

((c2 = 1 +2k1 + ko) Ko + 2(N + Dayr™vP) Ky + a VP (N + DK,
3K1K2
<U, (20)

((c1 = 2 + ki + 2kp) Ky + (N + Dayr®v?) Ky + 2a, V(N + DK,
3K1K2
<U,. 21

2 <

Equations (19)—(21) can be obtained by substituting w; with
wj’." in the three conditions, 0 < Dy < 1,L; <w; < U, L, <
wy < Uy, and then simplifying them. These conditions define
the existence of the Nash equilibrium such that each port
receives its share of cargo. Condition (19) ensures that the
operating costs of the two ports are not excessively differ-
ent from each other. Conditions (20)—(21) state that the price
bounds must not be too restrictive. Note that all of the anal-
yses discussed hereafter refer to this interior solution (under
conditions (19)—(21)).
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Proposition 2 Given the Nash equilibrium
and conditions (19)—(21), the profit functions
for the two ports and Shipping Line i are given
by:

5} = (W] — k) VNG, = miKo,
T = (w; - kz) PN (1 - q;‘I) - mKs,

2
2 a,-N(rqul’i)
i .
nf* = Z (p—cj—w;‘>vij— T i=1,...,N,

=1

where wi, w3, and q}, are given in Equations

(16), (17), and (18), respectively.

Next, we perform the sensitivity analysis of the equilib-
rium port handling charges and port-of-call decisions by the
shipping lines. In particular, we are interested in determining
the effect of the number of shipping lines on these decision
variables.

Proposition 3  Under conditions (19)-(21),
the effect of the number of shipping lines, N, on
the decision variables is given as follows:

dw’l‘ dw’l‘
—— < 0and lim — =0;
ON N-oo dN
OW; ()w;
—= < 0and lim —= =0;
oON N-oo N
oq*
lim ﬁ =0.
N—-oo aN

Proposition 3 indicates that:

(i) Port 1’s Nash equilibrium handling price,

|, decreases with a decrease in N
and converges to a finite number as N
increases.

(i) Port 2’s Nash equilibrium handling price,
w;, decreases with a decrease in N
and converges to a finite number as N
increases.

(iii) Last, if 2 > (<)0, the Nash equilib-
rium fraction of the vessels’ ports of call
made by each shipping line at Port 1,
q;kl, increases (decreases) with an increase
(decrease) in N and converges to a finite
number as N increases. We also find that
if all of the costs at Port 2 are higher than
the costs at Port 1, then i)izé > 0, which
means that the equilibrium fraction of ves-
sels’ ports of call at Port 1 decreases as the
number of shipping lines decreases. The

inverse is also true.

w

Proposition 3 shows a surprising result: the equilibrium
port handling charges w} and w} increase, while g7, decreases
(assuming Port 1 is the port with the lower cost) as the num-
ber of shipping lines, N, decreases. Intuitively, w} and w} are
expected to increase only when there are fewer shipping lines
in the market, as the shipping lines would have less bargain-
ing power. Consequently, shipping lines would not be able to
negotiate for favorable handling charges with the ports.

We start the analysis by understanding why ¢, decreases
as the number of shipping lines decreases. To explain this,
we adopt the argument of Tirole (1988), which explains why
firms tend to produce more than the optimal industry output
in an oligopoly with Cournot competition.

First, recall that each shipping line’s profit function, rep-
resented by Equation (17), consists of three components:
revenue, congestion costs, and other costs (including trans-
portation costs and port charges). To easily understand the
competitive dynamics among the shipping lines, we consider
a simplified version of each shipping line profit’s function
below that consists of the three components.

2 N
"=R-Y le-QM (ff'ZQkf)'Qif] ’
= k=1

where, R is the total revenue of each shipping line for shipping
0; (Q; = Qi1 + Q) number of containers;

C; is the unit cost (excluding congestion cost) paid by the
shipping line for shipping one container via Port j (j = 1, 2);

Q; is the number of containers shipped by Shipping Line i
viaPortj (j=1,2), Q; = Qi1 + On; and.

tf is a positive number that represents the congestion cost in
dollars when utilization at Port j reaches its effective capacity.

According to the shipping line’s profit function given
above, shipping lines ship more cargo via the port that has
lower costs, C; (excluding the congestion cost), to earn more
profit.

When the number of shipping lines in the market increases,
each shipping line sends more cargo via the lower-cost Port 1
as the shipping lines only consider the negative effect of a
higher coefficient of congestion cost (t;.g . ZLQU) on their
own output instead of the effect on the aggregate output. For
example, consider a case where there is only one shipping
line; the total number of shipping containers in the market
is 100000, and the optimal division of cargo between Port 1
and Port 2 is 51,000 and 49 000 containers, respectively. If
the shipping line decides to send one more container to Port 1
instead of Port 2 (51 001 and 48 999 containers, respectively),
that extra container increases the coefficient of tf . Z?LIQU‘,
for example, from $30/TEU to $30.1/TEU. The increase in
tf . ZfilQij, in turn, has an adverse effect on the extra con-
tainer and the remaining 51 000 containers, which means that
the cost of sending one more container to Port 1 is $5130.1
(30.1 x140.1x51000 = 5130.1).

The same argument Is used for a case where there are
two shipping lines in the market, and the optimal division
of cargo for each shipping line between Port 1 and Port 2 is
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25500 and 24500 (25500 = 2™and 24 500 = £20) as

now there are two shipping lines instead of one. If one of
them sends one more container to Port 1 instead of Port 2
(25501 and 24 499), that extra container will cost them only
$2580.1 (30.1x1+0.1x25 500 = 2580.1) instead of $5130.1.
Hence, each shipping line ships more cargo through Port 1
until the marginal cost of shipping the extra container via
Port 1 equals the marginal cost of shipping via Port 2, which
explains why the equilibrium fraction of ports of call, ¢,
increases in the original model as the number of shipping lines
increases (similarly, it decreases as the number of shipping
lines decreases).

Additionally, the negative effect of the extra container being
sent to Port 1 by each shipping line becomes smaller as the
number of shipping lines increases, which means that it is
more flexible for each shipping line to decide how many ship-
ments to be transported via Port 1 and Port 2. This implies
that the demand curves of the two ports become more elas-
tic, as it is easier for their customers (shipping lines) to switch
from Port 1 to Port 2 for the port of call. Hence, it is more
profitable for the ports to lower their port charges because a
1% reduction in price leads to an increase of more than 1%
in the volume of cargo handled. This explains why w} and w}
increase as N decreases. The inverse is also true.

The above analysis explains why ¢, increases and con-
verges to a finite number when N increases as the negative
effect of the extra shipment transported via Port 1 becomes
smaller. Therefore, the ports are obliged to lower their port
charges because the demand curve becomes more elastic.
Similarly, the ports increase their charges because the demand
curve becomes more inelastic when fewer shipping lines are
present.

While we have considered the effect of the change in the
number of shipping lines on the equilibrium port handling
charges, we have not confirmed that a merger of the two ship-
ping lines would lead to a similar result. The merger would
decrease the number of shipping lines and create an asymme-
try between the shipping lines in terms of the annual cargo
volume. Another question worth examining is: Does port
competition drive the handling charge dynamics? If that is
the case, it would be necessary to consider a merger between
the two ports to form a single entity. These two scenarios are
tested in the next section.

4 | COMPETITION EFFECT

4.1 | Merger among shipping lines

Next, we study the effect of a merger between M shipping
lines on the equilibrium decisions, assuming M < N. In
particular, we consider a scenario wherein M shipping lines
merge to form a new shipping line with an annual cargo vol-
ume that is M times the original volume. Consequently, we
have N — M shipping lines, each with an annual volume of

Vs = 1%, where s = 1,2, ... ,N —M, and the merged shipping
line (denoted as m) with an annual volume of V,, = %/

Our primary focus is to compare the equilibrium port han-
dling charges in the symmetric case, w’l‘ and w;, with those
after the merger, denoted as ) and W}. Following the same
logic as in the previous section, we obtain the results summa-

rized in Proposition 4.

Proposition 4 The difference in the equilib-
rium port handling charges after a merger of M
shipping lines is given as follows:

~ N r2yb RKiay + Kray)) (M - 1)
wi—wj = >0,
3K\Khr(N—-M+1)

~ N r2yb (Kiay +2K>a;)) (M — 1)
Wy —w, = > 0,
3KiKhr(N-M+ 1)

9 (W} —wj) _ A QKa + Kray) 50
oM T3KKh(N-M+12 7
and
9 (W5 —wj) _ AV (Kiay + 2Khay)
oM 3K\Ko(N—M +1)?

The above results confirm our intuition described in
Section 3.5. The equilibrium port handling charges increase
after a merger of shipping lines. Furthermore, as the consol-
idation among shipping lines increases (i.e., as M increases),
the handling charges increase further.

4.2 | Merger among ports

Next, we consider symmetric shipping lines but assume that
the ports maximize their joint profit functions when deciding
on the handling charges. Our primary interest is to establish
whether a decrease in the number of shipping lines leads to
an increase in handling charges in the absence of competition
between ports. Proposition 5 captures the sensitivity of the
equilibrium port handling charges in this scenario.

Proposition 5  The optimal handling charges
of the monopoly port are independent of the
number of shipping lines.

We find that in the absence of competition, a change in the
number of shipping lines does not affect port handling charges
because the monopoly port always sets handling charges in
such a way that extracts maximum profit. As the total con-
tainer volume and shipment prices do not depend on the
number of shipping lines in our model, the total profit of the
shipping lines remains the same as N changes; hence, the
optimal handling charge remains the same. Therefore, com-
petition among ports is an important factor that drives the
increase in handling charges as the number of shipping lines
decreases.

Next, we validate our key findings with a case study and
discuss the implications in more detail.
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5 | CASE STUDY

This section introduces a case study that illustrates our model.
We describe two competing ports to estimate the model
parameters. Then, we consider the equilibrium outcomes with
a focus on the effect of the number of shipping lines on the
outcomes.

5.1 | Case description

POT is the largest port in New Zealand (NZ) and, in 2019,
it handled a cargo volume of 12.5 million tons and container
throughput of 1.2 million TEU. Additionally, POT is the only
port in NZ that handles more than a million TEUs annu-
ally (Deloitte, 2020). POA is the second-largest container
port in NZ and handled an estimated container volume of
939680 TEUs in 2019. It was the first port in NZ to operate
automated straddles (Deloitte, 2020). It was voted the “Best
Port in Oceania” every year from 2016 to 2019 at the Asian
Freight, Logistics, and Supply Chain Awards (Asia Cargo

TABLE 1 Port facilities and capacity comparison (Deloitte, 2020)

Criteria POA POT
Port harbor type Natural Natural
Draught (m) 12.5 14.5
Port operating land (ha) 77 190
Container terminal area (ha) 34 75
Container wharf length (km) 1.0 8
Quay cranes 5 8
Forklifts/stackers 14 0
Straddles 39 46
Rail connection Yes Yes
Throughput (1000 TEU) 939.7 1233.2
Container ship calls 864 888

Tanjung

% Singapore
Pelepas eINgapC
&Lp \\

N\
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News, 2020). Table 1 shows a comparison of the facilities and
capacities of POA and POT.

We select the Southern Star service operated by Maersk
Line (Maersk, 2017) as the deep-sea container shipping route
to demonstrate our model’s results, which can select between
POT and POA as the port of call.

In Alternative 1, the vessels call at the following ports:
PTP — Singapore — Brisbane — POT — Lyttelton — Port
Otago — PTP, as shown in Figure 2.

In Alternative 2, POT is replaced by POA for the deep sea
and feeder container routes; other ports remain the same as
in Alternative 1. Hereafter, subscript 1 (j = 1) in the notation
denotes POT, and subscript 2 denotes POA.

In the baseline scenario, the variable values are set accord-
ing to Table 2.

5.2 | Effect of the number of shipping lines on port
charges

To explore the effect of the number of shipping lines, N, on
the decision variables w’l‘, w; and q;‘l, we vary N from 6 to 8,
10, 12, and 14. Figure 3 shows that the results are in line with
Proposition 3.

In this case, POT is the port with lower costs, corresponding
to Port 1 in our theoretical analysis, while POA corresponds
to Port 2. In line with our theoretical predictions, fewer ship-
ping lines lead to higher handling charges. Consequently,
the profits of both ports increase while the total profit of
all the shipping lines decreases as N decreases, as shown in
Figure 4.

5.3 | Investment in capacity expansion

In our example, POT has a lower capacity than POA. Next,
we investigate whether investing in additional capacity is

Maersk’s Southern Star Service

Brisbane ¢ __

Auckland %
\ Tauranga )

/
/

— Lyuelon s

\\ Otago 3 //

FIGURE 2 The deep-sea container route (Maersk, 2017) (The green line shows alternative 1, which means that POT is chosen as the port of call by

Maersk’s southern star service. The red line shows alternative 2, which means that POT is replaced by POA as the port of call on this service)
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TABLE 2 Parameter estimation

Variable Source
V = 850 000 TEUs/year

a; = a, = 60 NZD

K, = 1240 000 TEUs/year

¢ =450 NZD/TEU
¢, =463 NZD/TEU

p = 2390 NZD/TEU

Hypothetical values
K, = 1400 000 TEUs/year (Deloitte, 2014)

based on PwC'’s report.

my =my =23
TEUs/voyage

their handling capacity from 1.24 to 1.82 million TEUs for a period of 30 years. Therefore, m; =

Freight Information Gathering System (Ministry of Transport, 2017)

Hinterland cargoes are assumed to be in Hamilton. The cost of transportation is then NZD 450 for POT and NZD 463 for POA

The cost per container from Hamilton to Singapore based on PwC’s report.

This parameter is calculated based on Deloitte’s (2014) report which estimates that it will cost POT 398 million NZD to upgrade

398-10° ~ 23. In thi
—_— . In this
(1.82-1.24)-10°:30

study, the unit handling capacity investment is assumed to be the same for both ports, similar to Song et al. (2016).

k; = 33 NZD/TEU
k, = 34 NZD/TEU

According to Deloitte’s (2014) report, the unit operating cost for one container throughput is around 67 NZDs/TEU for large ports
in NZ. Since loading and unloading activities are counted separately in this study, the unit operating cost of POT and POA should

lie somewhere around half of 67 NZDs/TEU. Moreover, it is well known that POT has a lower unit operating cost than POA.

[}
3
[=1

%)
w

[SS]
(=]

0.504

Port prices in NZD
3% [3%3
(=3 [=1
o W

g
Port-of-call fraction at Port 1

o
(=1

0.502
6 7 8 9 10 11 12 13 14

The number of shipping lines

FIGURE 3  Effect of the number of shipping lines, N, on the decision
variables
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FIGURE 4  Effect of the number of shipping lines, N, on the profits of all
of the shipping lines and the ports (profits are based on Proposition 2)

beneficial for POT and how this may affect POA. The cur-
rent capacity of POT is 1.24 million TEU/year, and Figure 5
illustrates the effect of POT’s capacity expansion on the
equilibrium handling charges and shipping lines’ port-of-call
decision. For this analysis, we fix the number of shipping lines
at 10 (N = 10), although this parameter does not structurally
change the outcome.

Although POT attracts more container traffic, as repre-
sented by the increasing g7, line, the equilibrium handling
charges decrease for both ports. In this case, the effect on
POT’s profits is unclear. Therefore, we construct the ports’

— K - - g,k qir*
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124 129 134 139 144 149 154 159 164
Port 1's capacity in Million TEU/year

FIGURE 5 Effect of POT’s capacity, K|, on the decision variables
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FIGURE 6 Effect of POT’s capacity, K;, on the profits of all of the
shipping lines and the ports

profit functions using the same parameters, as shown in
Figure 6.

We find that an increase in capacity benefits neither POT
nor POA, although the adverse effect on POA’s profit is pro-
found. Because of the decrease in the equilibrium handling
charges, only the shipping lines benefit from an increase in
port capacity. Therefore, a port may not have a sufficient
incentive for capacity expansion, even if its current capacity
is less than the competitor’s capacity, because an increased
capacity decreases its congestion cost, thereby intensifying
competition with the other port. As the competitor cannot
feasibly add capacity in the short term, the only option for
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retaining the shipping lines is to lower the handling charges.
This, in turn, makes the other port also decrease its charges.
Ultimately, the profits of both ports decrease, as can be
expected in a setting with more intense competition.

6 | CONCLUSION

This study is one of the first to examine the competitive
dynamics between shipping lines and the effect of the num-
ber of shipping lines on port charges and profits. The study
illustrates that under a two-stage noncooperative Cournot
game model, shipping lines consider only the negative effect
of the extra shipment transported via the port with lower
costs (Port 1) on their own output instead of the effect on
the aggregate output. Hence, each shipping line ships more
cargo than the industry optimal via the port with lower
costs. This insight can help small port operators (e.g., POT
and POA) formulate their strategy to remain profitable with
the trend of mergers and alliances among giant shipping
lines.

Our study extends the literature on port competition by
incorporating competition between multiple identical ship-
ping lines. It is observed that competing ports set higher
container handling charges when the number of shipping lines
decreases. Similarly, ports increase handling charges when
the number of shipping lines decreases.

Future research could be undertaken in the following direc-
tions. First, our model does not include the negotiation pro-
cess for setting port charges between international shipping
lines and container ports. In practice, mega shipping lines,
such as Maersk, have immense bargaining power, which
allows them to negotiate for a substantial discount in port
charges because removing a port from the line’s route would
have a considerable negative impact on the port’s profit. Sec-
ond, the model is constructed based on an implicit assumption
that the shipping lines bear the congestion costs. However,
in practice, shipping lines may try to pass some or all of
the congestion costs on to shippers by increasing their ship-
ping charges for the cargo shipped through a congested port.
This, in turn, may lead to shipping lines splitting their cargo
between two ports.
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APPENDIXA

A.1 | PROOF OF LEMMA 1

Substituting Equations (1)—(10) into Equation (11), the profit
function of Shipping Line i is given as follows:
“l’(zlkv=1 Yy >’Vbq1'1
Kl
az”<1_sz:1"bf]k1 )’Vb(l_‘hl)
ra .

= -ci——w) Vg —

+(p = =w) VW (1 = gqin) =

Taking the first partial derivative of the profit function of
Shipping Line i with respect to g;;, we obtain:

2 N
or! ay () (Qi1+zk:1‘1kl)
i b
L =@p-c-w)VW - ——
P (p—c1—wp) 3
ay (1) (1_4i1+1—2kN:1‘Ik1)

—(p-cr—w)VP +
KZ

Taking the second partial derivative with respect to g;;, we
obtain:
Pzl 2a)(r?)’ by?
; 1

2a, (rv

oq’, B K, K

027[{
2.

% < 0, the profit function of Shipping Line i, zrf, is

As

concave with respect to g;; in the interval [0, 1].

A.2 | PROOF OF LEMMA 2

The first partial derivative of the profit function of Shipping
Line i with respect to g;; can be written as follows:

2
or'! , ai(n*) (611'1 + Ziv=141k1>
— =@p-c—-w)V -
oqi1 K
2
ap(rv?) <1—Qi1 +1_ZkN=1‘Ikl)

b
—@P—-—c—wy)v+
(p—c2—w2) A

(AD)
There is a system of N equations like Equation (A1), each
representing the first partial derivative of the profit function
of Shipping Line i with respect to g;;. To determine the Nash
equilibrium fraction of the port of call for each shipping line,
we set each equation equal to 0 and solve the system of N
Equations (A1) simultaneously.
To solve the system of N Equations (A1), we add all of them
as follows:

2
ar(n”) <ZkN:1qk1 +NZkN=1‘Ik1>
K,

az(rv”)2 ((1 - Zgﬂqm) +N<1 - ZkN=1q1<l))

K,

N@—-c —wl)vb—

+N(p—c2—w2)vb—

=0.
Solving for Y, i1, we obtain:

N
Zqil =
i=1

N (N + Daxr?v? = (e + wi — 2 = w2) K>

25b (4L 4 G
N+ D (8 + 2 ) Ko
N ((N+ Daxr®v? — (c1 + wi — ¢ — w) Kz) K

(N + D)r2vb (a1 Ky + a2 K))

Substituting Zi‘\;‘]i back into Equation (A1) and solving for
gi1, we obtain:
(N + Daprv? = (c1 + wy — ¢ = w2) K2) K
(N + Dr2vb (a1 K> + a2Ky)
EDlsq;,Vie{l,Z,...,N}. (A2)

gi1 =

Equation (A2) indicates that each shipping line’s Nash equi-
librium port of call, gj;, is equal to the others (q’lkj = q;j = ...
= q;(\,j) and given by D;.

In contrast, according to Lemma 1, the first partial deriva-
tive of Shipping Line i’s profit function with respect to g1,

or!

0—", is a monotonic decreasing function in g;; in the inter-
q

il
val [0, 1]. Hence, there is a unique, optimal solution, g;;, in

7!
the interval [0, 1]. Specifically, g% = 0 if ;’7 < 0 for any
il
7!
gn € [0,1]; g5, = Lif :q—’ > 0 for any g;; € [0,1]; and
il
q;, € [0, 1], otherwise.
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Therefore, we conclude that the Nash equilibrium fraction
of port of call of each shipping line, ql’;, is equal to the others

(Cffj = CIZJ- =..= q}“vj) and given by:
0 ifD; <0
g, =19D, if0<D; <1, where
1 ifD;>1

D ((N + Daxr>v? — (¢; +wy — ¢ — w) Kz) K,
b (N + D2 (a1K; + a:K)) '

A.3 | PROOF OF PROPOSITION 1

. _ ((N+1)a2r2vb—(cl+w1—cz—w2)Kz
With D, = (N+D)P2ve (a,Ky+asKy )
observe the following condition:

K
LS from Lemma 2, we

(1) D; < 0 is equivalent to wy — w; <

b
%. Therefore, if

2
Dy < 0, then g%, = 0 and (w},w}) =
max{ wiw))| Ly £wy UL Ly Swy S U,

(N+Dayr2v? }

T —

Wy —wy; <Cp—C—

KZ
(i) Dy > 1 is equivalent to w, — w; >
2.b
cp — ¢ + W Therefore, if
1
x %)
D; > 1, then q; = 1 and (W1’W2) =

max{ wiw)| Ly <wy; S U, Ly Swy < Us,

N+Dayr v
WZ_W1>C1_CQ+%

(iii) Under the condition 0 < Dll <1,Port1’s
profit function is given as follows:

m = (Wi — k) ’Ngiy — mi K. (A3)
Port 2’s profit function is given as follows:
m = (w2 — k) "N (1 = gi1) — myKs. (A4)
Substituting g, for ¢gn in Equations (A3) and
(A4) and solving & = & = 0, we obtain
ow, ow,
WT _ ((er=c1+2k +ky ) K +2(N+Day v ) K +a, PP (N+1K, and
3K, K,
W; _ ((cl—c2+k1+2k2)K2+(N+1)L12r2vb)K]+2a1r2v”(N+l)K2. Last,
3K,K,

o N . T .
by substituting w; for w; in ¢, = D), we obtain
s _ ((cr=c 14k =k YKo +2(N+1Day VYK +a, 2V (N+ DK,
9 = 32 (N+1)(a, Ky +as Ky ) :

A.4 | PROOF OF PROPOSITION 2

We substitute wy, wy, and g7, as given in Equations (16), (17),

and (18), and q;‘z =1 —q;‘l in the profit functions of Port 1, Port

2, and Shipping Line i as given in Equations (11) and (15).
The profit function of Port 1 is given as follows:

m = (wi — k) n’Ngn — miK.

Substituting wy and g, from Equations (16) and (18) for
wy and g;; in the above equation, the profit function of Port 1

becomes:
my = (w’f - kl) rvqu:f‘l -mKj.
Similarly, the profit function of Port 2 becomes:
m = (wy — k) "N (1 = giy) — myKs.

Substituting w; and g, for wy and g1, respectively, in the
above equation, the profit function of Port 2 becomes:

T = (w; - k2) N (1 - q;"l) - mKs.
The profit function of Shipping Line i is given as follows:
ar (Z;leh%) g

2
”f=2 (p—ci—wj) vy = K,
j=1

Substituting w’f, W;, and q;"l for wy, wy, and g;;, respectively,
in the above equation, the profit function of Shipping Line i
becomes:

2
. 2 . ajN<rqu;‘j>
T =Z (p—Cj—Wj>Vij—T ,
= i

where w”l‘, W;’ and q; are given in Equations (16), (17), and
(18)and g;, =1 —¢q;;.

A.5 | PROOF OF PROPOSITION 3

The results are obtained by taking the first derivatives of wy,
wy, and g7, with respect to N and taking the limit of these
derivatives with respect to N as N approaches infinity.

From Proposition 1, Port 1’s Nash equilibrium
container handling price, WT’
((cz—cl+2k1+k2)K2+2(N+1)a2r2vb)K1+a1r2vb(N+1)K2

3K, K, ’
Note that v? is a function of N, that is, v = %
Therefore, taking the first derivative of w} with respect to

N and simplifying it, we obtain:

is given by wj =

% _ _F2V(2(12K1 + a1 K>)
ON 3K K,N?

k]

. ow*
which means that % < 0.

Taking the limit of the first derivative of w} with respect to

e . ow'
N as N approaches infinity, we have: limy_, % =0.

(i) Following the same steps as in Part (i), we
obtain
Wy V(@K +2a,K>)
oN 3K K,N?

<0,

. ow’
nd lim — =0.
and N— oo IN 0

(i) From Proposition 1, the Nash equilibrium
fraction of the vessels’ port of call of each
shipping line at Port 1, g, is given by:
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((ca = c1 +ky — k) Ko + 20N + Dayr®vP) Ky + a PV (N + 1)1<2
3r2Vb(N + 1)((11K2 + azKl)

s

a4, =

Note that v*is a function of N. Therefore, taking the first
derivative of g, with respect to N and simplifying it, we
obtain:

ai;'kl _ KiKy(ca—ca+k—k)
ON  3(N+12Vr2 (a1 K> + a:K))'

Taking the limit of the first derivative of g;| with respect to
=0.

oq;
N as N approaches infinity, we have: th_,00

A.6 | PROOF OF PROPOSITION 4

The profit function of Shipping Line s € {1,2, ... ,N — M}
is given by.

7?5 = (P—Cl —v“vl)vb% -
a r(Zg;MV”ﬁm +MVP Gy, )’beicl ~ b ~
X + (p—ca=Mm)v* (1-Ga) —
a2r<l—sz_le”?jkl+Mt’b(1—§M])>r1’b(l—ﬁkl)

, where qM, is the frac-

tion of the Vessels port of call that the merged shipping
line makes at Port j. The profit function of the merged

shipping line is given by: 7! = (p—ci— W) VG —
a ’(Z;/::lM"be\kl +MVP Gy )rvbﬁm ~ b ~
X + (p—cz—wz)v (l—qu) -

a2r< 1 —ZkN_IM

VG +M"b(1_aM1 ))”’b(l_,q\m)

Following the same
steps as in Lemmas 1 and 2 (i.e., taking the partial derivative
with respect to the port-of-call decision variables and solving
the resulting system of equations), we obtain the following
equilibrium values:

(Kz(vsz—v/f/1+cz—cl)+a2v r2(N M+2))

ANk

9o = Vr2 (K + azK1) (N — M + 2) .
e (Kz(\/x\lg—v/t\/l +Cz—C1>+azvbr2(N—M+2)M)K1
D1 = V2 (1K + axKy) (N — M + 2)M

Substituting these equilibrium values in the ports’ objective
function, we obtain the equilibrium port handling charges:

ar = Chitke b e —e )N =M+ DK K + (@ Ky + 2a,K) VPN — M+2)
! 3K K;(N—M+ 1)

(ky +2ky —cy +¢;) (N =M + DK, K, + 2a, K, + a;K)) VP rPN(N — M +2)
3K\ K,(N—M +1) ’

wh =

Taking the difference between the equilibrium port han-
dling charges and those under the symmetric case and simpli-
fying the result, we obtain the following:

A~ « r2vb Kjar + Kra)) (M — 1)

wr—w, = >0,
3K\Khr(N—-M+1)

At N r2yb (Kiay + 2K>a)) (M — 1)
Wy —w; = > 0.
3K\Kor(N—-M+1)

Taking a partial derivative of the above differences with
respect to M and simplifying the result, we obtain the
following:

9 (W} = wj) _ M QKa + Kray)
oM T 3K Ka(N =M + 1)2

’

and R
9 (w5 —wj) _ AV (Kiay + 2Kha1)

oM T 3K Ka(N =M + 1)2

A.7 | PROOF OF PROPOSITION 5

For this proof, we drop the indices j = 1,2 that indicate the
port as we only consider one port. The objective function of
Shipping Line i is given as follows:

i \4

b
ns_(p—c—W)vb—Crv%(p—c—W)N—“” 4

NK

The port’s objective function is given by:
7=W-—-kyrV—mkK.

As 7 increases with an increase in W, the port sets the high-

est possible W such that 7t > 0. Solving
2

find that w* = p — ¢ — Y. Taking the partial derivative with

#L = 0 for W, we

respect to N, we obtain ialzv =0.
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