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Abstract

This study examines the effect of changes in the number of shipping lines on port

charges and profits. A two-stage noncooperative game-theoretic model with two

ports and multiple identical shipping lines is developed. In the first stage, the ports

decide their container handling charges, and in the second stage, the shipping lines

decide on the number of calls to make at each port, given the port charges. The model

is then applied to the case of competition between two ports in New Zealand, the

Port of Tauranga and the Port of Auckland, to derive managerial insights. Our study

extends the literature on port competition by incorporating competition between

shipping lines. We also demonstrate that a decrease in the number of shipping lines

may force ports to increase their handling charges. Furthermore, we show that each

shipping line ships more cargo than the industry optimal via the port with lower

costs.
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1 INTRODUCTION

Container shipping is critical to international trade and global

economic development because container ports are the gate-

ways for a country’s foreign trade and a key interface between

sea transport and land transport. Shipping lines are strate-

gically important customers of container ports. Competition

among neighboring ports has intensified in recent years as

shipping companies can easily change their ports of call (Cul-

linane & Song, 2006; Song et al., 2016). A shipping line’s

decision to switch from one port to another negatively impacts

the former port but positively impacts the latter. The chosen

port benefits from the additional cargo, which in turn bene-

fits its hinterland economy. Conversely, the other port suffers

reduced connectivity that drastically reduces its competitive-

ness and container throughput (Notteboom & Yap, 2012). The

relationship between the Port of Tanjung Pelepas (Malaysia;

PTP) and the Port of Singapore is the best example that illus-

trates the dependence of port operators on shipping lines (Bae

et al., 2013). In 2000, the international container shipping

company Maersk Line shifted its transshipment operations

from the Port of Singapore to PTP, resulting in a dramatic drop

of approximately 9.2% in the container throughput of the Port

of Singapore in 2001, which was equivalent to approximately

1.57 million twenty-foot equivalent units (TEUs) (Tongzon,

2009). At the same time, PTP’s throughput increased to

approximately 1.63 million TEUs, nearly five times its ear-

lier volume. Maersk Line’s relocation sparked grave concern

about the potential ripple effects of one shipping line’s deci-

sions on the related business decisions of other shipping

lines (Kleywegt et al., 2002). Indeed, Maersk Line’s deci-

sion to change its transshipment port of call led to similar
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decisions among other international carriers. In 2002,

Evergreen Marine, a Taiwanese container shipping company,

switched most of its container operations from the Port of

Singapore to PTP, which amounted to 1–1.2 million TEUs of

annual container throughput.

From the perspective of the shipping lines, competi-

tion is much more intense than before, and shippers have

become more demanding and expect more frequent and reli-

able schedules and quicker service at lower rates (Notte-

boom, 2006). Therefore, the number of mergers and acqui-

sitions among shipping lines has increased to respond to

this intense competition. The consolidation wave was started

by AP Moller–Maersk with the purchase of P&O Nedl-

loyd in August 2005 and Hamburg Süd in 2017 (Meersman

et al., 2018). In 2016, COSCO Shipping, a former Chinese

state-owned shipping company, merged with China Shipping,

also a former Chinese state-owned shipping conglomerate,

to form a new company—China COSCO Shipping—which

later acquired OOCL, a Hong-Kong based container ship-

ping company, in 2018. In 2016, CMA CGM, a French

container shipping company, acquired NOL, Southeast Asia’s

largest container shipping company. In 2017, the three

largest Japanese container shipping companies, NYK, MOL,

and K Line, merged to form one company—Ocean Net-

work Express. These mergers and acquisitions resulted

in the top 20 shipping companies controlling 89% of

the global market share in 2020, compared with 54% in

1999, 41.6% in 1992, and 26% in 1980 (Alphaliner, 2020;

Notteboom, 2008).

The current trend of mergers and acquisitions among inter-

national shipping lines reduces the number of shipping lines

and makes port operators more dependent on shipping com-

panies. Therefore, the following question arises: What is the

effect of a change in the number of shipping lines on port

charges and profits? Moreover, how does asymmetry in the

sizes of shipping lines affect port charges and profits?

To address the above questions, we propose a game-

theoretic model to study the behavior of two competing ports

and multiple identical shipping lines. This study extends the

work of Song et al. (2016) by incorporating competition

between shipping lines. Specifically, we develop a noncoop-

erative model that has the following characteristics: (i) there

is Cournot competition among N identical shipping lines;

(ii) two container ports compete for the same market; and

(iii) in the first stage, each port decides its container han-

dling charge and in the second stage, given the port charges,

each shipping line makes its port of call decision (i.e., the

number of calls at each port) to maximize its profit. Other

shipping lines’ port of call decisions are also considered as

these decisions affect port congestion. The case of the PTP

(Malaysia) and the Port of Singapore shows the strong depen-

dence of port operators on shipping lines. New Zealand ports

face a similar situation, as illustrated by the recent shift-

ing of Maersk Line’s Southern Star service from the Port

of Auckland (POA; formally known as Ports of Auckland

as it operates two separate facilities in Auckland; this study

refers to it as POA for the sake of simplicity) to the Port of

Tauranga (POT). The switch between the two largest con-

tainer ports in New Zealand resulted in an annual revenue loss

of nearly NZD 20 million for POA (Skeller, 2011). There-

fore, we apply our model to the case of inter-port competition

between POT and POA to derive managerial insights.

This study makes two main contributions. First, we build

a two-stage non-cooperative Cournot competition game and

derive its unique equilibrium. Our model provides a frame-

work for analyzing Cournot competition among shipping

lines. It illustrates that under a two-stage noncooperative

Cournot game model, shipping lines only consider the nega-

tive effect of switching from one port to another on their own

output and not the effect on total output. Hence, each ship-

ping line tends to ship more cargo than the industry optimal

via the port with lower costs. Second, the case study of port

competition between POT and POA reveals an unexpecting

and exciting result: the decrease in the number of compet-

ing shipping lines forces the competing ports to increase their

handling charges. We also provide a theoretical explanation

for this interesting result.

The remainder of this paper is organized as follows.

Section 2 presents the literature review. Section 3 describes

the noncooperative game-theoretic model of the study, while

Section 4 presents the case study and discussion of the model.

Section 5 concludes the research and outlines the directions

for future research.

2 LITERATURE REVIEW

Game theory is a well-known mathematical framework

used to study the interactions between intelligent, rational

decision-makers to achieve optimal payoffs (Myerson, 1999).

Game theory is a powerful tool in port research (Ishii

et al., 2013). Bobrovitch (1982) is the first to apply game

theory to port competition by developing a Cournot model

to capture competition between two ports. Later, Zan (1999)

analyzes a Stackelberg game to examine the interactions

among shippers, ocean carriers, and container port manage-

ment policy.

In the research on port pricing decisions, Van

Reeven (2010) uses Hotelling’s model to analyze port compe-

tition. The study focuses on the vertical integration decision

and incorporates competition between service providers.

Another study on port pricing is that of Zhang et al. (2010),

which applies a Bertrand game-theoretic model to analyze

price competition between the Port of Hong Kong and the

Port of Shenzhen. The authors propose three strategies to

reduce the “price war” between the two ports: service differ-

entiation, coopetition, and cost-leadership. Basso et al. (2017)

further explore port pricing strategy in the presence of multi-

ple shippers, but their model incorporates a single port and a

monopolistic shipping company.
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In their research on the pricing and investment problems of

container ports, De Borger et al. (2008) develop a two-stage

game theoretic model to study the interactions between opti-

mal investment policies, pricing decisions, and the hinterland

capacity of competing ports. In a later paper, Ishii et al. (2013)

expands the model further by developing a non-cooperative

game-theoretic model with stochastic demand to analyze the

pricing decisions of two competing ports under different tim-

ings for port capacity expansion. The model is then applied to

the case of competition between the Port of Kobe, Japan and

the Port of Busan, South Korea. The authors suggest that ports

should set lower port charges when demand elasticity is high

and that a longer time interval between capacity investments

increases the Nash equilibrium port rates.

Saeed and Larsen (2010) build a two-stage game model for

analyzing the effects of cooperation among competing ports

and explore possible coalitions among three container termi-

nals at the Port of Karachi in Pakistan. In the first stage, the

three terminals decide whether to join a coalition or operate

independently. The second stage is the Bertrand model, where

the resulting coalitions compete with nonmembers. The study

concludes that the “grand coalition” is the only coalition that

is stable for all players. However, the real winners in the game

are the terminals at other ports that earn a higher payoff with-

out participating in the coalition and end up playing the role

of the “orthogonal free-rider.”

While previous studies on port competition focus on ports’

decisions, Bae et al. (2013) consider the decisions of both the

ports and the shipping lines and show that shipping lines tend

to make more calls at ports with larger capacities and cheaper

rates and the effect of the price difference between two com-

peting ports is greater when there is less port congestion.

Song et al. (2016) initially model ocean carriers’ port of

call and port pricing decisions in the context of a transporta-

tion chain by considering the ocean freight cost, feeder service

cost, port charges, and hinterland transport cost simultane-

ously. Their game-theoretic model provides many insights

into the competition between the Port of Southampton and

the Port of Liverpool in the United Kingdom. The model

only considers a single shipping line and does not address the

competitive dynamics between shipping lines and the effect

of a change in the number of shipping lines on port charges

and profits. Therefore, the authors call for future research

to expand their model to include multiple identical shipping

lines.

This study responds to the call of Song et al. (2016) to

extend their work by including Cournot competition among

multiple shipping lines. The next section describes the model

in detail.

3 THE NONCOOPERATIVE

GAME-THEORETIC MODEL

Before presenting the model, we first list the notations used

in the article below.

Indices

i the index of a shipping line; i = 1, 2, … ,N,

j the index of a port; j = 1, 2.

Parameters

aj a positive coefficient that represents the congestion

cost in dollars incurred by shipping lines when

utilization at Port j reaches its effective capacity,

cj the average cost per container ($/TEU) for a shipping

line when it calls at Port j; cj does not include the

congestion cost at a port,

kj the unit operating cost at Port j ($/TEU),

Kj the effective handling capacity at Port j (TEUs/year),

Lj the lower bound on the port unit container handling

price,

mj the unit handling capacity investment at Port j ($/TEU),

N the number of shipping lines,

p the unit shipment price of a container, which is the

price charged by shipping lines to shippers ($/TEU)

(it is assumed that the return shipment price is included

in p and all shipping lines charge shippers the same

price, p),

Uj the upper bound on the port unit container handling

price,

V the annual total cargo volume shipped by all shipping

lines via both ports (TEUs/year),

vb the annual cargo volume shipped by each shipping line

via both ports (TEUs/year); V = N ⋅ vb.

Decision variables

Cj the unit port congestion cost incurred by Shipping Line

i at Port j ($/TEU),

Fij the annual number of container lifts carried out at Port

j (j = 1, 2) for Shipping Line i (TEUs/year),

Fj the annual total number of container lifts carried out at

Port j (j = 1, 2) for all shipping lines (TEUs/year),

qij the fraction of ports of call made by Shipping Line i at

Port j,

r the average number of port operations per container,

vij the annual cargo volume transported by Shipping Line

i via Port j (TEUs/year),

vj the annual cargo volume transported by all shipping

lines via Port j (TEUs/year),

wj the container handling charge ($/TEU) at Port j.

Functions

ÿl
i

Shipping Line i’s profit function ($/year),

ÿj Port j’s profit function ($/year).

This study considers a two-stage noncooperative

game-theoretic model consisting of N identical shipping

lines (i = 1, 2, … ,N) and two container ports (j = 1, 2),

where the two ports compete for the same market. In the first

stage, each port determines its container handling charge, wj

($/TEU), that maximizes its profit. In the second stage, each

shipping line decides the value of qij, which is the fraction

of the ports of call made by the vessels of Shipping Line i at
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Port j, such that 0 f qij f 1 and qi2 = 1 − qi1, to maximize

its profit by observing the port charges, congestion costs,

mother vessel’s fuel cost, and feeder vessel’s fuel cost. We

assume that all transportation is operated by the shipping

lines (Song et al., 2016).

3.1 General setup of the model

We define V as the annual total cargo volume transported by

all N shipping lines via both ports (TEUs/year); V is assumed

to be fixed. This assumption is in line with that of past stud-

ies (e.g., Bae et al., 2013; Song et al., 2016) because often

there is no feasible alternative to maritime transportation. For

example, even if both ports were to increase their handling

charges, it is unlikely that the total volume of cargo trans-

ported will change drastically. We define vb as the annual

cargo volume transported by each shipping line via both ports

(TEUs/year) and V = N ⋅ vb. We assume vb to be equal, and

its split between the two ports is proportional to the ports’

decision on the splitting of ports of call by vessels, denoted

by qij. This assumption is adopted from Bae et al. (2013).

The values of qij can be the same as or different from each

other depending on how the shipping lines interact with one

another to optimize their profits, as illustrated in Figure 1. We

assume that all shipping lines make their port-of-call deci-

sions simultaneously (Cournot competition for N shipping

lines).

Let vij be the annual cargo volume transported by Shipping

Line i via Port j(TEUs/year), which is the decision related

to qij:

vi1 = vb
⋅ qi1, (1)

vi2 = vb
⋅ qi2 = vb

⋅ (1 − qi1) . (2)

We define vj as the hinterland volume transported by all

shipping lines via Port j per year (TEUs/year). Then the total

volume transported by all shipping lines via both ports per

year, V , can also be written as follows:

V =

2∑
j=1

vj = v1 + v2 =

N∑
i=1

vi1 +

N∑
i=1

vi2. (3)

From Equations (1)–(3), we have:

v1 =

N∑
i=1

vi1 =

N∑
i=1

vb
⋅ qi1, (4)

v2 =

N∑
i=1

vi2 =

N∑
i=1

vb
⋅ qi2 =

N∑
i=1

vb
⋅ (1 − qi1) ,

or v2 = V − v1 = V −

N∑
i=1

vb
⋅ qi1. (5)

3.2 Congestion cost function

For ease of exposition, we focus on the head-haul direc-

tion of containerized cargo trade. For example, for an

import-oriented country, the head-haul direction is the direc-

tion of the flow of import cargo, and the ports and vessels

handle the same volume of container flow (export containers

or empty containers) in the opposite direction. This approach

is adopted from Song et al. (2016).

Specifically, an importing transshipment container is first

unloaded from the mother vessel to the port and then loaded

onto a feeder vessel from the port. After the feeder vessel

reaches the destination port, the container is discharged and

unpacked and becomes empty. This empty container may be

reloaded with new goods for export or returned as an empty

container; the returned container is then unloaded from the

feeder vessel to the port and loaded onto a mother vessel

from the port. Therefore, one transshipment container trans-

lates into a total of four port operations when considering its

contribution to port congestion.

FIGURE 1 General setup of the model (The subscript numbers, letters in red, refer to the index of shipping lines. The subscript numbers, letters in blue,

refer to the index of ports)
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Likewise, an importing hinterland container is first

unloaded from the vessel onto a truck or train. It is then dis-

charged and unpacked at the destination. The empty container

may be reloaded with new goods for export or returned as an

empty container; the returned container is then unloaded from

the truck or train onto the vessel. Therefore, one hinterland

container translates into a total of two port operations when

considering its contribution to port congestion. Let r denote

the average number of port operations per container, where

its value depends on the ratio of transshipment containers to

hinterland containers.

Next, we define Fij as the number of container lifts per year

conducted at Port j (j = 1, 2) for Shipping Line i (TEUs/year).

Let r be the average number of port operations per container.

Hence, Fij can be written as follows:

Fi1 = r vi1 = rvb
⋅ qi1, (6)

Fi2 = r vi2 = rvb
⋅ qi2 = rvb

⋅ (1 − qi1) . (7)

Furthermore, let Fj be the total annual number of port

operations of containers carried out at Port j (j = 1, 2)

for all shipping lines (TEUs/year). Then, we have the

following

F1 = r v1 = r ⋅

N∑
i=1

vb
⋅ qi1, (8)

F2 = r v2 = r (V − v1) = r

(
V −

N∑
i=1

vb
⋅ qi1

)
. (9)

Let Cj be the unit port congestion cost incurred by a ship-

ping line at Port j ($/TEU), which can be written as follows

(De Borger & Van Dender, 2006):

Cj = aj ⋅

(
Fj

Kj

)
, for j = 1, 2, (10)

where aj is a positive coefficient that represents the con-

gestion cost in dollars when utilization at Port j reaches its

effective capacity, and Kj is the effective handling capacity at

Port j (TEUs/year). Generally, we have Fj f Kj. Therefore,
Fj

Kj

can be interpreted as Port j’s utilization.

3.3 Profit function of the shipping lines

The main purpose of this study is to determine the equilibrium

value of qij for each shipping line, given the value of wj set by

the two ports in the first stage.

We need the following additional parameters to analyze

the shipping lines’ profit functions: cj is the average cost

per container ($/TEU), which may comprise the feeder ves-

sel and hinterland transportation costs; p is the unit shipment

price, which is the price charged by shipping lines to ship-

pers ($/TEU). Similar to Song et al. (2016), we assume that

the return shipment price is included in p and all shipping

lines charge shippers the same price, p. The shipment price is

fixed in our model as it is largely based on the shipping lines’

available capacity and the total demand for shipping services,

which are exogenous to our model. Hence, the profit function

of Shipping Line i is given as follows:

ÿl
i
=

2∑
j=1

((
p − cj − wj

)
vij − CjFij

)
, (11)

s.t.

0 f qij f 1, (12)

qi2 = 1 − qi1, (13)

Fij = r vij = rvbqij. (14)

The first term on the right-hand side of Equation (11) rep-

resents the annual total net revenue earned by Shipping Line

i by transporting vij volume via Port j. The second term is the

annual total port congestion cost paid by Shipping Line i for

transporting vij volume via Port j.

By expanding the last term on the right-hand side of

Equation (11) at Port j after substituting Equations (6), (7),

and (10) into the two terms, they become:

−

ajr
(∑N

k=1vbqkj

)
rvbqi1

Kj

.

The total congestion cost at Port j depends on both the frac-

tion of vessels’ ports of call, qij, of Shipping Line i and the

decisions made by all shipping lines,
∑N

x=1qxj. This shows that

the decisions of different shipping lines are interrelated.

3.4 Profit functions of the ports

To formulate the profit functions of the ports, we define kj as

the unit operating cost at Port j ($/TEU), mj as the unit han-

dling capacity investment at Port j ($/TEU), and Lj and Uj as

the lower and upper bounds, respectively, on the port unit con-

tainer handling price (Song et al., 2016). The profit functions

(j = 1, 2) of the ports are adopted from Song et al. (2016) as

follows:

ÿj =
(
wj − kj

)
⋅ Fj − mj ⋅ Kj, (15)

where Lj f wj f Uj.

The first term on the right-hand side of Equation (15) rep-

resents the annual profit of Port j from handling Fj number

of containers. The second term represents the annual total

investment by Port j for capacity expansion to keep up with

the growth in cargo throughput in the future. We examine the

ports’ capacity expansion decision in Section 5.3.

Summarizing the model, in the first stage, the two

ports decide on their container handling prices to opti-

mize Equation (15). In the second stage, N shipping lines

decide on how to split the vessels’ ports of call to optimize

Equation (11). We use the backward induction method (Bae

et al., 2013) to solve this game-theoretic model. We first start

with the second stage to find the subgame Nash equilibrium
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fraction of ports of call, q∗
ij
, of each shipping line. The

equilibrium port-of-call decision, q∗
ij
, is a function of the port

prices, wj. After that, the Nash equilibrium port container han-

dling prices, w∗
j
, can be obtained using equilibrium q∗

ij
in the

second stage. Last, we substitute w∗
j

back into the equilibrium

port of call, q∗
ij
, to eliminate wj from the result.

3.5 Equilibrium outcome

Next, we solve the game starting with q∗
ij
, as outlined

above. The following lemma ensures the uniqueness of the

equilibrium:

Lemma 1 For the given port prices, w1 and

w2, the profit function of Shipping Line i, ÿl
i
, is

concave with respect to qi1in the interval [0, 1].

Lemma 1 indicates that for the given port prices, w1 and w2,
ÿÿl

i

ÿqi1

is a monotonic decreasing function in qi1 in the interval

[0, 1]. Hence, there is a unique optimal solution of q∗
i1

in the

interval [0, 1]. Specifically, q∗
i1
= 0 if

ÿÿl
i

ÿqi1

f 0 for any qi1 ∈

[0, 1]; q∗
i1
= 1 if

ÿÿl
i

ÿqi1

g 0 for any qi1 ∈ [0, 1]; and q∗
i1
∈ (0, 1)

otherwise.

Lemma 2 For the given port prices, w1 and

w2, each shipping line’s Nash equilibrium frac-

tion of ports of call, q∗
ij
, is the same (q∗

1j
=

q∗
2j
= … = q∗

Nj
) and given by:

q∗
i1
=

⎧
⎪«⎪¬

0 if D1 < 0

D1 if 0 f D1 f 1

1 if D1 > 1

,

where D1 =
((N+1)a2r2vb−(c1+w1−c2−w2)K2)K1

(N+1)r2vb(a1K2+a2K1)
.

Using the Nash equilibrium port-of-call decision, q∗
ij
, in

Lemma 2, the Nash equilibrium port unit container handling

prices, w∗
j
, can then be derived in the first stage. Next, w∗

j
is

substituted back into the equilibrium port of call, q∗
ij
, to elim-

inate wjfrom the result. The main results of the game model

are summarized in the following proposition.

Proposition 1 The Nash equilibrium fraction

of ports of call, q∗
ij

(q∗
1j

= q∗
2j

= … = q∗
Nj

)

and the Nash equilibrium port unit container

handling prices, w∗
j
, are given by (with q∗

i2
=

1 − q∗
i1
) ∶

(i) If D1 < 0 then q∗
i1

= 0; w∗
1

and w∗
2

are given by
(
w∗

1
,w∗

2

)
=

max
{

(w1w2)| L1 f w1 f U1,L2 f w2 f U2,

w2 − w1 < c1 − c2 −
(N+1)a2r2vb

K2

}
.

(ii) If D1 > 1 then q∗
i1

= 1; w∗
1

and w∗
2

are given by
(
w∗

1
,w∗

2

)
=

max
{

(w1w2)| L1 f w1 f U1,L2 f w2 f U2,

w2 − w1 > c1 − c2 +
(N+1)a2r2vb

K1

}
.

(iii) If 0 f D1 f 1, L1 f w1 f U1,L2 f w2 f

U2, then q∗
i1
,w∗

1
and w∗

2
are given by

w∗
1
=

(
(c2 − c1 + 2k1 + k2)K2 + 2(N + 1)a2r2vb

)
K1 + a1r2vb(N + 1)K2

3K1K2

,

(16)

w∗
2
=

(
(c1 − c2 + k1 + 2k2)K2 + (N + 1)a2r2vb

)
K1 + 2a1r2vb(N + 1)K2

3K1K2

,

(17)

q∗
i1
=

(
(c2 − c1 + k2 − k1)K2 + 2(N + 1)a2r2vb

)
K1 + a1r2vb(N + 1)K2

3r2vb(N + 1) (a1K2 + a2K1)
.

(18)

Points (i) and (ii) of Proposition 1 represent the case where

one of the two ports gains all the market share and the

other gets nothing, which is unusual. If the shipping lines

move all of their cargo via one port only, the hinterland

transport congestion cost and port congestion cost increase

significantly due to the capacity constraint, which in turn

makes the decision uneconomical. Consequently, shipping

lines must balance the vessels’ ports of call between the

two ports.

Point (iii) of Proposition 1 represents a more realistic sce-

nario and provides the Nash equilibrium fraction of ports of

call, q∗
ij
, and the Nash equilibrium port unit container han-

dling prices, w∗
j
, to the non-cooperative game model. The

three conditions in Proposition (iii), 0 f D1 f 1, L1 f

w1 f U1,L2 f w2 f U2, can also be rewritten to explic-

itly show the relationships between the model parameters

as follows:

(
(c1 − c2)K1 + (3a2 − a1) (N + 1)r2vb

)
K2 − a2r2vb(N + 1)K1

K1K2

f k2 − k1

f

(
(c1 − c2)K2 + 2(N + 1)a2r2vb

)
K1 − a1r2vb(N + 1)K2

K1K2

, (19)

L1 f

(
(c2 − c1 + 2k1 + k2)K2 + 2(N + 1)a2r2vb

)
K1 + a1r2vb(N + 1)K2

3K1K2

f U1, (20)

L2 f

(
(c1 − c2 + k1 + 2k2)K2 + (N + 1)a2r2vb

)
K1 + 2a1r2vb(N + 1)K2

3K1K2

f U2. (21)

Equations (19)–(21) can be obtained by substituting wj with

w∗
j

in the three conditions, 0 f D1 f 1, L1 f w1 f U1,L2 f

w2 f U2, and then simplifying them. These conditions define

the existence of the Nash equilibrium such that each port

receives its share of cargo. Condition (19) ensures that the

operating costs of the two ports are not excessively differ-

ent from each other. Conditions (20)–(21) state that the price

bounds must not be too restrictive. Note that all of the anal-

yses discussed hereafter refer to this interior solution (under

conditions (19)–(21)).
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Proposition 2 Given the Nash equilibrium

and conditions (19)–(21), the profit functions

for the two ports and Shipping Line i are given

by:

ÿ∗
1
=
(
w∗

1
− k1

)
rvbNq∗

i1
− m1K1,

ÿ∗
2
=
(
w∗

2
− k2

)
rvbN

(
1 − q∗

i1

)
− m2K2,

ÿl∗
i
=

2∑
j=1

»¼¼¼½

(
p − cj–w∗

j

)
vij −

ajN
(

rvbq∗
ij

)2

Kj

¾¿¿¿À
, i = 1, … ,N,

where w∗
1
, w∗

2
, and q∗

i1
are given in Equations

(16), (17), and (18), respectively.

Next, we perform the sensitivity analysis of the equilib-

rium port handling charges and port-of-call decisions by the

shipping lines. In particular, we are interested in determining

the effect of the number of shipping lines on these decision

variables.

Proposition 3 Under conditions (19)–(21),

the effect of the number of shipping lines, N, on

the decision variables is given as follows:

ÿw∗
1

ÿN
< 0 and lim

N→∞

ÿw∗
1

ÿN
= 0;

ÿw∗
2

ÿN
< 0 and lim

N→∞

ÿw∗
2

ÿN
= 0;

lim
N→∞

ÿq∗
i1

ÿN
= 0.

Proposition 3 indicates that:

(i) Port 1’s Nash equilibrium handling price,

w∗
1
, decreases with a decrease in N

and converges to a finite number as N

increases.

(ii) Port 2’s Nash equilibrium handling price,

w∗
2
, decreases with a decrease in N

and converges to a finite number as N

increases.

(iii) Last, if
ÿq∗

i1

ÿN
> (<) 0, the Nash equilib-

rium fraction of the vessels’ ports of call

made by each shipping line at Port 1,

q∗
i1

, increases (decreases) with an increase

(decrease) in N and converges to a finite

number as N increases. We also find that

if all of the costs at Port 2 are higher than

the costs at Port 1, then
ÿq∗

i1

ÿN
> 0, which

means that the equilibrium fraction of ves-

sels’ ports of call at Port 1 decreases as the

number of shipping lines decreases. The

inverse is also true.

Proposition 3 shows a surprising result: the equilibrium

port handling charges w∗
1

and w∗
2

increase, while q∗
i1

decreases

(assuming Port 1 is the port with the lower cost) as the num-

ber of shipping lines, N, decreases. Intuitively, w∗
1

and w∗
2

are

expected to increase only when there are fewer shipping lines

in the market, as the shipping lines would have less bargain-

ing power. Consequently, shipping lines would not be able to

negotiate for favorable handling charges with the ports.

We start the analysis by understanding why q∗
i1

decreases

as the number of shipping lines decreases. To explain this,

we adopt the argument of Tirole (1988), which explains why

firms tend to produce more than the optimal industry output

in an oligopoly with Cournot competition.

First, recall that each shipping line’s profit function, rep-

resented by Equation (17), consists of three components:

revenue, congestion costs, and other costs (including trans-

portation costs and port charges). To easily understand the

competitive dynamics among the shipping lines, we consider

a simplified version of each shipping line profit’s function

below that consists of the three components.

ÿl
i
= R −

2∑
j=1

[
Cj ⋅ Qij +

(
t
g

j
⋅

N∑
k=1

Qkj

)
⋅ Qij

]
,

where, R is the total revenue of each shipping line for shipping

Qi (Qi = Qi1 + Qi2) number of containers;

Cj is the unit cost (excluding congestion cost) paid by the

shipping line for shipping one container via Port j (j = 1, 2);

Qij is the number of containers shipped by Shipping Line i

via Port j (j = 1, 2), Qi = Qi1 + Qi2; and.

t
g

j
is a positive number that represents the congestion cost in

dollars when utilization at Port j reaches its effective capacity.

According to the shipping line’s profit function given

above, shipping lines ship more cargo via the port that has

lower costs, Cj (excluding the congestion cost), to earn more

profit.

When the number of shipping lines in the market increases,

each shipping line sends more cargo via the lower-cost Port 1

as the shipping lines only consider the negative effect of a

higher coefficient of congestion cost (t
g

j
⋅

∑N

i=1Qij) on their

own output instead of the effect on the aggregate output. For

example, consider a case where there is only one shipping

line; the total number of shipping containers in the market

is 100 000, and the optimal division of cargo between Port 1

and Port 2 is 51,000 and 49 000 containers, respectively. If

the shipping line decides to send one more container to Port 1

instead of Port 2 (51 001 and 48 999 containers, respectively),

that extra container increases the coefficient of t
g

j
⋅

∑N

i=1Qij,

for example, from $30/TEU to $30.1/TEU. The increase in

t
g

j
⋅

∑N

i=1Qij, in turn, has an adverse effect on the extra con-

tainer and the remaining 51 000 containers, which means that

the cost of sending one more container to Port 1 is $5130.1

(30.1 × 1 + 0.1 × 51 000 = 5130.1).

The same argument Is used for a case where there are

two shipping lines in the market, and the optimal division

of cargo for each shipping line between Port 1 and Port 2 is
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25 500 and 24 500
(

25 500 =
51 000

2
and 24 500 =

49 000

2

)
as

now there are two shipping lines instead of one. If one of

them sends one more container to Port 1 instead of Port 2

(25 501 and 24 499), that extra container will cost them only

$2580.1 (30.1×1+0.1×25 500 = 2580.1) instead of $5130.1.

Hence, each shipping line ships more cargo through Port 1

until the marginal cost of shipping the extra container via

Port 1 equals the marginal cost of shipping via Port 2, which

explains why the equilibrium fraction of ports of call, q∗
i1

,

increases in the original model as the number of shipping lines

increases (similarly, it decreases as the number of shipping

lines decreases).

Additionally, the negative effect of the extra container being

sent to Port 1 by each shipping line becomes smaller as the

number of shipping lines increases, which means that it is

more flexible for each shipping line to decide how many ship-

ments to be transported via Port 1 and Port 2. This implies

that the demand curves of the two ports become more elas-

tic, as it is easier for their customers (shipping lines) to switch

from Port 1 to Port 2 for the port of call. Hence, it is more

profitable for the ports to lower their port charges because a

1% reduction in price leads to an increase of more than 1%

in the volume of cargo handled. This explains why w∗
1

and w∗
2

increase as N decreases. The inverse is also true.

The above analysis explains why q∗
i1

increases and con-

verges to a finite number when N increases as the negative

effect of the extra shipment transported via Port 1 becomes

smaller. Therefore, the ports are obliged to lower their port

charges because the demand curve becomes more elastic.

Similarly, the ports increase their charges because the demand

curve becomes more inelastic when fewer shipping lines are

present.

While we have considered the effect of the change in the

number of shipping lines on the equilibrium port handling

charges, we have not confirmed that a merger of the two ship-

ping lines would lead to a similar result. The merger would

decrease the number of shipping lines and create an asymme-

try between the shipping lines in terms of the annual cargo

volume. Another question worth examining is: Does port

competition drive the handling charge dynamics? If that is

the case, it would be necessary to consider a merger between

the two ports to form a single entity. These two scenarios are

tested in the next section.

4 COMPETITION EFFECT

4.1 Merger among shipping lines

Next, we study the effect of a merger between M shipping

lines on the equilibrium decisions, assuming M < N. In

particular, we consider a scenario wherein M shipping lines

merge to form a new shipping line with an annual cargo vol-

ume that is M times the original volume. Consequently, we

have N − M shipping lines, each with an annual volume of

Vs =
V

N
, where s = 1, 2, … ,N −M, and the merged shipping

line (denoted as m) with an annual volume of Vm =
MV

N
.

Our primary focus is to compare the equilibrium port han-

dling charges in the symmetric case, w∗
1

and w∗
2
, with those

after the merger, denoted as �w∗
1

and �w∗
2
. Following the same

logic as in the previous section, we obtain the results summa-

rized in Proposition 4.

Proposition 4 The difference in the equilib-

rium port handling charges after a merger of M

shipping lines is given as follows:

�w∗
1
− w∗

1
=

r2vb (2K1a2 + K2a1) (M − 1)

3K1K2(N − M + 1)
> 0,

�w∗
2
− w∗

2
=

r2vb (K1a2 + 2K2a1) (M − 1)

3K1K2(N − M + 1)
> 0,

ÿ
(
�w∗

1
− w∗

1

)
ÿM

=
r2vb (2K1a2 + K2a1)

3K1K2(N − M + 1)2
> 0,

and

ÿ
(
�w∗

2
− w∗

2

)
ÿM

=
r2vb (K1a2 + 2K2a1)

3K1K2(N − M + 1)2
> 0.

The above results confirm our intuition described in

Section 3.5. The equilibrium port handling charges increase

after a merger of shipping lines. Furthermore, as the consol-

idation among shipping lines increases (i.e., as M increases),

the handling charges increase further.

4.2 Merger among ports

Next, we consider symmetric shipping lines but assume that

the ports maximize their joint profit functions when deciding

on the handling charges. Our primary interest is to establish

whether a decrease in the number of shipping lines leads to

an increase in handling charges in the absence of competition

between ports. Proposition 5 captures the sensitivity of the

equilibrium port handling charges in this scenario.

Proposition 5 The optimal handling charges

of the monopoly port are independent of the

number of shipping lines.

We find that in the absence of competition, a change in the

number of shipping lines does not affect port handling charges

because the monopoly port always sets handling charges in

such a way that extracts maximum profit. As the total con-

tainer volume and shipment prices do not depend on the

number of shipping lines in our model, the total profit of the

shipping lines remains the same as N changes; hence, the

optimal handling charge remains the same. Therefore, com-

petition among ports is an important factor that drives the

increase in handling charges as the number of shipping lines

decreases.

Next, we validate our key findings with a case study and

discuss the implications in more detail.
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5 CASE STUDY

This section introduces a case study that illustrates our model.

We describe two competing ports to estimate the model

parameters. Then, we consider the equilibrium outcomes with

a focus on the effect of the number of shipping lines on the

outcomes.

5.1 Case description

POT is the largest port in New Zealand (NZ) and, in 2019,

it handled a cargo volume of 12.5 million tons and container

throughput of 1.2 million TEU. Additionally, POT is the only

port in NZ that handles more than a million TEUs annu-

ally (Deloitte, 2020). POA is the second-largest container

port in NZ and handled an estimated container volume of

939 680 TEUs in 2019. It was the first port in NZ to operate

automated straddles (Deloitte, 2020). It was voted the “Best

Port in Oceania” every year from 2016 to 2019 at the Asian

Freight, Logistics, and Supply Chain Awards (Asia Cargo

TABLE 1 Port facilities and capacity comparison (Deloitte, 2020)

Criteria POA POT

Port harbor type Natural Natural

Draught (m) 12.5 14.5

Port operating land (ha) 77 190

Container terminal area (ha) 34 75

Container wharf length (km) 1.0 .8

Quay cranes 5 8

Forklifts/stackers 14 0

Straddles 39 46

Rail connection Yes Yes

Throughput (1000 TEU) 939.7 1233.2

Container ship calls 864 888

News, 2020). Table 1 shows a comparison of the facilities and

capacities of POA and POT.

We select the Southern Star service operated by Maersk

Line (Maersk, 2017) as the deep-sea container shipping route

to demonstrate our model’s results, which can select between

POT and POA as the port of call.

In Alternative 1, the vessels call at the following ports:

PTP→Singapore → Brisbane → POT → Lyttelton → Port

Otago → PTP, as shown in Figure 2.

In Alternative 2, POT is replaced by POA for the deep sea

and feeder container routes; other ports remain the same as

in Alternative 1. Hereafter, subscript 1 (j = 1) in the notation

denotes POT, and subscript 2 denotes POA.

In the baseline scenario, the variable values are set accord-

ing to Table 2.

5.2 Effect of the number of shipping lines on port

charges

To explore the effect of the number of shipping lines, N, on

the decision variables w∗
1
,w∗

2
and q∗

i1
, we vary N from 6 to 8,

10, 12, and 14. Figure 3 shows that the results are in line with

Proposition 3.

In this case, POT is the port with lower costs, corresponding

to Port 1 in our theoretical analysis, while POA corresponds

to Port 2. In line with our theoretical predictions, fewer ship-

ping lines lead to higher handling charges. Consequently,

the profits of both ports increase while the total profit of

all the shipping lines decreases as N decreases, as shown in

Figure 4.

5.3 Investment in capacity expansion

In our example, POT has a lower capacity than POA. Next,

we investigate whether investing in additional capacity is

FIGURE 2 The deep-sea container route (Maersk, 2017) (The green line shows alternative 1, which means that POT is chosen as the port of call by

Maersk’s southern star service. The red line shows alternative 2, which means that POT is replaced by POA as the port of call on this service)
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TABLE 2 Parameter estimation

Variable Source

V = 850 000 TEUs/year Freight Information Gathering System (Ministry of Transport, 2017)

a1 = a2 = 60 NZD Hypothetical values

K1 = 1 240 000 TEUs/year K2 = 1 400 000 TEUs/year (Deloitte, 2014)

c1 = 450 NZD/TEU

c2 = 463 NZD/TEU

Hinterland cargoes are assumed to be in Hamilton. The cost of transportation is then NZD 450 for POT and NZD 463 for POA

based on PwC’s report.

p = 2390 NZD/TEU The cost per container from Hamilton to Singapore based on PwC’s report.

m1 = m2 = 23

TEUs/voyage

This parameter is calculated based on Deloitte’s (2014) report which estimates that it will cost POT 398 million NZD to upgrade

their handling capacity from 1.24 to 1.82 million TEUs for a period of 30 years. Therefore, mj =
398⋅106

(1.82−1.24)⋅106
⋅30

≈ 23. In this

study, the unit handling capacity investment is assumed to be the same for both ports, similar to Song et al. (2016).

k1 = 33 NZD/TEU

k2 = 34 NZD/TEU

According to Deloitte’s (2014) report, the unit operating cost for one container throughput is around 67 NZDs/TEU for large ports

in NZ. Since loading and unloading activities are counted separately in this study, the unit operating cost of POT and POA should

lie somewhere around half of 67 NZDs/TEU. Moreover, it is well known that POT has a lower unit operating cost than POA.

FIGURE 3 Effect of the number of shipping lines, N, on the decision

variables

FIGURE 4 Effect of the number of shipping lines, N, on the profits of all

of the shipping lines and the ports (profits are based on Proposition 2)

beneficial for POT and how this may affect POA. The cur-

rent capacity of POT is 1.24 million TEU/year, and Figure 5

illustrates the effect of POT’s capacity expansion on the

equilibrium handling charges and shipping lines’ port-of-call

decision. For this analysis, we fix the number of shipping lines

at 10 (N = 10), although this parameter does not structurally

change the outcome.

Although POT attracts more container traffic, as repre-

sented by the increasing q∗
i1

line, the equilibrium handling

charges decrease for both ports. In this case, the effect on

POT’s profits is unclear. Therefore, we construct the ports’

FIGURE 5 Effect of POT’s capacity, K1, on the decision variables

FIGURE 6 Effect of POT’s capacity, K1, on the profits of all of the

shipping lines and the ports

profit functions using the same parameters, as shown in

Figure 6.

We find that an increase in capacity benefits neither POT

nor POA, although the adverse effect on POA’s profit is pro-

found. Because of the decrease in the equilibrium handling

charges, only the shipping lines benefit from an increase in

port capacity. Therefore, a port may not have a sufficient

incentive for capacity expansion, even if its current capacity

is less than the competitor’s capacity, because an increased

capacity decreases its congestion cost, thereby intensifying

competition with the other port. As the competitor cannot

feasibly add capacity in the short term, the only option for
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retaining the shipping lines is to lower the handling charges.

This, in turn, makes the other port also decrease its charges.

Ultimately, the profits of both ports decrease, as can be

expected in a setting with more intense competition.

6 CONCLUSION

This study is one of the first to examine the competitive

dynamics between shipping lines and the effect of the num-

ber of shipping lines on port charges and profits. The study

illustrates that under a two-stage noncooperative Cournot

game model, shipping lines consider only the negative effect

of the extra shipment transported via the port with lower

costs (Port 1) on their own output instead of the effect on

the aggregate output. Hence, each shipping line ships more

cargo than the industry optimal via the port with lower

costs. This insight can help small port operators (e.g., POT

and POA) formulate their strategy to remain profitable with

the trend of mergers and alliances among giant shipping

lines.

Our study extends the literature on port competition by

incorporating competition between multiple identical ship-

ping lines. It is observed that competing ports set higher

container handling charges when the number of shipping lines

decreases. Similarly, ports increase handling charges when

the number of shipping lines decreases.

Future research could be undertaken in the following direc-

tions. First, our model does not include the negotiation pro-

cess for setting port charges between international shipping

lines and container ports. In practice, mega shipping lines,

such as Maersk, have immense bargaining power, which

allows them to negotiate for a substantial discount in port

charges because removing a port from the line’s route would

have a considerable negative impact on the port’s profit. Sec-

ond, the model is constructed based on an implicit assumption

that the shipping lines bear the congestion costs. However,

in practice, shipping lines may try to pass some or all of

the congestion costs on to shippers by increasing their ship-

ping charges for the cargo shipped through a congested port.

This, in turn, may lead to shipping lines splitting their cargo

between two ports.
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APPENDIXA

A.1 PROOF OF LEMMA 1

Substituting Equations (1)–(10) into Equation (11), the profit

function of Shipping Line i is given as follows:

ÿl
i
= (p − c1– − w1) vbqi1 −

a1r
(∑N

k=1
vbqk1

)
rvbqi1

K1

+ (p − c2– − w2) vb (1 − qi1) −
a2r

(
1−

∑N

k=1
vbqk1

)
rvb(1−qi1)

K2

.

Taking the first partial derivative of the profit function of

Shipping Line i with respect to qi1, we obtain:

ÿÿl
i

ÿqi1

= (p − c1 − w1) vb −
a1(rvb)

2
(

qi1+
∑N

k=1
qk1

)

K1

− (p − c2 − w2) vb +
a2(rvb)

2
(

1−qi1+1−
∑N

k=1
qk1

)

K2

.

Taking the second partial derivative with respect to qi1, we

obtain:

ÿ2ÿl
i

ÿq2
i1

= −
2a1

(
rvb

)2

K1

−
2a2

(
rvb

)2

K2

f 0.

As
ÿ2ÿl

i

ÿq2
i1

f 0, the profit function of Shipping Line i, ÿl
i
, is

concave with respect to qi1 in the interval [0, 1].

A.2 PROOF OF LEMMA 2

The first partial derivative of the profit function of Shipping

Line i with respect to qi1 can be written as follows:

ÿÿl
i

ÿqi1

= (p − c1 − w1) vb −

a1

(
rvb

)2
(

qi1 +
∑N

k=1qk1

)

K1

− (p − c2 − w2) vb+

a2

(
rvb

)2
(
1− qi1 +1−

∑N

k=1qk1

)

K2

.

(A1)

There is a system of N equations like Equation (A1), each

representing the first partial derivative of the profit function

of Shipping Line i with respect to qi1. To determine the Nash

equilibrium fraction of the port of call for each shipping line,

we set each equation equal to 0 and solve the system of N

Equations (A1) simultaneously.

To solve the system of N Equations (A1), we add all of them

as follows:

N (p − c1 − w1) vb −

a1

(
rvb

)2
(∑N

k=1qk1 + N
∑N

k=1qk1

)

K1

+ N (p − c2 − w2) vb −

a2

(
rvb

)2
((

1 −
∑N

k=1qk1

)
+ N

(
1 −

∑N

k=1qk1

))

K2

= 0.

Solving for
∑N

i=1qi1, we obtain:

N∑
i=1

qi1 =
N
(
(N + 1)a2r2vb − (c1 + w1 − c2 − w2)K2

)

(N + 1)r2vb

(
a1

K1

+
a2

K2

)
K2

=
N
(
(N + 1)a2r2vb − (c1 + w1 − c2 − w2)K2

)
K1

(N + 1)r2vb (a1K2 + a2K1)
.

Substituting
∑N

i=1qi back into Equation (A1) and solving for

qi1, we obtain:

qi1 =

(
(N + 1)a2r2vb − (c1 + w1 − c2 − w2)K2

)
K1

(N + 1)r2vb (a1K2 + a2K1)

≡ D1 ≡ q∗
i1
,∀i ∈ {1, 2, … ,N}. (A2)

Equation (A2) indicates that each shipping line’s Nash equi-

librium port of call, qij, is equal to the others (q∗
1j
= q∗

2j
= …

= q∗
Nj

) and given by D1.

In contrast, according to Lemma 1, the first partial deriva-

tive of Shipping Line i’s profit function with respect to qi1,
ÿÿl

i

ÿqi1

, is a monotonic decreasing function in qi1 in the inter-

val [0, 1]. Hence, there is a unique, optimal solution, qi1, in

the interval [0, 1]. Specifically, q∗
i1

= 0 if
ÿÿl

i

ÿqi1

< 0 for any

qi1 ∈ [0, 1]; q∗
i1

= 1 if
ÿÿl

i

ÿqi1

> 0 for any qi1 ∈ [0, 1]; and

q∗
i1
∈ [0, 1], otherwise.
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Therefore, we conclude that the Nash equilibrium fraction

of port of call of each shipping line, q∗
ij
, is equal to the others

(q∗
1j
= q∗

2j
= … = q∗

Nj
) and given by:

q∗
i1
=

⎧
⎪«⎪¬

0 if D1 < 0

D1 if 0 f D1 f 1

1 if D1 > 1

, where

D1 =

(
(N + 1)a2r2vb − (c1 + w1 − c2 − w2)K2

)
K1

(N + 1)r2vb (a1K2 + a2K1)
.

A.3 PROOF OF PROPOSITION 1

With D1 =
((N+1)a2r2vb−(c1+w1−c2−w2)K2)K1

(N+1)r2vb(a1K2+a2K1)
from Lemma 2, we

observe the following condition:

(i) D1 < 0 is equivalent to w2 − w1 <

c1 − c2 −
(N+1)a2r2vb

K2

. Therefore, if

D1 < 0, then q∗
i1

= 0 and
(
w∗

1
,w∗

2

)
=

max
{

(w1w2)| L1 f w1 f U1,L2 f w2 f U2,

w2 − w1 < c1 − c2 −
(N+1)a2r2vb

K2

}
.

(ii) D1 > 1 is equivalent to w2 − w1 >

c1 − c2 +
(N+1)a2r2vb

K1

. Therefore, if

D1 > 1, then q∗
i1

= 1 and
(
w∗

1
,w∗

2

)
=

max
{

(w1w2)| L1 f w1 f U1,L2 f w2 f U2,

w2 − w1 > c1 − c2 +
(N+1)a2r2vb

K1

}
.

(iii) Under the condition 0 f D1 f 1, Port 1’s

profit function is given as follows:

ÿ1 = (w1 − k1) rvbNqi1 − m1K1. (A3)

Port 2’s profit function is given as follows:

ÿ2 = (w2 − k2) rvbN (1 − qi1) − m2K2. (A4)

Substituting q∗
i1

for qi1 in Equations (A3) and

(A4) and solving
ÿÿ1

ÿw1

=
ÿÿ2

ÿw2

= 0, we obtain

w∗
1

=
((c2−c1+2k1+k2)K2+2(N+1)a2r2vb)K1+a1r2vb(N+1)K2

3K1K2

and

w∗
2

=
((c1−c2+k1+2k2)K2+(N+1)a2r2vb)K1+2a1r2vb(N+1)K2

3K1K2

. Last,

by substituting w∗
j

for wj in q∗
i1

= D1, we obtain

q∗
i1
=

((c2−c1+k2−k1)K2+2(N+1)a2r2vb)K1+a1r2vb(N+1)K2

3r2vb(N+1)(a1K2+a2K1)
.

A.4 PROOF OF PROPOSITION 2

We substitute w∗
1
, w∗

2
, and q∗

i1
as given in Equations (16), (17),

and (18), and q∗
i2
= 1−q∗

i1
in the profit functions of Port 1, Port

2, and Shipping Line i as given in Equations (11) and (15).

The profit function of Port 1 is given as follows:

ÿ1 = (w1 − k1) rvbNqi1 − m1K1.

Substituting w∗
1

and q∗
i1

from Equations (16) and (18) for

w1 and qi1 in the above equation, the profit function of Port 1

becomes:

ÿ∗
1
=
(
w∗

1
− k1

)
rvbNq∗

i1
− m1K1.

Similarly, the profit function of Port 2 becomes:

ÿ2 = (w2 − k2) rvbN (1 − qi1) − m2K2.

Substituting w∗
2

and q∗
i1

for w2 and qi1, respectively, in the

above equation, the profit function of Port 2 becomes:

ÿ∗
2
=
(
w∗

2
− k2

)
rvbN

(
1 − q∗

i1

)
− m2K2.

The profit function of Shipping Line i is given as follows:

ÿl
i
=

2∑
j=1

»
¼¼¼½

(
p − cj − wj

)
vij −

ajr
(∑N

k=1vbqkj

)
rvbqi1

Kj

¾
¿¿¿À
.

Substituting w∗
1
, w∗

2
, and q∗

i1
for w1, w2, and qi1, respectively,

in the above equation, the profit function of Shipping Line i

becomes:

ÿl∗
i
=

2∑
j=1

»
¼¼¼½

(
p − cj–w∗

j

)
vij −

ajN
(

rvbq∗
ij

)2

Kj

¾
¿¿¿À
,

where w∗
1
, w∗

2
, and q∗

i1
are given in Equations (16), (17), and

(18) and q∗
i2
= 1 − q∗

i1
.

A.5 PROOF OF PROPOSITION 3

The results are obtained by taking the first derivatives of w∗
1
,

w∗
2
, and q∗

i1
with respect to N and taking the limit of these

derivatives with respect to N as N approaches infinity.

From Proposition 1, Port 1’s Nash equilibrium

container handling price, w∗
1
, is given by w∗

1
=

((c2−c1+2k1+k2)K2+2(N+1)a2r2vb)K1+a1r2vb(N+1)K2

3K1K2

.

Note that vb is a function of N, that is, vb =
V

N
.

Therefore, taking the first derivative of w∗
1

with respect to

N and simplifying it, we obtain:

ÿw∗
1

ÿN
= −

r2V (2a2K1 + a1K2)

3K1K2N2
,

which means that
ÿw∗

1

ÿN
< 0.

Taking the limit of the first derivative of w∗
1

with respect to

N as N approaches infinity, we have: limN→∞

ÿw∗
1

ÿN
= 0.

(i) Following the same steps as in Part (i), we

obtain

ÿw∗
2

ÿN
= −

r2V (a2K1 + 2a1K2)

3K1K2N2
< 0,

and limN→∞

ÿw∗
2

ÿN
= 0.

(ii) From Proposition 1, the Nash equilibrium

fraction of the vessels’ port of call of each

shipping line at Port 1, q∗
i1

, is given by:
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q∗
i1
=

(
(c2 − c1 + k2 − k1)K2 + 2(N + 1)a2r2vb

)
K1 + a1r2vb(N + 1)K2

3r2vb(N + 1) (a1K2 + a2K1)
.

Note that vbis a function of N. Therefore, taking the first

derivative of q∗
i1

with respect to N and simplifying it, we

obtain:

ÿq∗
i1

ÿN
=

K1K2 (c2 − c1 + k2 − k1)

3(N + 1)2Vr2 (a1K2 + a2K1)
.

Taking the limit of the first derivative of q∗
i1

with respect to

N as N approaches infinity, we have: limN→∞

ÿq∗
i1

ÿN
= 0.

A.6 PROOF OF PROPOSITION 4

The profit function of Shipping Line s ∈ {1, 2, … ,N − M}

is given by.

�ÿl
s =

(
p − c1 − �w1

)
vb�qs1 −

a1r
(∑N−M

k=1
vb�qk1+Mvb�qM1

)
rvb�qs1

K1

+
(
p − c2 − �w2

)
vb

(
1 − �qs1

)
−

a2r
(

1−
∑N−M

k=1
vb�qk1+Mvb(1−�qM1)

)
rvb(1−�qk1)

K2

, where �qMj is the frac-

tion of the vessels’ port of call that the merged shipping

line makes at Port j. The profit function of the merged

shipping line is given by: �ÿl
M

=
(
p − c1 − �w1

)
vb�qM1 −

a1r
(∑N−M

k=1
vb�qk1+Mvb�qM1

)
rvb�qM1

K1

+
(
p − c2 − �w2

)
vb

(
1 − �qM1

)
−

a2r
(

1−
∑N−M

k=1
vb�qk1+Mvb(1−�qM1)

)
rvb(1−�qM1)

K2

. Following the same

steps as in Lemmas 1 and 2 (i.e., taking the partial derivative

with respect to the port-of-call decision variables and solving

the resulting system of equations), we obtain the following

equilibrium values:

�q∗
s1
=

(
K2

(
�w2 − �w1 + c2 − c1

)
+ a2vbr2(N − M + 2)

)
K1

vbr2 (a1K2 + a2K1) (N − M + 2)
,

�q∗
M1

=

(
K2

(
�w2 − �w1 + c2 − c1

)
+ a2vbr2(N − M + 2)M

)
K1

vbr2 (a1K2 + a2K1) (N − M + 2)M
.

Substituting these equilibrium values in the ports’ objective

function, we obtain the equilibrium port handling charges:

�w∗
1
=

(2k1 + k2 + c2 − c1) (N − M + 1)K1K2 + (a1K2 + 2a2K1) vbr2N(N − M + 2)

3K1K2(N − M + 1)
,

�w∗
2
=

(k1 + 2k2 − c2 + c1) (N − M + 1)K1K2 + (2a1K2 + a2K1) vbr2N(N − M + 2)

3K1K2(N − M + 1)
.

Taking the difference between the equilibrium port han-

dling charges and those under the symmetric case and simpli-

fying the result, we obtain the following:

�w∗
1
− w∗

1
=

r2vb (2K1a2 + K2a1) (M − 1)

3K1K2(N − M + 1)
> 0,

�w∗
2
− w∗

2
=

r2vb (K1a2 + 2K2a1) (M − 1)

3K1K2(N − M + 1)
> 0.

Taking a partial derivative of the above differences with

respect to M and simplifying the result, we obtain the

following:

ÿ
(
�w∗

1
− w∗

1

)
ÿM

=
r2vb (2K1a2 + K2a1)

3K1K2(N − M + 1)2
> 0,

and
ÿ
(
�w∗

2
− w∗

2

)
ÿM

=
r2vb (K1a2 + 2K2a1)

3K1K2(N − M + 1)2
> 0.

A.7 PROOF OF PROPOSITION 5

For this proof, we drop the indices j = 1, 2 that indicate the

port as we only consider one port. The objective function of

Shipping Line i is given as follows:

�ÿl
s = (p − c − �w)vb − Crvb = (p − c − �w)

V

N
−

ar2vbV

NK
.

The port’s objective function is given by:

�ÿ = ( �w − k)rV − mK.

As �ÿ increases with an increase in �w, the port sets the high-

est possible �w such that �ÿl
s g 0. Solving �ÿl

s = 0 for �w, we

find that �w∗ = p− c−
ar2V

K
. Taking the partial derivative with

respect to N, we obtain
ÿ �w∗

ÿN
= 0.
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