

1 **Powdery mildew infection induces a non-canonical route to storage lipid formation at the**
2 **expense of host thylakoid lipids to fuel its spore production**

3
4 **J. Jaenisch^{1a}, H. Xue^{1a}, J. Schläpfer^{2b}, E.R. McGarrigle¹, K. Louie³, T.R. Northen²⁻³, M.C.**
5 **Wildermuth^{1*}**

6 ¹Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720

7 ²Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
8 Road, Berkeley, CA 94720

9 ³The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

10 ^aAuthors contributed equally to this work

11 ^bPresent address: Department of Plant and Microbial Biology, University of Zurich, Zurich 8008

12 *** Corresponding author's email address:** Mary. C. Wildermuth, mwildermuth@berkeley.edu

13

14 **Running title:** Plastid TAGs fuel powdery mildew spore production

15 The author(s) responsible for distribution of materials integral to the findings presented in this article in accordance
16 with the policy described in the Instructions for Authors (<https://academic.oup.com/plcell/pages/General-Instructions>) is (are): Mary. C. Wildermuth (mwildermuth@berkeley.edu)

18

19 **ABSTRACT**

20 Powdery mildews are obligate biotrophic fungi that manipulate plant metabolism to supply
21 lipids, particularly during fungal asexual reproduction when fungal lipid demand is extensive.
22 The mechanism for host response to fungal lipid demand has not been resolved. We found
23 storage lipids, triacylglycerols (TAGs), increase by 3.5-fold in powdery mildew-infected tissue.
24 In addition, lipid bodies, not observable in uninfected mature leaves, are present in both cytosol
25 and chloroplasts at the infection site. This is concurrent with decreased thylakoid membrane
26 lipids and thylakoid disassembly. Together, these findings indicate that the powdery mildew
27 induces localized thylakoid membrane degradation to promote storage lipid formation. Genetic
28 analyses show the canonical ER pathway for TAG synthesis does not support powdery mildew
29 spore production. Instead, *Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 3*
30 (DGAT3), shown to be chloroplast-localized and to be largely responsible for powdery mildew-
31 induced chloroplast TAGs, promotes fungal asexual reproduction. Powdery mildew-induced leaf
32 TAGs are enriched in thylakoid associated fatty acids, which are also present in the produced
33 spores. This research provides new insights on obligate biotrophy and plant lipid metabolism
34 plasticity and function. Furthermore, by understanding how photosynthetically active leaves can
35 be converted into TAG producers, more sustainable and environmentally benign plant oil
36 production could be facilitated.

37

38

39

40 **INTRODUCTION**

41

42 As obligate biotrophic pathogens, powdery mildews acquire nutrients supplied by living
43 host cells to support their life cycle and have specialized strategies for maximizing the output of
44 these tissues (Glawe 2008; Wildermuth et al. 2017). In the *Arabidopsis thaliana*-*Golovinomyces*
45 *orontii* interaction, the establishment of the fungal feeding structure, called a haustorium, occurs
46 by 24 hours post inoculation (hpi). By 5 days post inoculation (dpi), asexual reproductive
47 structures called conidiophores form. These conidiophores contain chains of conidia which store
48 energy in the form of lipids and glycogen (Both et al. 2005; Micali et al. 2008). Thus, the fungal
49 demand for nutrients is especially high during asexual reproduction. As a response to the
50 nutritional demands, a metabolic switch occurs in the host infected leaves. Mature leaves are
51 considered source tissues producing hexoses for transport to growing parts of the plant.
52 However, powdery mildew infection induces localized signatures of mobilization of
53 carbohydrates to the tissue underlying the fungal infection site, for fungal acquisition (Clark and
54 Hall 1998; Sutton, Henry, and Hall 1999; Fotopoulos et al. 2003; Swarbrick, Schulze-Lefert, and
55 Scholes 2006). Furthermore, localized transcriptome profiling using laser microdissection shows
56 the expression of genes associated with enhanced glycolysis and respiration to be increased,
57 while the expression of chlorophyll biosynthesis genes is decreased at the powdery mildew
58 infection site, in support of a localized source to sink transition (Chandran et al. 2010). Analysis
59 of powdery mildew genomes found reduced carbohydrate metabolism pathways but relatively
60 complete fatty acid (FA) metabolism and utilization pathways, suggesting lipids may be a
61 preferred nutrient (Liang et al. 2018). And, an early study found enhanced lipid accumulation in
62 powdery mildew infected cucumber leaves compared to uninfected leaves (Abood and Lösel
63 1989).

64 Microbial acquisition of host lipids has emerged as a common strategy across host-
65 microbe systems, particularly for obligate biotrophs including human intracellular pathogens
66 (Atella et al. 2009; Costa et al. 2018). For plant obligate biotrophs, the arbuscular mycorrhizal
67 fungi (AMF) symbiosis in which AMF colonize plant roots, providing minerals to the plant host
68 while acquiring host sugars and lipids is best studied (MacLean, Bravo, and Harrison 2017;
69 Luginbuehl et al. 2017; Kameoka and Gutjahr 2022). AMF induce a specific shift in host lipid
70 metabolism, catalyzed by enzymes specific to plants colonized by AMF, to yield 2-
71 monoacylglycerols (2-MG), with C16:0 2-MGs preferred. While 2-MGs appear to be the likely

72 final product transferred to AMF, this has not been verified, and it is possible other lipids may
73 also be transported particularly if acquisition is facilitated by exocytotic vesicles. Once these host
74 lipids are acquired, they are remodeled by the AMF and stored primarily as TAGs in lipid bodies
75 for future use.

76 By contrast with the AMF symbiosis, almost nothing is known about how the powdery
77 mildew fungus manipulates host metabolism for fungal lipid acquisition. Because powdery
78 mildews have the capacity to synthesize FAs, unlike AMF which are FA auxotrophs (Kameoka
79 and Gutjahr 2022), we focus our studies on powdery mildew-infected leaves during powdery
80 mildew asexual reproduction (5+ dpi), when spores replete with lipid bodies (Both et al., 2005)
81 are formed. We reason that host lipids would be most in demand at this phase of the powdery
82 mildew life cycle. Furthermore, Jiang and colleagues, as part of their research on AMF, show
83 host FA manipulation is reflected in powdery mildew spore FAs (Jiang et al. 2017). Specifically,
84 their introduction of UcFatB, a fatty acid thioesterase that terminates FA elongation early,
85 terminating with C12:0, into *Arabidopsis* resulted in increased C12:0 FAs in both host leaves and
86 powdery mildew spores.

87 Plant lipid metabolism is dynamic across developmental stages and responsive to
88 environmental stimuli, modifying energy content of storage tissues, altering membrane fluidity at
89 different temperatures, minimizing lipotoxicity, and providing chemical signals (Baud et al.
90 2008; Moellering, Muthan, and Benning 2010; Okazaki and Saito 2014; Cavaco, Matos, and
91 Figueiredo 2021). In plants such as *Arabidopsis*, acyl-chains are produced in chloroplasts, with
92 the exception of a small fraction generated in mitochondria, and their subsequent assembly into
93 lipids occurs via pathways operating in the chloroplast (prokaryotic pathway) and the
94 endoplasmic reticulum (eukaryotic pathway). In *Arabidopsis* leaves, approximately 38% of
95 newly synthesized FAs are utilized in the prokaryotic lipid-synthesis pathway, whereas the
96 remaining 62% are directed towards the eukaryotic pathway (Browse et al. 1986). A portion of
97 acyl-chains from ER-assembled lipids are subsequently transported – likely as PA and/or DAG –
98 back to the plastid to serve as substrates for thylakoid lipid synthesis (Yao et al. 2023; Hölzl and
99 Dörmann 2019). Triacylglycerols (TAGs), neutral storage lipids with three fatty acids attached to
100 a glycerol backbone, are packaged into lipid bodies. Eukaryotes synthesize TAGs in the ER via
101 two major pathways: the Kennedy pathway and the acyl-CoA independent pathway (C. Xu, Fan,
102 and Shanklin 2020). Diacylglycerol acyltransferases (DGAT, EC 2.3.1.20) catalyze the final and

103 rate-limiting step in TAG synthesis forming TAG from diacylglycerol (DAG) and acyl-CoA in
104 the Kennedy pathway. Whereas, phospholipid:diacylglycerol acyltransferase (PDAT, EC
105 2.3.1.158) catalyzes the final and rate-limiting step in acyl-CoA independent TAG synthesis with
106 TAG formed from DAG and a phospholipid (PL) acyl donor, i.e. phosphatidylcholine (PC)
107 remodeled from the Lands Cycle (Dahlqvist et al. 2000; Zhang et al. 2009; L. Wang et al. 2012).

108 In this study, we show powdery mildew-induced TAG accumulation in mature
109 *Arabidopsis thaliana* leaves occurs at the infection site concurrent with powdery mildew asexual
110 reproduction. We employ genetic, microscopic, and lipidomic approaches to uncover a non-
111 canonical route for plant TAG synthesis via AtDGAT3 to support powdery mildew spore
112 formation. AtDGAT3 is unusual in that, unlike the ER membrane proteins DGAT1 and DGAT2,
113 it is a soluble metalloprotein containing a [2Fe-2S] cluster (Aymé et al. 2014). We show
114 AtDGAT3 is localized to the chloroplast and responsible for plastidic TAG synthesis that occurs
115 at the expense of thylakoid membranes. We further speculate on controls over functional roles of
116 ER- versus chloroplast- derived lipid bodies in the powdery mildew interaction, powdery mildew
117 acquisition of the chloroplast-derived lipid bodies, and controls over AtDGAT3 stability and
118 activity. Our findings open further avenues of investigation with respect to biotroph-host
119 interactions and plant response to stress or aging (e.g. leaf senescence). Moreover, this work
120 could facilitate more sustainable production of vegetable oil, biofuels and other specialty
121 chemicals (X.-Y. Xu et al. 2018).

122

123 **RESULTS**

124 **Powdery mildew infection increases triacylglycerols in the host leaf while phospholipids 125 decrease**

126 Powdery mildew fungi are obligate biotrophs that rely entirely on the host for nutrients.
127 Powdery mildew asexual reproduction creates a high metabolic demand for lipids as the powdery
128 mildew feeding structures, haustoria, and newly formed spores are filled with lipid bodies at 5
129 dpi when asexual reproduction is first apparent (**Fig. 1, A-C**).

130 To understand how host lipid metabolism is manipulated to meet this fungal lipid
131 demand, we performed lipid profiling of uninfected and parallel powdery mildew-infected leaves
132 at 12 days post inoculation (dpi). This later time point exhibits sufficient powdery mildew

133 proliferation to allow us to assess the impact of the powdery mildew in whole leaf analyses.
134 Lipids were extracted and identified by LC-MS/MS fragmentation patterns (**Supplemental Fig.**
135 **1, Supplemental Dataset 1**). Our results show that TAGs increase in 12 dpi washed leaf extracts
136 relative to uninfected leaf extracts, with a 3.5-fold increase in abundance (**Fig. 1D**). Overall,
137 there is a shift to TAGs containing longer acyl chains, including very long chain fatty acids
138 (VLCFA, \geq C20), assessed at \geq C56:x, which increase 7-fold with infection (**Fig. 1E-F**,
139 **Supplemental Fig. S1; Supplemental Dataset 1**). Examination of the most abundant TAG
140 class, C54:x, shows an increase of 3.5-fold with infection accompanied by a shift towards a more
141 desaturated profile in infected leaves (**Fig. 1F-G**); this reflects increased 18:3 and 18:2 FA
142 composition (**Supplemental Dataset 1**).

143 While TAGs increase, phospholipids decrease in abundance in extracts from infected
144 leaves at 12 dpi compared to parallel uninfected leaves (**Fig. 1H, Supplemental Dataset 1**).
145 Phosphatidylcholine (PC), the dominant phospholipid in mature *Arabidopsis* leaves, decreases by
146 30%. Phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) decrease by 50% and 60%
147 respectively in infected leaves. Although a net decrease in total phosphatidylinositol (PI) with
148 infection of 20% is observed, it is not statistically significant. Lysophosphatidylcholines (LPC)
149 increase by ~4-fold in infected leaves. The observed decrease in PC is consistent with increased
150 TAG synthesis utilizing DAG formed from PC (and PA) via DGATs. The decreases in the other
151 phospholipids (PE, PI, PG) may facilitate increased flux to TAG accumulation. Furthermore, the
152 indication that LPC increases at 12 dpi suggests possible operation of the Lands Cycle using
153 PDAT1.

154 In summary, our data indicates that the powdery mildew remodels host lipid metabolism
155 to promote localized TAG accumulation.

156 **Genetic analyses indicate the canonical route for plant TAG synthesis in the ER hinders**
157 **powdery mildew asexual reproduction while chloroplast-localized DGAT3 promotes it**

158 We next examined the impact of genes encoding proteins catalyzing the final and rate-
159 limiting step in canonical TAG biosynthesis in the ER (Vanhercke et al. 2019) on powdery
160 mildew spore production, *AtDGAT1* (*At2g19450*), *AtDGAT2* (*At3g51520*), and *AtPDAT1*
161 (*At5g13640*), using *Arabidopsis* null mutants and/or spray-induced gene silencing (SIGS). Our
162 employed SIGS methodology specifically silences targeted genes with minimal off targets

163 (Methods; McRae et al. 2023). Furthermore, the *Arabidopsis* DGATs evolved independently,
164 contain distinct functional domains, and share little sequence similarity (Yin et al. 2022). In seed
165 oil accumulation, AtDGAT1 and AtPDAT1 play dominant roles. A null mutant in *AtDGAT1*
166 shows a 30% reduction in seed TAGs, while RNAi silencing of *PDAT1* in a *dgat1-1* background
167 or *DGAT1* in *pdat1-1* background results in 70 to 80% decreases in seed oil content (Katavic et
168 al. 1995; Zhang et al. 2009). While it doesn't contribute to seed TAG accumulation, AtDGAT2,
169 along with AtDGAT1 and AtPDAT1, can impact leaf TAG accumulation (Zhou et al. 2013; Fan,
170 Yan, and Xu 2013). Furthermore, we explored the impact of ATP-binding cassette A 9
171 (ABCA9), demonstrated to import FA/acyl-CoA into the ER and to exhibit a 35% reduction in
172 seed TAG accumulation in the *abca9-1* mutant (Kim et al. 2013). The ER-localized long-chain
173 acyl-CoA synthetase 1 (LACS1) was also investigated because it acts on long chain and very
174 long chain FAs (Lü et al. 2009) which we observed to increase with infection (**Fig. 1E-F**) and is
175 the only ER-localized LACS (Zhao et al. 2010) with enhanced expression at the powdery mildew
176 infection site at 5 dpi (Chandran et al. 2010).

177 To our surprise, *dgat1-1* and *abca9-1* null mutants allow for enhanced powdery mildew
178 spore production, 24% and 50% more, respectively, than wild type (WT) plants, whereas, the
179 *lacs1-1* and *pdat1-2* mutants show no significant change in spore production (**Fig. 2A**).
180 Knockdown of *AtDGAT1* via SIGS results in more than 60% increase in spore production,
181 whereas, silencing of *AtDGAT2* shows no difference in spore production from mock treatment
182 (**Fig. 2B**). Taken together, our findings indicate that TAG synthesis in the ER, using the FA
183 importer ABCA9 and DGAT1, is not used to support powdery mildew spore production, but
184 instead hinders it.

185 While AtDGAT1 and AtDGAT2 are ER-localized and membrane-bound, the third
186 *Arabidopsis* DGAT protein, AtDGAT3, contains a predicted N-terminal chloroplast transit
187 peptide (cTP) and no transmembrane domain (Aymé et al. 2018). AtDGAT3 was initially shown
188 to be localized to the cytosol (Hernández et al. 2012), but this study utilized an N-terminus
189 truncated form of the enzyme lacking the cTP. By contrast with *DGAT1*, targeting *DGAT3* via
190 SIGS reduces spore production by 40% (**Fig. 2B**). To confirm the impact of *DGAT3* reduction on
191 powdery mildew asexual reproduction, we obtained a homozygous null mutant in *AtDGAT3*,
192 *dgat3-2* (**Supplemental Fig S2**). *dgat3-2* plants support 21% less spore production than WT
193 (**Fig. 2B**). The larger impact on spore production shown with SIGS rather than null mutants in

194 *DGAT1* and *DGAT3* may be due to genetic compensation through development in the null
195 mutant plants. Neither *dgat1-1* nor *dgat3-2* plants exhibit any obvious developmental or
196 morphological phenotypes.

197 To determine the localization of AtDGAT3, we cloned the genomic DNA encoding the
198 full length AtDGAT3 sequence and fused 35S to its N-terminus and GFP to its C-terminus.
199 Transient expression of *AtDGAT3-GFP* in *Nicotiana benthamiana* leaves via *Agrobacterium*
200 infiltration results in intense GFP fluorescence that is colocalized with chlorophyll
201 autofluorescence, indicating *DGAT3* is localized to chloroplasts (**Fig. 2C**).

202 **Figure 2D** places the tested players in the context of integrated chloroplast-ER lipid
203 metabolism focused on TAG synthesis (Browse et al. 1986; Hörlz and Dörmann 2019; C. Xu,
204 Fan, and Shanklin 2020; Vanhercke et al. 2019), with the addition of AtDGAT3 chloroplast
205 localization. In summary, leaf TAG synthesis to support powdery mildew asexual reproduction
206 occurs using a novel route via DGAT3 in the chloroplast. By contrast, canonical TAG synthesis
207 in the ER via DGAT1 limits spore production.

208 Powdery mildew- induced host lipid bodies are present both in the cytosol and chloroplasts

209 Given our finding that plastidic DGAT3 supports powdery mildew spore production, we
210 performed confocal imaging of infected leaf tissue at 5 and 10 dpi stained with the neutral lipid
211 dye BODIPY505/515 and focused on mesophyll cells underlying powdery mildew feeding
212 structures. As *Arabidopsis* RPW8.2 is specifically targeted to the fungal extrahaustorial
213 membrane (EHM), we infected Col-0 lines expressing RPW8.2-YFP with *G. orontii* to visualize
214 the haustorium (W. Wang et al. 2009). The haustorium resides in the epidermal cell as depicted
215 in **Fig. 1A** and is located above three mesophyll cells (**Fig. 3A**). At the infection site at 5 dpi,
216 abundant lipid droplets are highly localized to the three mesophyll cells right underneath the
217 haustorium (white dashed line in **Fig. 3B**) and not in distal cells. Almost no lipid bodies are
218 observed in parallel uninfected tissue mesophyll cells. As the infection progresses to 10 dpi, the
219 abundance of lipid bodies increases in the neighboring mesophyll cells. The percent area with
220 fluorescence shows a ~6-fold increase with infection at 5 dpi and ~15-fold increase with
221 infection at 10 dpi (**Fig. 3C**). BODIPY505/515-stained lipid bodies are observed both next to
222 chloroplasts and in the cytoplasm. With closer examination using 3D reconstructions of multiple
223 z-stacked confocal images, we observe that some infection induced lipid bodies are embedded in

224 the chloroplast (**Fig. 3D**, yellow circled). These chloroplast-embedded lipid bodies (5.2 and 5.9
225 μm diameter) are similar in size to those that are not embedded; chloroplast adjacent lipid body
226 mean diameter is 3.7 μm ($n = 8$) and cytoplasmic lipid body mean diameter is 3.4 μm ($n=5$).
227 Together, our results indicate that powdery mildew infection shifts host lipid metabolism to form
228 large storage lipid bodies with some of the lipid bodies inside chloroplasts, others adjacent to or
229 very near the chloroplast, and others in the cytosol.

230 **Chloroplast TAG accumulation, but not host defense, is altered in *dgat3-2***

231 To directly assess whether DGAT3 impacts powdery mildew-induced TAG formation,
232 we performed lipid extractions on 12 dpi leaves and isolated chloroplasts from 12 dpi leaves of
233 *dgat3-2* and WT plants. Using thin layer chromatography (TLC) we find that the TAG content of
234 whole leaf extracts does not differ significantly between *dgat3-2* and WT (**Fig. 4A-B**). However,
235 isolated chloroplast TAG content is reduced by ~60% in *dgat3-2* compared to WT plants,
236 confirming the role of *DGAT3* in plastidic TAG synthesis. Furthermore, the TAG TLC profile of
237 isolated chloroplasts is enriched in TAGs with a higher Rf than those from whole leaves,
238 overlapping the extra virgin olive oil standard (C18:1 74%, C18:2/3 11%, C16:0 15%).

239 Manipulation of plant lipid metabolism can result in altered defense signaling and
240 response including elevated SA responses and/or cell death (Kachroo and Kachroo 2009) that
241 restrict powdery mildew growth and reproduction (e.g. C. A. Frye and Innes 1998; Reuber et al.
242 1998; Catherine A. Frye, Tang, and Innes 2001). Similar to WT, no cell death is observed in
243 epidermal or mesophyll cells at the powdery mildew infection site of *dgat3-2* plants (**Fig. 4C**).
244 Moreover, induced *PR-1* expression, a marker of SA-dependent defense responses, does not
245 differ between WT and *dgat3-2* infected leaves (**Fig. 4D**). Together, these findings suggest the
246 reduction in spore production observed for *dgat3-2* is due to decreased induced plastid TAG
247 production, not increased defense.

248 **Powdery mildew infection induces the breakdown of thylakoid membrane lipids**

249 Above, we show powdery mildew-induced lipid bodies are associated with chloroplasts
250 (**Fig. 3**) and plastid-localized AtDGAT3 is a dominant contributor to powdery mildew-induced
251 host TAG synthesis and fungal spore production (**Figs. 2, 4**). As some stresses induce the
252 accumulation of storage lipids at the expense of membrane lipids (Lu et al. 2020; Shiva et al.

253 2020), we postulated that host chloroplast membranes, dominated by thylakoid membranes, are
254 being disassembled for TAG synthesis in response to infection. We therefore examined the
255 abundance of thylakoid membrane lipids by electrospray ionization (ESI)-MS/MS. Uninfected
256 mature *Arabidopsis* leaf thylakoid membrane lipids are dominated by
257 monogalactosyldiacylglycerol (MGDG, 42%), digalactosyldiacylglycerol (DGDG, 13%), and
258 phosphatidylglycerol (PG, 10%) (Browse et al. 1989). Powdery mildew-infected (washed) leaves
259 extracted at 12 dpi show that MGDG, DGDG, and PG each decrease by at least 2-fold compared
260 to uninfected leaf controls indicating the breakdown of thylakoid membranes (**Fig. 5A**,
261 **Supplemental Dataset 2**). Decreased PG, by 60%, was also observed by LC-MS/MS (**Fig. 1H**).

262 To understand the change in total FA profiles, lipid extractions were performed on
263 uninfected leaves, washed infected leaves and spore tissues at 12 dpi. Acyl chains were then
264 converted to fatty acid methyl esters (FAMEs) for separation by gas chromatography with flame
265 ionization detection (GC-FID). Principal component analysis (PCA) shows a distinct clustering
266 of the three tissue types according to the ten FA species detected (**Fig. 5B**). Acyl chains
267 associated with thylakoid membrane lipids, C18:3 (dominant), C18:2, and C16:3 (unique to
268 chloroplast), each decrease by ~50% in 12 dpi leaves compared with uninfected (**Fig. 5C**). By
269 contrast, the VLCFA C20:0 increases by ~20 fold in washed infected leaves. In spore extracts,
270 the VLCFA C20:0 is the dominant species, followed by C18:3, while C18:3 dominates the leaf
271 profiles even after the reduction shown with powdery mildew infection at 12 dpi. By normalizing
272 the spore data to nmol/mgDW leaf (**Supplemental Dataset 2**), we can compare uninfected leaf
273 total FA abundance with that of the washed leaves plus spores. We find 63% of total FA in the
274 uninfected leaves is accounted for in the (washed) infected leaf plus spore (**Fig. 5D**). Moreover,
275 only the spore C20:0 species abundance is clearly not fully attributed to leaf acquisition as the
276 spore contains 2-fold more C20:0 than the (washed) infected leaf and 36-fold more C20:0 than
277 the uninfected leaf on a leaf normalized basis (**Supplemental Dataset 2**). This also raises the
278 possibility that some of the C20:0 in the (washed) infected leaf FAME samples and LC-MS/MS
279 TAG samples (**Fig. 1, Supplemental Dataset 1**) may be fungal in origin. Only the fungal
280 haustoria is present in the washed leaf samples as all surface structures are removed. Though
281 haustoria make up a small percent of washed leaf sample cells on a cell basis, the haustoria are
282 filled with lipid droplets (**Fig. 1**) that could include C20:0 remodeled by the fungus. Therefore, it
283 is possible that a portion of the C20:0 in washed leaf analyses is fungal-derived.

284 As our findings above indicate thylakoid membrane breakdown occurs concurrent with
285 TAG accumulation, we sought to specifically determine whether C16:3 FAs, unique to the
286 thylakoid membrane (Browse et al. 1986), are present in TAGs from 12 dpi leaf lipid extracts
287 (**Supplemental Dataset 1**). Five TAG species were identified as uniquely containing a C16:3
288 acyl chain, and each of these TAGs also contains at least one C18:3 acyl chain. With infection,
289 these C16:3 containing TAGs increase by 5.4-fold (**Fig. 5E**). Furthermore, the presence of C16:3
290 FAs in spores (**Fig. 5C, Supplemental Dataset 2**) indicates fungal acquisition of these
291 thylakoid-derived FAs.

292 We next sought to examine whether there is an associated change in chloroplast
293 substructures with infection. We examined the ultrastructures of the powdery mildew haustorium
294 and haustorium-associated chloroplasts at 5 dpi via transmission electron microscopy (TEM).
295 The mature haustorium consists of a central haustorium body with peripheral small lobes (Koh et
296 al. 2005). We see abundant electron-dense particles resembling lipid bodies in the haustorium
297 body and lobes and in haustorium-associated chloroplasts (**Fig. 6A-C**). Examination of the
298 haustorium-associated chloroplast in the epidermal cell shows an intact chloroplast outer
299 membrane; however, the thylakoids have considerable loss of grana stacking, indicative of
300 degradation (**Fig. 6D**).

301 Furthermore, the mesophyll chloroplast right underneath the haustorium shows severe
302 degradation, with chloroplast envelope membrane and thylakoid membranes almost totally
303 degraded (**Fig. 6E**) compared to mesophyll chloroplast from a parallel uninfected leaf
304 (**Supplemental Figure S3**). In addition, no starch is present in this chloroplast. Because the
305 thylakoid membranes are highly degraded in the infected sample, it is difficult to definitively
306 ascertain whether these chloroplast lipid bodies are physically associated with the thylakoid
307 membrane; however, at least one of the three, (**Fig. 6E**, LB-labeled lipid body), does not appear
308 to be directly attached. Together, our data shows that concurrent with *G. orontii* asexual
309 reproduction (5 dpi+), powdery mildew infection induces the breakdown of host thylakoids, as
310 observed by TEM, with decreased whole leaf thylakoid galactolipids and thylakoid membrane
311 lipid associated FAs.

312 **DISCUSSION**

313 **Powdery mildew- induced plastidic TAG synthesis utilizes the soluble metalloprotein**
314 **DGAT3 to promote powdery mildew asexual reproduction**

315 **Figure 7** builds on the literature (Browse et al. 1986; Hözl and Dörmann 2019; C. Xu,
316 Fan, and Shanklin 2020; Vanhercke et al. 2019; C. Xu and Shanklin 2016; Bates 2022) to
317 integrate our findings into a simplified model that shows rewiring of host lipid metabolism by
318 the powdery mildew for TAG synthesis at the expense of thylakoid membranes. In this study, we
319 analyzed the changes in *Arabidopsis* leaf lipids in response to powdery mildew infection at
320 \geq 5dpi concurrent with the formation of spores replete with lipid bodies (**Fig. 1B**). Despite the
321 highly localized induction of host lipid bodies in mesophyll cells underlying fungal feeding
322 structures (**Fig. 3**), powdery mildew infected leaves show a 3.5-fold increase in TAG abundance
323 at 12 dpi (**Fig. 1D**). Localized thylakoid unstacking and degradation (**Fig. 6**), decreased
324 thylakoid lipids MGDG, DGDG, and PG (**Fig. 5A**) and decreased thylakoid membrane lipid FAs
325 (**Fig. 5C**) all suggest TAGs are formed at the expense of thylakoid lipids. This is confirmed by
326 the increase in TAGs containing thylakoid membrane derived acyl chains (18:3 dominant, 18:2,
327 16:3 unique) (e.g. **Fig. 1G, 5E, Supplemental Dataset 1**) with infection.

328 We further find that the unusual DGAT enzyme, the soluble AtDGAT3 metalloprotein, is
329 localized to the chloroplast (**Fig. 2C**) and responsible for the bulk (60%) of powdery mildew-
330 induced TAG synthesis in the chloroplast (**Fig. 4A-B**). TLC shows TAGs from chloroplasts
331 isolated from powdery mildew-infected leaves (**Fig. 4A-B**) are enriched in TAGs that run
332 similarly to the extra virgin olive oil standard (85% C18 and 15% C16 FAs). This suggests that
333 the chloroplast TAGs made via AtDGAT3 are enriched for thylakoid-derived acyl chains, as we
334 observe in washed infected whole leaves (**Figs. 1G, 5E, Supplemental Dataset 1**). Furthermore,
335 AtDGAT3 preferentially incorporates C18:3, the dominant FA in thylakoid membranes, and to a
336 lesser extent C18:2 substrates into TAGs ([Hernández et al. 2012; Aymé et al. 2018](#)). It is unclear
337 whether AtDGAT3 may utilize C16:3 as the experimental systems employed by (Hernández et
338 al. 2012; Aymé et al. 2018) had little available C16:3. Powdery mildew spore production is
339 significantly reduced when *AtDGAT3* expression is silenced or when a null mutant in *AtDGAT3*
340 is assessed (**Fig. 2B**). This reduction in spore production is not associated with a pleiotropic
341 phenotype, enhanced SA defense, and/or cell death in *dgat3-2*. (**Fig. 4C-D**). Therefore, it appears

342 that TAGs synthesized by DGAT3 in the chloroplast at the expense of thylakoid lipids promote
343 powdery mildew asexual reproduction.

344 At 5 dpi, lipid bodies are observed directly under and in the haustorial complex and are
345 mainly associated with chloroplasts (**Figs. 1C, 3, 6**). By 10 dpi, chloroplast-associated lipid body
346 accumulation extends to neighboring mesophyll cells underneath the haustorial complex (**Fig. 3**).
347 As indicated in our model (**Fig. 7**), 3D reconstructed confocal images suggest chloroplast lipid
348 bodies may then be released into the cytosol for fungal acquisition, as the chloroplast lipid bodies
349 embedded in the chloroplast, adjacent to the chloroplast, and in the cytosol are of similar size
350 (**Fig. 3D**). It is possible that the induced chloroplast lipid bodies derive (in part) from
351 plastoglobules as our TEM image indicates some lipid bodies in the chloroplast of the mesophyll
352 cell adjacent to the haustorium to be directly associated with the thylakoid membrane (**Fig. 6**).
353 However, at 5-6 um (**Fig. 3D**), the lipid bodies are at the top of the size range reported for stress-
354 induced leaf plastoglobules (Arzac, Fernández-Marín, and García-Plazaola 2022; Bouchnak et al.
355 2023), but common for cytosolic lipid droplets (C. Xu, Fan, and Shanklin 2020).

356 DGAT3 has not been identified in *Arabidopsis* plastoglobule proteomics datasets
357 (Ytterberg, Peltier, and van Wijk 2006; Vidi et al. 2006; Lundquist et al. 2012; Espinoza-Corral,
358 Schwenkert, and Lundquist 2021); however, stromal proteins have been identified in
359 plastoglobule subpopulations that also contain thylakoid photosynthetic proteins and lipids but
360 whose membrane varies in composition from that of thylakoid membranes (Ghosh et al. 1994;
361 Smith, Licatalosi, and Thompson 2000). Moreover, plastoglobule blebbing into the stroma
362 and/or release into the cytosol (Ghosh et al. 1994; Springer et al. 2016) has been implicated (C.
363 Xu, Fan, and Shanklin 2020). If the powdery mildew-induced chloroplast lipid bodies derive (in
364 part) from plastoglobules, they may contain the thylakoid membrane-bound phytol ester synthase
365 1 (PES1) and/or PES2 (Ytterberg, Peltier, and van Wijk 2006; Vidi et al. 2006) which, in
366 addition to phytol ester synthase activity, can synthesize TAGs via DAGs and acyl groups from
367 acyl-CoA (preferred) (Lippold et al. 2012). As 40% of induced chloroplast TAGs remain in
368 *dgat3-2* (**Fig. 4A**), it is tempting to speculate that in addition to DGAT3, PES1 and/or PES2 also
369 contribute to powdery mildew-induced plastidic TAG synthesis.

370 How these TAGs directly benefit the powdery mildew remains to be determined. While
371 plastidic TAG catabolism could serve as an immediate energy source, these storage lipids/lipid
372 bodies could also be transported with or without fungal remodeling to the newly developing

373 spores which themselves are filled with lipid bodies containing TAGs (**Fig. 1B**). The presence of
374 C16:3 acyl chains in spore lipids (**Fig. 5C, Supplemental Dataset 2**) indicates fungal acquisition
375 of the chloroplast TAGs. These spore storage lipids then serve as an energy source to support
376 spore germination and early colonization events prior to haustorium formation (Both et al. 2005).
377 It is also possible that a host-derived lipid may be required for a fungal asexual reproductive
378 signal. For example, in *Aspergillus nidulans* specific endogenous 18:2-derived oxylipins control
379 sporulation versus sexual reproduction (Tsitsigiannis et al. 2004). In the arbuscular mycorrhizal
380 fungi (AMF) - plant host symbiosis, plant derived C16:0 2-MGs are remodeled by the AMF
381 fungus and act both as energy sources (immediate and stored as lipid bodies in spores) and as
382 signals for fungal development, including sporulation (Kameoka et al. 2019). Plastoglobules
383 often contain plant enzymes involved in oxylipin synthesis that could participate in the
384 production of a fungal reproductive signal (Michel, Ponnala, and van Wijk 2021). This could be
385 particularly important for obligate biotrophs such as powdery mildews characterized by missing
386 or incomplete pathways for specialized metabolites as compared to other *Ascomycetes* including
387 *A. nidulans* (Spanu 2012).

388 **ER-associated TAGs hinder powdery mildew asexual reproduction**

389 To our initial surprise, we found mutants that limit TAG accumulation in the ER exhibit
390 increased powdery mildew spore production (**Fig. 2**). In Arabidopsis, DGAT1 is responsible for
391 generating TAG from a rapidly produced pool of DAG derived from PC (Regmi et al. 2020). On
392 the other hand, PDAT1 and DGAT2 are reported to use a different and larger pool of DAG,
393 which has a relatively slower turnover (Regmi et al. 2020). Reduced *DGAT1* expression results
394 in enhanced spore production (75% increase, **Fig. 2B**), while no difference is observed when
395 *PDAT1* or *DGAT2* expression is perturbed (**Fig. 2A,B**). This suggests a rapidly produced pool of
396 DAG from PC available to DGAT1 is used for powdery mildew-induced TAG production in the
397 ER (**Fig. 7**). We further explored the impact of ABAC9 demonstrated to import FA/acyl-CoA
398 into the ER and found the *abca9-1* mutant supports 50% increased powdery mildew spore
399 production (**Fig. 2A**). By contrast, the long chain acyl-activating *lacs1-1* mutant, the only ER-
400 localized LACS with enhanced expression at the powdery mildew infection site at 5 dpi
401 (Chandran et al. 2010), did not alter powdery mildew spore production (**Fig. 2A**). Similarly, a
402 mutant in ER-localized *LACS2* had no impact on powdery mildew growth and reproduction

403 (Tang, Simonich, and Innes 2007). As LACS1, LACS2, LACS4, and LACS8 are all ER-
404 localized (Weng et al. 2010; Zhao et al. 2010; Jessen et al. 2015), it is likely that multiple ER
405 LACS activate imported FAs.

406 Collectively, our findings indicate induced TAG biosynthesis in the ER via DGAT1
407 impedes the asexual reproduction of powdery mildew (**Fig. 7**). AtDGAT1 acyl specificity differs
408 from that of AtDGAT3. C16:0 is the preferred substrate of AtDGAT1, with little activity with
409 C18:2 or C18:3 (Zhou et al. 2013; Aymé et al. 2014). C16:0 is a minor component of thylakoid
410 membrane galactolipids (Browse et al. 1989; Mats X. Andersson, J. Magnus Kjellberg, and
411 Sandelius 2001), consistent with AtDGAT1 use of precursor pools in the ER distinct from those
412 used in the chloroplast by AtDGAT3.

413 How do ER-synthesized TAGs limit the growth of the biotrophic pathogen? TAGs
414 synthesized at the ER membrane are typically packaged into organelles known as lipid droplets
415 (LDs) that bud from the ER and accumulate in the cytosol (Guzha et al. 2023). Sequestration of
416 these TAGs could be a means of nutrient restriction by the host if these LDs are not accessible to
417 the powdery mildew. Furthermore, given DGAT3-dependent TAG synthesis in the chloroplast
418 supports powdery mildew spore production, it is likely the competing pathway for TAG
419 synthesis in the ER via DGAT1 may divert precursors from the chloroplast pathway (**Fig. 7**). For
420 example, substrates for plastidic TAG synthesis may be limited by DGAT1 activity pulling
421 plastidic FAs to the ER and/or reducing export of DAG/DAG precursors from the ER to the
422 chloroplast. This competition has been observed in engineered tobacco leaves that accumulate oil
423 at 15% of dry weight (Zhou et al. 2019) and reflects that TAG synthesis drives precursor flux
424 (Bates and Browse 2012).

425 In addition, LDs not only contain TAGs and sterol esters, but may be sites of specialized
426 biochemistry during stress (Shimada, Hayashi, and Hara-Nishimura 2017). Increased LDs have
427 been observed in leaves infected by the hemi-biotrophic fungus *Colletotrichum higginsianum*
428 and proposed to be sites of phytoalexin synthesis, preventing pathogen spread (Shimada et al.
429 2014). Furthermore, LDs induced in response to avirulent *Pseudomonas syringae* infection of
430 *Arabidopsis* leaves were found to contain camalexin biosynthetic enzymes (Fernández-Santos et
431 al. 2020). Genes involved in indole-3-acetaldoxime derived phytoalexin production associated
432 with defense against powdery mildews (Clay et al. 2009; Liu et al. 2016; Hunziker et al. 2020)
433 exhibit enhanced expression at the powdery mildew infection site at 5 dpi (Chandran et al.

434 2010). This raises the possibility that increased synthesis and/or exposure to defensive
435 specialized metabolites may contribute to the reduction in powdery mildew spore production
436 associated with ER-derived LDs (**Fig. 7**).

437 **Powdery mildew infection offers valuable insights into the intricacy of plant lipid
438 metabolism**

439 Although TAGs typically do not accumulate to significant levels in vegetative tissues,
440 TAG accumulation in leaf tissue occurs in response to diverse environmental stresses and leaf
441 senescence (Lu et al. 2020). While a role for AtDGAT3 has not been assessed in response to
442 environmental stresses or leaf senescence, our study shows the important role AtDGAT3 plays in
443 the powdery mildew-host interaction. This indicates AtDGAT3 function should be examined
444 under other conditions, particularly those in which thylakoid disassembly is observed and
445 induced TAGs are enriched in thylakoid-derived FAs, such as response to N limitation and
446 senescence (Kaup, Froese, and Thompson 2002; Gaude et al. 2007; Besagni and Kessler 2013).
447 Our work also argues for tracking cytosolic lipid droplet (LD) origins, as they were previously
448 assumed to be ER-derived. And, the powdery mildew system provides a phenotype (impact on
449 spore production) for distinguishing chloroplast-derived TAGs (via AtDGAT3) from those
450 produced in the ER via AtDGAT1. Whether this translates to other (obligate) plant biotrophs of
451 vegetative tissue remains to be investigated.

452 As shown by the root colonizing- obligate symbiont AMF, TAGs are only one possible
453 source of lipids for microbial acquisition. AMF manipulate plant root cells to produce 2-MGs for
454 fungal acquisition (Kameoka and Gutjahr 2022). In both systems, localized endoreduplication
455 occurs and is associated with enhanced metabolic capacity that may allow for increased flux to
456 FAs (Wildermuth 2010; Wildermuth et al. 2017). While AMF shifts lipid metabolism to 2-MG
457 production through the use of enzymes specific to AMF host plants, the powdery mildew
458 employs DGAT3, present in almost all land plants (Yan et al. 2018), for chloroplast TAG
459 formation to support asexual reproduction (**Figs. 2, 4**). Therefore, specific host transporters may
460 not be required as they are for AMF 2-MGs. Instead, lipid bodies that originate in the chloroplast
461 have the potential to be directly acquired by the powdery mildew. Similarly, a number of human
462 intracellular pathogens acquire host lipid bodies for their nutrition and development (Vallochi et
463 al. 2018).

464 **DGAT3, a unique class of DGAT enzyme**

465 The three classes of *Arabidopsis* DGAT enzymes contain distinct conserved domains and
466 have evolved independently in plants (Yin et al. 2022). The least studied class, DGAT3 enzymes,
467 are unique in that they are soluble metalloproteins, with no transmembrane domain, and a
468 thioredoxin-like ferredoxin domain containing a [2Fe-2S] cluster (Aymé et al. 2018). While
469 AtDGAT3 (**Fig. 2C**) and *Paeonia rockii* PrDGAT3 (Han et al. 2022) are clearly localized to the
470 chloroplast; other DGAT3 enzymes have been characterized as cytosolic (peanut, (Saha et al.
471 2006); soybean, (Xue et al. 2022); *Camelina sativa*, (Gao et al. 2021)).

472 *AtDGAT3* is widely expressed at levels often 10-fold higher than *AtDGAT1* and
473 *AtDGAT2*, with highest expression in the hypocotyl and mature and senescent leaf petioles and
474 stems (Klepikova et al. 2016). Consistent with findings for powdery mildew infection of mature
475 *Arabidopsis* leaves (Chandran et al. 2009, 2010), *AtDGAT3* is not strongly induced in response
476 to pathogen or abiotic stress, assessed using the *Arabidopsis* eFP Browser (Winter et al. 2007).
477 As changes in *AtDGAT3* expression are minimal, AtDGAT3 activity may depend on the
478 availability of preferred precursors (e.g. released from thylakoid degradation). Furthermore,
479 AtDGAT3 activity may be regulated by insertion of preformed [2Fe-2S] into the apoprotein in
480 the plastid (Przybyla-Toscano et al. 2018) and by redox.

481 The availability of [2Fe-2S] clusters, along with maturation factors, could therefore
482 impact DGAT3 metalloprotein levels. We found AtDGAT3 to participate in chloroplast TAG
483 accumulation (**Fig. 4**) concurrent with thylakoid membrane degradation (**Figs. 5, 6**). When
484 thylakoid membranes are broken down, as we observe in response to powdery mildew, [2Fe-2S]
485 clusters released from thylakoid metalloproteins may be available for insertion into the
486 AtDGAT3 apoprotein. The AtDGAT3 metalloprotein could then help minimize lipotoxicity by
487 converting toxic free fatty acids and DAGs into storage lipids.

488 Redox state is also likely to regulate the activity of AtDGAT3. Chloroplast redox status,
489 responsive to environmental cues, controls much of chloroplast function including lipid
490 metabolism (Hernández and Cejudo 2021). Ayme et al. (2018) found the AtDGAT3 [2Fe-2S]2+
491 cluster is stable, while the reduced [2Fe-2S]+ form of the enzyme is rapidly destroyed. When
492 thylakoid membranes are disassembled and/or degraded, reductant generated from oxidative
493 phosphorylation would be decreased and could be insufficient to reduce the AtDGAT3

494 metallocluster. Similarly, conditions resulting in plastidic oxidative stress (such as high light)
495 could stabilize DGAT3, reducing lipotoxicity.

496 Engineered plants with increased TAG yield and low input costs for biofuel or
497 specialized chemical applications (Pfleger, Gossing, and Nielsen 2015) could be designed to take
498 advantage of AtDGAT3's production of TAGs at the expense of thylakoid membranes. The
499 associated TAG profile would be enriched in C18:3 and C18:2 fatty acids desirable for human
500 nutrition (Kumar, Sharma, and Upadhyaya 2016). As shown in **Figure 4**, the TAGs from isolated
501 chloroplasts infected with powdery mildew appear similar to that of commercial extra virgin
502 olive oil and to be largely attributed to synthesis via AtDGAT3. By contrast the TAGs from
503 infected whole leaves are dominated by TAGs with reduced FA chain length, indicated by the
504 lower Rf, that are likely synthesized in the ER via DGAT1, consistent with its preference for
505 C16:0 (Aymé et al. 2014). Transient expression of *AtDGAT3* or *PrDGAT3* in *N. benthamiana*
506 leaves increases TAG production by ~2-fold (Hernández et al. 2012; Han et al. 2022), compared
507 to 7-8-fold increase with *AtDGAT1* transient expression (Hernández et al. 2012; Vanhercke et al.
508 2013). Therefore, in engineered plants, increased flux to plastidic TAG synthesis might be
509 further enhanced by reducing *DGAT1*. In addition, controls over DGAT3 activity and stability
510 would need to be addressed.

511 Not only does the powdery mildew system allow us to uncover the role of AtDGAT3 in
512 plastid TAG biosynthesis, but it can also be used to dissect key regulators driving flux towards
513 plastid TAG synthesis and lipid body secretion. While the powdery mildew-induced shift in leaf
514 lipid metabolism is highly localized, heavy infection could further increase induced TAG levels
515 from the 3-fold induction observed with the low/moderate levels of infection that facilitate our
516 molecular and microscopic studies. By understanding how mature photosynthetically active
517 leaves switch their metabolism to break down thylakoids to make and secrete storage lipids,
518 higher yields of plant oils could potentially be achieved, than from extracted seeds or fruit.
519 Furthermore, plants suitable for oil production could be expanded and deforestation associated
520 with palm oil plantations could potentially be reduced, facilitating more sustainable and
521 environmentally benign production.

522 **METHODS**

523 **Plant lines, growth, and powdery mildew infection**

524 *Mutant list:* Seeds of *abca9-1* (SALK_058070, Kim et al. 2013), *lacs1-1*
525 (SALK_127191, Lü et al. 2009), *dgat1-1* (CS3861, Katavic et al. 1995), *dgat3-2*
526 (SALK_112303, **Supplemental Fig. S2**), *pdat1-2* (SALK_065334, Zhang et al. 2009) mutant
527 lines in Col-0 background were obtained from Arabidopsis Biological Resource Center (ABRC)
528 at The Ohio State University. All lines were genotyped to confirm homozygosity, using primers
529 in **Supplemental Table S1**.

530 Wild type *Arabidopsis thaliana* ecotype Columbia-0 (Col-0) and mutants were grown in
531 SS Metromix200 soil (Sun Gro, Bellevue, WA) in growth chambers at 22°C with 12 h light/dark
532 cycle, 70% relative humidity and PAR of $\sim 120 \mu\text{mol m}^{-2} \text{ s}^{-1}$. After stratification at 4°C,
533 alternating Col-0 and mutant seeds were planted in 16.5 cm insert boxes (12 plants/box; 6
534 boxes/flat). For whole plant spore count phenotyping, boxes of plants were inoculated at 4 weeks
535 by settling tower with a moderate dose of 10-14 dpi conidia from *G. orontii* MGH1 at consistent
536 time of day (Reuber et al. 1998).

537 **Spray-induced gene silencing (SIGS)**

538 SIGS protocol was adapted from McRae *et.al.* (2023) (McRae et al. 2023). pssRNAit
539 (<https://plantgrn.noble.org/pssRNAit/>) was used to design an efficient and specific dsRNA for
540 *DGAT1* (AT2G19450), *DGAT2* (AT3G49210), and *DGAT3* (AT1G48300). Templates were
541 amplified (primers in **Supplemental Table S1**) from Col-0 cDNA and prepared for *in vitro*
542 transcription with the HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs,
543 Ipswich, MA). After purification with Monarch RNA Cleanup Kit (New England Biolabs,
544 Ipswich, MA), RNA was reannealed, quantified and aliquoted in nuclease-free water. 12-15
545 mature fully expanded Arabidopsis leaves from 4-5 4-week old plants were harvested. Petioles
546 were inserted through a Whatman 1.0 paper overlaid into 1/2 MS salts (Research Products
547 International, Prospect, IL), 0.1% 2-(N- morpholino)ethanesulfonic acid (Merck Millipore,
548 Burlington, MA), and 0.8% agar (BD Biosciences, San Jose, CA) in 150 mm plates. Paired
549 plates (with mutant and WT leaves) were placed under the settling tower and infected with 10-14

550 dpi conidia, as above. 40µg RNA (or nuclease-free mock) was sprayed at 1 hpi and 2 dpi.

551 **Spore tissue collection and counting**

552 Powdery mildew spore production/mg leaf fresh weight protocol was adapted from
553 Weßling and Panstruga (Weßling and Panstruga 2012). Briefly, at 8-10 dpi, leaves 7-9 from WT
554 and mutant plants in a box, or all 12 leaves from mock and dsRNA- treated plates, were
555 harvested. Spores were washed off leaves by vortexing in 15 mL 0.01% Tween-80 for 30
556 seconds and filtered through 30µm CellTrics filter (Sysmex America, Lincolnshire, IL) before
557 centrifugation at 4000xg. The resulting spore pellet was resuspended in 200-1000µL water. For
558 each sample, nine 1 × 1 mm fields of a Neubauer-improved haemocytometer were counted. For
559 lipid analysis, tissue was immediately frozen and stored until extraction. For spore counting, 3
560 paired counts of WT and mutant spore suspensions from a box were performed on a Neubauer-
561 improved hemocytometer (Hausser Scientific, Horsham, PA). Spore counts were divided by the
562 fresh weight of the plant tissue to determine spores/mgFW, and then normalized to WT counts.
563 To determine significance, an unpaired, two-tailed Student's T-test was performed on counts
564 from at least 5 boxes ($p < 0.05$).

565 **Trypan blue staining**

566 To visualize cell death, leaf tissues were incubated for 16 h at 24°C in the staining
567 solution (2.5 mg/ml trypan blue in lactophenol, lactic acid, glycerol, phenol, water (1:1:1:1)), and
568 two volumes of ethanol were added to this solution. The tissues were cleared in chloral hydrate
569 solution (2.5g/ml chloral hydrate in water) for 16 h at 24°C. Leaf tissues were transferred to 70%
570 glycerol and viewed using the AS Laser Microdissection system microscope (Leica
571 Microsystems, Deerfield, IL). Note that trypan blue also slightly stains fungal structures.

572 **Reverse transcription (RT)-qPCR analysis**

573 Total RNA from leaves was extracted with RNA using Spectrum (Sigma-Aldrich) Plant
574 Total RNA Kit according to the manufacturer's protocol. Residual genomic DNA was digested
575 with DNase I (DNaseI, Qiagen). PCR was performed using cDNA using High-Capacity cDNA
576 Reverse Transcription Kit (ThermoFisher Scientific). The gene specific primers for DGAT3 are:
577 P1: 5'-ACCAGAACGGTAGGGTTCG-3'; P2: 5'-CTAACGTTGGGCCATCACGAC-3'.

578 Amplification was performed using the following conditions: 95°C for 2 min and 30 cycles of
579 95°C for 30 s, 60°C for 30 s, and 72°C for 90 s.

580 To analyze the expression levels of *PR1* in *dgat3-2* and Col-0 with powdery mildew
581 infection, three independently grown biological replicates of two fully expanded leaves (leaves
582 7-9) at 5 dpi were used for comparison. Tissue was immediately frozen in liquid nitrogen and
583 stored at -80°C until extraction. RNA was extracted using Spectrum (Sigma-Aldrich) Plant Total
584 RNA Kit according to the manufacturer's protocol. Residual genomic DNA was digested with
585 DNase I (DNaseI, Qiagen). Purity and concentration of RNA was confirmed with Nanodrop-
586 1000 spectrophotometer (ThermoFisher Scientific). Complementary DNA (cDNA) was
587 synthesized from 1µg RNA using High-Capacity cDNA Reverse Transcription Kit
588 (ThermoFisher Scientific). Quantitative real-time PCR (qPCR) experiments were performed in a
589 BioRad CFX96 (BioRad) using the iTaq Universal SYBR Green Supermix (Bio-Rad, USA),
590 following kit instructions. For all genes, thermal cycling started with a 95°C denaturation step
591 for 10 min followed by 40 cycles of denaturation at 95°C for 15 s and annealing at 56°C for 30 s.
592 Each run was finished with melt curve analysis to confirm specificity of amplicon. Three
593 technical replicates were performed for each experimental set. Gene expression (fold change)
594 was calculated normalized to ACTIN2 (At3g18780) as reference gene, and calculated using the
595 Do My qPCR Calculations webtool (http://umrh-bioinfo.clermont.inrae.fr/do_my_qPCRcalc/;
596 (Tournayre et al. 2019). Primer sequences are provided in **Supplemental Table S1**.

597 **Golden Gate cloning and transient expression of DGAT3 via Agrobacterium infiltration**

598 The full-length genomic DNA encoding *DGAT3* (*AT1G48300*) without stop codon and
599 with removal of an internal restriction site for BsaI was utilized. Two BsaI restriction enzyme
600 sites are added to both 5' and 3' end of sequence using PCR primers listed in **Supplemental**
601 **Table S1**. The sequence was cloned into pICSL22010 plasmid (with C-terminal GFP and CaMV
602 35S promoter) by Golden Gate cloning. The vector was transformed into *Agrobacterium*
603 *tumefaciens* GV3101. *A. tumefaciens* transformants were grown in 5 mL liquid LB with
604 appropriate antibiotics overnight at 28°C, pelleted, resuspended in induction media (10 mM
605 MES pH 5.6, 10 mM MgCl₂, 150 µM acetosyringone) to an OD600 of 0.4-0.60 for transient
606 expression, and incubated in induction media for approximately 3-4 h before infiltration in *N.*

607 *benthamiana* leaves. GFP fluorescence was observed at 48-72 hpi by Zeiss LSM710 confocal
608 microscope (Carl Zeiss Inc, White Plains, New York) at the RCNR Biological Imaging Facility,
609 UC Berkeley.

610 **Confocal imaging**

611 Confocal scanning fluorescence microscopy with a Zeiss LSM710 confocal microscope
612 (Carl Zeiss Inc, White Plains, New York) at the RCNR Biological Imaging Facility, UC
613 Berkeley was utilized to examine fungal haustoria and lipid droplets.

614 Col-0 lines expressing RPW8.2-YFP under the native promoter were inoculated with *G.*
615 *orontii* to visualize fungal haustoria (W. Wang et al. 2009). The 3D reconstruction of RPW8.2-
616 YFP was performed using Imaris software. To visualize lipid bodies, tissues were stained with
617 0.004 mg/mL BODIPY 505/515 and vacuum infiltrated for 10 min before imaging. Excitation of
618 chlorophyll and BODIPY were at 633 and 488 nm, respectively. Emission wavelength for
619 chlorophyll and BODIPY-stained lipid bodies was 647-721 nm and 493-589 nm, respectively.
620 Percent-area of BODIPY fluorescence was quantified using Image J software. The 3D
621 reconstruction of lipid droplets and chloroplasts was performed using Imaris.

622 **Transmission electron microscopy imaging**

623 Arabidopsis Col-0 4 week old plants were heavily inoculated with *G. orontii*. Leaves
624 were sampled at 5 dpi and cut into 2 × 3-mm sections, fixed in buffer containing 2.5%
625 glutaraldehyde, 2% tween 20, 0.05M sodium cacodylate and 4% formaldehyde in microwave for
626 2 X 40 s. The fixed tissues were vacuumed for 1 h or as long as possible until they sank to the
627 bottom. The tissues were rinsed three times in 0.05M sodium cacodylate buffer for 10 min. After
628 being transferred into 1% Osmium tetroxide buffer, the tissues were fixed by microwaving for 3
629 X 1 min, with 15 min vacuum between each microwaving. The samples were dehydrated with a
630 gradient of acetone (35%, 50%, 70%, 80%, 95%, 100%, 100%, 100%) for 10 min each. The
631 tissues were sequentially infiltrated with 20%, 40%, 60% Resin by microwaving (3 min) and
632 rotated overhead for 1 h after each microwaving. The samples were rotated in 80% resin for 16
633 h. The next day, the samples were rotated in 90% resin 16 h. The samples were embedded in a
634 flat embedding mold and cured in a 60°C oven for 2-3 days. Ultrathin sections were put on mesh
635 nickel grids. After contrast staining, samples were examined and images were acquired with a

636 FEI Tecnai T12 Transmission Electron Microscope at the UC Berkeley Electron Microscopy
637 Laboratory.

638 **TAGs and Phospholipids via LC-MS/MS**

639 Leaf tissue (leaves 7-9) was harvested at 12 dpi, rapidly weighed, and flash frozen until
640 ready for extraction. After tissue disruption in the bead beater, modified Bligh & Dyer extraction
641 with methanol:chloroform:H₂O (1:1:0.9) was performed, 300 µL of chloroform phase was
642 recovered, and dried under nitrogen. The dried extracts were resuspended in 200µL of
643 Isopropanol (IPA):Acetonitrile (ACN):Methanol (MeOH) (3:3:4), and run immediately. Internal
644 standard mixes were used to ensure retention time reproducibility. Samples were run on an
645 Agilent 1290 (Agilent Technologies, Santa Clara, CA) UHPLC connected to a QExactive mass
646 spectrometer (Thermo Fisher Scientific, San Jose, CA) at the DOE Lawrence Berkeley Lab with
647 the following chromatographic method, in both positive and negative mode. Source settings on
648 the MS included auxiliary gas flow of 20 (au), sheath gas flow rate of 55 (au), sweep gas flow of
649 2 (au), spray voltage of 3 kV (positive and negative ionization modes), and ion transfer tube
650 temperature of 400 °C.

651 Lipids were run on a reversed phase 50mm x 2.1 mm, 1.8 µm Zorbax RRHD (Rapid
652 Resolution High Definition) C18 column (Agilent Technologies) with a 21 min gradient and 0.4
653 mL/min flow rate, with 2 µL injections. The mobile phases used were A: 60:40 H₂O:ACN
654 (60:40) with 5mM ammonium acetate, 0.1% formic acid, and B: IPA:ACN (90:10) with 5mM
655 ammonium acetate (0.2% H₂O), 0.1% formic acid. The system was held at 20% B for 1.5 min,
656 followed by an increase to 55% B over 2.5 min, and a subsequent increase to 80% B over 6 min.
657 The system was then held at 80% B for 2 min, before being flushed out with 100% B for 5 min,
658 and re-equilibrated at 20% B over 5 min. The QExactive parameters were as follows: MS
659 resolution was set to 70,000, and data was collected in centroid mode from 80-1200 m/z. MS/MS
660 data was collected at a resolution of 17,500 with a collision energy step gradient of 10, 20, and
661 30. Lipids were identified by comparing detected vs. theoretical lipid m/z and MS/MS
662 fragmentation patterns, with lipid class and fatty acid composition determined based on
663 characteristic product ions or neutral losses (see **Supplementary Dataset 1**). TAGs were
664 detected in positive ionization mode as [M+NH₄]⁺ adducts, with FA tails determined by neutral

665 loss of ions detected in MS/MS fragmentation spectra. Phospholipids PC, lysoPC, PE, PI, and
666 PG were detected in positive ionization mode as [M+H]⁺ adducts, with PCs and lysoPCs having
667 a characteristic product ion of 184, PEs a neutral loss of 141, PIs a neutral loss of 260 and PGs a
668 neutral loss of 172 (Murphy 2014). Metabolomics raw data is deposited in the MassIVE data
669 repository (<https://massive.ucsd.edu/>), accession number MSV000093317
670 (doi:10.25345/C5N873941). Only lipid classes that have peak heights above the upper bound of
671 the 95% confidence interval of the negative controls are included in **Supplemental Dataset 1** for
672 further analysis.

673 **Thylakoid Membrane Lipid Analysis**

674 *Tissue harvest and lipid extraction:* Leaves 7-9 were harvested from mock infected and
675 infected plants, washed of spores, frozen in liquid nitrogen, and stored at -80°C until extraction.
676 Extraction was performed following lipase inactivation in 75°C isopropanol for 15 min
677 according to (Devaiah et al. 2006) and electrospray ionization tandem mass spectrometry was
678 performed at the Kansas Lipidomics Research Center Analytical Laboratory (Manhattan, KS) as
679 below.

680 *Electrospray Ionization Tandem Mass Spectrometry Conditions:* The samples were
681 dissolved in 1 ml chloroform. An aliquot of 10 to 20 μ l of extract in chloroform was used. Precise
682 amounts of internal standards, obtained and quantified as previously described (Welti et al.
683 2002), were added in the following quantities (with some small variation in amounts in different
684 batches of internal standards): 0.36 nmol di14:0-PG, 0.36 nmol di24:1-PG, 0.36 nmol 14:0-
685 lysoPG, 0.36 nmol 18:0- lysoPG, 2.01 nmol 16:0-18:0-MGDG, 0.39 nmol di18:0- MGDG, 0.49
686 nmol 16:0-18:0-DGDG, and 0.71 nmol di18:0-DGDG. Samples were combined with solvents,
687 introduced by continuous infusion into the ESI source on a triple quadrupole MS/MS (API 4000,
688 Applied Biosystems, Foster City, CA), and neutral loss scans were acquired as described by
689 (Shiva et al. 2013).

690 The background of each spectrum was subtracted, the data were smoothed, and peak
691 areas integrated using a custom script and Applied Biosystems Analyst software. Peaks
692 corresponding to the target lipids in these spectra were identified and the intensities corrected for
693 isotopic overlap. Lipids in each class were quantified in comparison to the two internal standards

694 of that class. The first and typically every 11th set of mass spectra were acquired on the internal
695 standard mixture only. A correction for the reduced response of the mass spectrometer to the
696 galactolipid standards in comparison to its response to the unsaturated leaf galactolipids was
697 applied. To correct for chemical or instrumental noise in the samples, the molar amount of each
698 lipid metabolite detected in the “internal standards only” spectra was subtracted from the molar
699 amount of each metabolite calculated in each set of sample spectra. Finally, the data were
700 corrected for the fraction of the sample analyzed and normalized to the sample leaf dry weight
701 (DW) to produce data in the units nmol/mg DW.

702 **FAME analysis**

703 Leaves 7-9 were harvested from mock infected and infected plants, washed of spores,
704 frozen in liquid nitrogen, and stored at -80°C until extraction. Extraction was performed
705 following lipase inactivation in 75°C isopropanol for 15 min according to (Devaiah et al. 2006)
706 and FAME analysis was performed by the Kansas Lipidomics Research Center Analytical
707 Laboratory (Manhattan, KS) as below.

708 Total lipid extracts were spiked with 25 nmol pentadecanoic (C15:0) acid as internal
709 standard. Samples were evaporated under a stream of nitrogen. Samples were resuspended in 1
710 mL 3 M methanolic hydrochloric acid and heated at 78°C for 30 min. Two mL H₂O and 2 mL
711 hexane were added followed by three hexane extractions and then dried down under a stream of
712 nitrogen. Samples were then redissolved in 100 µL hexane and analyzed on GC-FID (Agilent
713 6890N) after separating sample using a DB-23 capillary column (column length, 60 m; internal
714 diameter, 250 µm; film thickness, 0.25 µm). The carrier was helium gas at a flow rate of 1.5
715 mL/min. The back inlet was operating at a pressure of 36.01 psi and temperature of 250 °C. The
716 GC oven temperature ramp began with an initial temperature of 150 °C held for 1 min and
717 increased at 25 °C/min to 175 °C. Then the temperature was increased at 4 °C/min to 230°C and
718 held at 230°C for 8 min. The total run time was 23.75 min. The flame ionization detector was
719 operated at 260 °C. The hydrogen flow to the detector was 30 mL/min, air flow was 400 mL/min
720 and sampling rate of the FID was 20 Hz. The data were processed using Agilent Chemstation
721 software. As for above, only data with CoV < 0.3 were included. Data are presented as nmol/mg
722 DW of the tissue utilized. Spore nmol/mg DW was multiplied by 0.12995 to indicate the

723 corresponding leaf mg/DW from which the spores were obtained.

724 **TLC of lipids from isolated chloroplasts and whole leaves**

725 Chloroplast isolation: Leaf tissue from about 40 *Arabidopsis* plants, infected with *G.*
726 *orontii* MGH1 at 4-weeks, was harvested at 12 dpi and immediately homogenized by blending
727 for 3x5 s in isolation buffer (30 mM HEPES-KOH pH 8, 0.33M sorbitol, 5 mM MgCl₂, 0.1 %
728 [w/v] BSA). The resulting homogenate was briefly filtered through one layer of Miracloth
729 (Chicopee Mills Inc., Milltown, N. J.) Chloroplasts were pelleted with 5-min centrifugation at
730 1500 g and 4°C, and washed twice with washing buffer (30 mM HEPES-KOH pH 8.0, 0.33M
731 sorbitol). Washed chloroplasts were normalized by chlorophyll concentration and resuspended in
732 an osmotic stress buffer (10 mM Tricine pH 7.9, 1 mM EDTA, 0.6 M sucrose) and stored at
733 -80°C for future analysis.

734 1-3 mg chloroplasts (normalized by chlorophyll concentrations) or 1-2 g grounded whole
735 leaf tissues from 4-5 week old plants (normalized by fresh weight) for infected samples at 12 dpi
736 were sonicated with 4 pulses of 10 sec and 20% wattage (Model VCX 130, Sonics & Materials
737 INC, Newtown, CT). 1 mL of 2:1 Chloroform Methanol (v/v) with 0.01% BHT was added and
738 placed on a vortex for 5 min. 266 µL of 0.73% (w/v) NaCl solution was added, and the mixture
739 was inverted 5-6 times to mix. Samples were then centrifuged for 5 min at 10,000 × g. The lower,
740 solvent phase was used and dried under an N₂ stream and resuspended in 20 µL chloroform. In
741 total, 10 µL of the concentrated lipid extract was loaded onto a clean silica TLC plate
742 (MilliporeSigma™ TLC Silica Gel 60 F254: 25 Glass plates, M1057150001) and developed
743 hexane:diethyl ether:glacial acetic acid (91:39:1.3) for 30 min. Lipids were visualized by sulfuric
744 acid spray and charring (25% H₂SO₄ in 50% ethanol, 135 °C for 10 min). Trader Giotto's extra
745 virgin olive oil (0.01ug loaded) was used as a standard. TLC was conducted for four separate
746 experiments, each serving as a biological replicate. Relative TAG content analysis was
747 performed using ImageJ software.

748

749 **ACCESSION NUMBERS**

750 *ABCA9* (AT5G61730), *LACS1* (AT2G47240), *PDAT1* (AT5G13640), *DGAT1* (AT2G19450),
751 *DGAT2* (AT3G51520), *DGAT3* (AT1G48300), *PR1* (At2g14610), MassIVE data repository
752 (<https://massive.ucsd.edu/>) accession number MSV000093317.

753

754

755 **SUPPLEMENTAL MATERIALS**

756 **Supplemental Table S1.** Genotyping, cloning, and SIGS dsRNA template primers used for this
757 work.

758 **Supplemental Figure S1.** Abundance of TAG species detected in infected leaves at 12 dpi,
759 compared to uninfected leaves.

760 **Supplemental Figure S2.** Identification of *dgat3-2* (SALK_112303) mutant.

761 **Supplemental Figure S3.** Transmission electron microscopy image of mesophyll chloroplast
762 from uninfected *Arabidopsis* leaf.

763 **Supplemental Dataset 1: LC-MS/MS analysis.**

764 **Supplemental Dataset 2: FAME and ESI-MS/MS analysis.**

765

766 **ACKNOWLEDGEMENT**

767 This work was supported by National Science Foundation (NSF) MCB-1617020 and PFI-
768 1919244, and USDA National Institute of Food and Agriculture, Hatch Project Accession
769 Number 1016994 awards to MCW. HX also received a NRAEF Viticulture and Enology
770 Scholarship. JS was supported through NSF MCB-1617020, with TN as co-PI. KL
771 acknowledges support from the US Department of Energy Joint Genome Institute
772 (<https://ror.org/04xm1d337>; operated under Contract No. DE-AC02-05CH11231 to Lawrence
773 Berkeley National Laboratory). We thank Dr. Denise Schichnes at the RCNR Biological Imaging
774 Facility and the staff of the Electron Microscope Laboratory at the University of California

775 Berkeley for their assistance. Microscopy imaging reported in this publication was supported in
776 part by the National Institutes of Health S10 program under award number 1S10RR026866-01.
777 The thylakoid lipid and FAME analyses described in this work were performed at the Kansas
778 Lipidomics Research Center Analytical Laboratory (Manhattan, KS) by Mary Roth and Libin
779 Yao. Instrument acquisition and lipidomics method development were supported by the National
780 Science Foundation (including support from the Major Research Instrumentation program; most
781 recent award DBI-1726527), K-IDeA Networks of Biomedical Research Excellence (INBRE) of
782 National Institute of Health (P20GM103418), USDA National Institute of Food and Agriculture
783 (Hatch/Multi-State project 1013013), and Kansas State University. We thank Dr. Shunyuan Xiao
784 (University of Maryland, College Park) for RPW8-YFP Arabidopsis seeds, Dr. Ksenia Krasileva
785 (UC Berkeley) for plasmid pICSL22010, and Dr. Krishna Niyogi (UC Berkeley) and Dr. Peter
786 Dörmann (University of Bonn, Germany) for critical review of the manuscript.
787

788 AUTHOR CONTRIBUTIONS

789 JJ, HX and MCW planned and designed the research. Spore counting of mutant and WT plants
790 was performed by JJ and RM. JJ prepared samples for lipid analyses. HX performed DGAT3
791 cloning and characterization. Confocal imaging was done by HX, and TEM by HX and JJ. JS,
792 KL, and TN performed the LC-MS/MS TAG and PL analyses. JJ, HX and MCW wrote the
793 manuscript. All authors contributed to the reviewing of the manuscript.

794

795 REFERENCES

796 Abood, J. K., and Dorothy M. Lösel. 1989. "Effects of Powdery Mildew Infection on the Lipid
797 Metabolism of Cucumber." In *Biological Role of Plant Lipids*, edited by Péter A. Biacs,
798 Katalin Gruiz, and Tibor Kremmer, 597–601. Boston, MA: Springer US.
799 Arzac, Miren I., Beatriz Fernández-Marín, and José I. García-Plazaola. 2022. "More than Just
800 Lipid Balls: Quantitative Analysis of Plastoglobule Attributes and Their Stress-Related
801 Responses." *Planta* 255 (3): 62.
802 Atella, Georgia C., Paula R. Bittencourt-Cunha, Rodrigo D. Nunes, Mohammed Shahabuddin,
803 and Mário A. C. Silva-Neto. 2009. "The Major Insect Lipoprotein Is a Lipid Source to
804 Mosquito Stages of Malaria Parasite." *Acta Tropica* 109 (2): 159–62.
805 Aymé, Laure, Simon Arragain, Michel Canonge, Sébastien Baud, Nadia Touati, Ornella Bimai,
806 Franjo Jagic, et al. 2018. "Arabidopsis Thaliana DGAT3 Is a [2Fe-2S] Protein Involved in
807 TAG Biosynthesis." *Scientific Reports* 8 (1): 1–10.

808 Aymé, Laure, Sébastien Baud, Bertrand Dubreucq, Florent Joffre, and Thierry Chardot. 2014.
809 “Function and Localization of the *Arabidopsis* Thaliana Diacylglycerol Acyltransferase
810 DGAT2 Expressed in Yeast.” *PloS One* 9 (3): e92237.

811 Bates, Philip D. 2022. “Chapter Six - The Plant Lipid Metabolic Network for Assembly of
812 Diverse Triacylglycerol Molecular Species.” In *Advances in Botanical Research*, edited by
813 Fabrice Rébeillé and Eric Maréchal, 101:225–52. Academic Press.

814 Bates, Philip D., and John Browse. 2012. “The Significance of Different Diacylglycerol Synthesis
815 Pathways on Plant Oil Composition and Bioengineering.” *Frontiers in Plant Science* 3
816 (July): 147.

817 Baud, Sébastien, Bertrand Dubreucq, Martine Miquel, Christine Rochat, and Loïc Lepiniec.
818 2008. “Storage Reserve Accumulation in *Arabidopsis*: Metabolic and Developmental
819 Control of Seed Filling.” *The Arabidopsis Book / American Society of Plant Biologists* 6
820 (July): e0113.

821 Besagni, Céline, and Felix Kessler. 2013. “A Mechanism Implicating Plastoglobules in
822 Thylakoid Disassembly during Senescence and Nitrogen Starvation.” *Planta* 237 (2): 463–
823 70.

824 Both, Maike, Michael Csukai, Michael P. H. Stumpf, and Pietro D. Spanu. 2005. “Gene
825 Expression Profiles of *Blumeria Graminis* Indicate Dynamic Changes to Primary
826 Metabolism during Development of an Obligate Biotrophic Pathogen.” *The Plant Cell* 17
827 (7): 2107–22.

828 Bouchnak, Imen, Denis Coulon, Vincent Salis, Sabine D’Andréa, and Claire Bréhélin. 2023.
829 “Lipid Droplets Are Versatile Organelles Involved in Plant Development and Plant
830 Response to Environmental Changes.” *Frontiers in Plant Science* 14 (June): 1193905.

831 Browse, J., L. Kunst, S. Anderson, S. Hugly, and C. Somerville. 1989. “A Mutant of *Arabidopsis*
832 Deficient in the Chloroplast 16:1/18:1 Desaturase.” *Plant Physiology* 90 (2): 522–29.

833 Browse, J., N. Warwick, C. R. Somerville, and C. R. Slack. 1986. “Fluxes through the
834 Prokaryotic and Eukaryotic Pathways of Lipid Synthesis in the ‘16:3’ Plant *Arabidopsis*
835 Thaliana.” *Biochemical Journal* 235 (1): 25–31.

836 Cavaco, Ana Rita, Ana Rita Matos, and Andreia Figueiredo. 2021. “Speaking the Language of
837 Lipids: The Cross-Talk between Plants and Pathogens in Defence and Disease.” *Cellular
838 and Molecular Life Sciences: CMS* 78 (9): 4399–4415.

839 Chandran, Divya, Noriko Inada, Greg Hather, Christiane K. Kleindt, and Mary C. Wildermuth.
840 2010. “Laser Microdissection of *Arabidopsis* Cells at the Powdery Mildew Infection Site
841 Reveals Site-Specific Processes and Regulators.” *Proceedings of the National Academy of
842 Sciences of the United States of America* 107 (1): 460–65.

843 Chandran, Divya, Yu Chuan Tai, Gregory Hather, Julia Dewdney, Carine Denoux, Diane G.
844 Burgess, Frederick M. Ausubel, Terence P. Speed, and Mary C. Wildermuth. 2009.
845 “Temporal Global Expression Data Reveal Known and Novel Salicylate-Impacted Processes
846 and Regulators Mediating Powdery Mildew Growth and Reproduction on *Arabidopsis*.”
847 *Plant Physiology* 149 (3): 1435–51.

848 Clark, Joanna I. M., and J. L. Hall. 1998. “Solute Transport into Healthy and Powdery Mildew-
849 Infected Leaves of Pea and Uptake by Powdery Mildew Mycelium.” *The New Phytologist*
850 140 (2): 261–69.

851 Clay, Nicole K., Adewale M. Adio, Carine Denoux, Georg Jander, and Frederick M. Ausubel.
852 2009. “Glucosinolate Metabolites Required for an *Arabidopsis* Innate Immune Response.”
853 *Science* 323 (5910): 95–101.

854 Costa, G., M. Gildenhard, M. Eldering, R. L. Lindquist, A. E. Hauser, R. Sauerwein, C.
855 Goosmann, V. Brinkmann, P. Carrillo-Bustamante, and E. A. Levashina. 2018. “Non-
856 Competitive Resource Exploitation within Mosquito Shapes within-Host Malaria Infectivity
857 and Virulence.” *Nature Communications* 9 (1): 1–11.

858 Dahlqvist, Anders, Ulf Ståhl, Marit Lenman, Antoni Banas, Michael Lee, Line Sandager, Hans
859 Ronne, and Sten Stymne. 2000. “Phospholipid:diacylglycerol Acyltransferase: An Enzyme
860 That Catalyzes the Acyl-CoA-Independent Formation of Triacylglycerol in Yeast and
861 Plants.” *Proceedings of the National Academy of Sciences* 97 (12): 6487–92.

862 Devaiah, Shivakumar Pattada, Mary R. Roth, Ethan Baughman, Maoyin Li, Pamela Tamura,
863 Richard Jeannotte, Ruth Welti, and Xuemin Wang. 2006. “Quantitative Profiling of Polar
864 Glycerolipid Species from Organs of Wild-Type Arabidopsis and a Phospholipase D α 1
865 Knockout Mutant.” *Phytochemistry* 67 (17): 1907–24.

866 Espinoza-Corral, Roberto, Serena Schwenkert, and Peter K. Lundquist. 2021. “Molecular
867 Changes of Arabidopsis Thaliana Plastoglobules Facilitate Thylakoid Membrane
868 Remodeling under High Light Stress.” *The Plant Journal: For Cell and Molecular Biology*
869 106 (6): 1571–87.

870 Fan, Jilian, Chengshi Yan, and Changcheng Xu. 2013. “Phospholipid:diacylglycerol
871 Acyltransferase-Mediated Triacylglycerol Biosynthesis Is Crucial for Protection against
872 Fatty Acid-Induced Cell Death in Growing Tissues of Arabidopsis.” *The Plant Journal: For
873 Cell and Molecular Biology* 76 (6): 930–42.

874 Fernández-Santos, Rubén, Yovanny Izquierdo, Ana López, Luis Muñiz, Marta Martínez, Tomás
875 Cascón, Mats Hamberg, and Carmen Castresana. 2020. “Protein Profiles of Lipid Droplets
876 during the Hypersensitive Defense Response of Arabidopsis against Pseudomonas
877 Infection.” *Plant & Cell Physiology* 61 (6): 1144–57.

878 Fotopoulos, Vasileios, Martin J. Gilbert, Jon K. Pittman, Alison C. Marvier, Aram J. Buchanan,
879 Norbert Sauer, J. L. Hall, and Lorraine E. Williams. 2003. “The Monosaccharide
880 Transporter Gene, AtSTP4, and the Cell-Wall Invertase, Atbetafruct1, Are Induced in
881 Arabidopsis during Infection with the Fungal Biotroph Erysiphe Cichoracearum.” *Plant
882 Physiology* 132 (2): 821–29.

883 Frye, C. A., and R. W. Innes. 1998. “An Arabidopsis Mutant with Enhanced Resistance to
884 Powdery Mildew.” *The Plant Cell* 10 (6): 947–56.

885 Frye, Catherine A., Dingzhong Tang, and Roger W. Innes. 2001. “Negative Regulation of
886 Defense Responses in Plants by a Conserved MAPKK Kinase.” *Proceedings of the National
887 Academy of Sciences* 98 (1): 373–78.

888 Gao, Huiling, Yu Gao, Fei Zhang, Baoling Liu, Chunli Ji, Jinai Xue, Lixia Yuan, and Runzhi Li.
889 2021. “Functional Characterization of an Novel Acyl-CoA:diacylglycerol Acyltransferase 3-
890 3 (CsDGAT3-3) Gene from Camelina Sativa.” *Plant Science: An International Journal of
891 Experimental Plant Biology* 303 (February): 110752.

892 Gaude, Nicole, Claire Bréhélin, Gilbert Tischendorf, Felix Kessler, and Peter Dörmann. 2007.
893 “Nitrogen Deficiency in Arabidopsis Affects Galactolipid Composition and Gene
894 Expression and Results in Accumulation of Fatty Acid Phytol Esters.” *The Plant Journal:
895 For Cell and Molecular Biology* 49 (4): 729–39.

896 Ghosh, S., K. A. Hudak, E. B. Dumbroff, and J. E. Thompson. 1994. “Release of Photosynthetic
897 Protein Catabolites by Blebbing from Thylakoids.” *Plant Physiology* 106 (4): 1547–53.

898 Glawe, Dean A. 2008. “The Powdery Mildews: A Review of the World’s Most Familiar (yet
899 Poorly Known) Plant Pathogens.” *Annual Review of Phytopathology* 46: 27–51.

900 Guzha, Athanas, Payton Whitehead, Till Ischebeck, and Kent D. Chapman. 2023. “Lipid
901 Droplets: Packing Hydrophobic Molecules Within the Aqueous Cytoplasm.” *Annual Review
902 of Plant Biology* 74 (1): 195–223.

903 Han, Longyan, Yuhui Zhai, Yumeng Wang, Xiangrui Shi, Yanfeng Xu, Shuguang Gao, Man
904 Zhang, Jianrang Luo, and Qingyu Zhang. 2022. “Diacylglycerol Acyltransferase 3(DGAT3)
905 Is Responsible for the Biosynthesis of Unsaturated Fatty Acids in Vegetative Organs of
906 *Paeonia Rockii*.” *International Journal of Molecular Sciences* 23 (22).
907 <https://doi.org/10.3390/ijms232214390>.

908 Hernández, M. Luisa, and Francisco Javier Cejudo. 2021. “Chloroplast Lipids Metabolism and
909 Function. A Redox Perspective.” *Frontiers in Plant Science* 12 (August): 712022.

910 Hernández, M. Luisa, Lynne Whitehead, Zhesi He, Valeria Gazda, Alison Gilday, Ekaterina
911 Kozhevnikova, Fabián E. Vaistij, Tony R. Larson, and Ian A. Graham. 2012. “A Cytosolic
912 Acyltransferase Contributes to Triacylglycerol Synthesis in Sucrose-Rescued *Arabidopsis*
913 Seed Oil Catabolism Mutants.” *Plant Physiology* 160 (1): 215–25.

914 Hözl, Georg, and Peter Dörmann. 2019. “Chloroplast Lipids and Their Biosynthesis.” *Annual
915 Review of Plant Biology* 70 (April): 51–81.

916 Hunziker, Pascal, Hassan Ghareeb, Lena Wagenknecht, Christoph Crocoll, Barbara Ann Halkier,
917 Volker Lipka, and Alexander Schulz. 2020. “De Novo Indol-3-Ylmethyl Glucosinolate
918 Biosynthesis, and Not Long-Distance Transport, Contributes to Defence of *Arabidopsis*
919 against Powdery Mildew.” *Plant, Cell & Environment* 43 (6): 1571–83.

920 Jessen, Dirk, Charlotte Roth, Marcel Wiermer, and Martin Fulda. 2015. “Two Activities of
921 Long-Chain Acyl-Coenzyme A Synthetase Are Involved in Lipid Trafficking between the
922 Endoplasmic Reticulum and the Plastid in *Arabidopsis*.” *Plant Physiology* 167 (2): 351–66.

923 Jiang, Yina, Wanxiao Wang, Qiu Jin Xie, Na Liu, Lixia Liu, Dapeng Wang, Xiaowei Zhang, et al.
924 2017. “Plants Transfer Lipids to Sustain Colonization by Mutualistic Mycorrhizal and
925 Parasitic Fungi.” *Science* 356 (6343): 1172–75.

926 Kachroo, Aardra, and Pradeep Kachroo. 2009. “Fatty Acid-Derived Signals in Plant Defense.”
927 *Annual Review of Phytopathology* 47 (1): 153–76.

928 Kameoka, Hiromu, and Caroline Gutjahr. 2022. “Functions of Lipids in Development and
929 Reproduction of Arbuscular Mycorrhizal Fungi.” *Plant & Cell Physiology* 63 (10): 1356–
930 65.

931 Kameoka, Hiromu, Taro Maeda, Nao Okuma, and Masayoshi Kawaguchi. 2019. “Structure-
932 Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal
933 Fungi.” *Plant & Cell Physiology* 60 (10): 2272–81.

934 Katavic, V., D. W. Reed, D. C. Taylor, E. M. Giblin, D. L. Barton, J. Zou, S. L. Mackenzie, P. S.
935 Covello, and L. Kunst. 1995. “Alteration of Seed Fatty Acid Composition by an Ethyl
936 Methanesulfonate-Induced Mutation in *Arabidopsis Thaliana* Affecting Diacylglycerol
937 Acyltransferase Activity.” *Plant Physiology* 108 (1): 399–409.

938 Kaup, Marianne T., Carol D. Froese, and John E. Thompson. 2002. “A Role for Diacylglycerol
939 Acyltransferase during Leaf Senescence.” *Plant Physiology* 129 (4): 1616–26.

940 Kim, Sangwoo, Yasuyo Yamaoka, Hirofumi Ono, Hanul Kim, Donghwan Shim, Masayoshi
941 Maeshima, Enrico Martinoia, Edgar B. Cahoon, Ikuo Nishida, and Youngsook Lee. 2013.
942 “AtABCA9 Transporter Supplies Fatty Acids for Lipid Synthesis to the Endoplasmic
943 Reticulum.” *Proceedings of the National Academy of Sciences of the United States of
944 America* 110 (2): 773–78.

945 Klepikova, Anna V., Artem S. Kasianov, Evgeny S. Gerasimov, Maria D. Logacheva, and

946 Aleksey A. Penin. 2016. “A High Resolution Map of the *Arabidopsis* Thaliana
947 Developmental Transcriptome Based on RNA-Seq Profiling.” *The Plant Journal: For Cell*
948 *and Molecular Biology* 88 (6): 1058–70.

949 Koh, Serry, Aurélie André, Herb Edwards, David Ehrhardt, and Shauna Somerville. 2005.
950 “*Arabidopsis* Thaliana Subcellular Responses to Compatible Erysiphe Cichoracearum
951 Infections.” *The Plant Journal: For Cell and Molecular Biology* 44 (3): 516–29.

952 Kumar, Aruna, Aarti Sharma, and Kailash C. Upadhyaya. 2016. “Vegetable Oil: Nutritional and
953 Industrial Perspective.” *Current Genomics* 17 (3): 230–40.

954 Liang, Peng, Songyu Liu, Feng Xu, Shuqin Jiang, Jun Yan, Qiguang He, Wenbo Liu, et al. 2018.
955 “Powdery Mildews Are Characterized by Contracted Carbohydrate Metabolism and Diverse
956 Effectors to Adapt to Obligate Biotrophic Lifestyle.” *Frontiers in Microbiology* 9
957 (December): 3160.

958 Lippold, Felix, Katharina vom Dorp, Marion Abraham, Georg Hözl, Vera Wewer, Jenny
959 Lindberg Yilmaz, Ida Lager, et al. 2012. “Fatty Acid Phytyl Ester Synthesis in Chloroplasts
960 of *Arabidopsis*.” *The Plant Cell* 24 (5): 2001–14.

961 Liu, Simu, Lisa M. Bartnikas, Sigrid M. Volko, Frederick M. Ausubel, and Dingzhong Tang.
962 2016. “Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1
963 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.”
964 *Frontiers in Plant Science* 7 (March): 227.

965 Luginbuehl, Leonie H., Guillaume N. Menard, Smita Kurup, Harrie Van Erp, Guru V.
966 Radhakrishnan, Andrew Breakspear, Giles E. D. Oldroyd, and Peter J. Eastmond. 2017.
967 “Fatty Acids in Arbuscular Mycorrhizal Fungi Are Synthesized by the Host Plant.” *Science*
968 356 (6343): 1175–78.

969 Lu, Junhao, Yang Xu, Juli Wang, Stacy D. Singer, and Guanqun Chen. 2020. “The Role of
970 Triacylglycerol in Plant Stress Response.” *Plants* 9 (4).
971 <https://doi.org/10.3390/plants9040472>.

972 Lundquist, Peter K., Anton Poliakov, Nazmul H. Bhuiyan, Boris Zyballov, Qi Sun, and Klaas J.
973 van Wijk. 2012. “The Functional Network of the *Arabidopsis* Plastoglobule Proteome Based
974 on Quantitative Proteomics and Genome-Wide Coexpression Analysis.” *Plant Physiology*
975 158 (3): 1172–92.

976 Lü, Shiyu, Tao Song, Dylan K. Kosma, Eugene P. Parsons, Owen Rowland, and Matthew A.
977 Jenks. 2009. “*Arabidopsis* CER8 Encodes LONG-CHAIN ACYL-COA SYNTHETASE 1
978 (LACS1) That Has Overlapping Functions with LACS2 in Plant Wax and Cutin Synthesis.”
979 *The Plant Journal: For Cell and Molecular Biology* 59 (4): 553–64.

980 MacLean, Allyson M., Armando Bravo, and Maria J. Harrison. 2017. “Plant Signaling and
981 Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis.” *The Plant Cell* 29 (10):
982 2319–35.

983 Mats X. Andersson, J. Magnus Kjellberg, and Anna Stina Sandelius. 2001. “Chloroplast
984 Biogenesis. Regulation of Lipid Transport to the Thylakoid in Chloroplasts Isolated from
985 Expanding and Fully Expanded Leaves of Pea.” *Plant Physiology* 127 (1): 184–93.

986 McRae, Amanda G., Jyoti Taneja, Kathleen Yee, Xinyi Shi, Sajeet Haridas, Kurt LaButti,
987 Vasanth Singan, Igor V. Grigoriev, and Mary C. Wildermuth. 2023. “Spray-Induced Gene
988 Silencing to Identify Powdery Mildew Gene Targets and Processes for Powdery Mildew
989 Control.” *Molecular Plant Pathology* 24 (9): 1168–83.

990 Micali, Cristina, Katharina Göllner, Matt Humphry, Chiara Consonni, and Ralph Panstruga.
991 2008. “The Powdery Mildew Disease of *Arabidopsis*: A Paradigm for the Interaction

992 between Plants and Biotrophic Fungi.” *The Arabidopsis Book / American Society of Plant*
993 *Biologists* 6 (October): e0115.

994 Michel, Elena J. S., Lalit Ponnala, and Klaas J. van Wijk. 2021. “Tissue-Type Specific
995 Accumulation of the Plastoglobular Proteome, Transcriptional Networks, and Plastoglobular
996 Functions.” *Journal of Experimental Botany* 72 (13): 4663–79.

997 Moellering, Eric R., Bagyalakshmi Muthan, and Christoph Benning. 2010. “Freezing Tolerance
998 in Plants Requires Lipid Remodeling at the Outer Chloroplast Membrane.” *Science* 330
999 (6001): 226–28.

1000 Murphy, Robert C. 2014. *Tandem Mass Spectrometry of Lipids: Molecular Analysis of Complex*
1001 *Lipids*. Royal Society of Chemistry.

1002 Okazaki, Yozo, and Kazuki Saito. 2014. “Roles of Lipids as Signaling Molecules and Mitigators
1003 during Stress Response in Plants.” *The Plant Journal: For Cell and Molecular Biology* 79
1004 (4): 584–96.

1005 Pfleger, Brian F., Michael Gossing, and Jens Nielsen. 2015. “Metabolic Engineering Strategies
1006 for Microbial Synthesis of Oleochemicals.” *Metabolic Engineering* 29 (May): 1–11.

1007 Przybyla-Toscano, Jonathan, Mélanie Roland, Frédéric Gaymard, Jérémie Couturier, and Nicolas
1008 Rouhier. 2018. “Roles and Maturation of Iron-Sulfur Proteins in Plastids.” *Journal of*
1009 *Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic*
1010 *Chemistry* 23 (4): 545–66.

1011 Regmi, Anushobha, Jay Shockey, Hari Kiran Kotapati, and Philip D. Bates. 2020. “Oil-
1012 Producing Metabolons Containing DGAT1 Use Separate Substrate Pools from Those
1013 Containing DGAT2 or PDAT.” *Plant Physiology* 184 (2): 720–37.

1014 Reuber, T. L., J. M. Plotnikova, J. Dewdney, E. E. Rogers, W. Wood, and F. M. Ausubel. 1998.
1015 “Correlation of Defense Gene Induction Defects with Powdery Mildew Susceptibility in
1016 Arabidopsis Enhanced Disease Susceptibility Mutants.” *The Plant Journal: For Cell and*
1017 *Molecular Biology* 16 (4): 473–85.

1018 Saha, Saikat, Balaji Enugutti, Sona Rajakumari, and Ram Rajasekharan. 2006. “Cytosolic
1019 Triacylglycerol Biosynthetic Pathway in Oilseeds. Molecular Cloning and Expression of
1020 Peanut Cytosolic Diacylglycerol Acyltransferase.” *Plant Physiology* 141 (4): 1533–43.

1021 Shimada, Takashi L., Makoto Hayashi, and Ikuko Hara-Nishimura. 2017. “Membrane Dynamics
1022 and Multiple Functions of Oil Bodies in Seeds and Leaves.” *Plant Physiology* 176 (1): 199–
1023 207.

1024 Shimada, Takashi L., Yoshitaka Takano, Tomoo Shimada, Masayuki Fujiwara, Yoichiro Fukao,
1025 Masashi Mori, Yozo Okazaki, et al. 2014. “Leaf Oil Body Functions as a Subcellular
1026 Factory for the Production of a Phytoalexin in Arabidopsis.” *Plant Physiology* 164 (1): 105–
1027 18.

1028 Shiva, Sunitha, Thilani Samarakoon, Kaleb A. Lowe, Charles Roach, Hieu Sy Vu, Madeline
1029 Colter, Hollie Porras, et al. 2020. “Leaf Lipid Alterations in Response to Heat Stress of
1030 Arabidopsis Thaliana.” *Plants* 9 (7). <https://doi.org/10.3390/plants9070845>.

1031 Shiva, Sunitha, Hieu Sy Vu, Mary R. Roth, Zhenguo Zhou, Shantan Reddy Marepally, Daya
1032 Sagar Nune, Gerald H. Lushington, Mahesh Visvanathan, and Ruth Welti. 2013. “Lipidomic
1033 Analysis of Plant Membrane Lipids by Direct Infusion Tandem Mass Spectrometry.”
1034 *Methods in Molecular Biology* 1009: 79–91.

1035 Smith, Matthew D., Donny D. Licatalosi, and John E. Thompson. 2000. “Co-Association of
1036 Cytochrome F Catabolites and Plastid-Lipid-Associated Protein with Chloroplast Lipid
1037 Particles1.” *Plant Physiology* 124 (1): 211–22.

1038 Spanu, Pietro D. 2012. "The Genomics of Obligate (and Nonobligate) Biotrophs." *Annual
1039 Review of Phytopathology* 50 (May): 91–109.

1040 Springer, Armin, Chulhee Kang, Sachin Rustgi, Diter von Wettstein, Christiane Reinbothe,
1041 Stephan Pollmann, and Steffen Reinbothe. 2016. "Programmed Chloroplast Destruction
1042 during Leaf Senescence Involves 13-Lipoxygenase (13-LOX)." *Proceedings of the National
1043 Academy of Sciences* 113 (12): 3383–88.

1044 Sutton, P. N., M. J. Henry, and J. L. Hall. 1999. "Glucose, and Not Sucrose, Is Transported from
1045 Wheat to Wheat Powdery Mildew." *Planta* 208 (3): 426–30.

1046 Swarbrick, Philip J., Paul Schulze-Lefert, and Julie D. Scholes. 2006. "Metabolic Consequences
1047 of Susceptibility and Resistance (race-Specific and Broad-Spectrum) in Barley Leaves
1048 Challenged with Powdery Mildew." *Plant, Cell & Environment* 29 (6): 1061–76.

1049 Tang, Dingzhong, Michael T. Simonich, and Roger W. Innes. 2007. "Mutations in LACS2, a
1050 Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to Avirulent
1051 Pseudomonas Syringae but Confer Resistance to Botrytis Cinerea in Arabidopsis." *Plant
1052 Physiology* 144 (2): 1093–1103.

1053 Tournayre, Jeremy, Matthieu Reichstadt, Laurent Parry, Pierre Fafournoux, and Celine Jousse.
1054 2019. "'Do My qPCR Calculation', a Web Tool." *Bioinformation* 15 (5): 369–72.

1055 Tsitsigiannis, Dimitrios I., Terri M. Kowieski, Robert Zarnowski, and Nancy P. Keller. 2004.
1056 "Endogenous Lipogenic Regulators of Spore Balance in Aspergillus Nidulans." *Eukaryotic
1057 Cell* 3 (6): 1398–1411.

1058 Vallochi, Adriana Lima, Livia Teixeira, Karina da Silva Oliveira, Clarissa Menezes Maya-
1059 Monteiro, and Patricia T. Bozza. 2018. "Lipid Droplet, a Key Player in Host-Parasite
1060 Interactions." *Frontiers in Immunology* 9 (May): 1022.

1061 Vanhercke, Thomas, John M. Dyer, Robert T. Mullen, Aruna Kilaru, Md Mahbubur Rahman,
1062 James R. Petrie, Allan G. Green, Olga Yurchenko, and Surinder P. Singh. 2019. "Metabolic
1063 Engineering for Enhanced Oil in Biomass." *Progress in Lipid Research* 74 (April): 103–29.

1064 Vanhercke, Thomas, Anna El Tahchy, Pushkar Shrestha, Xue-Rong Zhou, Surinder P. Singh,
1065 and James R. Petrie. 2013. "Synergistic Effect of WRI1 and DGAT1 Coexpression on
1066 Triacylglycerol Biosynthesis in Plants." *FEBS Letters* 587 (4): 364–69.

1067 Vidi, Pierre-Alexandre, Marion Kanwischer, Sacha Baginsky, Jotham R. Austin, Gabor Csucs,
1068 Peter Dörmann, Felix Kessler, and Claire Bréhélin. 2006. "Tocopherol Cyclase (VTE1)
1069 Localization and Vitamin E Accumulation in Chloroplast Plastoglobule Lipoprotein
1070 Particles." *The Journal of Biological Chemistry* 281 (16): 11225–34.

1071 Wang, Liping, Wenyun Shen, Michael Kazachkov, Guanqun Chen, Qilin Chen, Anders S.
1072 Carlsson, Sten Stymne, Randall J. Weselake, and Jitao Zou. 2012. "Metabolic Interactions
1073 between the Lands Cycle and the Kennedy Pathway of Glycerolipid Synthesis in
1074 Arabidopsis Developing Seeds." *The Plant Cell* 24 (11): 4652–69.

1075 Wang, Wenming, Yingqiang Wen, Robert Berkey, and Shunyuan Xiao. 2009. "Specific
1076 Targeting of the Arabidopsis Resistance Protein RPW8.2 to the Interfacial Membrane
1077 Encasing the Fungal Haustorium Renders Broad-Spectrum Resistance to Powdery Mildew."
1078 *The Plant Cell* 21 (9): 2898–2913.

1079 Welti, Ruth, Weiqi Li, Maoyin Li, Yongming Sang, Homigol Biesiada, Han-E Zhou, C. B.
1080 Rajashekhar, Todd D. Williams, and Xuemin Wang. 2002. "Profiling Membrane Lipids in
1081 Plant Stress Responses. Role of Phospholipase D Alpha in Freezing-Induced Lipid Changes
1082 in Arabidopsis." *The Journal of Biological Chemistry* 277 (35): 31994–2.

1083 Weng, Hua, Isabel Molina, Jay Shockley, and John Browse. 2010. "Organ Fusion and Defective

1084 Cuticle Function in a lacs1 lacs2 Double Mutant of Arabidopsis.” *Planta* 231 (5): 1089–
1085 1100.

1086 Weßling, Ralf, and Ralph Panstruga. 2012. “Rapid Quantification of Plant-Powdery Mildew
1087 Interactions by qPCR and Conidiospore Counts.” *Plant Methods* 8 (1): 35.

1088 Wildermuth, Mary C. 2010. “Modulation of Host Nuclear Ploidy: A Common Plant Biotroph
1089 Mechanism.” *Current Opinion in Plant Biology* 13 (4): 449–58.

1090 Wildermuth, Mary C., Michael A. Steinwand, Amanda G. McRae, Johan Jaenisch, and Divya
1091 Chandran. 2017. “Adapted Biotroph Manipulation of Plant Cell Ploidy.” *Annual Review of
1092 Phytopathology* 55 (August): 537–64.

1093 Winter, Debbie, Ben Vinegar, Hardeep Nahal, Ron Ammar, Greg V. Wilson, and Nicholas J.
1094 Provart. 2007. “An ‘Electronic Fluorescent Pictograph’ Browser for Exploring and
1095 Analyzing Large-Scale Biological Data Sets.” *PLoS One* 2 (8): e718.

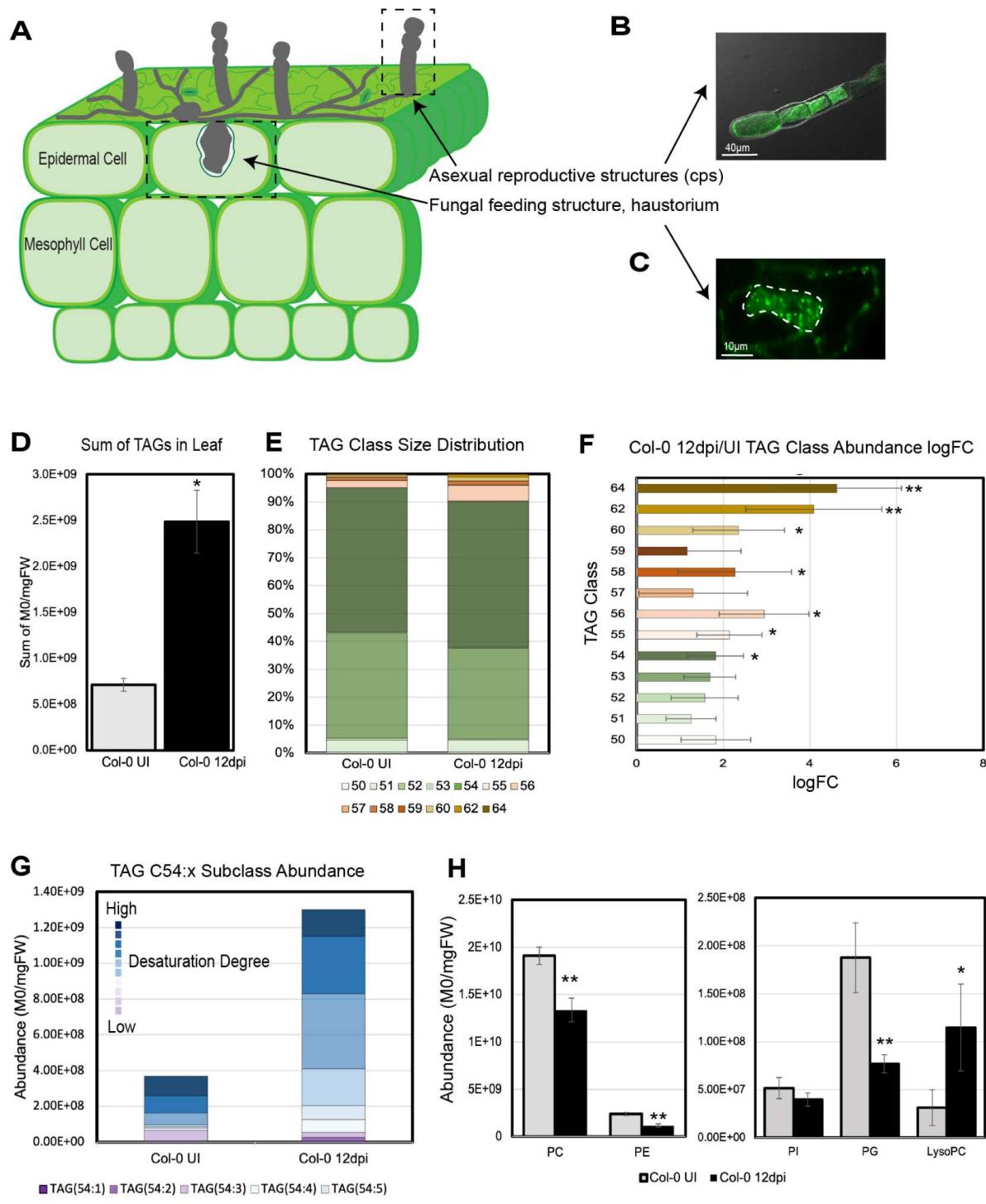
1096 Xu, Changcheng, Jilian Fan, and John Shanklin. 2020. “Metabolic and Functional Connections
1097 between Cytoplasmic and Chloroplast Triacylglycerol Storage.” *Progress in Lipid Research*
1098 80 (November): 101069.

1099 Xu, Changcheng, and John Shanklin. 2016. “Triacylglycerol Metabolism, Function, and
1100 Accumulation in Plant Vegetative Tissues.” *Annual Review of Plant Biology* 67 (April):
1101 179–206.

1102 Xue, Jinai, Huiling Gao, Yinghong Xue, Ruixiang Shi, Mengmeng Liu, Lijun Han, Yu Gao, et
1103 al. 2022. “Functional Characterization of Soybean Diacylglycerol Acyltransferase 3 in Yeast
1104 and Soybean.” *Frontiers in Plant Science* 13 (May): 854103.

1105 Xu, Xiao-Yu, Hong-Kun Yang, Surinder P. Singh, Peter J. Sharp, and Qing Liu. 2018. “Genetic
1106 Manipulation of Non-Classic Oilseed Plants for Enhancement of Their Potential as a
1107 Biofactory for Triacylglycerol Production.” *Proceedings of the Estonian Academy of
1108 Sciences: Engineering* 4 (4): 523–33.

1109 Yan, Bowei, Xiaoxuan Xu, Yingnan Gu, Ying Zhao, Xunchao Zhao, Lin He, Changjiang Zhao,
1110 Zuotong Li, and Jingyu Xu. 2018. “Genome-Wide Characterization and Expression
1111 Profiling of Diacylglycerol Acyltransferase Genes from Maize.” *Genome / National
1112 Research Council Canada = Genome / Conseil National de Recherches Canada* 61 (10):
1113 735–43.


1114 Yao, Hong-Yan, Yao-Qi Lu, Xiao-Li Yang, Xiao-Qing Wang, Zhipu Luo, De-Li Lin, Jia-Wei
1115 Wu, and Hong-Wei Xue. 2023. “Arabidopsis Sec14 Proteins (SFH5 and SFH7) Mediate
1116 Interorganelle Transport of Phosphatidic Acid and Regulate Chloroplast Development.”
1117 *Proceedings of the National Academy of Sciences of the United States of America* 120 (6):
1118 e2221637120.

1119 Yin, Xiangzhen, Xupeng Guo, Lizong Hu, Shuangshuang Li, Yuhong Chen, Jingqiao Wang,
1120 Richard R-C Wang, Chengming Fan, and Zanmin Hu. 2022. “Genome-Wide
1121 Characterization of DGATs and Their Expression Diversity Analysis in Response to Abiotic
1122 Stresses in *Brassica Napus*.” *Plants* 11 (9). <https://doi.org/10.3390/plants11091156>.

1123 Ytterberg, A. Jimmy, Jean-Benoit Peltier, and Klaas J. van Wijk. 2006. “Protein Profiling of
1124 Plastoglobules in Chloroplasts and Chromoplasts. A Surprising Site for Differential
1125 Accumulation of Metabolic Enzymes.” *Plant Physiology* 140 (3): 984–97.

1126 Zhang, Meng, Jilian Fan, David C. Taylor, and John B. Ohlrogge. 2009. “DGAT1 and PDAT1
1127 Acyltransferases Have Overlapping Functions in Arabidopsis Triacylglycerol Biosynthesis
1128 and Are Essential for Normal Pollen and Seed Development.” *The Plant Cell* 21 (12): 3885–
1129 3901.

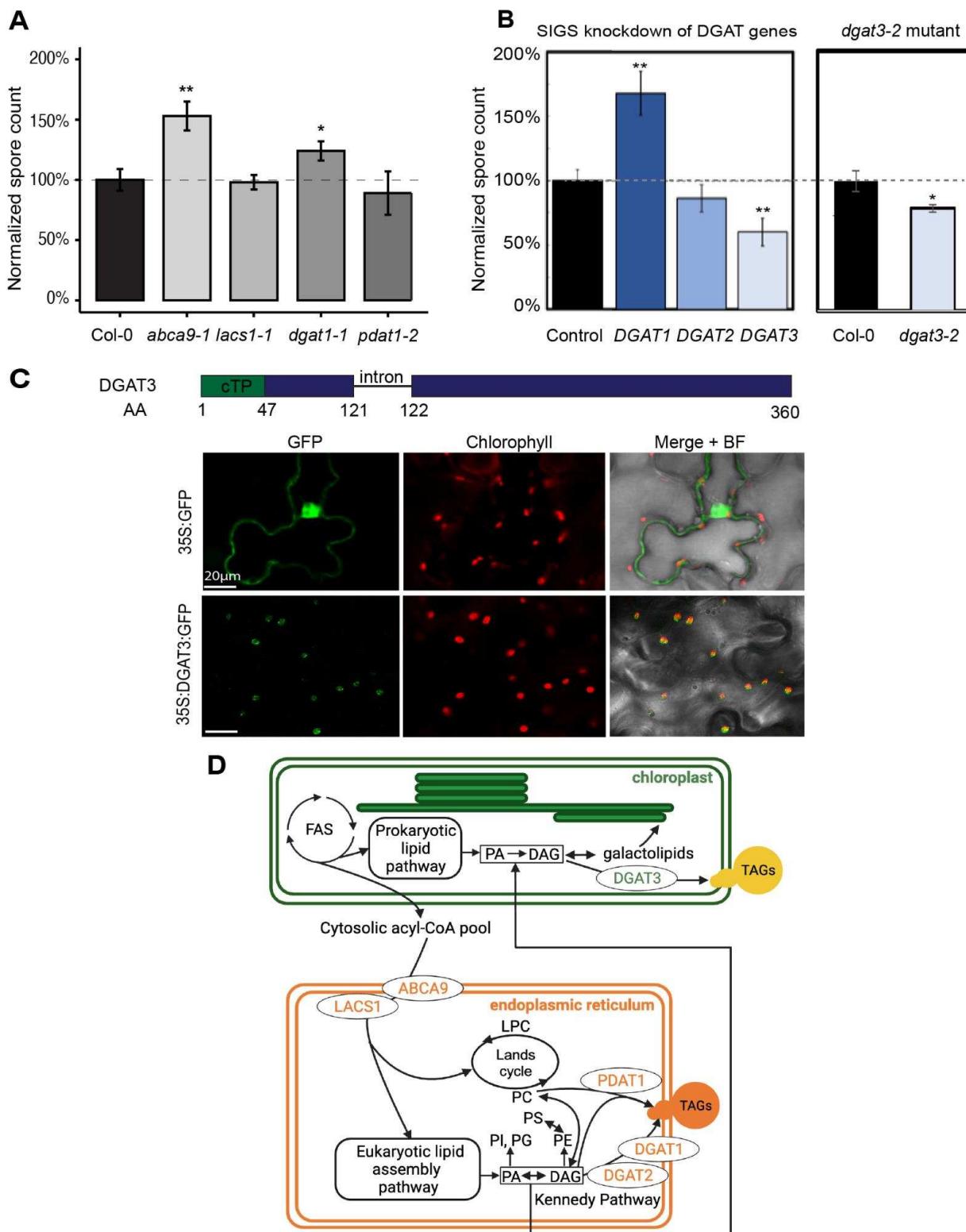
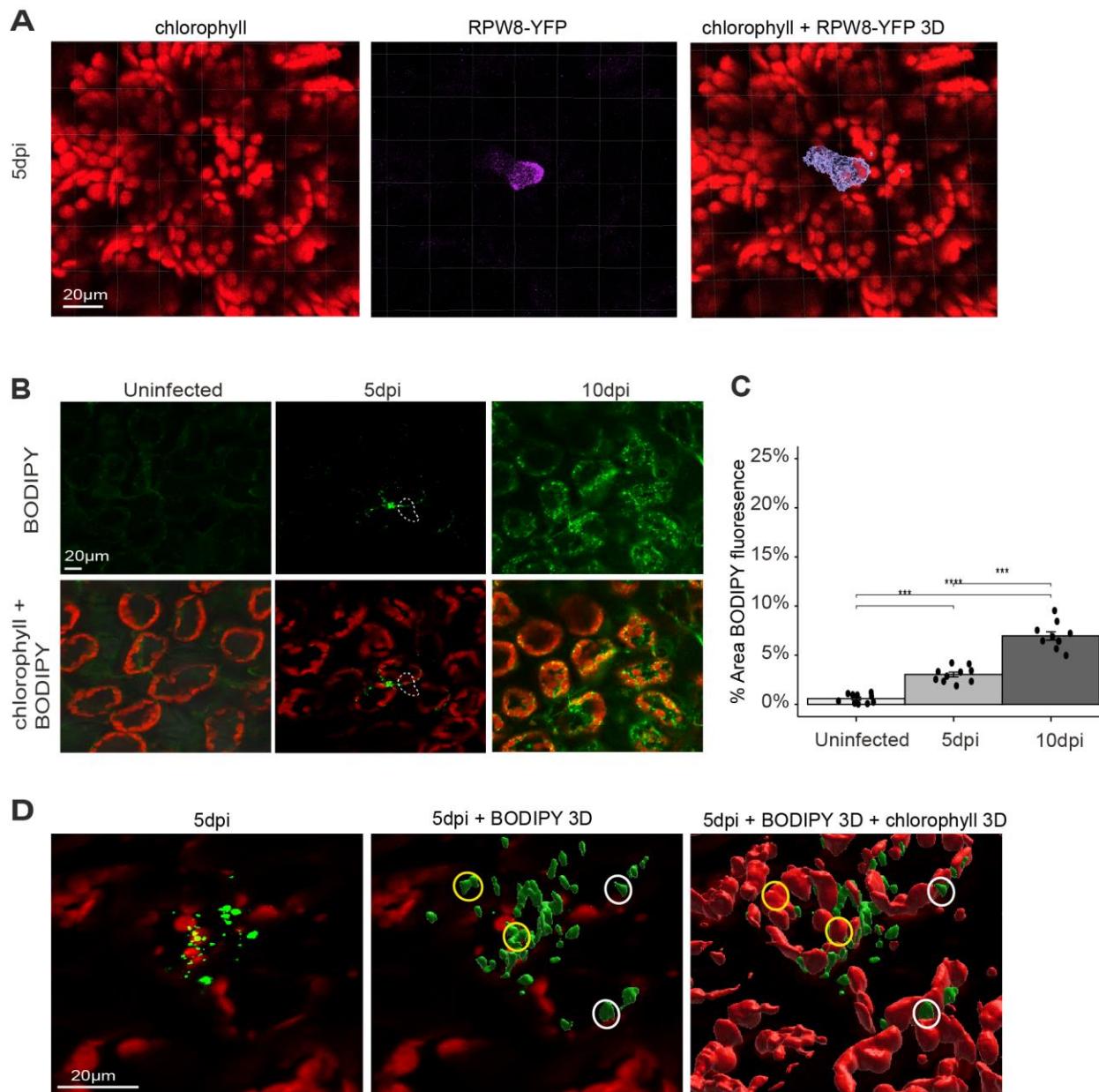

1130 Zhao, Lifang, Vesna Katainic, Fengling Li, George W. Haughn, and Ljerka Kunst. 2010.
1131 “Insertional Mutant Analysis Reveals That Long-Chain Acyl-CoA Synthetase 1 (LACS1),
1132 but Not LACS8, Functionally Overlaps with LACS9 in Arabidopsis Seed Oil Biosynthesis.”
1133 *The Plant Journal: For Cell and Molecular Biology* 64 (6): 1048–58.
1134 Zhou, Xue-Rong, Sajina Bhandari, Brandon S. Johnson, Hari Kiran Kotapati, Doug K. Allen,
1135 Thomas Vanhercke, and Philip D. Bates. 2019. “Reorganization of Acyl Flux through the
1136 Lipid Metabolic Network in Oil-Accumulating Tobacco Leaves1 [OPEN].” *Plant*
1137 *Physiology* 182 (2): 739–55.
1138 Zhou, Xue-Rong, Pushkar Shrestha, Fang Yin, James R. Petrie, and Surinder P. Singh. 2013.
1139 “AtDGAT2 Is a Functional Acyl-CoA:diacylglycerol Acyltransferase and Displays
1140 Different Acyl-CoA Substrate Preferences than AtDGAT1.” *FEBS Letters* 587 (15): 2371–
1141 76.
1142 Zou, J., Y. Wei, C. Jako, A. Kumar, G. Selvaraj, and D. C. Taylor. 1999. “The Arabidopsis
1143 Thaliana TAG1 Mutant Has a Mutation in a Diacylglycerol Acyltransferase Gene.” *The*
1144 *Plant Journal: For Cell and Molecular Biology* 19 (6): 645–53.
1145 Shiva, S., Vu, H. S., Roth, M. R., Zhou, Z., Marepally, S. R., Nune, D. S., Lushington, G. H.,
1146 Visvanathan, M., & Welti, R. 2013). “Lipidomic analysis of plant membrane lipids by direct
1147 infusion tandem mass spectrometry.” *Methods in molecular biology (Clifton, N.J.)*, 1009,
1148 79–91. https://doi.org/10.1007/978-1-62703-401-2_9
1149

Figure 1. TAG abundance is increased in infected Col-0 leaves.

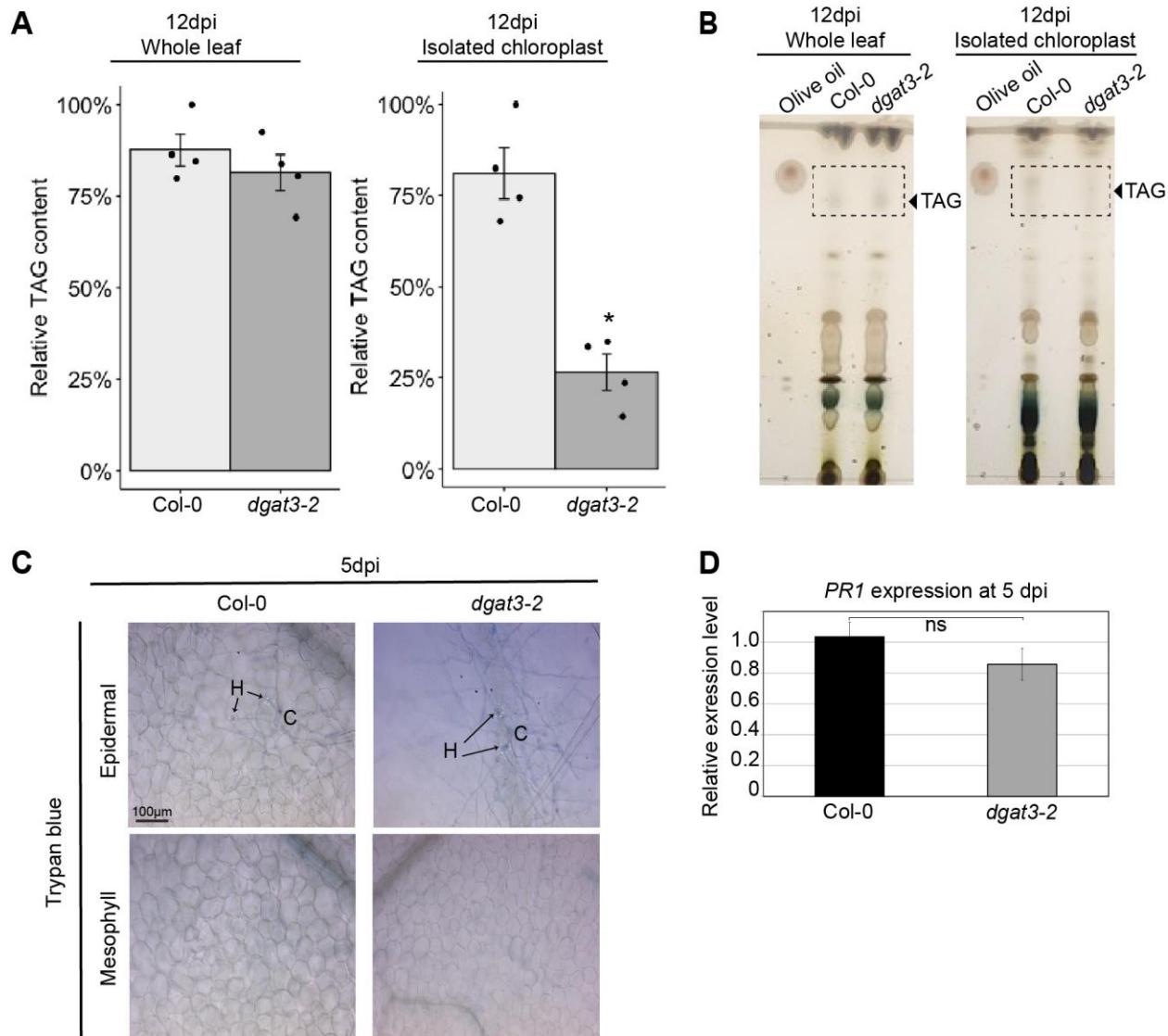
A) Cross-section depicting powdery mildew infection of *Arabidopsis* leaf at 5dpi. B-C) BODIPY 505/515 neutral lipid-stained powdery mildew structures: B) Asexual reproductive structure, conidiophore (cp), bar= 40μm. C) haustorium, bar= 10μm, white dashed line outlines haustorium. D) Total TAGs (C50-C64) detected in uninfected (UI) and 12dpi leaf lipid extracts ±STD, n= 3. E) Distribution of TAG classes in UI and 12dpi leaf lipid extracts. F) Log₂ fold change (LogFC) of TAG abundance by class in 12 dpi vs UI leaf lipid extracts ±STD, n= 3. G) Abundance of C54:x subclasses in UI and 12 dpi leaf lipid extracts. Assumes TAGs within this m/z range have similar desorption/ionization properties. H) Summed abundance of detected phospholipids (M0/mgFW) in UI (grey) and 12dpi (black) leaf lipid extracts ±STD, n= 3. Significance between UI and 12 dpi tested by 2-tailed T-test * p ≤ 0.05, ** p ≤ 0.01.

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159



1160
1161
1162
1163
1164
1165

Figure 2. Canonical TAG synthesis in the ER hinders powdery mildew asexual reproduction while chloroplast-localized DGAT3 promotes it.


A) Spore counts/mg leaf FW at 9dpi of mutants normalized to WT Col-0 for mutants involved in the canonical route for TAG synthesis in the ER (\pm STD, n= 5-8). B) Comparison of spore counts/mg leaf FW on WT plants with DGAT genes silenced via spray-induced gene silencing (SIGS) and *dgat3-2* mutant vs. WT at 9dpi (\pm STD, n= 4-8).

1166 Significance by 2-tailed T-Test * $p \leq 0.05$, ** $p \leq 0.01$. C) AtDGAT3 protein is predicted to have a chloroplast transit
1167 peptide by the DeepLoc 2.0 and LOCALIZER program. Confocal microscopy images of transient expression of
1168 35S:AtDGAT3-GFP in *Nicotiana benthamiana*. D) Simplified model of tested players that may have contributed to
1169 Arabidopsis TAG production. Abbreviations: ABCA, ATP-binding cassette A; BF, bright field; DAG, diacylglycerol;
1170 DGAT, Diacylglyceroltransferase; FAS, fatty acid synthase complex; LACS, long chain acyl-CoA synthetase; LPC,
1171 lysophosphatidylcholine; phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI,
1172 phosphatidylinositol; PS, phosphatidylserine; PDAT, phospholipid:diacylglycerol acyltransferase; TAGs,
1173 triacylglycerols. See Figure 1 for data on phospholipids.
1174
1175
1176
1177
1178
1179
1180
1181
1182

1183

1184 **Figure 3. The powdery mildew induces the formation of lipid droplets in the host.**
1185 A) Representative images of extrahaustorial membrane (EHM) targeted RPW8-YFP showing haustoria in epidermal
1186 cell above three mesophyll cells in rosette leaves at 5 days post inoculation (5dpi). B) Representative images of
1187 BODIPY 505/515 staining of neutral lipids in mesophyll cell layers of rosette leaves at 5 and 10 dpi. White dash line:
1188 position of haustorium in the epidermal cell. C) Percentage of BODIPY fluorescence per image area of 50,000 μm^2
1189 quantified by Imaris software. Data are mean \pm SD of 10 images. Significance is determined by one-way ANOVA. ***
1190 $p \leq 0.001$, $n = 10$. D) Representative images of 3D reconstruction of BODIPY fluorescence (green) and chlorophyll
1191 fluorescence (red) using Imaris software. Yellow circle: BODIPY fluorescent bodies inside the chloroplast. White
1192 circle: BODIPY fluorescence bodies right next to the chloroplast.
1193

Figure 4. TAG content in infected chloroplasts is decreased in dgat3-2 mutant while defense is not impacted.

A) Relative TAG content in whole plants and chloroplasts of Col-0 and dgat3-2 at 12dpi were quantified by ImageJ software. Data are mean \pm SD of 4 biological replicates. Significance is determined by one-way ANOVA, $*p \leq 0.05$, $n = 4$. B) Thin-layer chromatography of lipids extracted from either whole plant or isolated chloroplast at 12 dpi. Lipids were visualized with 5% sulfuric acid by charring. C) Trypan blue staining to visualize cell death in Col-0 and dgat3-2 plants at 5dpi. Top panel, epidermal cell layer. Bottom panel, underlying mesophyll cell layer. H, haustorium; C, germinated conidium. Note that fungal structures are stained slightly by trypan blue. D) Quantitative real-time PCR (qRT-PCR) analysis of PR1 expression in Col-0 and dgat3-2 plants at 5dpi normalized to housekeeping gene ACTIN-2 (\pm SD, $n=3$); significance determined using unpaired, two-tailed Student's T-test. ns= not significantly different at $p \leq 0.05$.

1194
1195

1196

1197

1198

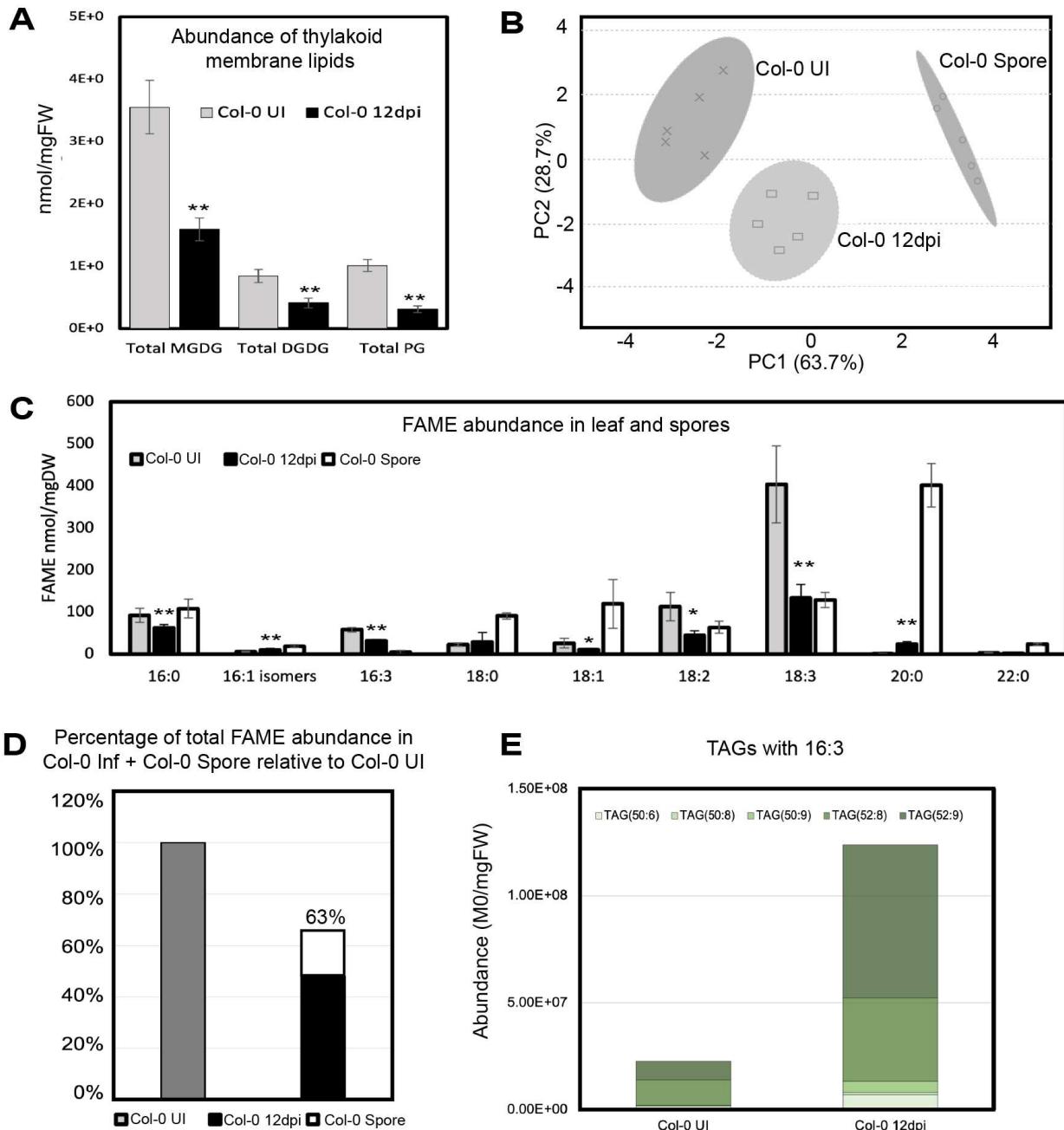
1199

1200

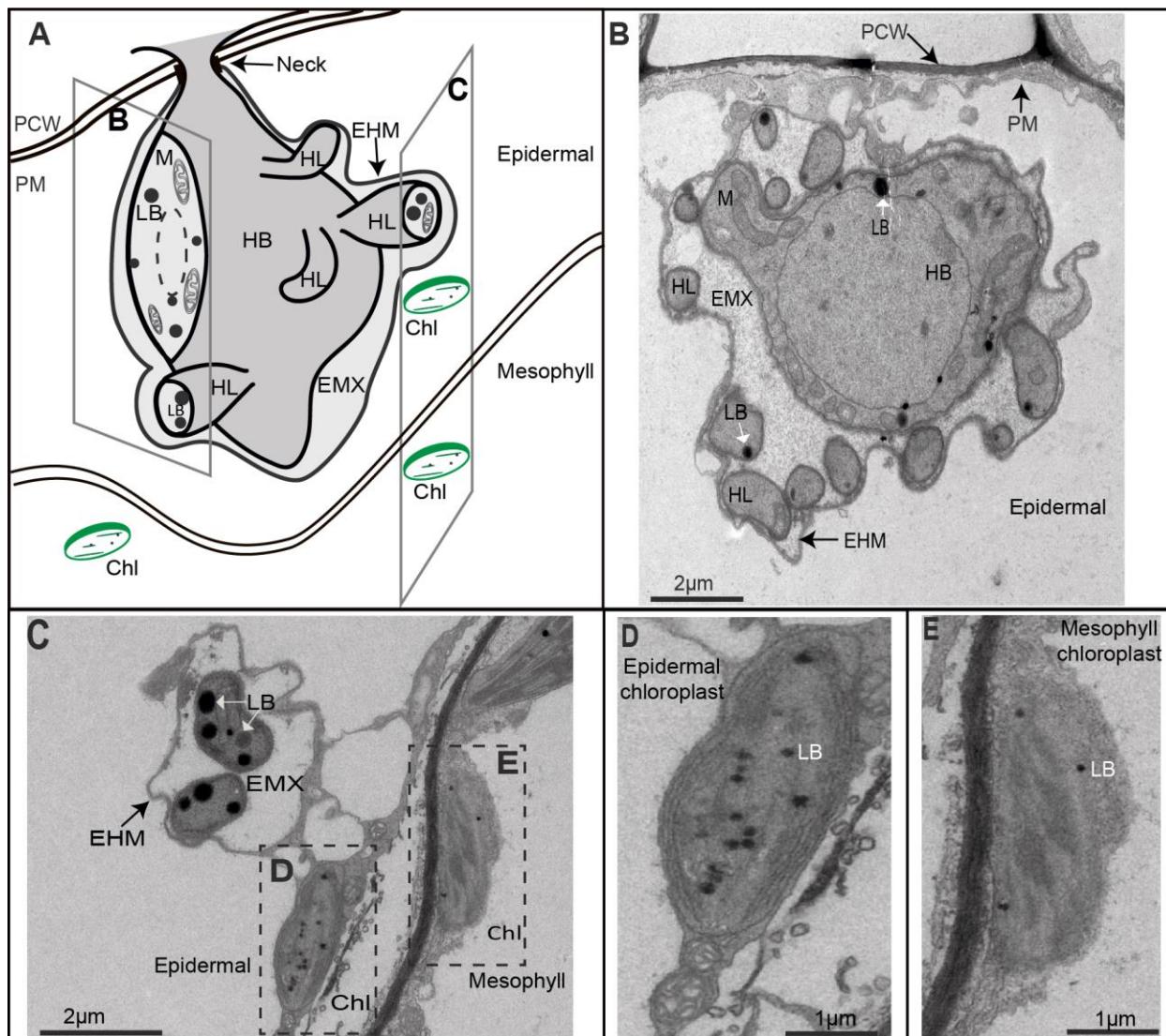
1201

1202

1203

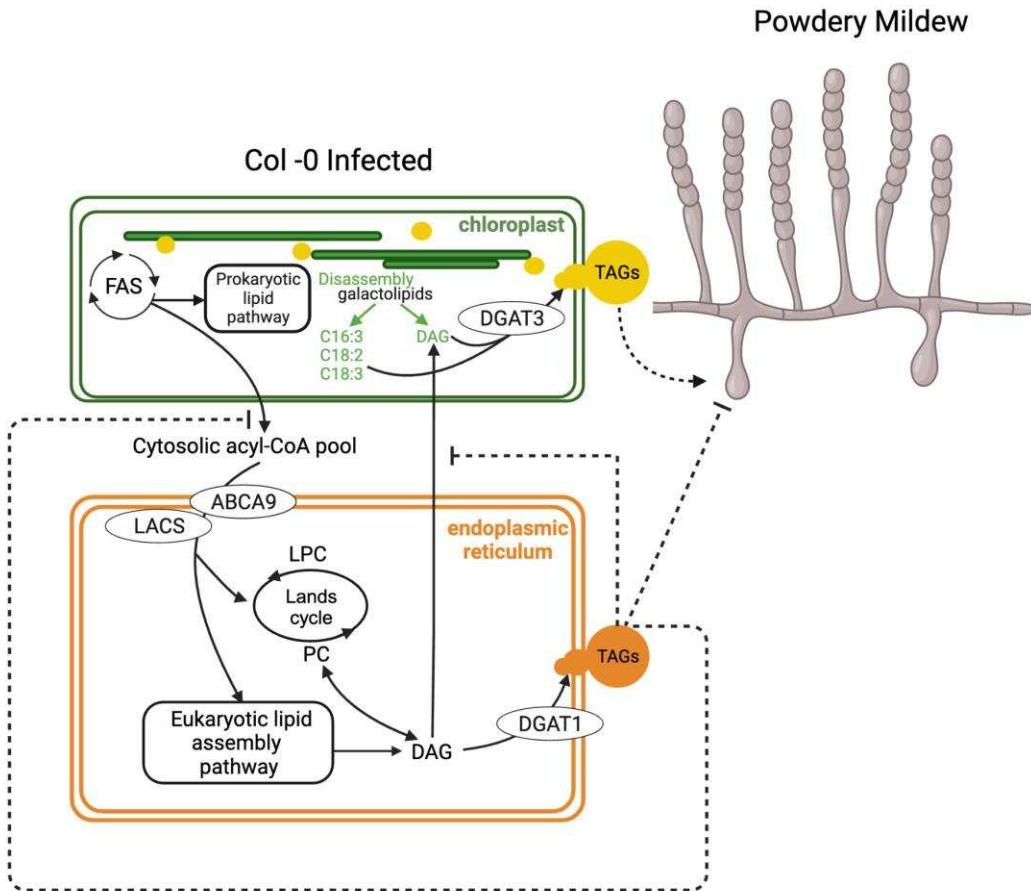

1204

1205


1206

1207

1208


Figure 5. Thylakoid membrane lipids and thylakoid-enriched FAs decrease with infection.
 1209
 1210 A) Abundance of thylakoid membrane lipids (MGDG, monogalactosyldiacylglycerols; DGDG,
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 20100
 20101
 20102
 20103
 20104
 20105
 20106
 20107
 20108
 20109
 20110
 20111
 20112
 20113
 20114
 20115
 20116
 20117
 20118
 20119
 20120
 20121
 20122
 20123
 20124
 20125
 20126
 20127
 20128
 20129
 20130
 20131
 20132
 20133
 20134
 20135
 20136
 20137
 20138
 20139
 20140
 20141
 20142
 20143
 20144
 20145
 20146
 20147
 20148
 20149
 20150
 20151
 20152
 20153
 20154
 20155
 20156
 20157
 20158
 20159
 20160
 20161
 20162
 20163
 20164
 20165
 20166
 20167
 20168
 20169
 20170
 20171
 20172
 20173
 20174
 20175
 20176
 20177
 20178
 20179
 20180
 20181
 20182
 20183
 20184
 20185
 20186
 20187
 20188
 20189
 20190
 20191
 20192
 20193
 20194
 20195
 20196
 20197
 20198
 20199
 20200
 20201
 20202
 20203
 20204
 20205
 20206
 20207
 20208
 20209
 20210
 20211
 20212
 20213
 20214
 20215
 20216
 20217
 20218
 20219
 20220
 20221
 20222
 20223
 20224
 20225
 20226
 20227
 20228
 20229
 20230
 20231
 20232
 20233
 20234
 20235
 20236
 20237
 20238
 20239
 20240
 20241
 20242
 20243
 20244
 20245
 20246
 20247
 20248
 20249
 20250
 20251
 20252
 20253
 20254
 20255
 20256
 20257
 20258
 20259
 20260
 20261
 20262
 20263
 20264
 20265
 20266
 20267
 20268
 20269
 20270
 20271
 20272
 20273
 20274
 20275
 20276
 20277
 20278
 20279
 20280
 20281
 20282
 20283
 20284
 20285
 20286
 20287
 20288
 20289
 20290
 20291
 20292
 20293
 20294
 20295
 20296
 20297
 20298
 20299
 20300
 20301
 20302
 20303
 20304
 20305
 20306
 20307
 20308
 20309
 20310
 20311
 20312
 20313
 20314
 20315
 20316
 20317
 20318
 20319
 20320
 20321
 20322
 20323
 20324
 20325
 20326
 20327
 20328
 20329
 20330
 20331
 20332
 20333
 20334
 20335
 20336
 20337
 20338
 20339
 20340
 20341
 20342
 20343
 20344
 20345
 20346
 20347
 20348
 20349
 20350
 20351
 20352
 20353
 20354
 20355
 20356
 20357
 20358
 20359
 20360
 20361
 20362
 20363
 20364
 20365
 20366
 20367
 20368
 20369
 20370
 20371
 20372
 20373
 20374
 20375
 20376
 20377
 20378
 20379
 20380
 20381
 20382
 20383
 20384
 20385
 20386
 20387
 20388
 20389
 20390
 20391
 20392
 20393
 20394
 20395
 20396
 20397
 20398
 20399
 20400
 20401
 20402
 20403
 20404
 20405
 20406
 20407
 20408

1218
1219
1220
1221
1222
1223
1224
1225
1226

Figure 6. The powdery mildew induces the degradation of host chloroplasts.

A) 3D illustration of the powdery mildew haustorium associated with host chloroplasts at 5dpi. B) TEM image of the haustorium. Note this slice does not include the haustorium neck. C) TEM image, slice includes epidermal chloroplast and mesophyll chloroplast associated with the haustorium. D) Zoom-in TEM image, haustorium adjacent epidermal chloroplast. E) Zoom-in TEM image, haustorium adjacent mesophyll chloroplast. Chl, Chloroplast; EHM, Extrahaustorial Membrane; EMX, Extrahaustorial Matix; HB, Haustorium Body; HL, Haustorium Lobe; LB, Lipid Body; M, Mitochondria; PCW, Plant Cell Wall; PM, Plasma Membrane.

Figure 7. Simplified model for host lipid metabolism rewiring by powdery mildew during its asexual reproduction.

Infected *Arabidopsis* leaves have increased abundance of TAGs and chloroplast-associated and cytosolic lipid bodies concurrent with degradation of thylakoid membranes. In addition, confocal imaging suggests the plastid lipid bodies bleb into the cytosol as shown. Thylakoid lipids and derived fatty acids (FA) decrease with infection and are incorporated into accumulated TAGs. Plastidic TAGs are mostly synthesized by the chloroplast-localized AtDGAT3, which prefers C18:3 and C18:2 substrates, and have a unique profile compared to ER TAGs. Plastid DAGs may be derived from thylakoid membrane breakdown and/or import of DAG/DAG precursors from the ER. Knockdown of *DGAT3* and mutation of *DGAT3* reduced powdery mildew spore production, indicating its function benefits the fungus, likely by supplying energy dense lipids for asexual reproduction and/or providing precursors for a fungal reproductive signal. In contrast, TAGs synthesized via DGAT1 in the ER hinder powdery mildew spore production as assessed using knockouts in the ER fatty acid importer *AtABCA9* and *AtDGAT1*. It is likely that multiple ER LACS activate imported FAs as a knockout in *AtLACS1* alone was insufficient to alter powdery mildew spore production. AtPDAT1 and AtDGAT2, known to use a distinct ER DAG pool for TAG synthesis, do not contribute to powdery mildew asexual reproduction and are not included in the model. ER TAG synthesis via DGAT1 may reduce powdery mildew spore production by limiting substrates for plastidic TAG synthesis and/or supplying lipid droplets that contain TAGs and defensive compounds. Abbreviations: ABCA, ATP-binding cassette A; DAG, diacylglycerol; DGAT, diacylglycerol acyltransferase; FAS, fatty acid synthase complex; LACS, long chain acyl-CoA synthetase; LPC, lysoPC; PC, phosphatidylcholine; PDAT, phospholipid:diacylglycerol acyltransferase; TAGs, triacylglycerols. Dashed lines = proposed.

Parsed Citations

Abood, J. K., and Dorothy M. Lösel. 1989. "Effects of Powdery Mildew Infection on the Lipid Metabolism of Cucumber." In *Biological Role of Plant Lipids*, edited by Péter A. Biacs, Katalin Gruiz, and Tibor Kremmer, 597–601. Boston, MA: Springer US. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Arzac, Miren I., Beatriz Fernández-Marín, and José I. García-Plazaola. 2022. "More than Just Lipid Balls: Quantitative Analysis of Plastoglobule Attributes and Their Stress-Related Responses." *Planta* 255 (3): 62.

Atella, Georgia C., Paula R. Bittencourt-Cunha, Rodrigo D. Nunes, Mohammed Shahabuddin, and Mário A. C. Silva-Neto. 2009. "The Major Insect Lipoprotein Is a Lipid Source to Mosquito Stages of Malaria Parasite." *Acta Tropica* 109 (2): 159–62. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Aymé, Laure, Simon Arragain, Michel Canonge, Sébastien Baud, Nadia Touati, Ornella Bimai, Franjo Jagic, et al. 2018. "Arabidopsis Thaliana DGAT3 Is a [2Fe-2S] Protein Involved in TAG Biosynthesis." *Scientific Reports* 8 (1): 1–10. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Aymé, Laure, Sébastien Baud, Bertrand Dubreucq, Florent Joffre, and Thierry Chardot. 2014. "Function and Localization of the Arabidopsis Thaliana Diacylglycerol Acyltransferase DGAT2 Expressed in Yeast." *PLoS One* 9 (3): e92237. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bates, Philip D. 2022. "Chapter Six - The Plant Lipid Metabolic Network for Assembly of Diverse Triacylglycerol Molecular Species." In *Advances in Botanical Research*, edited by Fabrice Rébeillé and Eric Maréchal, 101:225–52. Academic Press. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bates, Philip D., and John Browse. 2012. "The Significance of Different Diacylglycerol Synthesis Pathways on Plant Oil Composition and Bioengineering." *Frontiers in Plant Science* 3 (July): 147.

Baud, Sébastien, Bertrand Dubreucq, Martine Miquel, Christine Rochat, and Loïc Lepiniec. 2008. "Storage Reserve Accumulation in Arabidopsis: Metabolic and Developmental Control of Seed Filling." *The Arabidopsis Book / American Society of Plant Biologists* 6 (July): e0113. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Besagni, Céline, and Felix Kessler. 2013. "A Mechanism Implicating Plastoglobules in Thylakoid Disassembly during Senescence and Nitrogen Starvation." *Planta* 237 (2): 463–70. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Both, Maike, Michael Csukai, Michael P. H. Stumpf, and Pietro D. Spanu. 2005. "Gene Expression Profiles of Blumeria Graminis Indicate Dynamic Changes to Primary Metabolism during Development of an Obligate Biotrophic Pathogen." *The Plant Cell* 17 (7): 2107–22. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bouchnak, Imen, Denis Coulon, Vincent Salis, Sabine D'Andréa, and Claire Bréhélin. 2023. "Lipid Droplets Are Versatile Organelles Involved in Plant Development and Plant Response to Environmental Changes." *Frontiers in Plant Science* 14 (June): 1193905. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Browse, J., L. Kunst, S. Anderson, S. Hugly, and C. Somerville. 1989. "A Mutant of Arabidopsis Deficient in the Chloroplast 16:1/18:1 Desaturase." *Plant Physiology* 90 (2): 522–29. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Browse, J., N. Warwick, C. R. Somerville, and C. R. Slack. 1986. "Fluxes through the Prokaryotic and Eukaryotic Pathways of Lipid Synthesis in the '16:3' Plant Arabidopsis Thaliana." *Biochemical Journal* 235 (1): 25–31. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cavaco, Ana Rita, Ana Rita Matos, and Andreia Figueiredo. 2021. "Speaking the Language of Lipids: The Cross-Talk between Plants and Pathogens in Defence and Disease." *Cellular and Molecular Life Sciences: CMLS* 78 (9): 4399–4415. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chandran, Divya, Noriko Inada, Greg Hather, Christiane K. Kleindt, and Mary C. Wildermuth. 2010. "Laser Microdissection of Arabidopsis Cells at the Powdery Mildew Infection Site Reveals Site-Specific Processes and Regulators." *Proceedings of the National Academy of Sciences of the United States of America* 107 (1): 460–65. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chandran, Divya, Yu Chuan Tai, Gregory Hather, Julia Dewdney, Carine Denoux, Diane G. Burgess, Frederick M. Ausubel, Terence P. Speed, and Mary C. Wildermuth. 2009. "Temporal Global Expression Data Reveal Known and Novel Salicylate-Impacted Processes and Regulators Mediating Powdery Mildew Growth and Reproduction on Arabidopsis." *Plant Physiology* 149 (3): 1435–51. Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Clark, Joanna I. M., and J. L. Hall. 1998. "Solute Transport into Healthy and Powdery Mildew-Infected Leaves of Pea and Uptake by Powdery Mildew Mycelium." *The New Phytologist* 140 (2): 261–69.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Clay, Nicole K., Adewale M. Adio, Carine Denoux, Georg Jander, and Frederick M. Ausubel. 2009. "Glucosinolate Metabolites Required for an *Arabidopsis* Innate Immune Response." *Science* 323 (5910): 95–101.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Costa, G., M. Gildenhard, M. Eldering, R. L. Lindquist, A. E. Hauser, R. Sauerwein, C. Goosmann, V. Brinkmann, P. Carrillo-Bustamante, and E. A. Levashina. 2018. "Non-Competitive Resource Exploitation within Mosquito Shapes within-Host Malaria Infectivity and Virulence." *Nature Communications* 9 (1): 1–11.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dahlqvist, Anders, Ulf Ståhl, Marit Lenman, Antoni Banas, Michael Lee, Line Sandager, Hans Ronne, and Sten Stymne. 2000. "Phospholipid:diacylglycerol Acyltransferase: An Enzyme That Catalyzes the Acyl-CoA-Independent Formation of Triacylglycerol in Yeast and Plants." *Proceedings of the National Academy of Sciences* 97 (12): 6487–92.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Devaiah, Shivakumar Pattada, Mary R. Roth, Ethan Baughman, Maoyin Li, Pamela Tamura, Richard Jeannotte, Ruth Welti, and Xuemin Wang. 2006. "Quantitative Profiling of Polar Glycerolipid Species from Organs of Wild-Type *Arabidopsis* and a Phospholipase D α 1 Knockout Mutant." *Phytochemistry* 67 (17): 1907–24.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Espinosa-Corral, Roberto, Serena Schwenkert, and Peter K. Lundquist. 2021. "Molecular Changes of *Arabidopsis Thaliana* Plastoglobules Facilitate Thylakoid Membrane Remodeling under High Light Stress." *The Plant Journal: For Cell and Molecular Biology* 106 (6): 1571–87.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fan, Jian, Chengshi Yan, and Changcheng Xu. 2013. "Phospholipid:diacylglycerol Acyltransferase-Mediated Triacylglycerol Biosynthesis Is Crucial for Protection against Fatty Acid-Induced Cell Death in Growing Tissues of *Arabidopsis*." *The Plant Journal: For Cell and Molecular Biology* 76 (6): 930–42.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fernández-Santos, Rubén, Yovanny Izquierdo, Ana López, Luis Muñiz, Marta Martínez, Tomás Cascón, Mats Hamberg, and Carmen Castresana. 2020. "Protein Profiles of Lipid Droplets during the Hypersensitive Defense Response of *Arabidopsis* against *Pseudomonas* Infection." *Plant & Cell Physiology* 61 (6): 1144–57.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fotopoulos, Vasileios, Martin J. Gilbert, Jon K. Pittman, Alison C. Marvier, Aram J. Buchanan, Norbert Sauer, J. L. Hall, and Lorraine E. Williams. 2003. "The Monosaccharide Transporter Gene, AtSTP4, and the Cell-Wall Invertase, Atbetafruct1, Are Induced in *Arabidopsis* during Infection with the Fungal Biotroph *Erysiphe Cichoracearum*." *Plant Physiology* 132 (2): 821–29.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Frye, C. A., and R. W. Innes. 1998. "An *Arabidopsis* Mutant with Enhanced Resistance to Powdery Mildew." *The Plant Cell* 10 (6): 947–56.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Frye, Catherine A, Dingzhong Tang, and Roger W. Innes. 2001. "Negative Regulation of Defense Responses in Plants by a Conserved MAPKK Kinase." *Proceedings of the National Academy of Sciences* 98 (1): 373–78.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gao, Huiling, Yu Gao, Fei Zhang, Baoling Liu, Chunli Ji, Jinai Xue, Lixia Yuan, and Runzhi Li. 2021. "Functional Characterization of a Novel Acyl-CoA:diacylglycerol Acyltransferase 3-3 (CsDGAT3-3) Gene from *Camelina Sativa*." *Plant Science: An International Journal of Experimental Plant Biology* 303 (February): 110752.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gaude, Nicole, Claire Bréhélin, Gilbert Tischendorf, Felix Kessler, and Peter Dörmann. 2007. "Nitrogen Deficiency in *Arabidopsis* Affects Galactolipid Composition and Gene Expression and Results in Accumulation of Fatty Acid Phytol Esters." *The Plant Journal: For Cell and Molecular Biology* 49 (4): 729–39.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ghosh, S., K. A. Hudak, E. B. Dumbroff, and J. E. Thompson. 1994. "Release of Photosynthetic Protein Catabolites by Blebbing from Thylakoids." *Plant Physiology* 106 (4): 1547–53.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Glawe, Dean A. 2008. "The Powdery Mildews: A Review of the World's Most Familiar (yet Poorly Known) Plant Pathogens." *Annual Review of Phytopathology* 46: 27–51.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guzha, Athanas, Payton Whitehead, Till Ischebeck, and Kent D. Chapman. 2023. "Lipid Droplets: Packing Hydrophobic Molecules

Within the Aqueous Cytoplasm." Annual Review of Plant Biology 74 (1): 195–223.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Han, Longyan, Yuhui Zhai, Yumeng Wang, Xiangrui Shi, Yanfeng Xu, Shuguang Gao, Man Zhang, Jianrang Luo, and Qingyu Zhang. 2022. "Diacylglycerol Acyltransferase 3(DGAT3) Is Responsible for the Biosynthesis of Unsaturated Fatty Acids in Vegetative Organs of *Paeonia Rockii*." International Journal of Molecular Sciences 23 (22). <https://doi.org/10.3390/ijms232214390>.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hernández, M. Luisa, and Francisco Javier Cejudo. 2021. "Chloroplast Lipids Metabolism and Function. A Redox Perspective." Frontiers in Plant Science 12 (August): 712022.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hernández, M. Luisa, Lynne Whitehead, Zhesi He, Valeria Gazda, Alison Gilday, Ekaterina Kozhevnikova, Fabián E. Vaistij, Tony R. Larson, and Ian A. Graham. 2012. "A Cytosolic Acyltransferase Contributes to Triacylglycerol Synthesis in Sucrose-Rescued *Arabidopsis* Seed Oil Catabolism Mutants." Plant Physiology 160 (1): 215–25.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hölzl, Georg, and Peter Dörmann. 2019. "Chloroplast Lipids and Their Biosynthesis." Annual Review of Plant Biology 70 (April): 51–81.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hunziker, Pascal, Hassan Ghareeb, Lena Wagenknecht, Christoph Crocoll, Barbara Ann Halkier, Volker Lipka, and Alexander Schulz. 2020. "De Novo Indol-3-Ylmethyl Glucosinolate Biosynthesis, and Not Long-Distance Transport, Contributes to Defence of *Arabidopsis* against Powdery Mildew." Plant, Cell & Environment 43 (6): 1571–83.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jessen, Dirk, Charlotte Roth, Marcel Wiermer, and Martin Fulda. 2015. "Two Activities of Long-Chain Acyl-Coenzyme A Synthetase Are Involved in Lipid Trafficking between the Endoplasmic Reticulum and the Plastid in *Arabidopsis*." Plant Physiology 167 (2): 351–66.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jiang, Yina, Wanxiao Wang, Qiujin Xie, Na Liu, Lixia Liu, Dapeng Wang, Xiaowei Zhang, et al. 2017. "Plants Transfer Lipids to Sustain Colonization by Mutualistic Mycorrhizal and Parasitic Fungi." Science 356 (6343): 1172–75.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kachroo, Aardra, and Pradeep Kachroo. 2009. "Fatty Acid-Derived Signals in Plant Defense." Annual Review of Phytopathology 47 (1): 153–76.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kameoka, Hiromu, and Caroline Gutjahr. 2022. "Functions of Lipids in Development and Reproduction of Arbuscular Mycorrhizal Fungi." Plant & Cell Physiology 63 (10): 1356–65.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kameoka, Hiromu, Taro Maeda, Nao Okuma, and Masayoshi Kawaguchi. 2019. "Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi." Plant & Cell Physiology 60 (10): 2272–81.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Katavic, V., D. W. Reed, D. C. Taylor, E. M. Giblin, D. L. Barton, J. Zou, S. L. Mackenzie, P. S. Covello, and L. Kunst. 1995. "Alteration of Seed Fatty Acid Composition by an Ethyl Methanesulfonate-Induced Mutation in *Arabidopsis Thaliana* Affecting Diacylglycerol Acyltransferase Activity." Plant Physiology 108 (1): 399–409.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kaup, Marianne T., Carol D. Froese, and John E. Thompson. 2002. "A Role for Diacylglycerol Acyltransferase during Leaf Senescence." Plant Physiology 129 (4): 1616–26.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim, Sangwoo, Yasuyo Yamaoka, Hirofumi Ono, Hanul Kim, Donghwan Shim, Masayoshi Maeshima, Enrico Martinoia, Edgar B. Cahoon, Ikuo Nishida, and Youngsook Lee. 2013. "A ABCA9 Transporter Supplies Fatty Acids for Lipid Synthesis to the Endoplasmic Reticulum." Proceedings of the National Academy of Sciences of the United States of America 110 (2): 773–78.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Klepikova, Anna V., Artem S. Kasianov, Evgeny S. Gerasimov, Maria D. Logacheva, and Aleksey A. Penin. 2016. "A High Resolution Map of the *Arabidopsis Thaliana* Developmental Transcriptome Based on RNA-Seq Profiling." The Plant Journal: For Cell and Molecular Biology 88 (6): 1058–70.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Koh, Serry, Aurélie André, Herb Edwards, David Ehrhardt, and Shauna Somerville. 2005. "Arabidopsis Thaliana Subcellular Responses to Compatible Erysiphe Cichoracearum Infections." The Plant Journal: For Cell and Molecular Biology 44 (3): 516–29.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kumar, Aruna, Aarti Sharma, and Kailash C. Upadhyaya. 2016. "Vegetable Oil: Nutritional and Industrial Perspective." Current Genomics 17 (3): 230–40.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liang, Peng, Songyu Liu, Feng Xu, Shuqin Jiang, Jun Yan, Qiguang He, Wenbo Liu, et al. 2018. "Powdery Mildews Are Characterized by Contracted Carbohydrate Metabolism and Diverse Effectors to Adapt to Obligate Biotrophic Lifestyle." Frontiers in Microbiology 9 (December): 3160.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lippold, Felix, Katharina vom Dorp, Marion Abraham, Georg Hözl, Vera Wewer, Jenny Lindberg Yilmaz, Ida Lager, et al. 2012. "Fatty Acid Phytol Ester Synthesis in Chloroplasts of Arabidopsis." The Plant Cell 24 (5): 2001–14.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, Simu, Lisa M. Bartrikas, Sigrid M. Volk, Frederick M. Ausubel, and Dingzhong Tang. 2016. "Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance." Frontiers in Plant Science 7 (March): 227.

Luginbuehl, Leonie H., Guillaume N. Menard, Smita Kurup, Harrie Van Erp, Guru V. Radhakrishnan, Andrew Breakspear, Giles E. D. Oldroyd, and Peter J. Eastmond. 2017. "Fatty Acids in Arbuscular Mycorrhizal Fungi Are Synthesized by the Host Plant." Science 356 (6343): 1175–78.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lu, Junhao, Yang Xu, Juli Wang, Stacy D. Singer, and Guanqun Chen. 2020. "The Role of Triacylglycerol in Plant Stress Response." Plants 9 (4). <https://doi.org/10.3390/plants9040472>.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lundquist, Peter K., Anton Poliakov, Nazmul H. Bhuiyan, Boris Zybailov, Qi Sun, and Klaas J. van Wijk. 2012. "The Functional Network of the Arabidopsis Plastoglobule Proteome Based on Quantitative Proteomics and Genome-Wide Coexpression Analysis." Plant Physiology 158 (3): 1172–92.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lü, Shiyu, Tao Song, Dylan K. Kosma, Eugene P. Parsons, Owen Rowland, and Matthew A. Jenks. 2009. "Arabidopsis CER8 Encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) That Has Overlapping Functions with LACS2 in Plant Wax and Cutin Synthesis." The Plant Journal: For Cell and Molecular Biology 59 (4): 553–64.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

MacLean, Allyson M., Armando Bravo, and Maria J. Harrison. 2017. "Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis." The Plant Cell 29 (10): 2319–35.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mats X. Andersson, J. Magnus Kjellberg, and Anna Stina Sandelius. 2001. "Chloroplast Biogenesis. Regulation of Lipid Transport to the Thylakoid in Chloroplasts Isolated from Expanding and Fully Expanded Leaves of Pea." Plant Physiology 127 (1): 184–93.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

McRae, Amanda G., Jyoti Taneja, Kathleen Yee, Xinyi Shi, Sajeet Haridas, Kurt LaButti, Vasanth Singan, Igor V. Grigoriev, and Mary C. Wildermuth. 2023. "Spray-Induced Gene Silencing to Identify Powdery Mildew Gene Targets and Processes for Powdery Mildew Control." Molecular Plant Pathology 24 (9): 1168–83.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Micali, Cristina, Katharina Göllner, Matt Humphry, Chiara Consonni, and Ralph Panstruga. 2008. "The Powdery Mildew Disease of Arabidopsis: A Paradigm for the Interaction between Plants and Biotrophic Fungi." The Arabidopsis Book / American Society of Plant Biologists 6 (October): e0115.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Michel, Elena J. S., Lalit Ponnala, and Klaas J. van Wijk. 2021. "Tissue-Type Specific Accumulation of the Plastoglobular Proteome, Transcriptional Networks, and Plastoglobular Functions." Journal of Experimental Botany 72 (13): 4663–79.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moellering, Eric R., Bagyalakshmi Muthan, and Christoph Benning. 2010. "Freezing Tolerance in Plants Requires Lipid Remodeling at the Outer Chloroplast Membrane." Science 330 (6001): 226–28.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Murphy, Robert C. 2014. Tandem Mass Spectrometry of Lipids: Molecular Analysis of Complex Lipids. Royal Society of Chemistry.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Okazaki, Yozo, and Kazuki Saito. 2014. "Roles of Lipids as Signaling Molecules and Mitigators during Stress Response in Plants." The Plant Journal: For Cell and Molecular Biology 79 (4): 584–96.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pfleger, Brian F., Michael Gossing, and Jens Nielsen. 2015. "Metabolic Engineering Strategies for Microbial Synthesis of

Oleochemicals." *Metabolic Engineering* 29 (May): 1–11.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Przybyla-Toscano, Jonathan, Mélanie Roland, Frédéric Gaynard, Jérémy Couturier, and Nicolas Rouhier. 2018. "Roles and Maturation of Iron-Sulfur Proteins in Plastids." *Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry* 23 (4): 545–66.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Regmi, Anushobha, Jay Shockey, Hari Kiran Kotapati, and Philip D. Bates. 2020. "Oil-Producing Metabolons Containing DGAT1 Use Separate Substrate Pools from Those Containing DGAT2 or PDAT." *Plant Physiology* 184 (2): 720–37.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Reuber, T. L., J. M. Plotnikova, J. Dewdney, E. E. Rogers, W. Wood, and F. M. Ausubel. 1998. "Correlation of Defense Gene Induction Defects with Powdery Mildew Susceptibility in *Arabidopsis* Enhanced Disease Susceptibility Mutants." *The Plant Journal: For Cell and Molecular Biology* 16 (4): 473–85.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Saha, Saikat, Balaji Enugutti, Sona Rajakumari, and Ram Rajasekharan. 2006. "Cytosolic Triacylglycerol Biosynthetic Pathway in Oilseeds. Molecular Cloning and Expression of Peanut Cytosolic Diacylglycerol Acyltransferase." *Plant Physiology* 141 (4): 1533–43.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shimada, Takashi L., Makoto Hayashi, and Ikuko Hara-Nishimura. 2017. "Membrane Dynamics and Multiple Functions of Oil Bodies in Seeds and Leaves." *Plant Physiology* 176 (1): 199–207.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shimada, Takashi L., Yoshitaka Takano, Tomoo Shimada, Masayuki Fujiwara, Yoichiro Fukao, Masashi Mori, Yozo Okazaki, et al. 2014. "Leaf Oil Body Functions as a Subcellular Factory for the Production of a Phytoalexin in *Arabidopsis*." *Plant Physiology* 164 (1): 105–18.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shiva, Sunitha, Thilani Samarakoon, Kaleb A. Lowe, Charles Roach, Hieu Sy Vu, Madeline Colter, Hollie Porras, et al. 2020. "Leaf Lipid Alterations in Response to Heat Stress of *Arabidopsis Thaliana*." *Plants* 9 (7). <https://doi.org/10.3390/plants9070845>.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shiva, Sunitha, Hieu Sy Vu, Mary R. Roth, Zhenguo Zhou, Shantan Reddy Marepally, Daya Sagar Nune, Gerald H. Lushington, Mahesh Visvanathan, and Ruth Welti. 2013. "Lipidomic Analysis of Plant Membrane Lipids by Direct Infusion Tandem Mass Spectrometry." *Methods in Molecular Biology* 1009: 79–91.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Smith, Matthew D., Donny D. Licatalosi, and John E. Thompson. 2000. "Co-Association of Cytochrome F Catabolites and Plastid-Lipid-Associated Protein with Chloroplast Lipid Particles1." *Plant Physiology* 124 (1): 211–22.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Spanu, Pietro D. 2012. "The Genomics of Obligate (and Nonobligate) Biotrophs." *Annual Review of Phytopathology* 50 (May): 91–109.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Springer, Armin, Chulhee Kang, Sachin Rustgi, Diter von Wettstein, Christiane Reinbothe, Stephan Pollmann, and Steffen Reinbothe. 2016. "Programmed Chloroplast Destruction during Leaf Senescence Involves 13-Lipoxygenase (13-LOX)." *Proceedings of the National Academy of Sciences* 113 (12): 3383–88.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sutton, P. N., M. J. Henry, and J. L. Hall. 1999. "Glucose, and Not Sucrose, Is Transported from Wheat to Wheat Powdery Mildew." *Planta* 208 (3): 426–30.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Swarbrick, Philip J., Paul Schulze-Lefert, and Julie D. Scholes. 2006. "Metabolic Consequences of Susceptibility and Resistance (race-Specific and Broad-Spectrum) in Barley Leaves Challenged with Powdery Mildew." *Plant, Cell & Environment* 29 (6): 1061–76.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tang, Dingzhong, Michael T. Simonich, and Roger W. Innes. 2007. "Mutations in LACS2, a Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to Avirulent *Pseudomonas Syringae* but Confer Resistance to *Botrytis Cinerea* in *Arabidopsis*." *Plant Physiology* 144 (2): 1093–1103.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tournayre, Jeremy, Matthieu Reichstadt, Laurent Parry, Pierre Fafournoux, and Celine Jousse. 2019. "'Do My qPCR Calculation', a Web Tool." *Bioinformation* 15 (5): 369–72.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tsitsigiannis, Dimitrios I., Terri M. Kowieski, Robert Zarnowski, and Nancy P. Keller. 2004. "Endogenous Lipogenic Regulators of Spore Balance in *Aspergillus nidulans*." *Eukaryotic Cell* 3 (6): 1398–1411.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vallochi, Adriana Lima, Livia Teixeira, Karina da Silva Oliveira, Clarissa Menezes Maya-Monteiro, and Patricia T. Bozza. 2018. "Lipid Droplet, a Key Player in Host-Parasite Interactions." *Frontiers in Immunology* 9 (May): 1022.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vanhercke, Thomas, John M. Dyer, Robert T. Mullen, Aruna Kilaru, Md Mahbubur Rahman, James R. Petrie, Allan G. Green, Olga Yurchenko, and Surinder P. Singh. 2019. "Metabolic Engineering for Enhanced Oil in Biomass." *Progress in Lipid Research* 74 (April): 103–29.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vanhercke, Thomas, Anna El Tahchy, Pushkar Shrestha, Xue-Rong Zhou, Surinder P. Singh, and James R. Petrie. 2013. "Synergistic Effect of WRI1 and DGAT1 Coexpression on Triacylglycerol Biosynthesis in Plants." *FEBS Letters* 587 (4): 364–69.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vidi, Pierre-Alexandre, Marion Kanwischer, Sacha Baginsky, Jotham R. Austin, Gabor Csucs, Peter Dörmann, Felix Kessler, and Claire Bréhélin. 2006. "Tocopherol Cyclase (VTE1) Localization and Vitamin E Accumulation in Chloroplast Plastoglobule Lipoprotein Particles." *The Journal of Biological Chemistry* 281 (16): 11225–34.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang, Liping, Wenyun Shen, Michael Kazachkov, Guanqun Chen, Qilin Chen, Anders S. Carlsson, Sten Stymne, Randall J. Weselake, and Jitao Zou. 2012. "Metabolic Interactions between the Lands Cycle and the Kennedy Pathway of Glycerolipid Synthesis in *Arabidopsis* Developing Seeds." *The Plant Cell* 24 (11): 4652–69.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang, Wenming, Yingqiang Wen, Robert Berkey, and Shunyuan Xiao. 2009. "Specific Targeting of the *Arabidopsis* Resistance Protein RPW8.2 to the Interfacial Membrane Encasing the Fungal Haustorium Renders Broad-Spectrum Resistance to Powdery Mildew." *The Plant Cell* 21 (9): 2898–2913.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Welti, Ruth, Weiqi Li, Maoyin Li, Yongming Sang, Homigol Biesiada, Han-E Zhou, C. B. Rajashekhar, Todd D. Williams, and Xuemin Wang. 2002. "Profiling Membrane Lipids in Plant Stress Responses. Role of Phospholipase D Alpha in Freezing-Induced Lipid Changes in *Arabidopsis*." *The Journal of Biological Chemistry* 277 (35): 31994–2.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Weng, Hua, Isabel Molina, Jay Shockey, and John Browse. 2010. "Organ Fusion and Defective Cuticle Function in a lacs1 lacs2 Double Mutant of *Arabidopsis*." *Planta* 231 (5): 1089–1100.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Weßling, Ralf, and Ralph Panstruga. 2012. "Rapid Quantification of Plant-Powdery Mildew Interactions by qPCR and Conidiospore Counts." *Plant Methods* 8 (1): 35.

Wildermuth, Mary C. 2010. "Modulation of Host Nuclear Ploidy: A Common Plant Biotroph Mechanism." *Current Opinion in Plant Biology* 13 (4): 449–58.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wildermuth, Mary C., Michael A. Steinwand, Amanda G. McRae, Johan Jaenisch, and Divya Chandran. 2017. "Adapted Biotroph Manipulation of Plant Cell Ploidy." *Annual Review of Phytopathology* 55 (August): 537–64.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Winter, Debbie, Ben Vinegar, Hardeep Nahal, Ron Ammar, Greg V. Wilson, and Nicholas J. Provart. 2007. "An 'Electronic Fluorescent Pictograph' Browser for Exploring and Analyzing Large-Scale Biological Data Sets." *PLoS One* 2 (8): e718.

Xu, Changcheng, Julian Fan, and John Shanklin. 2020. "Metabolic and Functional Connections between Cytoplasmic and Chloroplast Triacylglycerol Storage." *Progress in Lipid Research* 80 (November): 101069.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, Changcheng, and John Shanklin. 2016. "Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues." *Annual Review of Plant Biology* 67 (April): 179–206.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xue, Jinai, Huiling Gao, Yinghong Xue, Ruixiang Shi, Mengmeng Liu, Lijun Han, Yu Gao, et al. 2022. "Functional Characterization of Soybean Diacylglycerol Acyltransferase 3 in Yeast and Soybean." *Frontiers in Plant Science* 13 (May): 854103.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, Xiao-Yu, Hong-Kun Yang, Surinder P. Singh, Peter J. Sharp, and Qing Liu. 2018. "Genetic Manipulation of Non-Classic Oilseed Plants for Enhancement of Their Potential as a Biofactory for Triacylglycerol Production." *Proceedings of the Estonian Academy of Sciences: Engineering* 4 (4): 523–33.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yan, Bowei, Xiaoxuan Xu, Yingnan Gu, Ying Zhao, Xunchao Zhao, Lin He, Changjiang Zhao, Zutong Li, and Jingyu Xu. 2018. "Genome-Wide Characterization and Expression Profiling of Diacylglycerol Acyltransferase Genes from Maize." *Genome / National Research Council Canada = Genome / Conseil National de Recherches Canada* 61 (10): 735–43.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yao, Hong-Yan, Yao-Qi Lu, Xiao-Li Yang, Xiao-Qing Wang, Zhipu Luo, De-Li Lin, Jia-Wei Wu, and Hong-Wei Xue. 2023. "Arabidopsis Sec14 Proteins (SFH5 and SFH7) Mediate Interorganelle Transport of Phosphatidic Acid and Regulate Chloroplast Development." *Proceedings of the National Academy of Sciences of the United States of America* 120 (6): e2221637120.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yin, Xiangzhen, Xupeng Guo, Lizong Hu, Shuangshuang Li, Yuhong Chen, Jingqiao Wang, Richard R-C Wang, Chengming Fan, and Zanmin Hu. 2022. "Genome-Wide Characterization of DGATs and Their Expression Diversity Analysis in Response to Abiotic Stresses in Brassica Napus." *Plants* 11 (9). <https://doi.org/10.3390/plants11091156>.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ytterberg, A. Jimmy, Jean-Benoit Peltier, and Klaas J. van Wijk. 2006. "Protein Profiling of Plastoglobules in Chloroplasts and Chromoplasts. A Surprising Site for Differential Accumulation of Metabolic Enzymes." *Plant Physiology* 140 (3): 984–97.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, Meng, Julian Fan, David C. Taylor, and John B. Ohlrogge. 2009. "DGAT1 and PDAT1 Acyltransferases Have Overlapping Functions in Arabidopsis Triacylglycerol Biosynthesis and Are Essential for Normal Pollen and Seed Development." *The Plant Cell* 21 (12): 3885–3901.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao, Lifang, Vesna Katavic, Fengling Li, George W. Haughn, and Ljerka Kunst. 2010. "Insertional Mutant Analysis Reveals That Long-Chain Acyl-CoA Synthetase 1 (LACS1), but Not LACS8, Functionally Overlaps with LACS9 in Arabidopsis Seed Oil Biosynthesis." *The Plant Journal: For Cell and Molecular Biology* 64 (6): 1048–58.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhou, Xue-Rong, Sajina Bhandari, Brandon S. Johnson, Hari Kiran Kotapati, Doug K. Allen, Thomas Vanhercke, and Philip D. Bates. 2019. "Reorganization of Acyl Flux through the Lipid Metabolic Network in Oil-Accumulating Tobacco Leaves1 [OPEN]." *Plant Physiology* 182 (2): 739–55.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhou, Xue-Rong, Pushkar Shrestha, Fang Yin, James R. Petrie, and Surinder P. Singh. 2013. "AtDGAT2 Is a Functional Acyl-CoA:Diacylglycerol Acyltransferase and Displays Different Acyl-CoA Substrate Preferences than AtDGAT1." *FEBS Letters* 587 (15): 2371–76.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zou, J., Y. Wei, C. Jako, A. Kumar, G. Selvaraj, and D. C. Taylor. 1999. "The Arabidopsis Thaliana TAG1 Mutant Has a Mutation in a Diacylglycerol Acyltransferase Gene." *The Plant Journal: For Cell and Molecular Biology* 19 (6): 645–53.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shiva, S., Vu, H. S., Roth, M. R., Zhou, Z., Marepally, S. R., Nune, D. S., Lushington, G. H., Visvanathan, M., & Welti, R. 2013. "Lipidomic analysis of plant membrane lipids by direct infusion tandem mass spectrometry." *Methods in molecular biology* (Clifton, N.J.), 1009, 79–91. https://doi.org/10.1007/978-1-62703-401-2_9

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)