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Abstract. Objective: Commonly used cable equation-based approaches for

determining the effects of electromagnetic fields on excitable cells make several

simplifying assumptions that could limit their predictive power. Bidomain or

“whole” finite element methods have been developed to fully couple cells and

electric fields for more realistic neuron modeling. Here, we introduce a novel

bidomain integral equation designed for determining the full electromagnetic

coupling between stimulation devices and the intracellular, membrane, and

extracellular regions of neurons.

Methods: Our proposed boundary element formulation offers a solution to

an integral equation that connects the device, tissue inhomogeneity, and cell

membrane-induced E-fields. We solve this integral equation using first-order nodal

elements and an unconditionally stable Crank-Nicholson time-stepping scheme.

To validate and demonstrate our approach, we simulated cylindrical Hodgkin-

Huxley axons and spherical cells in multiple brain stimulation scenarios.

Main Results: Comparison studies show that a boundary element approach

produces accurate results for both electric and magnetic stimulation. Unlike

bidomain finite element methods, the bidomain boundary element method does

not require volume meshes containing features at multiple scales. As a result,

modeling cells, or tightly packed populations of cells, with microscale features

embedded in a macroscale head model, is made computationally tractable, and

the relative placement of devices and cells can be varied without the need to

generate a new mesh.

Significance: Device-induced electromagnetic fields are commonly used to

modulate brain activity for research and therapeutic applications. Bidomain

solvers allow for the full incorporation of realistic cell geometries, device E-

fields, and neuron populations. Thus, multi-cell studies of advanced neuronal

mechanisms would greatly benefit from the development of fast-bidomain solvers

to ensure scalability and the practical execution of neural network simulations

with realistic neuron morphologies.

Keywords: E-field dosimetry, Cell Networks, Multi-scale Neuron Solvers, Non-invasive
Brain Stimulation, Extracellular E-fields.
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1. Introduction

Device-induced electromagnetic fields are commonly

used to treat psychiatric and neurological disorders and

study the human brain [1, 2, 3]. Examples of such

devices are surface electrodes for transcranial electric

stimulation (TES), magnetic coils for transcranial

electric stimulation (TMS), and surgically implanted

electrodes for deep brain stimulation (DBS). TES has

been shown to assist with the treatment of psychiatric

disorders and neuro-recovery [1]. TMS was approved

by the U.S. Food & Drug Administration (FDA)

for treating depression in 2008, obsessive-compulsive

disorder in 2018, and smoking addiction in 2020. DBS

has been FDA-approved since 1997 for the treatment

of tremors due to Parkinson’s disease.

Improving the efficacy of these devices using

clinical trials alone to test new protocols and device

designs is a costly and time-consuming process.

A valuable and complementary approach is to

leverage simulations to design devices and stimulation

protocols based on biophysical principles governing the

interactions between electromagnetic fields and neural

activity.

The current standard approach for modeling the

neural response to electric fields (E-fields) involves

importing E-field dosimetry results into a cable

equation solver, such as NEURON [4], to represent

extracellular potentials [5, 6] (or an activation function

[7, 8]). This approach enables simulations to predict

the response of individual neurons to device E-fields [9,

10, 11, 12, 13, 14]. However, this approach comes with

inherent assumptions that limit its predictive power.

These assumptions include considering cell morphology

as filamentary (one-dimensional), assuming that the

device-induced E-field remains unaffected by the

presence of the cell or its membrane currents, and

assuming that the cell is surrounded by an empty

conductive extracellular space. The filamentary

assumption implies that the neuron’s cross-section is

isopotential and that transverse E-fields have negligible

effects [15]. In reality, action potentials can be

initiated using transverse E-fields, indicating that

the cell’s cross-section can result in cell activation

[16]. Consequently, correction terms based on passive

cell analysis [17] and canonical geometries have been

incorporated to enhance the traditional cable equation

model [11].

Furthermore, cells are known to significantly

disrupt the device E-fields on a local scale [17, 18].

In the human brain, cells are densely packed like

other primate brains [19], with only an estimated

15% to 30% of the normal adult brain consisting of

extracellular space [20, 21]. The presence of nearby

cells can profoundly affect the stimulation that each

cell experiences [22, 23, 24, 25].

To address all these limitations for general

geometries, finite element method (FEM) bidomain

models, also known as “whole” FEM [26, 27], have been
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Figure 1: (A) Illustration of the head stimulated by a variety of electromagnetic brain stimulation devices, (B)
the neuron cell in the brain, and (C) the neuron membrane and its equivalent circuit model.

proposed by Ying and Henriquez [28] and improved

by Neef and Toro [29]. Similar to cable models, this

method treats cell membranes as equivalent circuits,

creating a bidomain configuration that separates the

intra- and extracellular spaces [30, 14, 31]. However,

unlike cable-based approaches, this method enables full

coupling between cells and device-induced E-fields.

One limitation of this approach is that it requires

dense volume meshes that span multiple scales to solve

more realistic scenarios, making them computationally

intractable for many applications [22, 23].

We propose a boundary integral equation-based

bidomain approach that addresses the challenges as-

sociated with multi-scale volumetric meshing. Specifi-

cally, we solve the boundary integral equation for the

charges on each tissue interface using the integral equa-

tions of [32] and [33]. For active membranes, we in-

troduce an additional term to model the contribution

of transmembrane currents and membrane potentials

[34]. These boundary integral equations are solved

at each time step, allowing for the incorporation of

time-varying membrane properties via auxiliary gating

equations. To validate this novel equation, we compare

its results with those obtained using our in-house im-

plementation of the FEM method proposed in [29] and

the standard cable equation approach.

Additionally, we present a wide range of results

to demonstrate the potential applications of our

integral equation approach. These include various

canonical test cases involving multiple axons, local

field potentials (extracellular potentials), cell packing,

transverse polarization, DBS electrodes at varying

proximity to axons of varying dimensions, and TMS

using a spherical head model.

2. Methods

2.1. Modeling device induced E-fields

The head is divided into nested regions with conduc-

tivities denoted from inner to outer as Ã1, Ã2, ..., ÃN

[Figure 1A]. Each region is separated by boundaries de-

noted from inner to outer as Γ1,Γ2, ...,ΓN , each having

an outward-pointing normal n̂. (Note: the results re-

main valid for non-nested regions, but we assume they

are nested to simplify notation.)

Different types of devices induce conduction
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currents in the head through various mechanisms.

Scalp and implanted electrodes are modeled as

boundary current injections JS(r; t) · n̂, while TMS

coils are modeled as volume conduction currents

Ã(r)Ep(r; t) = −Ã(r)∂A(r;t)
∂t

inside the head. The

volumetric sources JV (r; t) are not used to model

device-induced E-fields but are included for generality.

In general, these sources will generate a scalar

potential ϕ(r; t) that satisfies the following equation

and boundary condition:

∇ · Ã(r)∇ϕ(r; t) = −∇ · Ã(r)
∂A(r; t)

∂t
+∇ · JV (r; t)

−Ã(r)∇ϕ(r; t) · n̂ =

n̂ · JS(r; t)−n̂ · Ã(r)
∂A(r; t)

∂t
r ∈ ΓN .

(1)

The scalar potential ϕ(r; t) is continuous across

any tissue or membrane interface and can be

determined from surface charges Ä(r; t) as:

ϕ(r; t) =
1

4Ã

∫

Ä(r′; t)

|r− r′|
dS′. (2)

In the appendix, Green’s second identity is applied

at each boundary to derive an adjoint integral equation

[32] to solve for the charge:

− ÃavgÄ(r; t) + ÃdiffK
∗
{

Ä(·; t)
}

(r) = JS(r; t) · n̂+

Ãdiff

(

D∗
ΩV

{∇ · JV(·; t)

Ã(·)

}

(r)−
∂A(r; t)

∂t
· n̂

)

, (3)

where

K∗
{

f(·)
}

(r) =
1

4Ã
n̂ · ∇

∫

p.v.

f(r′)
1

∥r− r′∥
dS′

D∗
ΩV

{

f(·)
}

(r) =
1

4Ã
n̂ · ∇

∫

ΩV

f(r′)
1

∥r− r′∥
dV′.

(4)

In these equations Ãavg = Ãi+1+Ãi

2 is the average

conductivity across the tissue boundary, Ãdiff =

Ãi+1 − Ãi is the difference in conductivity between the

outside and inside of the tissue boundary. Note that

here we assume that ÃN+1 = 0 because it is assumed

that the media surrounding the head is insulating.

Additionally, JS(r; t) · n̂ = 0 everywhere except at

the electrode cathodes and anodes, and ΩV is the

spatial support of the volume current. The adjoint

double-layer operator has been extensively studied

and has been shown to accurately predict E-fields for

both magnetic stimulation [32, 35, 36, 37] and electric

stimulation [32, 36]. The following section will extend

the adjoint double-layer potential to include an active

membrane. (Note that for notational brevity here

and in what follows we have suppressed the spatial

dependence of Ãavg, Ãdiff , and n̂ as their values are

implied by the boundary location.)

2.2. Equivalent circuit neuron membrane models

Membranes that separate the intra- and extracellular

space are modeled using equivalent circuits. Equivalent

circuits as shown in [Figure. 1 C] have been utilized

for over 70 years and are extensively validated by

experimental research [38, 39, 40, 41]. The standard

formalism for modeling neuron membranes is as

follows:

d

dt
Vm(r, t) =

1

cm
(Im(r, t)− Iion(r; t;Vm))

Iion(r; t;Vm) =

M
∑

i=1

gi(t;Vm)
(

Vm(r; t)− Ei

)

.

(5)

In these equations Im(r, t) and Vm(r, t) are the

transmembrane current and voltage, respectively, cm
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is the membrane capacitance, gi and Ei are the

conductance and reversal potential for the ith ion

channel, respectively, and M distinct ion channels are

assumed. In this paper, we aim to introduce the

boundary equations and restrict ourselves to Hodgkin

Huxley (HH) squid axon model [38]

Iion(r; t;Vm) = gl(Vm(r, t)− El)+

gkn(r, t)
4(Vm(r, t)− Ek)+

gNam(r, t)3h(r, t)(Vm(r, t)− ENa), (6)

where

Än
∂n

∂t
= n∞(V )− n, (7)

Äm
∂m

∂t
= m∞(V )−m, (8)

and

Äh
∂h

∂t
= h∞(V )− h. (9)

Parameters for the auxiliary gating equations (7,8,9)

are given in table 1 of Appendix A. The parameters

for (6) are given at the end of section 2.5.

2.3. Coupling neuronal membranes to the adjoint

double layer potential

The cell is assumed to be in the m-th compartment of

the head model [Fig. 1A-B]. There will be a jump in the

scalar potential across the cell membrane (i.e., between

the inside and outside of the cell) equal to Vm(r; t).

This jump in the scalar potential is not accounted for

in (1) because in its derivation it is assumed that the

scalar potential is continuous. To include an active

membrane, an additional term must be added to ( 1)

that accounts for the jump in the potential at the

cell boundary Γmem. This results in the following

boundary integral equation, which we call a bidomain

integral equation,

− ÃavgÄ(r; t) + ÃdiffK
∗
{

Ä(·; t)
}

(r) = JS(r; t) · n̂

+ Ãdiff

(

D∗
ΩV

{∇ · JV(·; t)

Ã(·)

}

(r)−
∂A(r; t)

∂t
· n̂

−Nmem{Vm(·; t)}(r)

)

, (10)

where

Nmem{f(·)}(r) = n̂(r) · ∇

∫

Γmem
p.v.

f(r′)∇′g(r; r′) · dS′.

(11)

This equation is valid on all interfaces including Γmem.

Furthermore, the transmembrane current will be equal

to the total current flowing out of the cell, which is

related to the charge on the surface of the cell as

Im(r; t) =

(

1

Ãex

−
1

Ãin

)−1

Ä(r; t) r ∈ Γmem, (12)

where, Ãex and Ãin are the extracellular and

intracellular conductivities.

2.4. Temporal approximation of the membrane

equation

Starting from known membrane potential and trans-

membrane and ion currents at an initial state t = t0,

we solve for Im(r, t0+n∆t), Iion(r, t0+n∆t), Vm(r, t0+

n∆t) and Ä(r, t0 + n∆t), where n = {1, 2, ..., Nt} and

∆t is the time step. This is achieved by using the

Crank-Nicolson method [42], as employed in [29]. The

Crank-Nicolson method is well-known for its uncondi-

tional stability when applied to the cable equation [43]

and equation (14). Specifically, a first-order central

difference method is used for the state equation of the
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membrane, resulting in the following

Vm(r, t+∆t) ≈ Vm(r, t) +
∆t

cm
(Im(r, t+

∆t

2
)

−Iion(r; t+
∆t

2
;Vm)).

(13)

To solve (13), the ionic currents at the half-time step

are approximated as the ionic currents at the previous

time step, and the membrane currents at the half-

time step are approximated using the average of the

currents at the next and previous time steps. These

approximations result in the following equation:

Vm(r, t+∆t) ≈ Vm(r, t)+

∆t

2cm
(Im(r, t+∆t) + Im(r, t)− 2Iion(r; t;Vm)).

(14)

Equation (14) relates Vm(r, t + ∆t) to known ionic

and membrane currents at the previous time step

and Im(r, t + ∆t). Additionally, Im(r, t + ∆t) is

related to Ä(r, t + ∆t) via (12). These relations

for transmembrane current (12) and transmembrane

voltage (14) allow us to rewrite our bidomain integral

equation in the following form

− ÃavgÄ(r; t+∆t) + ÃdiffK
∗
{

Ä(·; t+∆t)
}

(r)+

∆t

2cm

ÃdiffÃmÃmem

(Ãmem − Ãm)
N{Ä(·; t+∆t)}(r) = JS(r; t+∆t)·n̂+

(Ãdiff )(D
∗
ΩV

{∇ · JV(·; t+∆t)

Ã(·)

}

(r)−
∂A(r; t+∆t)

∂t
·n̂−

N{Vm(·, t) +
∆t

2cm
(Im(·, t)− 2Iion(·; t;Vm))}(r)).

(15)

Using known quantities at the previous time step and

known sources, equation (15) is solved numerically

using the boundary element method to determine

Ä(r; t+∆t). Then, Im(r, t+∆t) and Vm(r, t+∆t) are

determined using (12) and (14), respectively. Finally,

Vm(r, t+∆t) is used to update the time-dependent ion

channel conductances and determine Iion(r, t+∆t;Vm)

using (5).

One of the strengths of the time-stepping scheme

used here is that the update equations for ionic currents

and channel conductance remain unchanged relative to

point-wise neuron solvers. Here, we use a backward

difference Euler time-stepping scheme for the ionic

currents as provided in [40]. First, Vm(r, t + ∆t) is

used to update the ratio of open and closed ionic gates

using the following formula:

·(r; t+∆t) = ·∞(r; t+∆t) + (·(r; t)− ·∞(r; t+∆t))

exp(−
∆t

Ä·(Vm(r, t+∆t))
)

·∞(r; t+∆t) = ³·(Vm(r, t+∆t))Ä·(Vm(r, t+∆t)),

(16)

where · ∈ n,m, h . The updated ion gating

probabilities are used to determine updated ionic

currents as

Iion(r, t+∆t;Vm) = gl(Vm(r, t+∆t)− El)+

gkn(r, t+∆t)4(Vm(r, t+∆t)− Ek)+

gNam(r, t+∆t)3h(r, t+∆t)(Vm(r, t+∆t)− ENa).

(17)

2.5. Boundary element methods (BEMs) for

approximating the update equation

To approximate the integral equation (15), each

boundary is discretized as a mesh consisting of

triangles. For the standard adjoint double layer

equation, piece-wise constant charges on each triangle

are sufficient to achieve accurate results for both

the charges and electric fields [35]. However,

for the bidomain integral equation, we have an
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additional hyper-singular operator Nmem

{

f(·)
}

(r),

which requires a continuous function as input [44].

To meet this requirement, the lowest-order basis

functions that enable an accurate approximation of

the membrane bidomain equation are linear elements.

Consequently, the charges are approximated as linear

nodal elements on each node of the triangle mesh.

There was a previous successful attempt for

approximating the hyper-singular operator using

piece-wise constant functions for studying passive

cells [34]. This approach involved using Eq.(6.17)

shown in [44] to set the diagonal entries of Nmem

to the negative value of all off-diagonal equation

coefficients summed together. This regularization

method is equivalent to using the representation

Nmem

{

f(·)
}

(r) = Nmem

{

f(·)− f(r)
}

(r) which is only

valid when f(r) is continuous [44]. Although this

approach is not mathematically correct, the above

regularization appears to produce numerically correct

approximations of the hypersingular operator using

piece-wise constant basis functions.

The application of a Galerkin procedure to (10)

results in the following equation

(A+
∆t

2cm

ÃmÃmem

Ãmem − Ãm

Nmem)ρ(n+1) = bdev
(n+1)

−Nmem(Vm
(n) +

∆t

2cm
(Im

(n) − 2Iion
(n))),

(18)

where

Aij = −Ãavg

∫

Ni(r)Nj(r)dS+

Ãdiff

4Ã

∫

Ni(r)n̂ · ∇

∫

Nj(r
′)

∥r− r′∥
dS′dS,

(19)

Nmemij =

Ãdiff

4Ã

∫

n̂×∇Ni(r) ·

∫

Γmem

n̂′ ×∇′Nj(r
′)

∥r− r′∥
dS′dS,

(20)

bdev
(n)
i =

∫

Ni(r)(JS(r; t+ n∆t) · n̂dS− Ãdiff

∫

Ni(r)
∂A(r; t+ n∆t)

∂t
) · n̂dS+

Ãdiff

4Ã
∫

Ni(r)n̂ · ∇

∫

ΩV

∇′ · JV(r′; t+ n∆t)

Ã(r′)∥r− r′∥
dV′dS,

(21)

and

Ä(r; t+ n∆t) =
∑

j

ρ
(n)
j Nj(r)

Vm(r; t+ n∆t) =
∑

j

Vm
(n)
j Nj(r)

Im(r; t+ n∆t) =
∑

j

Im
(n)
j Nj(r)

Iion(r; t+ n∆t) =
∑

j

Iion
(n)
j Nj(r).

(22)

Here, Ni(r) are nodal elements. The matrix

A and the forcing vector bdev correspond to the

standard adjoint double-layer equation. The coupling

with the active membrane involves adding a single

integral operatorNmem. This makes the incorporation

of membrane equations into existing BEM solvers

relatively straightforward.

We explored two approaches to solve (18) for the

charges. One approach is to invert the system of

equations. Another approach is to solve it iteratively

to a relative residual error tolerance of 10−7 using fast

multipole method (FMM) acceleration for the matrix-

vector multiplication. Each simulation required over 10

thousand time-steps as a result, the iterative solution

using FMM was too slow and the results are not

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2023. ; https://doi.org/10.1101/2023.12.15.571917doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571917
http://creativecommons.org/licenses/by-nd/4.0/


8

reported here. For all simulation results, the solver

is assumed to start at rest with Vm(r; 0) = −65

mV. We used membrane capacitancecm = 1µF/cm2,

leak conductance gl = 3mS/cm2, peak potassium

condutance gk = 360mS/cm2, and peak sodium

conductance gNa = 1200mS/cm2. The reversal

potentials wereEl = −54.4 mV, Ek = −77 mV, ENa =

50 mV.

2.6. Summary of Solver Algorithm

As depicted in Fig. 2, each simulation begins with

the assumption that the initial state of the cell is

known. Subsequently, we solve (18) to calculate the

charge at the next time step for every boundary. Using

the charge information, we update the transmembrane

current Im for the next time step according to (12).

The membrane voltage Vm is then updated via (14).

Following this, the membrane voltage is utilized to

update the ion channel conductance using the gating

equations (16). With the ion channel conductances

determined, we calculate the ionic currents for the

next time step using (17). Steps one through five are

iteratively repeated until the values at all time steps

have been determined.

2.7. Computer simulations

To validate the proposed integral equation solver, we

employed the approach described in [27], where extra-

cellular voltages are computed from a finite element

method (FEM) to drive a cable neuron simulation.

The bidomain FEM approach is implemented in-house,

based on the description in [29]. For certain aspects

of the simulation, we utilized the NEURON simulation

environment v8.8.2 [4]. All tasks related to mesh gener-

ation, differential equation solutions, and analysis were

performed using MATLAB (R2020a, MathWorks, Inc.,

Natick, MA, USA). The computational resources used

for these simulations were provided by the Purdue Bell

Cluster, which consists of 5 Rome CPUs running at 2.0

GHz, with a total RAM memory of 10 GB available for

each axon in the simulation.

2.8. Simulation scenarios & device description

Unless stated otherwise, a time step of 1 µs is used

for all simulations. Furthermore, we consider straight

axons with a length of 4 mm and a cylindrical cross-

section with a diameter of 2 µm. Furthermore,

the intracellular and extracellular conductivity are

set to 1 S/m and 2 S/m, respectively. This is to

match cytoplasm conductivity for a glia cell, which is

estimated to be in the range of 0.3-1 S/m [45].

In the single-axon scenarios, all electrodes and

coils are driven at threshold current intensities, which

we determined empirically with a 1.0 % tolerance using

a bisection method.

In the TES scenarios, the extracellular space is

represented as a homogeneous hexahedral bath with

dimensions of 16 mm × 8 mm × 16 mm as shown by

Figure 3(A). The axon is positioned with its midpoint

at the center of the hexahedral bath. The electrodes

are modeled as having a uniform current distribution

on their cross-section. The surface electrodes cover an

entire face of the hexahedral bath for the anode and

cathode, respectively.

For Figure 3(B), we consider an unbounded

extracellular space for the longitudinal comparison
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Figure 2: A procedural flowchart of our bidomain BEM algorithm. The procedure is repeated until the charge
and membrane information are calculated for all time steps.

scenario. For Figure 3(D), we consider an 85 mm

radius spherical head. An 85 mm radius spherical

head is a common choice of simple head model in TMS

simulation studies [46, 47, 48].

An 85 mm figure-eight coil is placed 90 mm above

the center of the spherical head. The axon is placed

in a variety of orientations with its midpoint 70 mm

above the center of the spherical head. The placement

of the neuron with respect to the figure-eight coil falls

within the range used in studies of neuron stimulation

by figure-eight coils [12, 49]. The coil model consists of

24,426 electric dipoles with inductance of 17.061 µH,

and resistance of 6.3 mΩ. The underdamped pulse

waveform shape is determined assuming the coil is

driven by a 185 µF charged capacitor.

For the DBS scenarios, we ran simulations

of a cylindrical DBS electrode in an unbounded

extracellular space at a distance d, ranging from 50

nm to 1 cm away from an axon. The axon is placed

in two orientations, perpendicular to the electrode or

parallel to the electrode. The electrode is represented

as a cylindrical rod with a radius of 0.5 mm and a

length of 10 mm, as illustrated in Figure 3 (E) and

(F). The anode is modeled as a 1.5 mm thick band

located 0.75 mm from one end of the electrode, while

the cathode is a 1.5 mm thick band positioned 1.5

mm above the anode. The DBS electrode is assumed

to have uniform current distribution in the cathode

and anode regions, and the inside of the electrode is

considered insulating. We drive the electrode with a

square wave pulse that starts at 0.2 ms and lasts for

5 ms. The lengthwise midpoint of the axon is aligned

with the midpoint between the electrode anode and

cathode in all DBS scenarios.

Additionally, we consider DBS simulations with

a longer and a thicker axons. We set our long axon

to have dimensions of 10 mm in length and 2 µm in

diameter. The thick axon is 4 mm in length and 40
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Figure 3: (A) Schematic for TES of an HH axon in a rectangular bath with two surface electrodes denoted by the
anode (blue) and cathode (red) stimulating the axon. (B) Schematic for TMS of an HH axon in an unbounded
extracellular medium. (C) Schematic of TES of a hexagonal cluster of seven 20 µm diameter spherical cells
with 1 µm spacing between one another. (C) Schematic for TMS of an HH axon embedded in a spherical head
model. (E) Schematic for DBS perpendicular to an HH axon in an unbounded extracellular medium at various
distances d of separation between the electrode and an axon. (F) Schematic for DBS parallel to an HH axon in
an unbounded extracellular medium at various distances d of separation between the electrode and an axon.

µm in diameter.

For the extracellular field calculation scenarios,

we place an HH axon with its center at the origin

of an unbounded conductive extracellular space and

connect a current source to the ends of the axon.

These currents are chosen at the activation threshold

level. Then, we calculate the extracellular potentials

nearby (< 200 µm) of the space outside the axon

membrane using the relation (B.9) of Appendix B. The

extracellular fields scale in an inversely proportional

fashion to the conductivity [50, 51]. We chose the

extracellular conductivity to be 0.1 S/m for these

simulation scenarios. The value of 0.1 S/m is low

enough to get strong extracellular fields but remains

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2023. ; https://doi.org/10.1101/2023.12.15.571917doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571917
http://creativecommons.org/licenses/by-nd/4.0/


11

realistic. Conductivity estimates of the extracellular

space around myelinated cells are in the range of 0.28

S/m to 5.5 S/m [52].

To investigate how the distortion of the local

E-field may affect nearby cells, we consider a bath

containing a hexagonal cluster of seven 20 µm diameter

spherical cells with 1 µm spacing and arranged as

shown in Figure 3 (C). Four distinct types of scenarios

are considered: (1) only one cell is present, (2) all

of the cells are active, (3) only one cell is active and

others have a conductivity of 2 S/m, (4) only one cell is

active and others are insulating (i.e. initial polarization

assumption [17]). For each of the four types of

scenarios, we determine the activation threshold of

each cell.

2.9. Mesh construction

We generated meshes for these physical models

using functions from the Geometry Processing Toolbox

(gptoolbox) in MATLAB. For all axons, we created

meshes with a minimum of 810 nodes (8 nodes around

the circumference and 100 compartments lengthwise)

and 1,616 triangles using the cylinder mesh function.

High-resolution axon simulations, consisting of 3,210

nodes and 6,416 triangles, were also performed to

evaluate solution convergence, and we determined that

higher resolution is unnecessary.

For modeling the extracellular space in TES, we

employed the surface mesh generated by the cube

function from gpttoolbox, with a resolution setting of

20 (resulting in 2,168 nodes and 4,332 triangles) to

represent the hexahedral bath. This mesh is adjusted

to match the specified dimensions of the hexahedral

bath mentioned earlier.

In the case of the spherical head mesh, we define

a nearly uniform spherical mesh by barycentrically re-

fining an icosahedron mesh three times and projecting

the nodes to the sphere surface.

3. Results

Figure 4: (A) Schematics of the respective TES and
TMS longitudinal comparison scenarios. (B) Plots of
the waveforms used to drive the electrode and coil
devices respectively. (C) Results of TES and TMS
by longitudinal stimulation which are validated by the
cable equation. The transmembrane voltage is sampled
at 1/5th and 4/5th across the length of the axon as
denoted by the arrows.
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Figure 5: Activation threshold computed by cable equation and bidomain BEM as a function of axon orientation.
(A) Thresholds calculated for TES. (B) Thresholds calculated for TMS in a homogeneous spherical head model.

3.1. Longitudinal comparison of bidomain BEM

In this section, we examine the effect of longitudinal

fields from TES and TMS on the membrane voltage

obtained at two specific points along an axon’s length.

We consider membrane voltages at 1/5 th and 4/5 th

of its total length.

For the TES longitudinal comparison scenario, the

results are presented in Fig. 4(a). The outcomes

obtained from the bidomain FEM (see the supplement,

Figure S1), the cable equation (CE), and our proposed

bidomain BEM all exhibit close agreement. As

expected for a straight axon in a uniform E-field, the

action potential initiates at the termination closest to

the negative electrode and propagates down the axon.

The TMS longitudinal comparison scenario and

its corresponding results are displayed in Figure 4(b).

Here, we present results using bidomain BEM and the

cable equation. Bidomain FEM is excluded in this case

due to the computational intractability of creating a

volume mesh to represent the open extracellular space.

The bidomain BEM and CE exhibit good agreement.

3.2. Cell rotation in a uniform E-field

In this section, we investigate the impact of

transverse stimulation. Figure 5 (A) presents the

results of axons being stimulated by electrodes while

oriented at various angles relative to the induced E-

field from the electrode. It is well-established that

the activation threshold varies with angle [11]. Our

results closely align with previously reported trends,

showing an increase in the activation threshold as

the angle increases. Notably at an angle of 90◦, the

activation threshold diverges to ∞ for the standard

cable equation. This divergence occurs due to the

neglect of transverse polarization phenomena in the

standard cable equation. However, our bidomain BEM

results approach a finite threshold value for transverse

stimulation (¹ = 90◦).

3.3. TMS with a spherical head model

Bidomain FEM-based approaches necessitate volume

meshes that span multiple orders of magnitude

when considering a single cell within a head model.
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Figure 6: DBS activation threshold as a function of distance d to electrode for different axon geometries and
orientations. Threhold–distance curves shown for (A) 4mm long, 2µm diameter axon, (B) 10mm long, 2µm
diameter axon, and (C) 4mm long, 10µm diameter axon. Within each column, the top and middle row show
threshold for the axon perpendicular and parallel to the DBS electrode, respectively, and the bottom row
represents the percent error between the bidomain BEM and cable equation with respect to the cable equation.

In contrast, BEM does not impose such meshing

requirements, rendering it a more practical choice.

Here, we demonstrate that a bidomain BEM approach

can be effectively employed for multi-scale simulations

where FEM cannot be employed. In Figure 5 (B), we

investigate the activation threshold of cells within a

spherical head model as a function of cell orientation.

Notably, we observe the same trends for TMS as we did

for TES. Specifically, the activation threshold increases

with the angle. At 90◦, the activation threshold

diverges to ∞ for the standard cable equation.

However, our bidomain BEM results approach a finite

threshold value for transverse stimulation (¹ = 90◦).
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Figure 7: A schematic detailing the region where the data originates is on the left. The plot shows extracellular
potential waveforms sampled at the positions on the l-r grid. The colors indicate the magnitude of the largest
peak of each respective voltage waveform.

3.4. Deep brain stimulation

Next, we simulated DBS of multiple axon geometries

in both parallel and perpendicular orientations as a

function of distance from the stimulating electrode.

For parallel orientations, the results obtained with

bidomain BEM and the cable equation agree with less

than 9% difference maximum and less than 2% on

average, as illustrated in Figure 6. We attribute this

agreement to the fact that the E-field generated by

the electrode is predominantly parallel to the cathode

and anode, and thus, it aligns mostly parallel to the

axon. For the axons that are 10 mm in length,

the action potential initiates from the center of the

axon. For the axons that are 4 mm in length, the

action potential initiates at one of the terminals. The

activation threshold remains similar for distances up

to 100 µm from the electrode but increases for cells

located farther away. In contrast, the perpendicular

configuration generates predictions that differ by a

minimum of 38% on average. As the distance between

axon and electrode grows the difference between the

cable equation and bidomain BEM predictions grows

rapidly.

3.5. Modeling extracellular potentials

The bidomain BEM can also be applied to simulate

the extracellular potentials generated by neural sources

and recorded by external devices. Fig. 7 shows

the spatial and temporal profile of the extracellular

potentials for an axon stimulated at its activation

threshold by a direct current injection. The waveforms

replicate the characteristic peaks of extracellular action
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potential recordings, generated by the capacitive,

inward sodium, and outward potassium currents. The

peak extracellular potential quickly decays in the

transverse r̂ direction, reaching half of the peak

strength at r = 10 µm. Additional simulations not

provided showed an inversely proportional relationship

of extracellular potentials to extracellular conductivity

as seen in other works [50, 51].

Figure 8: Color plots of the threshold values concerning
each spherical cell and the properties of its surrounding
cells.

3.6. Modeling the effects of neighboring cells

Here, we consider how the presence of multiple cells

affects single-cell activation thresholds. To observe

these subtle effects, we measured the activation

threshold of seven tightly packed spherical cells as

shown in Figure 8. In isolation, each spherical

cell had the same threshold of 107 mA at their

respective positions. Including all seven cells with

active membranes increased their activation thresholds

depending on their location within the assembly. The

center cell threshold was 7.83% higher than the average

threshold of the surrounding cells. To determine

whether the effects are due to cell activity or shielding

we considered one cell active and others as passive

conductors (Ã = 2 S/m ). We found including adjacent

cells with passive membranes also increased activation

thresholds relative to that of the cells in isolation;

however, the increase was not sufficient to explain the

increase in the active case. Finally, we considered

one cell active and others as insulators (Ã = 0 S/m

), which isolates the state of initial polarization[53].

The resulting thresholds are identical to those when

the cells are considered active.

4. Discussion

The standard cable equation approach neglects the

influence of the cell cross-section, the effect of

the cell on the local E-field, and the cell to cell

interactions [27, 29, 28]. Bidomain approaches do not

require these simplifying assumptions but necessitate

additional computational resources. The FEM

bidomain approaches require a volume mesh of the cell

and surrounding media and capture the exchange of

ions across cell membranes by equivalent impedance

boundary conditions between neuron cells and the

extracellular space. We introduced a BEM-based

bidomain solver that avoids the need for volumetric

meshing, thereby reducing the computational cost

associated with the meshing of bidomain methods. Our

longitudinal comparison results indicate that bidomain

BEM matches the longitudinal capabilities of the

bidomain FEM and the cable methods. Furthermore,

the bidomain BEM can be easily applied to scenarios

involving large platforms (e.g., head models), and

the relative placement of devices to cells can be
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reconfigured without generating a new mesh.

4.1. Assessment of transverse polarization

mechanisms

In our TES results (Figures 4(A) and ?? (A)), the

cable equation and bidomain BEM approach typically

demonstrate good agreement in various scenarios,

except for pure transverse stimulation. This pattern

also holds for different axon-field orientations in

TMS simulations, as illustrated in Figure 5 (B). It’s

worth noting that a significant difference between the

cable equation and our bidomain BEM only becomes

apparent when the angle of the axon with respect

to the longitudinal axis exceeds 89◦. Our findings

indicate that coil currents on the order of 100 kA/µs

are necessary for transverse stimulation of an HH axon,

consistent with the results observed in Wang et al.’s

modified cable equation study [11]. While transverse

polarization is impactful in specific cases, it is generally

negligible in most practical applications.

These special cases arise when the local E-

field exhibits a high magnitude in the transverse

direction. For instance, we observe more pronounced

disagreements when a DBS electrode is positioned

perpendicular to the axon, as illustrated in Figure 6.

When the DBS electrode aligns parallel to the axon,

we achieve predominantly longitudinal stimulation,

resulting in a strong agreement between the cable

equation and bidomain BEM. However, when the DBS

electrode is oriented perpendicular to the axon, there

is limited longitudinal stimulation. Consequently, we

observe significant discrepancies between the cable

equation and bidomain BEM stimulation thresholds.

In general, our results demonstrate that transverse

stimulation necessitates orders of magnitude higher E-

field magnitude compared to longitudinal stimulation

to elicit an action potential. These findings

strongly suggest that longitudinal stimulation is the

predominant mechanism for neuron activation via an

electrical field.

4.2. Modeling of Extracellular Potentials

Our findings match those of [50, 51], which indicate

that extracellular potentials are strongest in low-

conductivity extracellular spaces. The results with Ãext

= 0.1 S/m most clearly displayed both the extracellular

field spatial characteristics. We ran analogous

simulations at higher values one of which is included

in the supplementary document as Figure S6. We

observed that lower extracellular conductivity allowed

for higher magnitudes of extracellular potentials, which

is consistent with other studies [50, 51, 54, 55].

4.3. Modeling a Cluster of Spherical Cells

The results of Figure 8 indicate that shielding of

the E-field due to surrounding spherical cells affects

activation thresholds strongly. Moreover, we observe

that cells in isolation result in a lower threshold than

when surrounding cells are considered. For example,

when we model a cell in the presence of other cells,

we see that the threshold increases up to 15.8% from

the threshold in isolation. These results corroborate

our claim that the presence of surrounding cells is

a relevant determinant of the electric field that cells

experience, especially given that neurons are tightly

packed.
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4.4. Significance of the bidomain BEM

For studies with cells in isolation, our results indicate

that the conventional (and modified) cable equation

is a judicious choice of simulation method. However,

when conducting studies on intact neural tissue,

a bidomain FEM /BEM or novel cable equation

formalism is necessary to capture both the device and

neuron-generated fields simultaneously. Generating

high-quality volume meshes that span multiple scales

can be computationally cumbersome with FEM

equivalents. For instance, the use of a spherical head

model, often employed as a substitute for an MRI head

model, would demand an excessive number of elements

to make it suitable for bidomain FEM modeling. In

contrast, we have demonstrated that using a BEM

approach, TMS simulations, including spherical head

models, can be accomplished with ease. Moreover, the

flexibility to relocate our device and axon positions

without the need to regenerate a mesh makes bidomain

BEM a more practical choice, as it enables versatile cell

placement without the requirement to generate new

volume meshes for each placement.

Bidomain approaches require the solution of

a BEM/FEM system of equations and updating

of neuron gating unknowns at each time step.

Cable equation solvers, in contrast, only require

the determination of the E-field once, and only the

cable equation must be solved at each time step.

As such, the cable equation requires significantly

less computational overhead than bidomain methods.

Our results indicate that to generate insight and

perform single-cell simulations, cable equation-based

approaches should be the method of choice. However,

for multi-cell scenarios, fast bidomain methods that are

scalable and can be executed to model the dynamics of

a network of neuron cells with realistic representations

of their morphology are necessary. In the context

of modeling blood flow by fast BEM solvers have

been used to sucessfully model 200 million deformable

red blood cells (90 billion unknowns in BEM) [56].

These simulations indicate that modeling a network

of neurons is well within our reach with existing

computational algorithms and infrastructure.

5. Conclusion

We introduced a novel bidomain integral equation for

modeling the electric response of neuron cells to device-

induced E-fields. Our study includes several canonical

test cases, including scenarios with multiple cells,

transverse polarization, DBS electrodes at varying

proximity to multiple axon geometries, and TMS with

a spherical head model. The study results indicate

that (1) the cable equation is a sufficient choice for a

majority of simulations, (2) longitudinal stimulation

serves as the primary activation mechanism for

electromagnetic brain stimulation, and (3) multi-cell

studies of advanced mechanisms would greatly benefit

from fast-bidomain or hybrid cable-BEM solvers to

ensure scalability and the practical execution of

neural networks simulations with realistic neuron

morphologies. Thus, our future efforts will focus on

developing fast bidomain solvers to fully incorporate

realistic neuron morphologies.
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Table A.1: Hodgkin-Huxley axon gating probability and associated auxiliary variable definitions. (7,8,9) [40].
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Appendix A: Hodgkin-Huxley Parameters

Table A.1 shows the rate constants ³(Vm) and

´(Vm), the gating time constants Ä(Vm), and the

steady state target values m∞, n∞, h∞. The rate

constants must be calculated at each time step to

update the gating equations (7,8,9) and the ion current

(6).

Appendix B: Adjoint Double Layer Equa-

tion In a region Ωj with a boundary Γj , the scalar

potential satisfies the following

Ãi∇
2ϕ(r; t) = fÄi(r; t) r ∈ Ωi,

[ϕ(r; t)]Γi
= fϕi(r; t) r ∈ Γi,

n̂ · [Ã(r)∇ϕ(r; t)]Γi
= fJi(r; t) r ∈ Γi,

(B.1)

for i ∈ {1, ..., N + 1}. Here we define the jump of a

function as [g(r)]Γi
= g+Γi

(r) − g−Γi
(r), where g+Γi

(r) =

lim
ϵ→0

g+Γi
(r+ϵn̂(r)) r ∈ Γi and g−Γi

(r) = lim
ϵ→0

g−Γi
(r−ϵn̂(r))

r ∈ Γi (i.e. the difference between its value just

outside and just inside a compartment), and g(r) =

(g+Γi
(r) + g−Γi

(r))/2 as the average of a function across

the boundary. For example, a continuous function,

f(r) will have [f(r)]Γi
= 0, and f(r) = f+

Γi
(r) = f−

Γi
(r),

where i = 1, ..N . The forcing functions fÄi, fϕi, and fJi

each model implanted electrodes, potential differences
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across a thin cell membrane, and electrode and TMS

induced charges, respectively. Green’s second applied

to a homogenous region is

GreenIDΩj
(r) :

∫

Ωj

g(r; r′)∇′2ϕ(r′; t)− ϕ(r′; t)∇′2g(r; r′)dV ′ =

∮

Γj

g(r; r′)∇′ϕ(r′; t) · n̂(r′)dr′−

∮

Γj

ϕ(r; t)∇′g(r; r′) · n̂(r′)dr′.

We assume g(r; r′) = 1
4Ã||r−r′|| is the Green’s

function for the Laplace operator which satisfies

∇2g(r; r′) = −¶(r− r′). This results in

GreenIDΩj
(r) :

1

Ãj

∫

Ωj

g(r; r′)fÄi(r
′; t)dV +















ϕ(r′; t) r ∈ Ωj

0 r /∈ Ωj

=

SΓj
{∇ϕ · n̂}(r)− SΓ(j−1)

{∇ϕ · n̂}(r)

−DΓj
{ϕ}(r) +DΓ(j−1)

{ϕ}(r),

(B.2)

where

SΓj

{

f
}

(r) =

∫

Γj

f(r′)g(r; r′)dr′

DΓj

{

f
}

(r) =
sign((r− r′) · n̂(r))

2
f(r) +KΓj

{

f
}

(r)

KΓj

{

f
}

(r) = p.v.

∫

Γj

f(r′)∇′g(r; r′) · n̂(r)dr′.

(B.3)

The double layer potential equation is formed by

applying Ã(r)n̂ · ∇ to the Green’s identity above and

summing it over all regions

N+1
∑

j=1

Ã(r)n̂ · ∇GreenIDΩj
(r) :

Ã(r)
N+1
∑

j=1

D∗
Ωj

{ 1

Ãj

fÄj
}

(r) + Ã(r)n̂ · ∇ϕ(r) =

− Ã(r)
N+1
∑

j=1

D∗
Γj

{

[∇ϕ · n̂]Γj

}

(r)

+ Ã(r)
N+1
∑

j=1

NΓj

{

[ϕ]Γj

}

(r),

(B.4)

where

D∗
Γj

{

f
}

(r) =
sign((r− r′) · n̂(r))

2
f(r) +K∗

Γj

{

f
}

(r)

K∗
Γj

{

f
}

(r) = n̂(r) · ∇

[

p.v.

∫

Γj

f(r′)g(r; r′)dS

]

NΓj
{f}(r) = n̂(r) · ∇

[

p.v.

∫

Γj

f(r′)∇′g(r; r′) · dS

]

.

(B.5)

Taking the jump:

[

Ã(r)
N+1
∑

j=1

D∗
Ωj

{ 1

Ãj

fÄj
}

(r)

]

Γi

+

[

Ã(r)n̂ · ∇ϕ(r)

]

Γi

=

[

− Ã(r)
N+1
∑

j=1

D∗
Γj

{

[∇ϕ · n̂]Γj

}

(r)

]

Γi

+

[

Ã(r)
N+1
∑

j=1

NΓj

{

[ϕ]Γj

}

(r)

]

Γi

r ∈ Γi

(B.6)

Assuming that the volume sources do not extend

across any boundaries and applying the jump to the
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operators results in the following

[Ã(r)]Γi

N+1
∑

j=1

D∗
Ωj

{ 1

Ãj

fÄj
}

(r) + [Ã(r)∇ϕ(r)]Γi
· n̂

= Ã(r)[∇ϕ · n̂]Γi
− [Ã(r)]Γi

N+1
∑

j=1

K∗
Γj

{

[∇ϕ · n̂]Γj

}

(r)

+ [Ã(r)]Γi

N+1
∑

j=1

NΓj

{

fϕj
}

(r),

(B.7)

Substituting Ä(r; t) = −[n̂ · ∇ϕ(r; t)], fϕj(r; t) =

Vm(r; t), Ãdiff = [Ã(r)]Γi
, Ãavg = Ã(r) into the above

expression and rearranging terms gives the general

form as seen in equation 10

− ÃavgÄ(r; t) + Ãdiff

N
∑

j=1

K∗
Γj

{

Ä(·; t)
}

(r)

= fJ(r; t) + Ãdiff

N+1
∑

j=1

D∗
Ωj

{ 1

Ãj

fÄj
}

(r)

− ÃdiffNΓm

{

Vm(·; t)
}

(r).

(B.8)

In equation B.8, the hyper-singular operator acting on

Vm represents the normal component of the E-field

generated by the discontinuity of the scalar potential.

With the assumption that fÄj = 0, the scalar potential

can be decomposed into two parts as shown by [58]

(Eq. 11) and [33] (Eq. 33):

ϕ(r; t) =
N
∑

j=1

SΓj

{

Ä(·; t)
}

(r) +DΓm

{

Vm(·; t)
}

(r).

(B.9)

Here the following relation 12 results in the equation

given by [58] and can be used to describe the

extracellular fields due to transmembrane current and

voltage.
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