bioRxiv preprint doi: https://doi.org/10.1101/2023.12.15.571917; this version posted December 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A Boundary Element Method of Bidomain
Modeling for Predicting Cellular Responses to
Electromagnetic Fields

David M. Czerwonky!, Aman S. Aberra?, Luis J. Gomez!

IElmore Family School of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN, USA-47907! 2Dartmouth Department of
Biological Sciences Dartmouth College Hanover, NH 03755

E-mail:
dczerwon@purdue.edu,aman.s.aberra@dartmouth.edu,ljgomez@purdue.edu

15 December 2023

Abstract. Objective: Commonly used cable equation-based approaches for
determining the effects of electromagnetic fields on excitable cells make several
simplifying assumptions that could limit their predictive power. Bidomain or
“whole” finite element methods have been developed to fully couple cells and
electric fields for more realistic neuron modeling. Here, we introduce a novel
bidomain integral equation designed for determining the full electromagnetic
coupling between stimulation devices and the intracellular, membrane, and
extracellular regions of neurons.

Methods: Our proposed boundary element formulation offers a solution to
an integral equation that connects the device, tissue inhomogeneity, and cell
membrane-induced E-fields. We solve this integral equation using first-order nodal
elements and an unconditionally stable Crank-Nicholson time-stepping scheme.
To validate and demonstrate our approach, we simulated cylindrical Hodgkin-
Huxley axons and spherical cells in multiple brain stimulation scenarios.

Main Results: Comparison studies show that a boundary element approach
produces accurate results for both electric and magnetic stimulation. Unlike
bidomain finite element methods, the bidomain boundary element method does
not require volume meshes containing features at multiple scales. As a result,
modeling cells, or tightly packed populations of cells, with microscale features
embedded in a macroscale head model, is made computationally tractable, and
the relative placement of devices and cells can be varied without the need to
generate a new mesh.

Significance: Device-induced electromagnetic fields are commonly used to
modulate brain activity for research and therapeutic applications. Bidomain
solvers allow for the full incorporation of realistic cell geometries, device E-
fields, and neuron populations. Thus, multi-cell studies of advanced neuronal
mechanisms would greatly benefit from the development of fast-bidomain solvers
to ensure scalability and the practical execution of neural network simulations
with realistic neuron morphologies.

Keywords: E-field dosimetry, Cell Networks, Multi-scale Neuron Solvers, Non-invasive
Brain Stimulation, Extracellular E-fields.
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1. Introduction the response of individual neurons to device E-fields [9]

10l 111 12 13}, [14]. However, this approach comes with
Device-induced electromagnetic fields are commonly
inherent assumptions that limit its predictive power.
used to treat psychiatric and neurological disorders and
These assumptions include considering cell morphology
study the human brain [I 2, 3]. Examples of such
as filamentary (one-dimensional), assuming that the
devices are surface electrodes for transcranial electric
device-induced E-field remains unaffected by the
stimulation (TES), magnetic coils for transcranial
presence of the cell or its membrane currents, and
electric stimulation (TMS), and surgically implanted
assuming that the cell is surrounded by an empty
electrodes for deep brain stimulation (DBS). TES has
conductive extracellular space. The filamentary
been shown to assist with the treatment of psychiatric
assumption implies that the neuron’s cross-section is
disorders and neuro-recovery [I]. TMS was approved
isopotential and that transverse E-fields have negligible
by the U.S. Food & Drug Administration (FDA)
effects [I5]. In reality, action potentials can be
for treating depression in 2008, obsessive-compulsive
initiated using transverse E-fields, indicating that
disorder in 2018, and smoking addiction in 2020. DBS
the cell’s cross-section can result in cell activation
has been FDA-approved since 1997 for the treatment
[16]. Consequently, correction terms based on passive
of tremors due to Parkinson’s disease.
cell analysis [17] and canonical geometries have been
Improving the efficacy of these devices using
incorporated to enhance the traditional cable equation
clinical trials alone to test new protocols and device
model [11].
designs is a costly and time-consuming process.
Furthermore, cells are known to significantly
A valuable and complementary approach is to
disrupt the device E-fields on a local scale [I7, [18].
leverage simulations to design devices and stimulation
In the human brain, cells are densely packed like
protocols based on biophysical principles governing the
other primate brains [19], with only an estimated
interactions between electromagnetic fields and neural
15% to 30% of the normal adult brain consisting of
activity.
extracellular space [20, 2I]. The presence of nearby
The current standard approach for modeling the
cells can profoundly affect the stimulation that each
neural response to electric fields (E-fields) involves
cell experiences [22] 23| 24, 25].
importing E-field dosimetry results into a cable
To address all these limitations for general
equation solver, such as NEURON [], to represent
geometries, finite element method (FEM) bidomain
extracellular potentials [Bl [6] (or an activation function
models, also known as “whole” FEM [26], 27], have been
[7, [8]). This approach enables simulations to predict
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Figure 1: (A) Illustration of the head stimulated by a variety of electromagnetic brain stimulation devices, (B)
the neuron cell in the brain, and (C) the neuron membrane and its equivalent circuit model.

proposed by Ying and Henriquez [28] and improved
by Neef and Toro [29]. Similar to cable models, this
method treats cell membranes as equivalent circuits,
creating a bidomain configuration that separates the
intra- and extracellular spaces [30} 14} [31]. However,
unlike cable-based approaches, this method enables full
coupling between cells and device-induced E-fields.

One limitation of this approach is that it requires
dense volume meshes that span multiple scales to solve
more realistic scenarios, making them computationally
intractable for many applications [22] 23].

We propose a boundary integral equation-based
bidomain approach that addresses the challenges as-
sociated with multi-scale volumetric meshing. Specifi-
cally, we solve the boundary integral equation for the
charges on each tissue interface using the integral equa-
tions of [32] and [33]. For active membranes, we in-
troduce an additional term to model the contribution
of transmembrane currents and membrane potentials
[34]. These boundary integral equations are solved
at each time step, allowing for the incorporation of
time-varying membrane properties via auxiliary gating

equations. To validate this novel equation, we compare

its results with those obtained using our in-house im-
plementation of the FEM method proposed in [29] and
the standard cable equation approach.

Additionally, we present a wide range of results
to demonstrate the potential applications of our
integral equation approach. These include various
canonical test cases involving multiple axons, local
field potentials (extracellular potentials), cell packing,
transverse polarization, DBS electrodes at varying

proximity to axons of varying dimensions, and TMS

using a spherical head model.

2. Methods

2.1. Modeling device induced E-fields

The head is divided into nested regions with conduc-
tivities denoted from inner to outer as oi,09,...,0N
[Figure[[JA]. Each region is separated by boundaries de-
noted from inner to outer as I'1, 'y, ..., 'y, each having
an outward-pointing normal n. (Note: the results re-
main valid for non-nested regions, but we assume they

are nested to simplify notation.)

Different types of devices induce conduction
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currents in the head through various mechanisms.

Scalp and implanted electrodes are modeled as

boundary current injections Jg(r;t) - n, while TMS
coils are modeled as volume conduction currents
o(r)Ep(r;t) = —a(r)% inside the head. The
volumetric sources Jyv (r;t) are not used to model
device-induced E-fields but are included for generality.
In general, these sources will generate a scalar
potential ¢(r;t) that satisfies the following equation

and boundary condition:

V- o(t)Ve(r;t) = —V - o(r) aAg:t) FV Ty (rit)
—o(r)Ve(r;t)-n =
O A o UL S

The scalar potential ¢(r;t) is continuous across
any tissue or membrane interface and can be

determined from surface charges p(r;t) as:

o) = - [ 2 Das: @)

|r
In the appendix, Green’s second identity is applied

at each boundary to derive an adjoint integral equation

[32] to solve for the charge:

— Tavgp(r;t) + 0aipp K {p( 1)} (r) = Is(r;t) - At

VoIv(Git)y o ;
2elitly

aaifs (D,
where

KON = eV [ )t as

Do {FO}0) = -V [ ) v

4

% is the average

In these equations o04p9 =
conductivity across the tissue boundary, ogirr =
0i+1 — 05 is the difference in conductivity between the
outside and inside of the tissue boundary. Note that
here we assume that oy41 = 0 because it is assumed
that the media surrounding the head is insulating.
Additionally, Jg(r;t) - i = 0 everywhere except at
the electrode cathodes and anodes, and €y is the
spatial support of the volume current. The adjoint
double-layer operator has been extensively studied
and has been shown to accurately predict E-fields for
both magnetic stimulation [32] [35] [36] [37] and electric
stimulation [32] [36]. The following section will extend
the adjoint double-layer potential to include an active
membrane. (Note that for notational brevity here
and in what follows we have suppressed the spatial

dependence of 0444, 04iff, and N as their values are

implied by the boundary location.)

2.2. Equivalent circuit neuron membrane models

Membranes that separate the intra- and extracellular
space are modeled using equivalent circuits. Equivalent
circuits as shown in [Figure. [1] C] have been utilized
for over 70 years and are extensively validated by
experimental research [38| [39, 40, 41]. The standard
formalism for modeling neuron membranes is as

follows:

iVm(r,t) = L(Im(r,t) —

Lion(r;t; Vin
p o (r )

M (5)
Iion(r; t; Vm) = Z gz(ta Vm) (Vm(r; t) - Ez) .
i=1

In these equations I, (r,t) and V,,(r,t) are the

transmembrane current and voltage, respectively, ¢,
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is the membrane capacitance, g; and FE; are the
conductance and reversal potential for the ith ion
channel, respectively, and M distinct ion channels are
assumed. In this paper, we aim to introduce the

boundary equations and restrict ourselves to Hodgkin

Huxley (HH) squid axon model [38]

Iion(r; t; Vm) = gl(vm(r7 t) - El)"’
g (r, ) (Vi (r,t) — Ep)+

gNam(r,t)Bh(r,t)(Vm(r,t) - ENa)a (6)

where
Tn% Noo(V) — n, (7)
= (V) = 1, ®
and
Th% = hoo(V) — h. 9)

Parameters for the auxiliary gating equations (7}8l9)
are given in table 1 of Appendix A. The parameters

for @ are given at the end of section 2.5.

2.8. Coupling neuronal membranes to the adjoint

double layer potential

The cell is assumed to be in the m-th compartment of
the head model [Fig. [T]A-B]. There will be a jump in the
scalar potential across the cell membrane (i.e., between
the inside and outside of the cell) equal to Vp,(r;t).
This jump in the scalar potential is not accounted for
in because in its derivation it is assumed that the
scalar potential is continuous. To include an active
membrane, an additional term must be added to ([1)
that accounts for the jump in the potential at the

cell boundary I'y,en- This results in the following

5

boundary integral equation, which we call a bidomain

integral equation,

— Oavgp(r;t) + oais s K {p(:; ) }(r) = Is(r;t) - 0

+ Odify (D;‘lv{v : jz)(';t) }(r) _ 6A§t‘; t) Y

where

Nonen{FOY0) =20) ¥ [ @)V 'g(rix) - a,
v

(11)

This equation is valid on all interfaces including I" e -

Furthermore, the transmembrane current will be equal

to the total current flowing out of the cell, which is

related to the charge on the surface of the cell as

S >1p(r;t)

L,(r;t) = ( r € Lem, (12)

Oex Oin

where, 0., and oy, are the extracellular and

intracellular conductivities.

2.4. Temporal approximation of the membrane

equation

Starting from known membrane potential and trans-
membrane and ion currents at an initial state t = %,
we solve for I, (r, to+nAt), Lion(r, to+nAt), Vi, (r, to+
nAt) and p(r,to + nAt), where n = {1,2, ..., N;} and
At is the time step. This is achieved by using the
Crank-Nicolson method [42], as employed in [29]. The
Crank-Nicolson method is well-known for its uncondi-
tional stability when applied to the cable equation [43]
and equation . Specifically, a first-order central

difference method is used for the state equation of the
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membrane, resulting in the following

At At
Vm(rvt + At) ~ Vm(rvt) + Ci(-[m(rat + 7)

At

_Iion(r§ t+ 7; Vm))'

(13)

To solve , the ionic currents at the half-time step
are approximated as the ionic currents at the previous
time step, and the membrane currents at the half-
time step are approximated using the average of the
currents at the next and previous time steps. These

approximations result in the following equation:

Vin(r, t + At) = V,, (r, t)+
ar
2Cm,

(14)

(I (v, t + At) + Iy (1, 1) — 2Lion (r5 8 Vin)).

Equation relates V,(r,t + At) to known ionic
and membrane currents at the previous time step
and I, (r,t + At).
related to p(r,t + At) via (12).

Additionally, I, (r,t + At) is
These relations
for transmembrane current and transmembrane
voltage allow us to rewrite our bidomain integral

equation in the following form

— Oavgp(rit + At) + 0aip K {p(it + At) }(r)+
At Odif fOmTmem

2Cm (Umem - Um)

N{p(-;t+At)}(r) = Jg(r; t+At)-n+

(Jdiff)(Dav{W}(r)—W.ﬁ_
N{Vin(, 1) + %(Imo,t) — 2Lon (£ Vin)) }(r)).

(15)

Using known quantities at the previous time step and
known sources, equation is solved numerically
using the boundary element method to determine
p(r;t+ At). Then, I, (r,t + At) and V,,,(r, ¢ + At) are
determined using and , respectively. Finally,

6
Vin(r, t+ At) is used to update the time-dependent ion
channel conductances and determine I, (r, t+At; Vi)
using .

One of the strengths of the time-stepping scheme
used here is that the update equations for ionic currents
and channel conductance remain unchanged relative to
point-wise neuron solvers. Here, we use a backward
difference Euler time-stepping scheme for the ionic
currents as provided in [40]. First, V,,(r,t + At) is
used to update the ratio of open and closed ionic gates

using the following formula:

C(rst+ At) = Coo(rst + At) + (C(r3t) — Coo(rs t + At))
At
Tg(Vm(r,t—FAt)))

exp(—

Coo(r;t + At) = e (Vin(x,t + AL)) e (Vin (r, £ + Al)),
(16)

where ¢ € n,m,h The updated ion gating

probabilities are used to determine updated ionic

currents as

Lion(r,t + At; Vi) = g1(Vin (v, t + At) — Ep)+
grn(r,t + At (Vi (r,t 4+ At) — Ej )+

gnam(r,t + At)3h(r,t + At) (Vi (r,t + At) — Eng).
(17)

2.5. Boundary element methods (BEMs) for

approximating the update equation

To approximate the integral equation , each
boundary is discretized as a mesh consisting of
triangles.  For the standard adjoint double layer
equation, piece-wise constant charges on each triangle
are sufficient to achieve accurate results for both
the charges and electric fields [35].

However,

for the bidomain integral equation, we have an
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additional hyper-singular operator Nyem {f(-)}(r),
which requires a continuous function as input [44].
To meet this requirement, the lowest-order basis
functions that enable an accurate approximation of
the membrane bidomain equation are linear elements.
Consequently, the charges are approximated as linear
nodal elements on each node of the triangle mesh.
There was a previous successful attempt for
approximating the hyper-singular operator using
piece-wise constant functions for studying passive
cells [34]. This approach involved using Eq.(6.17)
shown in [44] to set the diagonal entries of Npmem
to the negative value of all off-diagonal equation
coefficients summed together. This regularization
method is equivalent to using the representation

Noem{f()}(x) = Nonem {£() =

valid when f(r) is continuous [44].

r) }(r) which is only
Although this
approach is not mathematically correct, the above
regularization appears to produce numerically correct
approximations of the hypersingular operator using
piece-wise constant basis functions.

The application of a Galerkin procedure to

results in the following equation

At

(A + s ImTmem Nmem)p(n+1) = bdev(n+1)
2Cm Omem — Om
At

*Nmem(vm(n) (I (n) Ilon(n)))y

(18)
where
A= —O'M,g/N r)dS+
) (19)
[ e V/ IS

7
Nmemij =
; A N "N (¢!
Ldff/nXVNi(I‘)'/ o X V) j(r)dsldS»
(20)
bdevin) =
/Ni(r)(Js(I‘; t+ nAt) -ndS — Odif f
21)
OA(r;t+nAt), Odiff (
Ni(r) 22 T2y :
/ i(r) 5 ) - ndS + p
V- Jv (st 4+ nAt
/Ni(r)ﬁ v VLt nAY rgs,
o(r)|r —r'|
and
p(rit+nAt) =" pl" Ny(r)
J
Vin(r;t + nAt) = ZVmgn)Nj (r)
: (22)
In(r;t + nAt) ZImJ”)N
Tion(r;t + nAt) = Z IlonJ
Here, N,(r) are nodal elements. The matrix

A and the forcing vector bgey correspond to the
standard adjoint double-layer equation. The coupling
with the active membrane involves adding a single
integral operator Nyem. This makes the incorporation
of membrane equations into existing BEM solvers
relatively straightforward.

We explored two approaches to solve for the
charges. Omne approach is to invert the system of
equations. Another approach is to solve it iteratively
to a relative residual error tolerance of 10~7 using fast
multipole method (FMM) acceleration for the matrix-
vector multiplication. Each simulation required over 10
thousand time-steps as a result, the iterative solution

using FMM was too slow and the results are not
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reported here. For all simulation results, the solver

is assumed to start at rest with V,,(r;0) = —65
mV. We used membrane capacitancec,, = 1uF/cm?,
leak conductance g, = 3mS/cm?, peak potassium
condutance g, = 360mS/cm?, and peak sodium
conductance gy, = 1200m5/cm2. The reversal
potentials wereE; = —54.4 mV, E, = =77 mV, En, =

50 mV.

2.6. Summary of Solver Algorithm

As depicted in Fig. each simulation begins with
the assumption that the initial state of the cell is
known. Subsequently, we solve to calculate the
charge at the next time step for every boundary. Using
the charge information, we update the transmembrane
current I,, for the next time step according to .
The membrane voltage V,,, is then updated via .
Following this, the membrane voltage is utilized to
update the ion channel conductance using the gating
equations . With the ion channel conductances
determined, we calculate the ionic currents for the
next time step using . Steps one through five are
iteratively repeated until the values at all time steps

have been determined.

2.7. Computer simulations

To validate the proposed integral equation solver, we
employed the approach described in [27], where extra-
cellular voltages are computed from a finite element
method (FEM) to drive a cable neuron simulation.
The bidomain FEM approach is implemented in-house,
based on the description in [29]. For certain aspects

of the simulation, we utilized the NEURON simulation

8

environment v8.8.2 [4]. All tasks related to mesh gener-
ation, differential equation solutions, and analysis were
performed using MATLAB (R2020a, MathWorks, Inc.,
Natick, MA, USA). The computational resources used
for these simulations were provided by the Purdue Bell
Cluster, which consists of 5 Rome CPUs running at 2.0
GHz, with a total RAM memory of 10 GB available for

each axon in the simulation.

2.8. Simulation scenarios & device description

Unless stated otherwise, a time step of 1 us is used
for all simulations. Furthermore, we consider straight
axons with a length of 4 mm and a cylindrical cross-
section with a diameter of 2 pm.  Furthermore,
the intracellular and extracellular conductivity are
set to 1 S/m and 2 S/m, respectively. This is to
match cytoplasm conductivity for a glia cell, which is
estimated to be in the range of 0.3-1 S/m [45].

In the single-axon scenarios, all electrodes and
coils are driven at threshold current intensities, which
we determined empirically with a 1.0 % tolerance using
a bisection method.

In the TES scenarios, the extracellular space is
represented as a homogeneous hexahedral bath with
dimensions of 16 mm X 8 mm x 16 mm as shown by
Figure A). The axon is positioned with its midpoint
at the center of the hexahedral bath. The electrodes
are modeled as having a uniform current distribution
on their cross-section. The surface electrodes cover an
entire face of the hexahedral bath for the anode and
cathode, respectively.

For Figure [3(B), we consider an unbounded

extracellular space for the longitudinal comparison
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Figure 2: A procedural flowchart of our bidomain BEM algorithm. The procedure is repeated until the charge
and membrane information are calculated for all time steps.

scenario. For Figure [3[D), we consider an 85 mm
radius spherical head. An 85 mm radius spherical
head is a common choice of simple head model in TMS
simulation studies [46], 47, 48].

An 85 mm figure-eight coil is placed 90 mm above
the center of the spherical head. The axon is placed
in a variety of orientations with its midpoint 70 mm
above the center of the spherical head. The placement
of the neuron with respect to the figure-eight coil falls
within the range used in studies of neuron stimulation
by figure-eight coils [12][49]. The coil model consists of
24,426 electric dipoles with inductance of 17.061 pH,
and resistance of 6.3 mf2. The underdamped pulse
waveform shape is determined assuming the coil is
driven by a 185 uF charged capacitor.

For the DBS scenarios, we ran simulations
of a cylindrical DBS electrode in an unbounded
extracellular space at a distance d, ranging from 50

nm to 1 cm away from an axon. The axon is placed

in two orientations, perpendicular to the electrode or
parallel to the electrode. The electrode is represented
as a cylindrical rod with a radius of 0.5 mm and a
length of 10 mm, as illustrated in Figure [3| (E) and
(F). The anode is modeled as a 1.5 mm thick band
located 0.75 mm from one end of the electrode, while
the cathode is a 1.5 mm thick band positioned 1.5
mm above the anode. The DBS electrode is assumed
to have uniform current distribution in the cathode
and anode regions, and the inside of the electrode is
considered insulating. We drive the electrode with a
square wave pulse that starts at 0.2 ms and lasts for
5 ms. The lengthwise midpoint of the axon is aligned
with the midpoint between the electrode anode and
cathode in all DBS scenarios.

Additionally, we consider DBS simulations with
a longer and a thicker axons. We set our long axon
to have dimensions of 10 mm in length and 2 pm in

diameter. The thick axon is 4 mm in length and 40
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Figure 3: (A) Schematic for TES of an HH axon in a rectangular bath with two surface electrodes denoted by the
anode (blue) and cathode (red) stimulating the axon. (B) Schematic for TMS of an HH axon in an unbounded
extracellular medium. (C) Schematic of TES of a hexagonal cluster of seven 20 pm diameter spherical cells
with 1 pum spacing between one another. (C) Schematic for TMS of an HH axon embedded in a spherical head
model. (E) Schematic for DBS perpendicular to an HH axon in an unbounded extracellular medium at various
distances d of separation between the electrode and an axon. (F) Schematic for DBS parallel to an HH axon in
an unbounded extracellular medium at various distances d of separation between the electrode and an axon.

pm in diameter.

For the extracellular field calculation scenarios,
we place an HH axon with its center at the origin
of an unbounded conductive extracellular space and
connect a current source to the ends of the axon.
These currents are chosen at the activation threshold

level. Then, we calculate the extracellular potentials

nearby (< 200 pm) of the space outside the axon
membrane using the relation of Appendix B. The
extracellular fields scale in an inversely proportional
fashion to the conductivity [50, BI]. We chose the
extracellular conductivity to be 0.1 S/m for these
The value of 0.1 S/m is low

simulation scenarios.

enough to get strong extracellular fields but remains
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realistic. Conductivity estimates of the extracellular
space around myelinated cells are in the range of 0.28
S/m to 5.5 S/m [52].

To investigate how the distortion of the local
E-field may affect nearby cells, we consider a bath
containing a hexagonal cluster of seven 20 ym diameter
spherical cells with 1 pum spacing and arranged as
shown in Figure 3| (C). Four distinct types of scenarios
are considered: (1) only one cell is present, (2) all
of the cells are active, (3) only one cell is active and
others have a conductivity of 2 S/m, (4) only one cell is
active and others are insulating (i.e. initial polarization
assumption [I7]). For each of the four types of

scenarios, we determine the activation threshold of

each cell.

2.9. Mesh construction

We generated meshes for these physical models
using functions from the Geometry Processing Toolbox
(gptoolbox) in MATLAB. For all axons, we created
meshes with a minimum of 810 nodes (8 nodes around
the circumference and 100 compartments lengthwise)
and 1,616 triangles using the cylinder_mesh function.
High-resolution axon simulations, consisting of 3,210
nodes and 6,416 triangles, were also performed to
evaluate solution convergence, and we determined that
higher resolution is unnecessary.

For modeling the extracellular space in TES, we
employed the surface mesh generated by the cube
function from gpttoolbox, with a resolution setting of
20 (resulting in 2,168 nodes and 4,332 triangles) to
represent the hexahedral bath. This mesh is adjusted

to match the specified dimensions of the hexahedral

11

bath mentioned earlier.

In the case of the spherical head mesh, we define
a nearly uniform spherical mesh by barycentrically re-
fining an icosahedron mesh three times and projecting

the nodes to the sphere surface.

3. Results
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the waveforms used to drive the electrode and coil
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3.1. Longitudinal comparison of bidomain BEM

In this section, we examine the effect of longitudinal
fields from TES and TMS on the membrane voltage
obtained at two specific points along an axon’s length.
We consider membrane voltages at 1/5 th and 4/5 th
of its total length.

For the TES longitudinal comparison scenario, the
results are presented in Fig. a). The outcomes
obtained from the bidomain FEM (see the supplement,
Figure S1), the cable equation (CE), and our proposed
bidomain BEM all exhibit close agreement. As
expected for a straight axon in a uniform E-field, the
action potential initiates at the termination closest to
the negative electrode and propagates down the axon.

The TMS longitudinal comparison scenario and
its corresponding results are displayed in Figure b).
Here, we present results using bidomain BEM and the
cable equation. Bidomain FEM is excluded in this case
due to the computational intractability of creating a

volume mesh to represent the open extracellular space.

The bidomain BEM and CE exhibit good agreement.

3.2. Cell rotation in a uniform E-field

In this section, we investigate the impact of

transverse stimulation. Figure [5| (A) presents the
results of axons being stimulated by electrodes while
oriented at various angles relative to the induced E-
field from the electrode. It is well-established that
the activation threshold varies with angle [I1I]. Our
results closely align with previously reported trends,
showing an increase in the activation threshold as
the angle increases. Notably at an angle of 90°, the
activation threshold diverges to oo for the standard
cable equation. This divergence occurs due to the
neglect of transverse polarization phenomena in the
standard cable equation. However, our bidomain BEM

results approach a finite threshold value for transverse

stimulation (8 = 90°).

3.8. TMS with a spherical head model

Bidomain FEM-based approaches necessitate volume
meshes that span multiple orders of magnitude

when considering a single cell within a head model.
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In contrast, BEM does not impose such meshing
requirements, rendering it a more practical choice.
Here, we demonstrate that a bidomain BEM approach
can be effectively employed for multi-scale simulations

where FEM cannot be employed. In Figure [5| (B), we

investigate the activation threshold of cells within a

spherical head model as a function of cell orientation.

Notably, we observe the same trends for TMS as we did

with the angle.

for TES. Specifically, the activation threshold increases
At 90°, the activation threshold
diverges to oo for the standard cable equation.
However, our bidomain BEM results approach a finite

threshold value for transverse stimulation (6 = 90°).
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3.4. Deep brain stimulation

Next, we simulated DBS of multiple axon geometries
in both parallel and perpendicular orientations as a
function of distance from the stimulating electrode.
For parallel orientations, the results obtained with
bidomain BEM and the cable equation agree with less
than 9% difference maximum and less than 2% on
average, as illustrated in Figure [f] We attribute this
agreement to the fact that the E-field generated by
the electrode is predominantly parallel to the cathode
and anode, and thus, it aligns mostly parallel to the
axon. For the axons that are 10 mm in length,
the action potential initiates from the center of the
axon. For the axons that are 4 mm in length, the

action potential initiates at one of the terminals. The

activation threshold remains similar for distances up

to 100 pum from the electrode but increases for cells
located farther away. In contrast, the perpendicular
configuration generates predictions that differ by a
minimum of 38% on average. As the distance between
axon and electrode grows the difference between the
cable equation and bidomain BEM predictions grows

rapidly.

3.5. Modeling extracellular potentials

The bidomain BEM can also be applied to simulate
the extracellular potentials generated by neural sources
and recorded by external devices. Fig. [7] shows
the spatial and temporal profile of the extracellular
potentials for an axon stimulated at its activation
threshold by a direct current injection. The waveforms

replicate the characteristic peaks of extracellular action
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potential recordings, generated by the capacitive,
inward sodium, and outward potassium currents. The
peak extracellular potential quickly decays in the
transverse 7 direction, reaching half of the peak
strength at r = 10 pm. Additional simulations not
provided showed an inversely proportional relationship

of extracellular potentials to extracellular conductivity

as seen in other works [50} [51].

Activation Threshold

Cells In Isolation Passive Cells

125 mA
120 mA

115 mA

Active Cells

Initial Polarization

110 mA

105 mA

100 mA

Figure 8: Color plots of the threshold values concerning
each spherical cell and the properties of its surrounding
cells.

3.6. Modeling the effects of neighboring cells

Here, we consider how the presence of multiple cells
affects single-cell activation thresholds. To observe
these subtle effects, we measured the activation
threshold of seven tightly packed spherical cells as
In isolation,

shown in Figure each spherical

cell had the same threshold of 107 mA at their
respective positions. Including all seven cells with
active membranes increased their activation thresholds
depending on their location within the assembly. The
center cell threshold was 7.83% higher than the average

threshold of the surrounding cells. To determine
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whether the effects are due to cell activity or shielding
we considered one cell active and others as passive
conductors (o =2 S/m ). We found including adjacent
cells with passive membranes also increased activation
thresholds relative to that of the cells in isolation;
however, the increase was not sufficient to explain the
increase in the active case. Finally, we considered
one cell active and others as insulators (¢ = 0 S/m
), which isolates the state of initial polarization[53].

The resulting thresholds are identical to those when

the cells are considered active.

4. Discussion

The standard cable equation approach neglects the
influence of the cell cross-section, the effect of
the cell on the local E-field, and the cell to cell
interactions [27, 29] 28]. Bidomain approaches do not
require these simplifying assumptions but necessitate
additional computational resources. The FEM
bidomain approaches require a volume mesh of the cell
and surrounding media and capture the exchange of
ions across cell membranes by equivalent impedance
boundary conditions between neuron cells and the
extracellular space. We introduced a BEM-based
bidomain solver that avoids the need for volumetric
meshing, thereby reducing the computational cost
associated with the meshing of bidomain methods. Our
longitudinal comparison results indicate that bidomain
BEM matches the longitudinal capabilities of the
bidomain FEM and the cable methods. Furthermore,
the bidomain BEM can be easily applied to scenarios

involving large platforms (e.g., head models), and

the relative placement of devices to cells can be
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reconfigured without generating a new mesh.

4.1. Assessment of transverse polarization

mechanisms

In our TES results (Figures [{(A) and ?? (A)), the
cable equation and bidomain BEM approach typically
demonstrate good agreement in various scenarios,
except for pure transverse stimulation. This pattern
also holds for different axon-field orientations in
TMS simulations, as illustrated in Figure [5| (B). It’s
worth noting that a significant difference between the
cable equation and our bidomain BEM only becomes
apparent when the angle of the axon with respect
to the longitudinal axis exceeds 89°. Our findings
indicate that coil currents on the order of 100 kA /us
are necessary for transverse stimulation of an HH axon,
consistent with the results observed in Wang et al.’s
modified cable equation study [11]. While transverse
polarization is impactful in specific cases, it is generally
negligible in most practical applications.

These special cases arise when the local E-
field exhibits a high magnitude in the transverse
direction. For instance, we observe more pronounced
disagreements when a DBS electrode is positioned
perpendicular to the axon, as illustrated in Figure [f]
When the DBS electrode aligns parallel to the axon,
we achieve predominantly longitudinal stimulation,
resulting in a strong agreement between the cable
equation and bidomain BEM. However, when the DBS
electrode is oriented perpendicular to the axon, there
is limited longitudinal stimulation. Consequently, we
observe significant discrepancies between the cable

equation and bidomain BEM stimulation thresholds.

16

In general, our results demonstrate that transverse
stimulation necessitates orders of magnitude higher E-
field magnitude compared to longitudinal stimulation
to elicit an action potential. These findings
strongly suggest that longitudinal stimulation is the

predominant mechanism for neuron activation via an

electrical field.

4.2. Modeling of Extracellular Potentials

Our findings match those of [0, [5I], which indicate
that extracellular potentials are strongest in low-
conductivity extracellular spaces. The results with e,
= 0.1 S/m most clearly displayed both the extracellular
field spatial characteristics. We ran analogous
simulations at higher values one of which is included
in the supplementary document as Figure S6. We
observed that lower extracellular conductivity allowed

for higher magnitudes of extracellular potentials, which

is consistent with other studies [50, 51, 54 [55].

4.3. Modeling a Cluster of Spherical Cells

The results of Figure [§] indicate that shielding of
the E-field due to surrounding spherical cells affects
activation thresholds strongly. Moreover, we observe
that cells in isolation result in a lower threshold than
when surrounding cells are considered. For example,
when we model a cell in the presence of other cells,
we see that the threshold increases up to 15.8% from
the threshold in isolation. These results corroborate
our claim that the presence of surrounding cells is
a relevant determinant of the electric field that cells
experience, especially given that neurons are tightly

packed.
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4.4. Significance of the bidomain BEM

For studies with cells in isolation, our results indicate
that the conventional (and modified) cable equation
is a judicious choice of simulation method. However,
when conducting studies on intact neural tissue,
a bidomain FEM /BEM or novel cable equation
formalism is necessary to capture both the device and
neuron-generated fields simultaneously. Generating
high-quality volume meshes that span multiple scales
can be computationally cumbersome with FEM
equivalents. For instance, the use of a spherical head
model, often employed as a substitute for an MRI head
model, would demand an excessive number of elements
to make it suitable for bidomain FEM modeling. In
contrast, we have demonstrated that using a BEM
approach, TMS simulations, including spherical head
models, can be accomplished with ease. Moreover, the
flexibility to relocate our device and axon positions
without the need to regenerate a mesh makes bidomain
BEM a more practical choice, as it enables versatile cell
placement without the requirement to generate new
volume meshes for each placement.

Bidomain approaches require the solution of
a BEM/FEM system of equations and updating
of mneuron gating unknowns at each time step.
Cable equation solvers, in contrast, only require
the determination of the E-field once, and only the
cable equation must be solved at each time step.
As such, the cable equation requires significantly
less computational overhead than bidomain methods.
Our results indicate that to generate insight and

perform single-cell simulations, cable equation-based

approaches should be the method of choice. However,
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for multi-cell scenarios, fast bidomain methods that are
scalable and can be executed to model the dynamics of
a network of neuron cells with realistic representations
of their morphology are necessary. In the context
of modeling blood flow by fast BEM solvers have
been used to sucessfully model 200 million deformable
red blood cells (90 billion unknowns in BEM) [50].
These simulations indicate that modeling a network

of neurons is well within our reach with existing

computational algorithms and infrastructure.

5. Conclusion

We introduced a novel bidomain integral equation for
modeling the electric response of neuron cells to device-
induced E-fields. Our study includes several canonical
test cases, including scenarios with multiple cells,
transverse polarization, DBS electrodes at varying
proximity to multiple axon geometries, and TMS with
a spherical head model. The study results indicate
that (1) the cable equation is a sufficient choice for a
majority of simulations, (2) longitudinal stimulation
serves as the primary activation mechanism for
electromagnetic brain stimulation, and (3) multi-cell
studies of advanced mechanisms would greatly benefit
from fast-bidomain or hybrid cable-BEM solvers to
ensure scalability and the practical execution of
neural networks simulations with realistic neuron
morphologies. Thus, our future efforts will focus on

developing fast bidomain solvers to fully incorporate

realistic neuron morphologies.
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Table A.1: Hodgkin-Huxley axon gating probability and associated auxiliary variable definitions. 1 E @} [40].
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Appendix A: Hodgkin-Huxley Parameters

Table shows the rate constants a(V,) and

B(Vin), the gating time constants 7(V,,), and the
steady state target values Mmoo, Moo, hoo- The rate
constants must be calculated at each time step to

update the gating equations (7}f8lld)) and the ion current

().

Appendix B: Adjoint Double Layer Equa-
tion In a region (); with a boundary I';, the scalar

potential satisfies the following

U,‘v2¢(l‘;t) = fpi(l‘; t) rc Qi7
[p(r; t)]r, = foi(r;t) rely, (B.1)
n-[o(r)Ve(r;t)r, = fr(r;t) rely,

for i € {1,...,N + 1}. Here we define the jump of a
function as [g(r)]r, = gff (r) — gr. (r), where gl'f (r) =
. + A~ X — — . — N

ggr(l)gri (r+en(r)) r € I'; and gp (r) lg%gri (r—en(r))

r € T, (ie. the difference between its value just

outside and just inside a compartment), and g(r) =
(gffi (r) + gr,(r))/2 as the average of a function across
the boundary. For example, a continuous function,
£(x) will have [f(©)]r, = 0, and (z) = f7;(x) = /7, (x),
where ¢ = 1,..N. The forcing functions f,;, fsi, and fy;

each model implanted electrodes, potential differences
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across a thin cell membrane, and electrode and TMS
induced charges, respectively. Green’s second applied N4l
to a homogenous region is Z o(r)i - VGreenlDg, (r) :
" N+1
GreenIDa, (1) ) 3 0%, (-1} ) + o(e)i- Volr) =
[ ot 9%0('0 - ola's 09 gtrir v = s By
o, —a(r) Y Dy, {[Vé-alr, }(r)
7{ g(r; v YWV o(r';t) - a(r')dr' — 1{:_11

+0(r) Y- Ve {[olr, } (o),
7§ o(r;t)V'g(r;r’) - a(r')dr'. j=1

where
1

o/ _ 1 ’
We assume g(r;r’) = Te—ey 18 the Green’s

. nNooa
function for the Laplace operator which satisfies D;{f}(r) = sign((r —r') ~n(r))f(r) 4 Kfi{f}(r)

V2g(r;r’) = —6(r — r’). This results in

GreenlDg; (r) :
Np {f}(r) =4(r)-V [p.v./F fa)Vg(r;x’) - dS|.
/; Q. J
i' g(n r/)fpi(r,; t)dv n ¢(r t) rcily _ (B5)
73 /9 0 ré¢Q; Taking the jump:
St,AVé- 8}(x) — Sr,_, {Vé - a}(r) vao
la(ﬂ > Do S| +|omn- w(r)]
— Dr {¢}(r) + Dr,_,,{#}(r), j=1 i r; r;
(B.2) N+1 )
where B [_ 7t ng e {[v¢ e }(r)] T,
N+1
Sr, {f}(r) = /1" f(x)g(r;r')dr! + |o(r) JZ::I Nr, {[¢lr, }(r)] F.r el
o= sijgn((r —r1') - A(r)) . . (B.6)
Dr, {f}( )= 2 J(x) + Kr, {f}( ) Assuming that the volume sources do not extend
Krj{f}(r) = p-v-/rv FE)V'g(r;x') - n(r)dr’. across any boundaries and applying the jump to the

(B.3)
The double layer potential equation is formed by
applying o(r)in - V to the Green’s identity above and

summing it over all regions
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operators results in the following

N+1

o)e 3 Di (- Fur} ) + o) V6), -

N+1

= o()[Ve-ar, = [o()lr, 3 K7, {[Ve-alr, } ()
N+1

+o(@)]r, Y N, {foi } (@),
j=1
(B.7)
Substituting p(r;t) = —[0 - Vo(r;t)], fe(r;t) =

Vin(r5t), 0airs = [o(r)]r,, Tavg = o(r) into the above
expression and rearranging terms gives the general

form as seen in equation

N
— Gavgp(rit) + oais Y Ki {p()}x)

Jj=1
N+1

= fo(r5t) 4 owg 3 D, -y Y

—0aif N, { Vi (5 0) } (1),

In equation [B-8] the hyper-singular operator acting on
V,. represents the normal component of the E-field
generated by the discontinuity of the scalar potential.
With the assumption that f,; = 0, the scalar potential
can be decomposed into two parts as shown by [58]

(Eq. 11) and [33] (Eq. 33):

N
¢(r;t) = > Sr, {p(t)}(x) + Dr, {Vin () }(x).

= (B.9)

Here the following relation [I2] results in the equation

given by [68] and can be used to describe the

extracellular fields due to transmembrane current and

voltage.
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