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Abstract

Cyanobacteria can form dense blooms in eutrophic lakes that can be toxic to humans and other animals and harmful to the ecosys-
tem’s functioning. While better nutrient management is generally considered the long-term solution to this problem, short-term
mitigation efforts (e.g., flushing, algaecides, flocculants) are becoming increasingly necessary to safeguard water quality and the
ecosystem services it provides. Here, we explore potential model-based management strategies for these short-term mitigation ef-
forts. We focus on the case where blooms are linked to the existence of alternative stable states, such that, under the same conditions
but depending on the past, a lake may be dominated either by cyanobacteria (causing a harmful algal bloom) or by green algae and
macrophytes in a clear water state. Changing conditions may cause the favourable clear water state to disappear through a tipping
point, causing the lake to switch rapidly to the turbid cyanobacteria state. At the same time, it may take considerable effort to undo
this tipping and return to the favourable state. We identify four different strategies for bloom mitigation in this scenario: Doing
nothing, reacting to a bloom, resetting the lake at a later point, and preventing the bloom. We explore the different requirements for
these strategies along with their associated cost profiles. We also investigate the effect of transition times from one state to another
on the efficacy and costs of different strategies.
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1. Introduction

Cyanobacteria (or ‘blue algae’) are photosynthetic bacteria
that can cause major problems in eutrophic lakes due to their
ability to form dense blooms (Huisman et al., 2018; Burford
et al., 2020). These blooms may cause ecological damage
by blocking light from submerged macrophytes (Paerl and Ot-
ten, 2013). They also pose a health risk, since cyanobacteria
can produce a variety of toxins that are harmful for freshwater
lifeforms as well as humans (He et al., 2016). Consequently,
blooms cause economic damage by, for instance, incurring ex-
tra costs for the purification of drinking water and making the
water unsuitable for recreational purposes (Merel et al., 2013).
Since blooms appear to thrive in warmer weather, they are ex-
pected to become an even larger problem as temperatures in-
crease (Paerl and Huisman, 2008).

The long-term solution to the bloom problem is to reduce the
introduction of excess nutrients that created the eutrophic con-
ditions favourable to blooms in the first place (Ibelings et al.,
2016). However, this solution is often hard to implement and
even if the addition of excess nutrients is stopped, it may still
take a long time for a lake to recover due to nutrients stored
in the sediment (Fastner et al., 2016; Søndergaard et al., 2013).
These issues may make short-term mitigation efforts necessary
for the foreseeable future (Lürling and Mucci, 2020). These
mitigation efforts may take the form of, for example, flow rate
control (Mitrovic et al., 2010; Ibelings et al., 2016) or the ad-
dition of cyanocidal compounds such as hydrogen peroxide

(Matthijs et al., 2016).
Models of aquatic ecosystems have strong potential for deci-

sion support at many different levels. Large descriptive models
are often used for long-term scenario analysis, e.g., to predict
the effect of climate change or long-term management inter-
ventions such as changing the nutrient load (Mooij et al., 2007;
Janse and van Liere, 1995; Los and Wijsman, 2007). Models
can also be used on shorter time scales, e.g., to provide an early
warning for an impending bloom several days in advance (Ibel-
ings et al., 2003; Trolle et al., 2014; Page et al., 2018). An ob-
vious application for such a warning would be to post warning
signs for swimmers. Short-term predictions also offer potential
for the timing of mitigation interventions.

The timing of interventions is especially important when al-
ternative stable states exist, i.e., depending on the starting point,
the system can end up in both a clear state dominated by green
algae and a turbid state dominated by blue algae (i.e., a bloom).
When two such alternative stable states exist (i.e., bistability,
see Box 1 for a terminology overview), a small change in en-
vironmental conditions and management interventions may re-
move one of the stable states, creating a tipping point (i.e., bi-
furcation point). The resulting sudden switch to the other stable
state can have large consequences that are difficult to reverse
(e.g., hysteresis). Alternative stable states have been found both
for small abstract models for cyanobacterial blooms (Scheffer
et al., 1997a; Gragnani et al., 1999; Scheffer and Rinaldi, 2000)
and large descriptive ones like PCLake (Janse et al., 2010). Ex-
perimental evidence for the existence of alternative stable states
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Box 1. Terminology

• Cyanobacteria / blue algae: Photosynthetic bac-
teria that can cause harmful blooms, particularly
when temperatures are high and nutrients are
plenty. Blue algae is a commonly used name for
cyanobacteria, even though they are technically
not algae.

• Alternative stable states: When there are alterna-
tive stable steady states, the same environmental
conditions can lead to different outcomes for dif-
ferent starting values. For example, starting with
a high density of blue algae may lead to a lake
dominated by blue algae, while starting with a low
density of blue algae leads to a lake dominated by
green algae, all other things being equal.

• Bistability: Having two alternative stable steady
states.

• Bifurcation: Point in parameter space where there
is a change in the number or quality (e.g., stable or
unstable) of the steady states of a system.

• Tipping point: Point in parameter space where the
system suddenly switches from one state to an-
other as a result of crossing a bifurcation point.
For example, a lake may suddenly lose the steady
state dominated by green algae and switch to the
(remaining) steady state dominated by blue algae.

has been found in many ecological systems (Schröder et al.,
2005), though their existence in real freshwater ecosystems re-
mains difficult to prove for individual lakes (Capon et al., 2015).
However, sudden transitions between a clear state dominated by
green algae and a turbid state dominated by blue algae are ob-
served in lakes, and the early warning indicators based on the
concept of ‘critical slowing down’ near bifurcation points (van
Nes and Scheffer, 2007; Carpenter et al., 2009; Veraart et al.,
2012) appear to work in real ecosystems (Pace et al., 2017;
Wilkinson et al., 2018).

Here, we explore the consequences of alternative stable states
for potential model-based strategies for cyanobacterial bloom
management. To this end, we will assume that the lake under
consideration shows bistability. We then explore the effective-
ness of several potential short-term mitigation efforts, includ-
ing strategies based on predicting the magnitude and timing of
interventions required to either reverse, or prevent, a bloom.
We will also explore the cost profiles associated with different
strategies and the trade-offs between bloom costs and control
costs that these strategies imply. Finally, we will explore how
the efficacy and costs of different strategies depend on transi-
tion times from one state to another and on the locations of the
bifurcation points in a two-dimensional parameter space.

2. Methods

2.1. The model

Our goal is to explore the effect of having alternative sta-
ble states and bifurcations in an ecosystem on potential man-
agement strategies. Therefore, the focus is not on any specific
model. For demonstration purposes, we will use a simple com-
petition model with green and blue algae that allows for alterna-
tive stable states, based on Scheffer et al. (1997a). This model
will serve as an example of one of the many aquatic ecosystem
models with alternative stable states, in order to show the con-
sequences of their existence for management decisions. We do
not aim to analyse this particular model, nor validate it or other-
wise compare it to reality. Therefore, we have included all the
technical details of the model in Appendix A. For our purposes,
the relevant components of the model are that there is an envi-
ronmental parameter σ that cannot be controlled (e.g., temper-
ature) and a flow rate f as a parameter that can be controlled to
mitigate blooms (see Table 1 for an overview of important sym-
bols). Changes in these two parameters can move the system
between regimes with different stable steady states: a regime
with one stable state dominated by green algae, a regime with
one stable state dominated by blue algae, and an intermediate
regime where both these stable states co-exist, i.e., alternative
stable states (Fig. 1). Importantly, we assume that the envi-
ronmental parameter can vary rapidly (i.e., on a timescale of
days) and that the control parameter can be adjusted on a similar
timescale. The model also uses a small inflow of both species
to prevent complete extinction, allowing states to switch when
conditions change.

2.2. Simulations and bifurcation analysis

Simulations were performed in Python 3. To find and track
fold bifurcations through parameter space we used the continu-
ation software AUTO-07p (Doedel et al., 2007).

2.3. Bloom scenario and potential management strategies

For lakes that are solidly in a green-dominated or blue-
dominated regime, short-term mitigation efforts are either un-
necessary or insufficient. For lakes without tipping points,
where a gradual transition from one state to the other occurs,
the added value of a model is relatively low, since, e.g., inter-
vention timing is far less critical without tipping points. There-
fore, we will consider a scenario where we start with a lake in a
parameter regime where two alternative stable states exist (one
dominated by green algae, the other by blue algae). The lake
starts in the (preferred) state dominated by green algae. We
then consider a fixed temporary increase in environmental pa-
rameter σ that takes the system across a bifurcation point and
causes the system to switch to a cyanobacteria-dominated state
(a ‘bloom’). Due to the bistability of the system, without further
intervention, this leaves the lake in a cyanobacteria-dominated
state even after σ has returned to its original value.

We consider four different management strategies for deal-
ing with this scenario: no intervention, reset only, reactive, and
preventive. The no intervention strategy involves doing nothing
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Figure 1: Example bifurcation diagram. (A) Two-parameter bifurcation diagram with control parameter f and environmental parameter σ. The green and blue
regimes have a single stable steady state dominated by green and blue algae, respectively, and the red regime has two alternative stable states (one dominated by
green algae and one by blue algae), where the past determines which state the system is in. The different regimes are separated by fold bifurcations. (B,C) Steady
states of green algae (top) and blue algae (bottom) along the sections indicated by arrows in (A). Solid lines indicate stable steady states and dashed lines indicate
unstable ones, which exist in the bistable region (red). Background colours correspond to the regimes in (A). Horizontal dashed lines indicate the density of blue
algae above which we consider there to be a bloom.

Table 1: Descriptions and units of important symbols.

Symbol Description Units of

g Density of green
algae

Numbers per volume

b Density of blue
algae

Numbers per volume

σ Environmental
parameter

Example specific (could
be temperature, light
intensity, etc.)

f Control parameter.
Here: a flow rate.

Example specific. Here:
volume per time.

∆ f Control effort, i.e.,
the change in
control rate.

Same as f

tb Bloom duration Time
tc Control duration Time
x Bloom cost per

duration
Cost per time

ξ Control cost per
effort per duration

Cost per ∆ f per time

α Control effort of
the reset only
strategy

Same as ∆ f

β Control effort of
the reactive
strategy

Same as ∆ f

γ Control effort of
the preventive
strategy

Same as ∆ f

and leaving the lake dominated by blue algae. It does not re-
quire any resources or model predictions. The remaining three
strategies involve actual interventions, and require a reliable es-
timation of the actual bifurcation structure of the lake. The
reset only strategy involves waiting for the environmental pa-
rameter to return to its base level and then temporarily increas-
ing control parameter f to reach the regime with only a green
algae-dominated stable state. The reactive strategy involves in-
creasing f after the system has switched to a cyanobacteria-
dominated state but before σ has returned to its base level. The
preventive strategy involves pre-emptively increasing f to pre-
vent the system from ever crossing the bifurcation point into the
regime with only the cyanobacteria-dominated state. This strat-
egy additionally requires a reliable estimation of the oncoming
change in σ.

2.4. Management strategy costs

We explore the cost profiles of the different management
strategies by looking at the required control effort, the time
during which this effort must be applied, and the time during
which a bloom is present. The control costs and bloom costs
could be interpreted as financial costs (e.g., loss of revenue from
recreation) but also more broadly (e.g., loss of biodiversity, or
aesthetics). For simplicity, we assume that the control cost is
directly proportional to the required increase ∆ f in control pa-
rameter f . We also assume that this control cost per unit time ξ
and bloom cost per unit time x both remain constant over time.
We consider a bloom to be present when the density of blue
algae exceeds a specific threshold (horizontal dashed lines in
Fig. 1B,C).
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3. Results

3.1. Exploration of management strategies

We take a starting point in the regime with two alterna-
tive stable states (the red area in Fig. 1 and 2). Without in-
tervention, the increase in environmental parameter σ eventu-
ally switches the lake to a cyanobacteria-dominated state (i.e.,
causes a bloom) that remains even after σ returns to its start-
ing level (Fig. 2A). The reset only strategy results in a bloom
that lasts until the environmental conditions become favourable
again, at which point the temporary increase in control param-
eter f switches the lake back to a state dominated by green al-
gae (Fig. 2B). The reactive strategy briefly allows the bloom
to appear, followed by an intervention with a larger increase in
f (compared to the reset only strategy) that switches the lake
back to the green state while σ is still elevated (Fig. 2C). This
approach requires that the control parameter remains elevated
until σ returns to its starting level. The preventive strategy re-
quires that the increase in σ can be predicted, but can prevent
the bloom entirely by increasing f to keep the lake out of the
regime with only a blue algae dominated stable state when the
environmental parameter σ increases (Fig. 2D). This approach
also requires that the control parameter remains elevated until σ
returns to its starting level, but the initial control effort required
is smaller than for the reactive strategy.

3.2. Costs of blooms and management

If we assume that the control cost per unit time is directly
proportional to the required control effort ∆ f , then the total in-
tervention cost depends on ∆ f , the control duration tc, and the
control cost per effort per time ξ. The decision maker can make
a trade-off between the intervention costs and the costs of the
bloom, which includes both financial costs, such as increased
purification costs or reduced revenue from recreation, and costs
that are harder to express in monetary value, such as nuisances
from bad odours or loss of biodiversity. Assuming that a rea-
sonable estimation of this bloom cost can be obtained, the total
cost can be calculated from the bloom cost per unit time x and
the duration tb of the bloom. The overall total cost is the sum
of the cost of the management intervention and the cost of the
bloom:

Total cost = ξ ∆ f tc + x tb, (1)

where ∆ f , tc, and tb are strategy-dependent. In our example,
the control effort ∆ f is a flow rate expressed units of volume
per time, but it could be any quantity with any unit, as ξ is
expressed per unit of effort.

The value of control effort ∆ f in our example was 0, α, β, or
γ, depending on the strategy, resulting in different cost profiles
(Fig. 3). The minimum required control effort β of the reactive
strategy is always greater than that of the other two strategies,
but the effort α for the reset strategy can be greater or smaller
than the effort γ for the preventive strategy depending on the
structure of the bifurcation diagram. The time tb during which
a bloom exists is largest when not intervening and the smallest

(zero) when preventing the bloom altogether. Of all the strate-
gies that include actual intervention, the time tc during which
control effort is required is the shortest when only resetting the
system and the longest when preventing the bloom altogether
(Fig. 3).

3.3. Effects of transient dynamics

Near a bifurcation point, transient dynamics are often slow,
suggesting that a switch from one state to another can take
longer if the bifurcation point is crossed by smaller margin.
Therefore, increasing the magnitude of the intervention ef-
fort may reduce the required intervention time, as well as the
bloom time, particularly when using the reset strategy (com-
pare Fig. 4A and B). Conversely, when trying to reverse a
bloom, enough time should be given to allow the switch to the
new steady state, otherwise, the reversion may be unsuccessful
(Fig. 4C).

3.4. Effects of the bifurcation structure

The bifurcation structure of the lake under consideration de-
termines the required control effort for, and feasibility of, the
different management strategies. The effect of different bifur-
cation structures (with straight bifurcation lines for simplicity)
is illustrated in Fig. 5. Differences in the steepness of the left
bifurcation line change the effort needed to stay in the bistable
regime and therefore the cost of the preventive strategy. The
steepness of the right line affects the effort needed to move to
the regime dominated by green algae after the environmental
change and therefore the cost of the reactive strategy. The dis-
tance between the bifurcation lines influences the effort needed
to move to the green regime regardless of the environmental pa-
rameter and therefore affects the costs of both reactive and reset
strategies.

4. Discussion

Our exploration revealed several distinct strategies for bloom
management in lakes with alternative stable states, as well as
some key factors in deciding between these strategies. The op-
timal choice of strategy depends on a variety of factors includ-
ing the bifurcation structure of the actual lake under consid-
eration, the costs per time of a bloom and the proposed inter-
vention, and the transient effects that determine bloom duration
and the required duration of an intervention. For example, if
the costs of a bloom are considered unimportant, then the best
strategy will be no intervention, as this minimises the interven-
tion costs. Conversely, if blooms are completely unacceptable,
the preventive strategy will be the best option, though this does
require accurate model predictions of not just the bifurcation
points, but also the upcoming changes in the environmental pa-
rameters. Between these two extremes in bloom costs, the reset
strategy can be preferable, allowing a bloom for a limited time,
and undoing it later, when conditions are more favourable, sav-
ing intervention costs but also ensuring that the bloom does not
last all season. Since the reactive strategy requires a larger in-
tervention effort then prevention, while also briefly allowing a
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Figure 2: Four potential management strategies for blooms that result from an environmental parameter σ temporarily crossing a bifurcation point. The system
is assumed to start in the bistable regime (red region) in a state dominated by green algae. Arrows and numbers in the bifurcation diagrams indicate the order in
which the parameters change. The plots below show the transient behaviour of the densities of green algae (g) and blue algae (b) in response to the changes in the
environmental parameter σ (orange) from σbase tot σhigh and back. The control effort (∆ f , purple) denotes the increase in f from its base level. These increases are
labelled α, β, and γ for the reset, reactive, and preventive strategies, respectively. The dashed line indicates the density of blue algae above which we consider there
to be a bloom. Time points t1–t5 correspond to the numbers in the bifurcation diagram. Time spans tb and tc indicate the duration of the bloom and the duration
of the control effort, respectively. (A) Without intervention, the change in environmental parameter σ causes a bloom, which persists upon return to the bistable
regime. (B) After the system has returned to the bistable regime, it can be switched back to the green state by temporarily increasing control parameter f (the flow
rate) into the green regime. (C) Reversing the bloom directly after it has occurred requires increasing f to reach the green regime and then keeping it there until the
environmental parameter has returned to its original value. (D) If the change in the environmental parameter can be predicted, then the bloom can be prevented by
increasing f before the environmental change to make sure the system never enters the blue regime.
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Figure 3: Cost profiles for management costs (red) and bloom costs (blue), as-
sociated with the different management strategies shown in Fig. 2. The total
costs can be obtained by adding the areas under the bloom and control cost
curves. The dashed lines correspond to the points at which environmental pa-
rameter σ is increased and reduced, respectively. The cost per time of a bloom
(x) is assumed to be constant over time, as is the cost per control effort per time
ξ. The control efforts α, β, and γ correspond to those in Fig. 2.

bloom, it is expected to be the worst option in most cases. Con-
siderable effort could still be saved by returning the control pa-
rameter to preventive levels after the lake has switched back to
a non-bloom state, but at least the initial effort will always be
larger. In practice, however, accurate predictions of the envi-
ronment are not always available, so prevention is not always
an option. In such cases, the reactive strategy could become
the best choice. The preventive strategy can also be improved,
when considering gradual changes in environmental and con-
trol parameters rather than shocks, since the control parameter
could be gradually increased to keep pace with the changing
environment.

When deciding on a strategy, the stable states are important
but do not provide the full picture. As we have shown, the tran-
sient dynamics of, e.g., a reset strategy are much faster when
the bifurcation point is exceeded by a larger amount. There-
fore, it can be favourable to apply a bit more effort than strictly
necessary to speed up the recovery, increasing the intervention
cost per unit time, but potentially decreasing the overall inter-
vention cost. Simulations of the actual dynamics can play a role
in deciding the intensity and duration of a treatment.

To fully realise the potential of our model-based bloom mit-

igation strategies in practice, two major requirements need to
be fulfilled: there must be a model that can accurately predict
the bifurcation structure, and there must be a quantitative way
to express the costs of interventions and blooms.

In a practical application, the real bifurcation structure will
be unknown and the role of the model will be to provide lake
managers with an estimate, which must be sufficiently accurate.
Of course, achieving this accuracy will require a more detailed
model than our example, e.g., PCLake (Janse and van Liere,
1995; Janssen et al., 2019b) and PROTECH (Page et al., 2018),
among many others (Rousso et al., 2020; Janssen et al., 2019a).
To be used in the way we propose, these models should be cali-
brated and tested with error measures that reflect their ability to
predict bifurcation points, rather than accurate concentrations
at given time points, as it is the bifurcation points that are im-
portant for the implementation of the strategies (Jacobs et al.,
2024). Model uncertainties come from a variety of sources, in-
cluding the description of the process, the parameter estimates
and external variables (Dietze, 2017). Ideally, model uncer-
tainty should be quantified in a way that distinguishes between
these different sources, as this allows us to identify where there
is room for improvement (Lewis et al., 2022).

Our demonstrations have used a single environmental param-
eter and a single control parameter. In reality, however, there
are many environmental influences acting on a lake (Rousso
et al., 2020; Huisman et al., 2018; Burford et al., 2020), and
multiple potential control options are available (Lürling and
Mucci, 2020). Consequently, the bifurcation structure will be
more challenging to understand, analyse and visualise and new
tools may be required to deal with, e.g., distances to bifurcation
points in multidimensional parameter space.

The other important aspect when choosing a model-based
management strategy is translating the costs of blooms and in-
terventions to a numerical value. Not all costs can necessarily
be expressed in monetary value. Examples include aesthetic
and biodiversity costs to blooms, which different people value
to different extents. Estimating these costs therefore involves
collecting and combining these different values, a challenging
task that can be aided by tools like the Nature Futures Frame-
work (Pereira et al., 2020; Kramer et al., 2023a).

Interventions also have costs that are hard to predict and
value. For example, flushing by increasing the flow rate re-
quires diverting upstream water, which can have undesirable
effects on water levels or nutrient retention elsewhere (van Wijk
et al., 2022). In addition, not all costs are constant over time.
For example, diverting a small amount of upstream water for
flushing may have no ill effect, while diverting a large amount
could be disastrous. Aquatic ecosystem models that connect
different lakes can help provide insights into potential flushing
costs for the specific lake under consideration (Kramer et al.,
2023b).

Finally, the proper design and calibration of a sufficiently
accurate model is in itself a difficult and costly task. These
costs should also be taken into account, creating a trade-off be-
tween a of detailed model-based approach to lake management
and more traditional approaches based on expert opinion. This
trade-off means that the model-based approach is best applied
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Figure 4: Effect of transient behaviour for different reset intervention intensities. Top panels indicate the three different control efforts ∆ f . Bottom panels show the
transient behaviour. Meanings of labels and colours are as in Fig. 2. Under heavy intervention (A), the system rapidly reverts to a state dominated by green algae.
With a smaller increase in f (B), the systems takes longer to revert (as can be seen from the steepness of the green curve). With an even smaller increase (C) the
reversion takes even longer and the intervention time is not long enough to make the switch back to the steady state dominated by green algae (i.e., the intervention
has been unsuccessful).

to lakes with important functions, whether economical (e.g.,
drinking water, recreation) or ecological (e.g., biodiversity, con-
servation).

5. Conclusion

The presence of alternative stable states with bifurcations
in a lake provides interesting opportunities for the short-term
model-based mitigation of cyanobacterial blooms, as it allows
for qualitatively different strategies. These strategies have dif-
ferent associated cost profiles, so that different strategies can
be selected for different situations, depending on their relative
costs and the ecological circumstances, which managers could
use to their benefit.
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Appendix A. Example model equations

The bifurcation diagrams and simulations that we show are
from an adapted version of the model for competing green and
blue algae by Scheffer et al. (1997a). The model includes com-
petition for light and a single nutrient (phosphorus) of which

the total amount P is constant and expresses densities of green
algae g and blue algae b in units of nutrient content. We added a
low density of both species in the inflow (gin and bin) to prevent
complete extinction and allow switching between stable states.
We have also added an environmental parameter σ that reflects
the effect of changes in, e.g., temperature or light conditions, as
described by Scheffer et al. (1997b). The full equations of the
model are:

dg
dt
=g

(
σrg

1
1 + qg(kgg + kbb)

P − g − b
h + P − g − b

− σdg − f
)

+ f gin

db
dt
=b

(
σrb

1
1 + qb(kgg + kbb)

P − g − b
h + P − g − b

− σdb − f
)

+ f bin,
(A.1)

with maximum growth rates rg and rb, turbidity factors kg and
kb, and sensitivities to turbidity qg and qb, all for green and
blue algae, respectively. The losses due to flow rate ( f ) and
half-saturation concentration (h) are considered to be the same
for both g and b. For units and default parameter values, see
Table A.2.
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Figure 5: Effect of the bifurcation structure on management strategies. Cartoons show different potential bifurcation structures compared to a reference bifurcation
structure similar to that in Fig. 1 (only with perfectly parallel lines), as well as an example management scenario for the reset, reactive, and preventive strategies.
The environmental change ∆σ is kept constant, while the control effort ∆ f is adjusted to reach the minimal control target for the relevant strategy (open circles).
First row: Reference diagram showing the minimal control targets for the three different strategies. Second row: The steepness of the left line impacts the minimal
control effort for the preventive strategy. Third row: The steepness of the right line impacts the minimal control effort for the reactive strategy. Fourth and fifth row:
The distance between lines impacts the minimal control effort for the reactive and reset strategies.
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Table A.2: Variables and parameters with default values as used in the simula-
tions. N.B., units are taken from Scheffer et al. (1997a), but have no meaning
for our demonstration purposes.

Symbol Meaning Value Unit

g(t) Density of green algae - g P / m3

b(t) Density of blue algae - g P / m3

P Total phosphorus
(conserved)

0.2 g P / m3

rg Maximum growth rate of g 1.2 day−1

rb Maximum growth rate of b 0.6 day−1

h Half-saturation constant 0.003 g P / m3

kg Turbidity factors of g 5 m2/g P
kb Turbidity factors of b 10 m2/g P
qg Sensitivity to turbidity of g 2 m
qb Sensitivity to turbidity of b 1 m
dg Death rate of g 0.12 day−1

db Death rate of b 0.06 day−1

f Flow rate - day−1

gin Inflow concentration of g 0.001 g P / m3

bin Inflow concentration of b 0.001 g P / m3

σ Environmental effect - -
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and emerging cyanocidal compounds: new perspectives for cyanobacte-
rial bloom mitigation. Aquatic Ecology 50, 443–460. URL: https:

//doi.org/10.1007/s10452-016-9577-0.
Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., Thomas, O., 2013.

State of knowledge and concerns on cyanobacterial blooms and cyanotox-
ins. Environment International 59, 303–327. doi:https://doi.org/10.
1016/j.envint.2013.06.013.

Mitrovic, S.M., Hardwick, L., Dorani, F., 2010. Use of flow management to
mitigate cyanobacterial blooms in the Lower Darling River, Australia. Jour-
nal of Plankton Research 33, 229–241. doi:10.1093/plankt/fbq094.

Mooij, W.M., Janse, J.H., De Senerpont Domis, L.N., Hülsmann, S., Ibelings,
B.W., 2007. Predicting the effect of climate change on temperate shallow
lakes with the ecosystem model pclake, in: Gulati, R.D., Lammens, E.,
De Pauw, N., Van Donk, E. (Eds.), Shallow Lakes in a Changing World,
Springer Netherlands, Dordrecht. pp. 443–454.

van Nes, E.H., Scheffer, M., 2007. Slow recovery from perturbations as a
generic indicator of a nearby catastrophic shift. The American Naturalist
169, 738–747. doi:10.1086/516845.

Pace, M.L., Batt, R.D., Buelo, C.D., Carpenter, S.R., Cole, J.J., Kurtzweil, J.T.,
Wilkinson, G.M., 2017. Reversal of a cyanobacterial bloom in response
to early warnings. Proceedings of the National Academy of Sciences 114,
352–357. doi:10.1073/pnas.1612424114.

Paerl, H.W., Huisman, J., 2008. Blooms like it hot. Science 320, 57–58.
doi:10.1126/science.1155398.

9

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.15.571830doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571830
http://creativecommons.org/licenses/by/4.0/


Paerl, H.W., Otten, T.G., 2013. Harmful cyanobacterial blooms: Causes,
consequences, and controls. Microbial Ecology 65, 995–1010. URL:
https://doi.org/10.1007/s00248-012-0159-y.

Page, T., Smith, P.J., Beven, K.J., Jones, I.D., Elliott, J.A., Maberly, S.C.,
Mackay, E.B., De Ville, M., Feuchtmayr, H., 2018. Adaptive forecasting
of phytoplankton communities. Water Research 134, 74–85. doi:https:
//doi.org/10.1016/j.watres.2018.01.046.

Pereira, L.M., Davies, K.K., den Belder, E., Ferrier, S., Karlsson-Vinkhuyzen,
S., Kim, H., Kuiper, J.J., Okayasu, S., Palomo, M.G., Pereira, H.M., Peter-
son, G., Sathyapalan, J., Schoolenberg, M., Alkemade, R., Carvalho Ribeiro,
S., Greenaway, A., Hauck, J., King, N., Lazarova, T., Ravera, F., Chettri,
N., Cheung, W.W.L., Hendriks, R.J.J., Kolomytsev, G., Leadley, P., Met-
zger, J.P., Ninan, K.N., Pichs, R., Popp, A., Rondinini, C., Rosa, I., van
Vuuren, D., Lundquist, C.J., 2020. Developing multiscale and integrative
nature–people scenarios using the Nature Futures Framework. People and
Nature 2, 1172–1195. doi:10.1002/pan3.10146.

Rousso, B.Z., Bertone, E., Stewart, R., Hamilton, D.P., 2020. A system-
atic literature review of forecasting and predictive models for cyanobacte-
ria blooms in freshwater lakes. Water Research 182, 115959. doi:https:
//doi.org/10.1016/j.watres.2020.115959.

Scheffer, M., Rinaldi, S., 2000. Minimal models of top-down control of phy-
toplankton. Freshwater Biology 45, 265–283. doi:https://doi.org/10.
1046/j.1365-2427.2000.00674.x.

Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L.R., van Nes, E.H., 1997a. On
the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecol-
ogy 78, 272–282. doi:https://doi.org/10.1890/0012-9658(1997)
078[0272:OTDOFC]2.0.CO;2.

Scheffer, M., Rinaldi, S., Kuznetsov, Y.A., van Nes, E.H., 1997b. Seasonal
dynamics of Daphnia and algae explained as a periodically forced predator-
prey system. Oikos 80, 519–532. URL: http://www.jstor.org/

stable/3546625.
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