

1 ***Caulobacter crescentus* RNase E condensation contributes to autoregulation and fitness**

2 Vidhyadhar Nandana, Nadra Al-Husini, Arti Vaishnav[#], Kulathungage H. Dilrangi, Jared M. Schrader*

3 Department of Biological Sciences, Wayne State University, Detroit, MI 48202

4 *Corresponding Author

5 [#]Current affiliation: The Ohio State University Medical School, Columbus, Ohio

6

7 **Corresponding Author**

8 Jared Schrader

9 5047 Gullen Mall

10 Biological Sciences Building Room 2119

11 Wayne State University

12 Detroit, MI 48202

13 Schrader@wayne.edu

14 (313) 577 – 0736

15 **Abstract**

16 RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and

17 scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global

18 mRNA decay rate, RNase E from *Escherichia coli* and neighboring γ -proteobacteria were found to

19 autoregulate RNase E levels via the decay of its mRNA's 5' UTR. While the 5' UTR is absent from other

20 groups of bacteria in the Rfam database, we identified that the α -proteobacterium *Caulobacter*

21 *crescentus* RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both

22 bacteria, the C-terminal IDR of RNase E is required for proper autoregulation to occur, and this IDR is

23 also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using *in vitro* purified
24 RNase E, we find that the IDR's ability to promote phase-separation correlates with enhanced 5' UTR
25 cleavage, suggesting that phase-separation of RNase E with the 5' UTR enhances autoregulation. Finally,
26 using growth competition experiments we find that a strain capable of autoregulation rapidly
27 outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation
28 promotes optimal cellular fitness.

29 **Introduction**

30 In bacteria, mRNA decay is typically controlled by the protein RNase E (1–5). RNase E is an endonuclease
31 that performs the rate-limiting step of RNA cleavage, setting the global rate of mRNA decay (6, 7). To do
32 this, the levels of RNase E in *Escherichia coli* are carefully controlled through autoregulation activity
33 whereby the protein binds to the 5' UTR in its own mRNA and facilitates its cleavage (8, 9). Importantly,
34 this mechanism of autoregulation allows the cell to adjust its mRNA decay demands to changes in mRNA
35 abundance (10). While the 5' UTR is well conserved among γ -proteobacteria (11), it is currently not
36 annotated outside this clade of bacteria in Rfam (12). In *Caulobacter crescentus*, an α -proteobacterium,
37 it was observed that RNase E can also autoregulate its expression (13), however, the 5' UTR secondary
38 structure analysis and functional impact on autoregulation were not explicitly investigated. In *E. coli* and
39 *C. crescentus*, it was found that the intrinsically disordered C-terminal domain of RNase E is necessary
40 for autoregulation (13, 14). Interestingly, this C-terminal region of RNase E is also necessary and
41 sufficient for the formation of BR-bodies, phase-separated biomolecular condensates that promote
42 mRNA decay activity (7). However, the role of BR-bodies in the process of RNase E autoregulation has
43 not been directly tested. Finally, while RNase E appears to be essential in *C. crescentus* (13), it has not
44 been thoroughly tested as to how autoregulation of RNase E contributes to cellular fitness.

45 To examine the role of RNase E autoregulation in *C. crescentus*, we show that under- or overexpression
46 of RNase E led to significant reductions in cell growth. We find that like the γ -proteobacteria, the α -
47 proteobacteria likely also utilize a similar 5' UTR structure that is necessary for RNase E autoregulation.
48 By performing a growth competition experiment, a mutant whose 5' UTR was replaced by a synthetic 5'
49 UTR, was rapidly outcompeted, suggesting that even mild overexpression of RNase E lowers fitness.
50 Finally, using an *in vitro* purified system, we find that in the presence of *C. crescentus* RNase E

51 condensates, 5' UTR cleavage is stimulated, suggesting phase-separation of RNase E together with the 5'
52 UTR promotes RNase E cleavage leading to autoregulation.

53 **Results**

54 **RNase E depletion or overexpression leads to loss of fitness.**

55 To determine the essentiality of the major mRNA endonuclease RNase E, we used a depletion strain
56 (JS8) where the promoter of RNase E was replaced with a xylose inducible promoter (Fig 1A). While a
57 previous Tn-seq study found it was a high fitness cost gene in rich media, insertions were only found in
58 the intrinsically disordered CTD and were absent in the catalytic NTD, suggesting its activity may be
59 essential for growth(15). In liquid culture, we found that the depletion strain had somewhat attenuated
60 growth compared to a control strain in the presence of xylose, but the observed growth rate was slower
61 in the absence of xylose (Fig 1A). The deceleration of growth likely arises from the slow depletion of the
62 RNase E protein by cell division which takes approximately 4 hours (Fig 1A). After 8-hours of growth
63 without xylose, the depletion strain shows an ~4 log reduction in the number of colonies formed
64 compared to the control, suggesting the gene is indeed critical for growth (Fig 1B). Of note, the RNase E
65 depletion strain colonies that grew in the absence of xylose were heterogenous in size and the larger
66 ones no longer required xylose to grow in liquid cultures (data not shown), suggesting they accumulated
67 mutations that allow constitutive expression of RNase E in the absence of xylose. Additionally, our
68 attempts to make a clean deletion of the RNase E gene failed in our hands (data not shown), suggesting
69 the RNase E gene is likely essential, or at a minimum provides very high fitness cost in *C. crescentus*.
70 Altogether, this suggests that depletion of RNase E leads to a strong reduction in cell growth.

71 Next, we explored the functional consequences of artificial overexpression of RNase E. We generated a
72 pBX multicopy plasmid containing the RNase E-YFP construct (JS89) (Fig 2A). Cells harboring an empty
73 vector showed little difference in growth in the presence or absence of xylose (Fig 2A). In the strain
74 harboring the plasmid with RNase E-YFP, we found that growth was significantly slower in the absence
75 of xylose, likely due to leaky levels of expression that surpassed that of the wild-type cells (Fig 2A),
76 however, growth was halted when the xylose inducer was added (Fig 2A). Additionally, we added the
77 xylose inducer to cells as they approached an OD600 of 0.3 in the middle of log-phase instead of at
78 OD600 of 0.05 and found that the growth rate was maintained similar to the uninduced cells for
79 approximately 2-hours, but then showed a significant reduction after 3-hours (Fig 2A). The maximum
80 induction of RNase E protein appeared to occur after 3-hours of induction with xylose (Fig S1),

81 suggesting that the reduction in growth observed at 3-hours is due to its peak in protein accumulation.
82 Of note, we observed that when blotted using anti-RNase E antibodies, the chromosomal copy of RNase
83 E's expression was no longer detected after RNase E overexpression, suggesting that it was shut off in
84 response to plasmid-based expression (Fig 2A). To examine if the cells were losing viability after RNase E
85 overexpression, we also performed dilution assays, plated the dilutions on solid media, and assayed for
86 colony formation (Fig 2B). Here, induction of RNase E led to a complete loss in colony formation upon
87 RNase E overexpression (Fig 2B). In conclusion, when RNase E is overexpressed strongly above wild-type
88 levels, *C. crescentus* has a strong reduced growth rate and reduction in cell viability.

89 **RNase E autoregulation ensures optimal cell fitness.**

90 RNase E is known to autoregulate its own levels in *E. coli* and other γ -proteobacteria (8, 9, 11, 13, 16)
91 and we previously observed autoregulation of *C. crescentus* RNase E when expressed from the *vanA*
92 locus on the chromosome (13). Here, we noticed that when cells harbored an extra copy of RNase E-YFP
93 on the pBX plasmid, chromosomal RNase E levels from the *rne* locus were no longer detected (Fig 2A).
94 Further, when a second copy of RNase E-YFP with a plasmid derived 5' UTR was expressed artificially
95 from the vanillate promoter, we observed that the relative abundance of the wild-type RNase E protein
96 was reduced by a corresponding amount (Fig 3A). To further examine the properties of RNase E
97 autoregulation, we induced copy of RNaseE-YFP from the *vanA* locus at different levels of vanillate and
98 found that the more RNase E-YFP produced, the stronger the inhibition of native RNase E expression (Fig
99 3A). In *E. coli*, the 5' UTR of RNase E has an RNA structural element which is recognized by RNase E that
100 is necessary for its autoregulation (8). To test whether the *C. crescentus* RNase E gene's 5' UTR is
101 responsible for autoregulation, we generated a strain in which an active site mutant of RNase E that is
102 unable to cleave RNA (7) was expressed from the chromosome (Fig 3A). This version failed to shut down
103 expression of the native RNase E gene (13), suggesting that RNase E activity is required for
104 autoregulation. Additionally, by using the strain in which the native RNase E's 5' UTR was replaced by a
105 plasmid derived ribosome binding site, we also observed a failure to autoregulate *rne* expression (Fig
106 3A). Altogether, this suggests that RNase E activity on its 5' UTR is necessary for autoregulation.
107 We investigated whether the *C. crescentus* RNase E had an annotated 5' UTR structure in Rfam (12) but
108 no 5' UTR annotations existed outside of gamma-proteobacteria. To explore the 5' UTR's potential for
109 structure formation, we extracted the 5' UTR sequence from our RNA-seq based annotation (17) and
110 performed secondary structure prediction using turbofold (18). This yielded a putative secondary
111 structure that was similar to the *E. coli* 5' UTR (Fig 3B), and that could be aligned to other α - and γ -

112 proteobacterial RNase E 5' UTRs (Fig S2), suggesting that the *C. crescentus* RNase E 5' UTR and those in
113 α -proteobacteria are likely a structural variant of the *E. coli* 5' UTR. Secondary structure comparison
114 between the γ - and α -proteobacteria show that the RNase E 5' UTR likely exists with two different
115 classes: Class I occurs in the γ -proteobacteria with a larger single stranded region I located between
116 hairpins 1 and 2, while Class II occurs in the α -proteobacteria with a shorter single stranded region I and
117 a larger single stranded region 2 (Fig S3 A). To identify *C. crescentus* 5' RNA cleavage sites, we reanalyzed
118 TAP dependent global 5' end sequencing data which was used to identify 5' PPP-containing transcription
119 start sites to identify enriched 5' P-cleavage sites (19) whereby we identified two RNA cleavage sites
120 within the 5' UTR, located in the single stranded region II (Fig 3B). The location of these cleavage sites
121 differs from *E. coli*, where single stranded region I is the location of an RNase E cleavage site (Fig 3B).
122 This suggests that the variation in the single stranded region may alter the preference where RNA
123 cleavage by RNase E occurs between class I and II 5' UTRs.

124 To test whether autoregulation impacts the cellular fitness we compared RNase E replacement strains
125 expressing either RNase E-YFP with the natural 5' UTR or a plasmid derived 5' UTR (Fig 4A). In RNase E
126 replacement strains the cells contain two copies of RNase E: the UTR variants were expressed from the
127 *vanA* locus of the chromosome, while a xylose inducible promoter integration plasmid was introduced at
128 the native *rne* locus, thereby the 5' UTR variants are the only expressed copies of RNase E when grown
129 in PYE (13). The strain harboring the 5' UTR replaced with a plasmid 5' UTR (JS38) led to a ~2-fold higher
130 RNase E-YFP levels than the strain harboring RNase E's own 5' UTR (JS249) (Fig 4A). When grown in PYE-
131 vanillate conditions, we found that JS38 (106 minutes doubling time) had a decrease in growth rate
132 compared to JS249 (94 minutes doubling time) (Fig 4A), suggesting that RNase E autoregulation
133 promotes faster growth. While the magnitude in growth rate difference was small, we sought to assay
134 fitness between the strains more sensitively by performing a growth competition experiment. In this
135 competition experiment, a 50:50 ratio of each strain was incubated together and grown for multiple
136 generations and the fraction of JS38 and JS249 cells in the population were measured. To measure the
137 fraction of each strain in the population, we imaged the cells during mid-log phase of growth and
138 measured their YFP intensities, which yielded two peaks in fluorescence intensity that could be fit with a
139 dual gaussian curve-fit, and the area under each peak representing JS249 maxima (low YFP centered
140 around 200 AU) and JS38 (high YFP centered around 350 AU) were used to calculate the ratio of each
141 strain in the mixed culture (Fig 4B,C). Each day after incubating the mixed culture we observed a
142 growing fraction of JS249 cells and a corresponding reduction in JS38 cells (Fig 4B). After three days of

143 growth competition, we observed ~12x more JS249 cells than JS38 cells, suggesting that autoregulation
144 can promote a significant fitness advantage to *C. crescentus* cells (Fig 4 B, C).

145 **RNase E's intrinsically disordered region promotes phase separation and 5' UTR cleavage.**

146 In *E. coli* and *C. crescentus*, the intrinsically disordered CTD (or IDR henceforth) of RNase E was found to
147 be necessary for autoregulation (13, 14). While the IDR is also the scaffolding site for the RNA
148 degradosome complex, we found an IDR mutant lacking the 3 degradosome proteins binding sites (Δ
149 Aconitase, Δ RNase D, Δ PNPase) was capable of autoregulation (13), suggesting autoregulation does not
150 require the formation of the RNA degradosome. We further dissected the N-terminal domain by
151 dissecting it into its two sub-domains, the N-terminal S1 domain (amino acid 1-176) and the E/G
152 catalytic core (amino acid 177-450) (13). We also observed that deletion of the N-terminal S1 domain,
153 which binds RNA, or deletion of the catalytic E/G domain also abolished autoregulation (Fig S3C),
154 suggesting a fully functional N-terminal domain is required for autoregulation. The IDR was found to be
155 necessary and sufficient to form BR-bodies(13, 20), which allows RNase E to phase-separate with RNA
156 and stimulates RNA decay activity *in vivo*(7, 13). To test whether the IDR promotes 5' UTR cleavage *in*
157 *vitro*, we purified full length RNase E and RNase E lacking the IDR. To confirm purified RNase Es were
158 active we performed 9S ribosomal RNA processing assays with RNase E and RNase E Δ IDR since RNase E
159 is required for processing 9S rRNA to precursor 5S ribosomal RNA (p5S rRNA) (21). We observed that
160 both RNase E and RNase E Δ IDR processes 9S rRNA to p5S rRNA (Fig S3A), suggesting both proteins were
161 functionally active. Next, we *in vitro* transcribed the rne 5' UTR and tested its cleavage by RNase E.
162 Under conditions with low enzyme to substrate ratio, initial RNA cleavage fragment size was observed to
163 be consistent with the *in vivo* 5'P cleavage site [Fig 3B, S3B], which appears to be followed by
164 subsequent cleavage events upon prolonged incubation.

165 To test the role of the IDR and impacts of phase-separation on RNase E autoregulation *in vitro*, we
166 sought to incubate RNase E and RNase E Δ IDR under conditions in which they were incubated above or
167 below the critical concentration of phase separation. In prior work, *C. crescentus* RNase E's IDR was
168 incubated between 2-48 μ M with poly-A RNA under a range of different monovalent salt concentrations,
169 and it was observed to undergo phase-separation at a critical concentration >2 μ M (Fig 5A) (13).
170 Therefore, we incubated full length RNase E reactions at two concentrations, one concentration above
171 the critical threshold for RNase E phase separation (6 μ M RNase E), and one below the critical threshold
172 for phase separation (1 μ M RNase E) (Fig 5A). We confirmed these results with full length RNase E,

173 where we observed that when incubated at 6 μ M with its 5' UTR RNA, it formed condensates under the
174 microscope (Fig 5A); however, only a diffuse solution of RNase E Δ IDR at 6 μ M was observed in the
175 presence of 5' UTR RNA, in line with the role of the C-terminal IDR driving phase separation *in vivo* (13).
176 Additionally, incubating 1 μ M RNase E or RNase E Δ IDR with 5' UTR RNA did not lead to condensate
177 formation (Fig 5A). We then performed single-turnover *in vitro* 5' UTR RNA cleavage assays at both
178 phase separating concentrations (6 μ M) and non-phase separating conditions (1 μ M) while keeping the
179 enzyme/RNA ratio constant. We observed that at 1 μ M RNase E cleaved the RNA slightly faster than
180 RNase E Δ IDR, as we observed increased amounts of RNA cleavage intermediates (Fig 5B), however, even
181 after 30 minutes of incubation with RNase E the amount of full length 5' UTR RNA remained high, and
182 only a small fraction of cleavage products was detected (Fig S3B). When RNase E was incubated at 6 μ M,
183 its 5' UTR was degraded rapidly, with only a small fraction of full-length RNA remaining after 15 minutes
184 of incubation and the rest of the RNA being cleaved into decay fragments. In contrast, the RNase E Δ IDR
185 mutant incubated at 6 μ M cleaved the RNA more slowly than full length, with the major population of
186 RNA being uncleaved after 15 minutes of incubation, and a much lower fraction of RNA decay fragments
187 accumulated than the full length. Taken together, this suggests that RNase E's IDR accelerates 5' UTR
188 cleavage under conditions that promote condensation.

189 **Discussion**

190 ***RNase E autoregulation tunes RNase E levels for optimal growth***

191 RNase E is typically the rate limiting enzyme controlling mRNA decay, so its protein levels must be
192 carefully controlled to allow for the required mRNA decay activity for the cell. Negative autoregulation
193 of RNase E appears to help fulfill this requirement by fine-tuning the amount of RNase E activity in the
194 cell via cleavage of its own 5' UTR (Figs 3,4,5). Levels of RNase E that are too low or too high fail to
195 support cell growth (Figs 1,2), while mild overexpression of RNase E in cells lacking its native 5' UTR
196 leads to a more subtle but significant defect in cell growth and fitness (Fig 4). This suggests that even
197 minor alterations of RNase E levels can negatively alter cell physiology and fitness. Therefore, RNase E's
198 5' UTR appears to be more broadly conserved outside the γ -proteobacteria to precisely control RNase E
199 levels that fine-tunes its cellular concentrations and sets the cellular mRNA decay rate.

200 ***RNase E condensates accelerate 5' UTR cleavage***

201 Past studies found that autoregulation *in vivo* required the 5' UTR and the intrinsically disordered C-
202 terminal domain of RNase E (14). This is the same IDR region of RNase E that is necessary and sufficient
203 to phase-separate into BR-bodies, which are biomolecular condensates that promote faster RNA
204 cleavage *in vivo* (7, 13). Interestingly, using *in vitro* reconstituted RNase E and RNase EΔIDR incubated
205 above and below the critical concentration for phase-separation, we showed that the full-length version
206 of RNase E can phase-separate with the 5' UTR *in vitro* yielding faster 5' UTR cleavage than RNase EΔIDR,
207 while below the critical concentration the proteins were more similar in their 5' UTR cleavage rates.
208 This suggests that RNase E's phase-separation with its 5' UTR promotes more rapid RNA cleavage,
209 perhaps by increasing the local concentration of RNA and RNase E within the condensate and may also
210 explain why RNase E IDR deletion mutants have been found to globally slow mRNA decay (13, 22). We
211 also observed previously that RNase E condensates are observable within seconds after the addition of
212 RNA, suggesting that phase separation of BR-bodies is also a rapid process (20). Importantly, the RNA
213 degradosome binding partner PNPase, which is a 3' to 5' exoribonuclease, was also shown to have
214 increased exonucleolytic activity in the presence of RNase E droplets (23). This suggests that BR-bodies
215 help coordinate the multi-step RNA decay process by concentrating essential mRNA decay enzymes with
216 their mRNA substrates, not only to accelerate the rate-limiting step of RNA decay by RNase E, but also to
217 promote the subsequent 3' to 5' exonucleolytic steps that complete mRNA decay, thereby preventing
218 the pre-mature release of RNA decay intermediates. While *C. crescentus* provides an ideal model for the
219 biochemical characterization of BR-bodies, the RNA degradosome machinery in multiple other bacteria
220 and in mitochondria has been found to form foci *in vivo* (19, 24, 24–28), and which contain large IDRs,
221 suggesting BR-bodies are likely widespread condensates used for mRNA decay. Biomolecular
222 condensation therefore provides a general organizational strategy for bacteria to organize their
223 biochemical pathways in the absence of membrane-bound organelles. Indeed, many bacterial enzymes
224 from various multi-step biochemical pathways have been found to phase-separate and form
225 biomolecular condensates (20, 28–41) suggesting that this strategy of subcellular organization may be
226 utilized to organize a variety of other biochemical pathways in bacteria.

227 **Materials and Methods**

228 **Cell growth**

229
230 All strains used in this study were derived from the wild-type strain NA1000, and were grown at 28°C in
231 peptone-yeast extract (PYE) medium or M2 minimal medium supplemented with 0.2% D-glucose (M2G).
232 When appropriate, the indicated concentration of Vanillate (5 μM), Xylose (0.2%), gentamycin (0.5

233 $\mu\text{g/mL}$), kanamycin (5 $\mu\text{g/mL}$), chloramphenicol (2 $\mu\text{g/mL}$), oxytetracycline (2 $\mu\text{g/ml}$), spectinomycin (25
234 $\mu\text{g/mL}$), and/or streptomycin (5 $\mu\text{g/mL}$) were added. Strains were analyzed at mid-exponential phase of
235 growth (OD 0.3-0.6). Optical density was measured at 600 nm in a cuvette using a Nanodrop 2000C
236 spectrophotometer. For depletion, a strain containing a xylose inducible copy of RNase E was first grown
237 in media containing xylose overnight, then washed 3 times with 1mL growth media, and resuspended in
238 growth media without xylose and grown for 8 hours - overnight. Log-phase cultures were then used for
239 any downstream application. For overexpression, overexpression strains containing a xylose inducible
240 copy of RNase E variant were first grown in media without xylose overnight, then induced with xylose
241 for 3.5-4 hours. Autoregulation test strains containing a copy of *rne-yfp* integrated at the *vanA* locus
242 were grown overnight in PYE, then induced with the indicated vanillate concentration for six hours.
243 Replacements strains containing a xylose inducible copy of RNase E and a Vanillate inducible test
244 construct were first grown in media containing xylose overnight. Log-phase cells were washed 3 times
245 with growth plain media and used to inoculate resuspended in growth media containing Vanillate,
246 diluted, and grown overnight. Log-phase cultures were then used for any downstream application.

247

248 **Serial dilutions assay**

249

250 For serial dilution assays, cells were grown overnight in PYE-kan media supplied with 0.2% xylose. Log-
251 phase cells were washed 3 times with PYE media and diluted in PYE without xylose to an OD 0.05. Serial
252 dilutions were then performed and 5 μl s of the selected dilutions were spotted on PYE-kan plates with
253 and without xylose and incubated at 28°C. For overexpression strains, the cells were grown in PYE-kan
254 media without xylose overnight and log-phase cells were diluted in PYE-kan without xylose to an OD
255 0.05. Serial dilutions were then performed and 5 μl s of the selected dilutions were spotted on PYE-kan
256 plates with and without xylose and incubated at 28°C. For replacements strains, cells were first grown in
257 PYE-kan-gent media supplied with 0.2% xylose overnight. Log-phase cells were washed 3 times with
258 plain PYE media and resuspended in plain PYE media to an OD 0.05. Serial dilutions were then
259 performed and 5 μl s of the selected dilutions were spotted on PYE-kan-Gent, PYE-kan-Gent-xylose and
260 PYE-kan-Gent-vanillate plates and incubated at 28°C.

261

262 **Western blots**

263

264 For determining the optimal RNE depletion time, JS8 cells were grown in PYE-kan media containing 0.2%
265 xylose overnight, then washed 3 times with PYE media. The washed cells were used to inoculate 30 ml of
266 PYE media without xylose. Samples were taken at 1,2,3,4,8 hours after xylose removal. The cells were

267 pelleted and resuspended in 250 μ l of 1x laemmli buffer for each 1.0 OD₆₀₀ unit. For determining the
268 optimal RNE overexpression time, JS89 cells were grown in PYE media overnight, log-phase cells were
269 used to inoculate 30 ml of PYE-kan media with 0.2% xylose. Samples were taken at 1,2,3,4 hours after
270 xylose addition. The cells were pelleted and resuspended in 250 μ l of 1x laemmli buffer for each 1.0
271 OD₆₀₀ unit. The western blotting was performed as in(13) using (1:1000) dilution of α -RNE antibodies.

272

273

274 **5' UTR structure prediction**

275

276 The 5' UTR of RNase E was extracted from(17), and the sequence from the +1 site to the start codon was
277 placed into turbofold(18) for secondary structure prediction. As a control, the *E. coli* 5' UTR of RNase E
278 from (11) was predicted in the same manner.

279 **5' P site identification**

280

281 For determining 5' P sites in the 5' UTR, we analyzed the TAP- samples from(19) that occurred within the
282 5' UTR region.

283 **Growth competition experiments**

284

285 The strains used in the experiments included the strain with a mutated 5' UTR (JS38) and one with a WT
286 5' UTR (JS249). JS38 has the functional RNase E gene under the xylose-inducible promoter and a YFP-
287 tagged RNase E with a mutated 5' UTR under the vanillate-inducible promoter. JS249 also has a
288 functional RNase E gene under the xylose-inducible promoter, but it has a YFP-tagged RNase E with the
289 wild-type 5' UTR region under the vanillate-inducible promoter.

290 A competition experiment was conducted to compare the growth efficiencies of the two strains. To
291 start, both strains were grown in five-milliliter overnight cultures at 28°C in PYE with xylose and
292 antibiotics Kanamycin (Kan) and Gentamycin (Gent). The next day, cells were pelleted and washed to
293 remove the xylose and then resuspended in one milliliter of PYE. An optical density (OD₆₀₀) was taken for
294 each culture, and the cultures were diluted to 0.05 in five-milliliter cultures of PYE/Kan/Gent and
295 induced for 6 hours with vanillate in 28°C shaker. After cells grew for 6 hours, optical OD₆₀₀ was taken
296 for each culture, and the culture with a greater OD₆₀₀ was diluted to match the culture with the lower
297 initial OD₆₀₀. From here, a mixed culture of JS38 and JS249 was created. Cells were spotted on agarose
298 pads and imaged through fluorescence microscopy with a YFP filter cube and exposure time of 700ms

299 for both the cultures. These images represent the Day 0 images. Serial dilutions of JS38, JS249, and JS38
300 vs. JS249 were made and grown overnight with vanillate to ensure log phase imaging for the following
301 day. Images were taken until Day 3 for Trial 1 and Day 2 for Trial 2. A master mix of PYE/Kan/Gent/Van
302 was made to be used for cultures starting with the 6-hour induction on Day 0 and the controls were
303 imaged every day.

304

305 **Competition strain fluorescence measurements**

306 The experiment resulted in six images of each strain (JS38, JS249, and JS38 vs. JS249) from each day. The
307 fluorescence intensities were analyzed using the program ImageJ. The background intensity of each
308 image, found using MicrobeJ, was subtracted from the fluorescent intensities. The resulting fluorescent
309 intensities were used for the analysis.

310 Due to overlap between the median fluorescent intensities of the two strains, cells from the mixed
311 strains could not be clearly separated by fluorescence intensities. Instead, using the program,
312 KaleidaGraph, a Gaussian curve fit was created for both JS38 and JS249, and the functions of these
313 graphs were summed to create a double-Gaussian curve fit for the mixes each day. In each of the
314 graphs, the values were normalized to account for differences in the number of cells imaged per day.
315 The ratio of the areas under the curve was calculated, JS249:JS38 by taking the integral of both parts of
316 the double-Gaussian functions separately from zero to one thousand. The expected result is a 1:1 ratio
317 on Day 0 and an increase in the ratio each following day.

318 **Competition strain growth rate measurements**

319 The experiment was conducted in a triplicate to ensure reproducibility. JS38 and JS249 were grown in
320 five-milliliter overnight cultures containing PYE/Kan/Gent and xylose at 28°C. The cells were washed to
321 remove the xylose and induced overnight in serial dilutions with Van. The next day, an OD₆₀₀ was
322 measured, and the cells in log phase were used to inoculate 6 50-milliliter cultures, creating an OD₆₀₀ of
323 around 0.05. OD₆₀₀ time points were taken for each of the 6 flasks every 90 minutes, and the data was
324 used to analyze the doubling time of each strain. A master mix of PYE/Kan/Gent/Van was used starting
325 with the overnight in Van and used for the cultures, as well as the media for blanking while taking OD₆₀₀.

326 **RNase E purification**

327 Full length RNase E gene was amplified from *C. crescentus* genome using VN106F and VN107R primers
328 and cloned into pET-GFP vector through ligation independent cloning (LIC). The sequence verified
329 plasmid was transformed into BL21(DE3) cells and the resultant colonies were inoculated into LB media
330 (50 mL) with 30 µg/mL Kanamycin and grown overnight at 37°C, 200 rpm. The saturated culture was
331 reinoculated into 1.5-liter LB media containing 30 µg/mL Kanamycin and grown at 37°C, 200 rpm until
332 the OD reaches ~0.6. RNase E expression was induced with 0.5 mM IPTG at 37°C, 140 rpm for 3 hours.
333 The cells were harvested at 5000 rpm for 15 mins and resuspended in 20mL of Lysis buffer (20mM Tris
334 pH 7.4, 500mM NaCl, 10% glycerol, 10mM imidazole, 10 µg/mL DNase I). The cells were lysed in
335 Sonicator at 4°C with 5 sec on time and 10 sec off time for 3 minutes. The lysate was centrifuged at 4°C,
336 14000 rpm for 45 minutes and the resultant supernatant was passed through pre-equilibrated Ni-NTA
337 resin for binding of GFP-RNase E-His to the resin. After washing the protein bound resin with 5 column
338 volumes each of low salt buffer (20mM Tris pH 7.4, 150mM NaCl, 5% glycerol, 10mM imidazole) and
339 high salt buffer (20mM Tris pH 7.4, 1000mM NaCl, 5% glycerol, 10mM imidazole), the protein was eluted
340 in elution buffer (20mM Tris pH 7.4, 150mM NaCl, 5% glycerol, 250mM imidazole). The protein was
341 concentrated using amicon concentrator with 30 kDa cutoff and the concentrated protein was passed
342 through S200 Sephadex size exclusion column in SEC buffer (20mM Tris pH 7.4, 250mM NaCl, 2%
343 glycerol) for further purification. The resultant pure protein was concentrated to 15 mg/mL and stored
344 in -80°C.

345 The GFP RNase E Δ IDR (RNase E Δ IDR) was the proteolyzed fragment recovered from size exclusion
346 chromatography while performing GFP RNase E full length (RNase E) purification.

347 ***In vitro* transcription of RNase E 5' UTR and 9S rRNA**

348 The plasmid containing RNase E 5' UTR (pVN053) was linearized using Nhe1 restriction enzyme, which
349 served as template in *in vitro* transcription (IVT). The IVT reaction mixture contained 2.7mg of linearized
350 plasmid, 21µg homemade T7 RNA polymerase, 2.5mM NTPs, 1X reaction buffer (50mM Tris-Cl pH 7.4,
351 15mM MgCl₂, 5mM DTT, 2mM spermidine), 0.01 U/µL PPase in a total volume of 1000 µL and the
352 reaction was carried out at 37°C for 4 hours. The transcribed RNA loaded onto 7% Urea gel was
353 extracted using phenol-chloroform and ethanol precipitation methods. The precipitated RNA was
354 resuspended in nuclease free water for carrying out RNase E cleavage assays. The template for 9S rRNA
355 *in vitro* transcription was created by PCR amplification (using VN108 F and VN109 R) consisting of T7
356 promoter and 9S rRNA sequence.

357 **pCp Cy5 labeling of RNase E 5' UTR**

358 *In vitro* transcribed RNase E 5' UTR (4.5 μ M) was incubated with 33 μ M of pCp Cy5 (Jena Bioscience
359 #NU-1706-CY5) in a total reaction volume of 100 μ L consisting of 50 units of T4 RNA ligase 1 (NEB
360 #M0204S), 1mM ATP, 10% DMSO1, 1X T4 RNA ligase reaction buffer (NEB #B0216S) for 16 hours at 16°C.
361 Following the reaction, T4 RNA ligase 1 was heat inactivated at 65°C for 15 minutes and the reaction
362 mixture was subjected to Phenol-Chloroform extraction to remove the enzyme. The unincorporated pCp
363 Cy5 was removed by passing the labeled RNA through Sephadex G-50 column (Cytiva # 28903408) and
364 eluted in nuclease free water.

365 ***In vitro* RNase E condensate formation assay**

366 6 μ M of GFP RNase E or GFP RNase E Δ IDR were incubated with 25ng/ μ L RNase E 5' UTR - Cy5 RNA in
367 20mM Tris pH 7.4, 100mM NaCl, 1mM DTT buffer in a total reaction volume of 10 μ L for 30 minutes at
368 room temperature. Entire 10 μ L was spotted on a slide and covered with coverslip before imaging with
369 Nikon Eclipse NI-E with CoolSNAP MYO-CCD camera and 100x Oil CFI Plan Fluor (Nikon) objective under
370 phase contrast, GFP and Red channels with exposures of 30ms, 50ms and 50ms respectively.

371 ***In vitro* 9S rRNA processing assay**

372 0.1 μ M RNase E or RNase E Δ IDR was incubated with 1 μ M of 9s rRNA in 20mM Tris pH 7.4, 150mM
373 NaCl, 2% glycerol, 1mM DTT, 100 μ M MgCl₂ buffer in a total reaction volume of 40 μ L at 28°C. At the end
374 of each time point, 10 μ L of the reaction volume was mixed with 15 μ L of stop buffer (95% formamide,
375 50mM EDTA, 0.1% SDS, 0.025% bromophenol blue, 0.025% xylene cyanol). The samples were heated at
376 90°C for 3 mins and resolved on 7% Urea-acrylamide gel, stained with 1X SYBR Gold nucleic acid stain
377 and scanned using GE Typhoon FLA 9000 gel scanner.

378 ***In vitro* RNase E 5' UTR cleavage assay**

379 1 μ M of GFP RNase E or GFP RNase E Δ IDR was incubated with 0.5 μ M of RNase E 5' UTR in 1X reaction
380 buffer (20 mM Tris pH 7.4, 150mM NaCl, 2% glycerol, 1mM DTT, 100 μ M MgCl₂) in a total reaction
381 volume of 40 μ L. At the end of each time point, 10 μ L of this reaction mixture was added to 15 μ L of
382 stop buffer (95% formamide, 50mM EDTA, 0.1% SDS, 0.025% bromophenol blue, 0.025% xylene cyanol).
383 The samples were heated at 90°C for 3 minutes and loaded onto 7% urea-acrylamide gel. The gel was

384 stained with 1X SYBR Gold nucleic acid stain (Thermo Fisher #S11494) for 20 minutes and scanned using
385 Thermo Fisher iBright imaging system.

386 For the cleavage assay under condensate forming condition, 6 μ M RNase E or RNase E Δ IDR was
387 incubated with 3 μ M RNase E 5' UTR and the reaction was carried out as mentioned above. At the end
388 of each time point, the reaction is diluted 50 times so that the RNA loaded in each well is 100ng.

389

390 **Plasmid Construction**

391 **pVN053**

392 RNase E 5'UTR along with the first 150 bases of coding sequence was amplified from *C. crescentus*
393 genome using VN082F & VN083R primers. The amplified sequence was ligated into pMCS-2 vector under
394 T7 promoter through Gibson assembly. Positive colonies were selected on LB-Kan plate followed by
395 sanger sequencing.

396 **pVN059**

397 Full length RNase E gene was amplified from *C. crescentus* genome using VN106F and VN107R primers
398 and cloned into pET-GFP vector through ligation independent cloning (LIC).

399 **pBXMCS-2 RNE YFP**

400 RNase E-YFP from the pVRNEYFPC-4 plasmid was digested with NdeI and NheI and ligated into pBXMCS-
401 2 cut with NdeI and XbaI. The plasmid was sequence verified (genewiz) before electroporation into
402 Caulobacter.

403 **Strain Construction**

404 **JS8: NA1000 RNE::pXRNEssrAC KanR**

405 The strain was generated as described before (13).

406 **JS49: NA1000 vanA::FL-RNE-YFP GentR**

407 The strain was generated as described before (13).

408 **JS61: NA1000 vanA::RNE(ΔE/G)-YFP Gent^R**

409 The strain was generated as described before (13).

410 **JS62: NA1000 vanA::RNE(DRhlBBS)-YFP Gent^R**

411 The strain was generated as described before (13).

412 **JS89**

413 The strain was generated by transforming pBXMCS-2 – RNE YFP plasmid into NA1000 cells and the

414 positive colonies were selected on PYE-kan medium followed by YFP fluorescence in the cells.

415 **JS249**

416 To generate JS249, we inserted the 5' UTR into the pVRNEYFPC-4 plasmid via Gibson assembly. The 5'

417 UTR was amplified from the NA1000 chromosome using RNE5'UTR_F and RNE5'UTR_R primers and the

418 pVRNEYFPC-4 plasmid containing RNaseE-YFP was amplified using PVRNEYFPC-4_F and PVRNEYFPC-4_R

419 primers. We then performed Gibson assembly using both fragments, transformed into DH10B cells, and

420 selected on LB-Kan plates. Colonies were then screened for the RNase E 5' UTR and sequence verified.

421 The resulting pVRNE5'UTR-RNEYFPC-4 plasmid was then transformed into NA1000 cells by

422 electroporation and selected on PYE-gent plates. GentR colonies were then subjected to phage

423 transduction using JS8 lysates and selected on PYE-gent-kan-xylose plates. The resulting colonies were

424 phenotyped for xylose and vanillate dependent growth.

425 **JS 293: NA1000 vanA::RNE(ASMmut2)YFPC Gent^R**

426 The strain was generated as described before (13).

427 **Table of oligos**

Oligo ID	Sequence
RNE5'UTR_F	CAAGATTGGATCCGCACCGCGAAATCCGTGATCGTCACG
RNE5'UTR_R	GCATCTTCTTCGACATTAAGGTTCGTTGTCCCTACCGCG
PVRNEYFPC-4_F	GGGACAAACGAACCTTAATGTCGAAGAAGATGCTGATCGACGCA
PVRNEYFPC-4_R	GGATTCGCGTGC GGATCCAATCTT GATCGTAATCAAACGGACGT
VN082F	tcgcgagacgtccaattgcatatgTAATACGACTCACTATAGGGCACGCGAAATCC
VN083R	gtggatccccgggctgcagctagcAACGCGCGTCACCTTGGCGA
VN106F	TACTTCCAATCCAATGCAatgtcgaagaagatgctgatcgacgca
VN107R	TTATCCACTCCAATGTTATTAttaccggcgccaccagccccgacg
VN108 F	taatacgactcactatagggtcagtcaaaccatgcaaacgcatg
VN109 R	tcagggtttgttattgtatggagg

428

429 **Table of Strains used**

Strain name	Genotype
JS8	NA1000 RNE::pXRNEssrAC Kan ^R
JS49	NA1000 vanA::FL-RNE-YFP Gent ^R
JS61	NA1000 vanA::RNE(ΔE/G)-YFP Gent ^R
JS62	NA1000 vanA::RNEΔS1-YFP Gent ^R
JS89	NA1000+pBXMCS2 with FLRNE-YFP Kan ^R
JS221	NA1000 vanA::RNase E ΔIDR-YFP integrated

	+RNE::pXRNEssrAC-2 Gent ^R Kan ^R
JS249	NA1000 vanA::RNE 5`UTR-YFP + RNE::pXRNEssrAC-2 Gent ^R Kan ^R
JS 293	NA1000 vanA::RNE(ASMmut2)YFPC Gent ^R

430

431 **Author Contributions**

432 JMS conceived the project. VN performed protein purifications, *in vitro* transcriptions, RNA labeling, RNA
433 cleavage experiments and phase separation assays. NA and AV performed cell biology experiments and
434 functional experiments. AV performed the growth competition experiments. KD performed *in vitro*
435 transcription. JMS and VN wrote the paper.

436 **Acknowledgements**

437 The authors thank Wayne State University startup funds to JMS. Research reported in this publication
438 was supported by NIGMS of the National Institutes of Health under award number R35GM124733.

439 **Competing Interests**

440 The authors declare no competing interests exist.

441 **Figure Legends**

442 **Figure 1.** Depletion of RNase E leads to slow growth and loss in viability. A.) Growth curves of depletion
443 strains of RNase E (triangles) and empty vector controls (squares) in the presence of xylose (black) or the
444 absence of xylose (light grey). All cells were grown in PYE with kanamycin. B.) Colony forming unit assay
445 to determine cell viability in the Depletion strains. Depletion strains were grown in PYE/Kan in the
446 presence of xylose (black) or absence of xylose (light grey) for 8 hours, then spotted on PYE/Kan/Xyl
447 plates. EV = Empty vector, RNE=RNase E. C.) Colony forming unit assay to determine cell viability in the

448 RNase E replacement strains. Replacement strains contain a xylose inducible copy of RNase E at the *rne*
449 locus, and mutant RNase E variants at the *vanA* locus. RNase E variants expressed from the *vanA* locus
450 are indicated to the left. FL = full length, ΔEG = catalytic domain deletion, ASM = active site mutant.

451 **Figure 2.** Overexpression of RNase E leads to growth arrest. A.) Growth curves of overexpression strains
452 of RNase E (triangles), and empty vector controls (squares) grown in the presence of xylose (black) or
453 the absence of xylose (light grey). Cells induced with xylose after the 2-hour timepoint are colored red.
454 All cells were grown in PYE with kanamycin. B.) Colony Forming unit assay to determine cell viability in
455 the overexpression strains harboring pBX vectors with the insert on the left.

456 **Figure 3.** RNase E autoregulation requires activity on its 5' UTR. A.) Western blot of RNase E in the
457 indicated strains. Vanillate induced RNase E lacks the 5' UTR. RNase E-YFP and RNase E bands are
458 indicated. B.) Predicted mRNA secondary structures generated by turbofold for *C. crescentus* (left) and
459 for *Escherichia coli* (right) [ref]. RNA cleavage sites are mapped with arrows. RNA decay sites
460 identification in the 5' UTR. 5' P-sites from(19) and RNA-seq data indicating the mRNA 5' UTR from(42).

461 **Figure 4.** RNase E autoregulation contributes to cellular fitness. A.) Cartoon of strains JS249 containing
462 the 5' UTR, and JS38 which has a 5' UTR from a plasmid expression system. YFP intensity distributions of
463 strains JS249 and JS38, gaussian fits were performed with kaleidagraph. B.) Doubling times of JS38 and
464 JS249 (left) as grown in PYE media. Growth competition of equally mixed cultures containing JS249 and
465 JS38 after multiple days of growth (right). Error bars in both panels from 3 biological replicates. C.) YFP
466 distributions of the mixed cultures at the beginning of the growth competition or after 3 days of culture.
467 Dual gaussian fits were performed using kaleidagraph.

468 **Figure 5.** RNase E 5' UTR cleavage is stimulated by the IDR. A.) Purified solutions of full-length RNase E
469 containing the IDR (left) and the ΔIDR variant (right) after incubated with RNA for 30 minutes. Scale bar
470 is 5 μm. B.) RNase E 5' UTR cleavage assay. RNase E's 5' UTR was incubated with either full length

471 RNase E or the Δ IDR variant for the indicated time periods before running on a 7% denaturing PAGE and
472 stained by SYBR gold.

473

474 **References**

475 1. Carpousis AJ, Luisi BF, McDowall KJ. 2009. Chapter 3 Endonucleolytic Initiation of mRNA Decay in
476 *Escherichia coli*, p. 91–135. *In Progress in Molecular Biology and Translational Science*. Academic
477 Press.

478 2. Mackie GA. 2013. RNase E: at the interface of bacterial RNA processing and decay. *1. Nat Rev
479 Microbiol* 11:45–57.

480 3. Chao Y, Li L, Girodat D, Förstner KU, Said N, Corcoran C, Śmiga M, Papenfort K, Reinhardt R, Wieden
481 H-J, Luisi BF, Vogel J. 2017. In Vivo Cleavage Map Illuminates the Central Role of RNase E in Coding
482 and Non-coding RNA Pathways. *Molecular Cell* 65:39–51.

483 4. Deutscher MP. 2006. Degradation of RNA in bacteria: comparison of mRNA and stable RNA. *Nucleic
484 Acids Research* 34:659–666.

485 5. Kushner SR. 2002. mRNA Decay in *Escherichia coli* Comes of Age. *Journal of Bacteriology* 184:4658–
486 4665.

487 6. Ono M, Kuwano M. 1979. A conditional lethal mutation in an *Escherichia coli* strain with a longer
488 chemical lifetime of messenger RNA. *Journal of Molecular Biology* 129:343–357.

489 7. Al-Husini N, Tomares DT, Pfaffenberger ZJ, Muthunayake NS, Samad MA, Zuo T, Bitar O, Aretakis JR,
490 Bharmal M-HM, Gega A, Biteen JS, Childers WS, Schrader JM. 2020. BR-Bodies Provide Selectively

491 Permeable Condensates that Stimulate mRNA Decay and Prevent Release of Decay Intermediates.

492 Molecular Cell 78:670-682.e8.

493 8. Schuck A, Diwa A, Belasco JG. 2009. RNase E autoregulates its synthesis in *Escherichia coli* by
494 binding directly to a stem-loop in the *rne* 5' untranslated region. Molecular Microbiology 72:470–
495 478.

496 9. Jain C, Belasco JG. 1995. RNase E autoregulates its synthesis by controlling the degradation rate of
497 its own mRNA in *Escherichia coli*: unusual sensitivity of the *rne* transcript to RNase E activity. Genes
498 Dev 9:84–96.

499 10. Sousa S, Marchand I, Dreyfus M. 2001. Autoregulation allows *Escherichia coli* RNase E to adjust
500 continuously its synthesis to that of its substrates. Molecular Microbiology 42:867–878.

501 11. Diwa A, Bricker AL, Jain C, Belasco JG. 2000. An evolutionarily conserved RNA stem-loop functions
502 as a sensor that directs feedback regulation of RNase E gene expression. Genes Dev 14:1249–1260.

503 12. Kalvari I, Nawrocki EP, Ontiveros-Palacios N, Argasinska J, Lamkiewicz K, Marz M, Griffiths-Jones S,
504 Toffano-Nioche C, Gautheret D, Weinberg Z, Rivas E, Eddy SR, Finn RD, Bateman A, Petrov AI. 2021.
505 Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research
506 49:D192–D200.

507 13. Al-Husini N, Tomares DT, Bitar O, Childers WS, Schrader JM. 2018. α -Proteobacterial RNA
508 Degradosomes Assemble Liquid-Liquid Phase-Separated RNP Bodies. Molecular Cell 71:1027–
509 1039.e14.

510 14. Jiang X, Diwa A, Belasco JG. 2000. Regions of RNase E Important for 5'-End-Dependent RNA
511 Cleavage and Autoregulated Synthesis. Journal of Bacteriology 182:2468–2475.

512 15. Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B, Coller JA, Fero MJ, McAdams HH,
513 Shapiro L. 2011. The essential genome of a bacterium. *Molecular Systems Biology* 7:528.

514 16. Mudd EA, Higgins CF. 1993. *Escherichia coli* endoribonuclease RNase E: autoregulation of expression
515 and site-specific cleavage of mRNA. *Molecular Microbiology* 9:557–568.

516 17. Bharmal M-H, Aretakis JR, Schrader JM. 2020. An Improved *Caulobacter crescentus* Operon
517 Annotation Based on Transcriptome Data. *Microbiology Resource Announcements*
518 9:10.1128/mra.01025-20.

519 18. Tan Z, Fu Y, Sharma G, Mathews DH. 2017. TurboFold II: RNA structural alignment and secondary
520 structure prediction informed by multiple homologs. *Nucleic Acids Research* 45:11570–11581.

521 19. Zhou B, Schrader JM, Kalogeraki VS, Abeliuk E, Dinh CB, Pham JQ, Cui ZZ, Dill DL, McAdams HH,
522 Shapiro L. 2015. The Global Regulatory Architecture of Transcription during the *Caulobacter* Cell
523 Cycle. *PLOS Genetics* 11:e1004831.

524 20. Nandana V, Rathnayaka-Mudiyanselage IW, Muthunayake NS, Hatami A, Mousseau CB, Ortiz-
525 Rodríguez LA, Vaishnav J, Collins M, Gega A, Mallikaarachchi KS, Yassine H, Ghosh A, Biteen JS, Zhu
526 Y, Champion MM, Childers WS, Schrader JM. 2023. The BR-body proteome contains a complex
527 network of protein-protein and protein-RNA interactions. *Cell Reports* 42.

528 21. Hardwick SW, Chan VSY, Broadhurst RW, Luisi BF. 2011. An RNA degradosome assembly in
529 *Caulobacter crescentus*. *Nucleic Acids Res* 39:1449–1459.

530 22. Lopez PJ, Marchand I, Joyce SA, Dreyfus M. 1999. The C-terminal half of RNase E, which organizes
531 the *Escherichia coli* degradosome, participates in mRNA degradation but not rRNA processing in
532 vivo. *Molecular Microbiology* 33:188–199.

533 23. Collins M, Tomares DT, Schrader JM, Childers WS. 2022. RNase E biomolecular condensates
534 stimulate PNPase activity. bioRxiv <https://doi.org/10.1101/2022.06.06.495039>.

535 24. Griego A, Douché T, Gianetto QG, Matondo M, Manina G. 2022. RNase E and HupB dynamics foster
536 mycobacterial cell homeostasis and fitness. iScience 25:104233.

537 25. Muthunayake NS, Tomares DT, Childers WS, Schrader JM. Phase-separated bacterial
538 ribonucleoprotein bodies organize mRNA decay. WIREs RNA n/a:e1599.

539 26. Strahl H, Turlan C, Khalid S, Bond PJ, Kebalo J-M, Peyron P, Poljak L, Bouvier M, Hamoen L, Luisi BF,
540 Carpousis AJ. 2015. Membrane Recognition and Dynamics of the RNA Degradosome. PLOS Genetics
541 11:e1004961.

542 27. Hamouche L, Billaudeau C, Rocca A, Chastanet A, Ngo S, Laalami S, Putzer H. 2020. Dynamic
543 Membrane Localization of RNase Y in *Bacillus subtilis*. mBio 11.

544 28. Tejada-Arranz A, Galtier E, Mortaji LE, Turlin E, Ershov D, Reuse HD. 2020. The RNase J-Based RNA
545 Degradosome Is Compartmentalized in the Gastric Pathogen *Helicobacter pylori*. mBio 11.

546 29. Nandana V, Schrader JM. 2021. Roles of liquid–liquid phase separation in bacterial RNA metabolism.
547 Current Opinion in Microbiology 61:91–98.

548 30. Saurabh S, Chong TN, Bayas C, Dahlberg PD, Cartwright HN, Moerner WE, Shapiro L. 2022. ATP-
549 responsive biomolecular condensates tune bacterial kinase signaling. Science Advances
550 8:eabm6570.

551 31. Lasker K, von Diezmann L, Zhou X, Ahrens DG, Mann TH, Moerner WE, Shapiro L. 2020. Selective
552 sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of
553 asymmetry in *Caulobacter crescentus*. 3. Nature Microbiology 5:418–429.

554 32. Kryptou E, Townsend GE, Gao X, Tachiyama S, Liu J, Pokorzynski ND, Goodman AL, Groisman EA.
555 2023. Bacteria require phase separation for fitness in the mammalian gut. *Science* 379:1149–1156.

556 33. Goldberger O, Szoke T, Nussbaum-Shochat A, Amster-Choder O. 2022. Heterotypic phase separation
557 of Hfq is linked to its roles as an RNA chaperone. *Cell Reports* 41:111881.

558 34. Ladouceur A-M, Parmar BS, Biedzinski S, Wall J, Tope SG, Cohn D, Kim A, Soubry N, Reyes-Lamothe
559 R, Weber SC. 2020. Clusters of bacterial RNA polymerase are biomolecular condensates that
560 assemble through liquid–liquid phase separation. *PNAS* 117:18540–18549.

561 35. Harami GM, Kovács ZJ, Pancsa R, Pálinkás J, Baráth V, Tárnok K, Málnási-Csizmadia A, Kovács M.
562 2020. Phase separation by ssDNA binding protein controlled via protein–protein and protein–DNA
563 interactions. *Proceedings of the National Academy of Sciences* 117:26206–26217.

564 36. McQuail J, Switzer A, Burchell L, Wigneshweraraj S. 2020. The RNA-binding protein Hfq assembles
565 into foci-like structures in nitrogen starved *Escherichia coli*. *Journal of Biological Chemistry*
566 295:12355–12367.

567 37. Azaldegui CA, Vecchiarelli AG, Biteen JS. 2021. The emergence of phase separation as an organizing
568 principle in bacteria. *Biophysical Journal* 120:1123–1138.

569 38. Heinkel F, Abraham L, Ko M, Chao J, Bach H, Hui LT, Li H, Zhu M, Ling YM, Rogalski JC, Scurll J, Bui
570 JM, Mayor T, Gold MR, Chou KC, Av-Gay Y, McIntosh LP, Gsponer J. 2019. Phase separation and
571 clustering of an ABC transporter in *Mycobacterium tuberculosis*. *Proceedings of the National
572 Academy of Sciences* 116:16326–16331.

573 39. Ramm B, Schumacher D, Harms A, Heermann T, Klos P, Müller F, Schwille P, Søgaard-Andersen L.

574 2023. Biomolecular condensate drives polymerization and bundling of the bacterial tubulin FtsZ to

575 regulate cell division. 1. *Nat Commun* 14:3825.

576 40. Tan W, Cheng S, Li Y, Li X-Y, Lu N, Sun J, Tang G, Yang Y, Cai K, Li X, Ou X, Gao X, Zhao G-P, Childers

577 WS, Zhao W. 2022. Phase separation modulates the assembly and dynamics of a polarity-related

578 scaffold-signaling hub. 1. *Nat Commun* 13:7181.

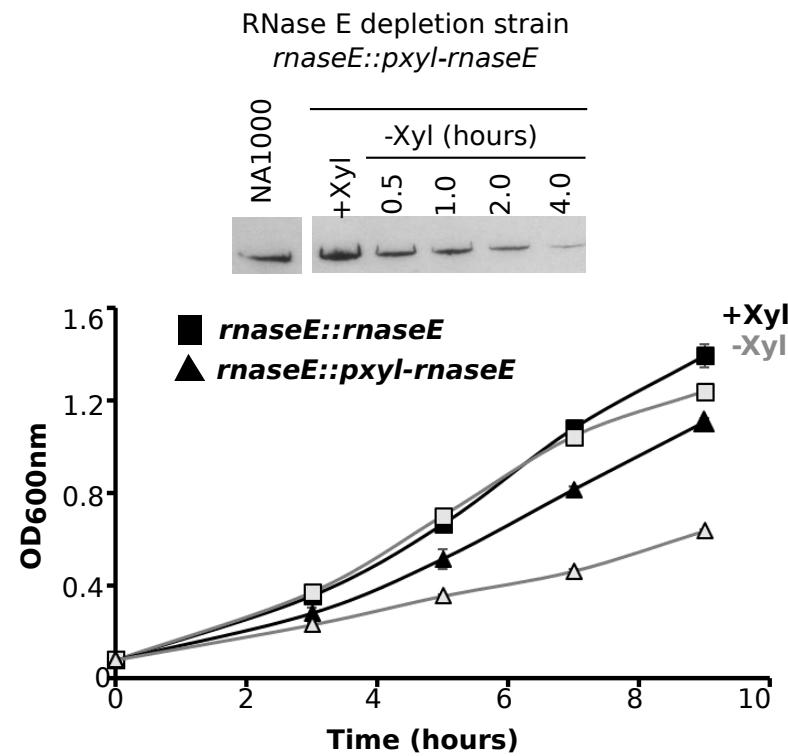
579 41. Guilhas B, Walter J-C, Rech J, David G, Walliser NO, Palmeri J, Mathieu-Demaziere C, Parmeggiani A,

580 Bouet J-Y, Le Gall A, Nollmann M. 2020. ATP-Driven Separation of Liquid Phase Condensates in

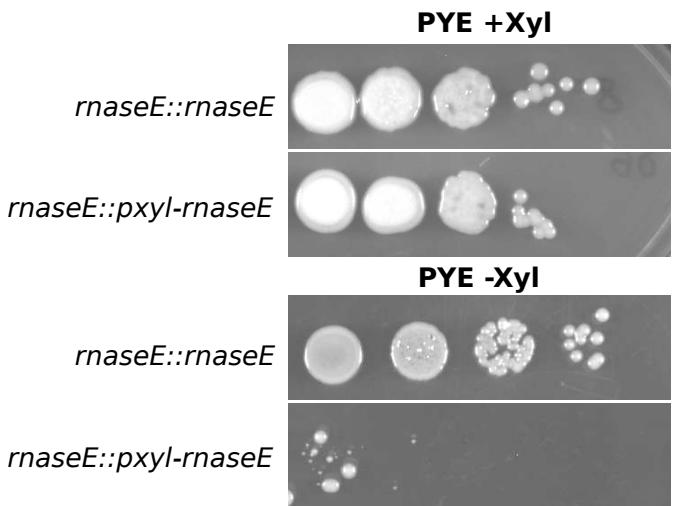
581 Bacteria. *Molecular Cell* 79:293-303.e4.

582 42. Schrader JM, Zhou B, Li G-W, Lasker K, Childers WS, Williams B, Long T, Crosson S, McAdams HH,

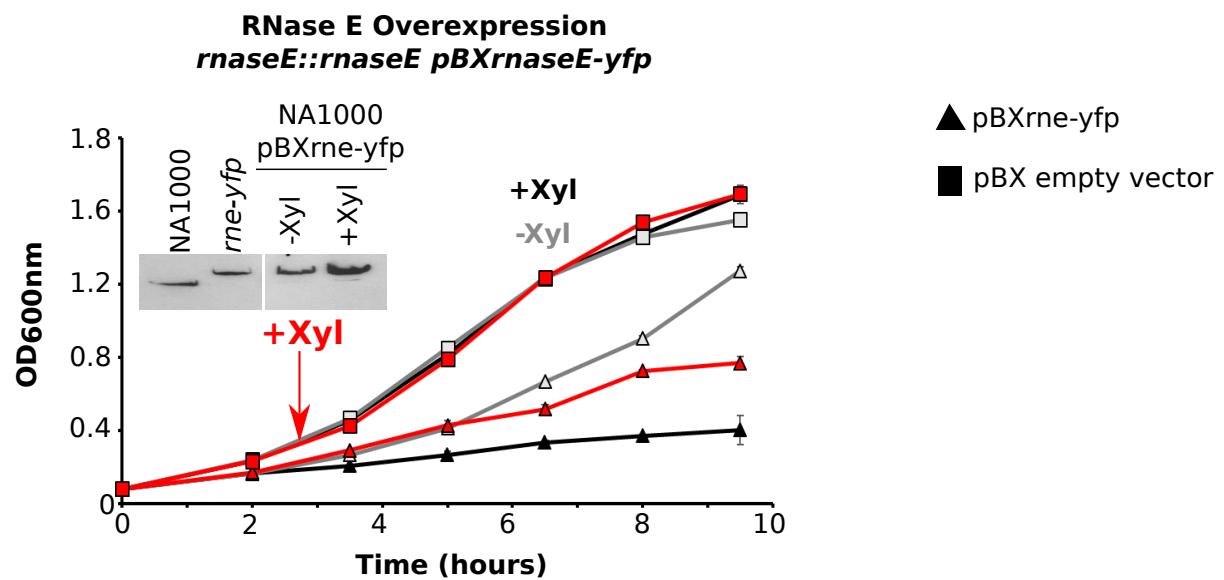
583 Weissman JS, Shapiro L. 2014. The Coding and Noncoding Architecture of the Caulobacter

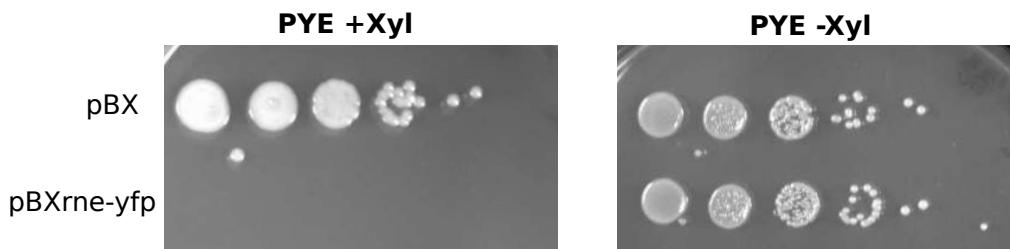

584 crescentus Genome. *PLOS Genetics* 10:e1004463.

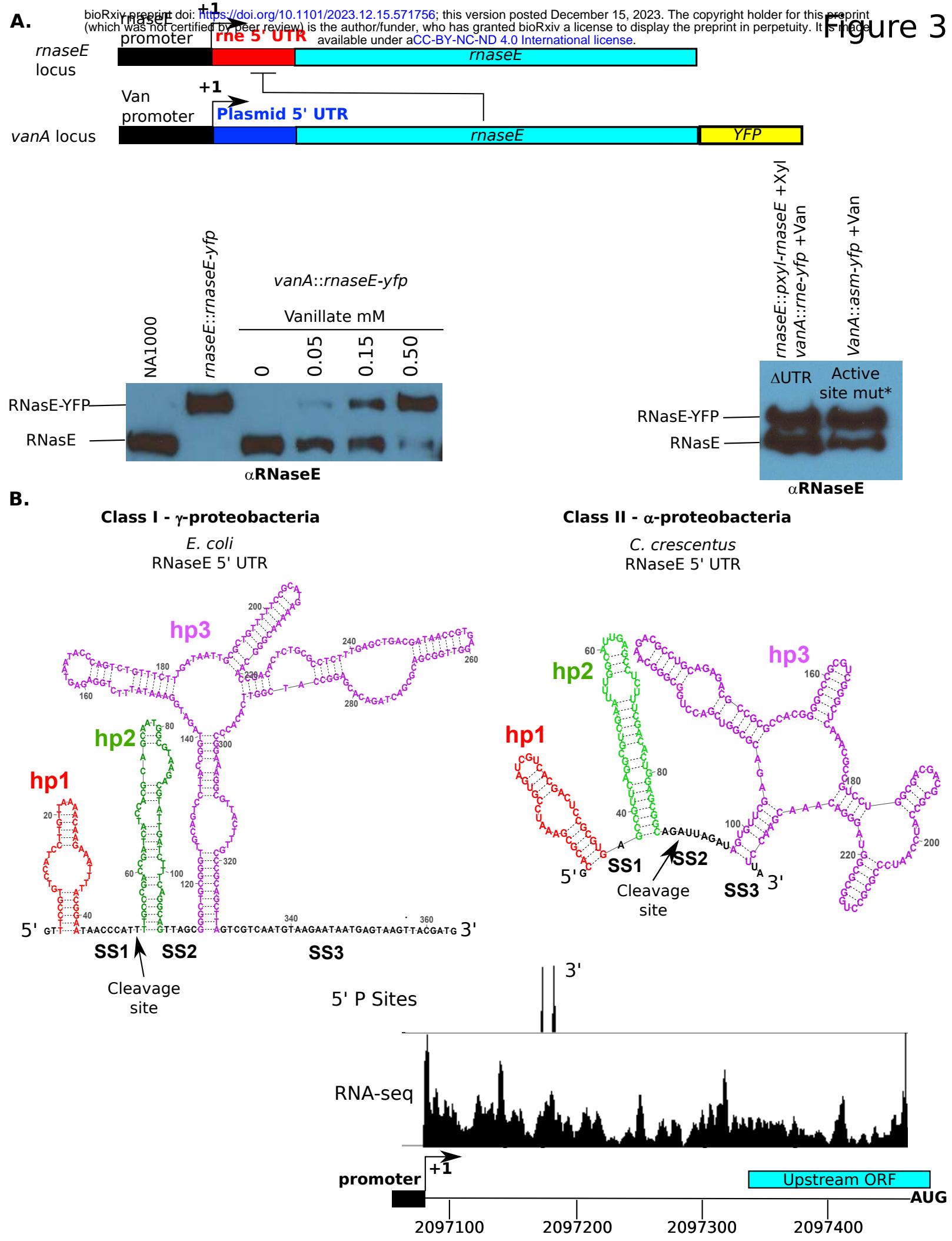
585 43. Ducret A, Quardokus EM, Brun YV. 2016. MicrobeJ, a tool for high throughput bacterial cell


586 detection and quantitative analysis. 7. *Nat Microbiol* 1:1–7.

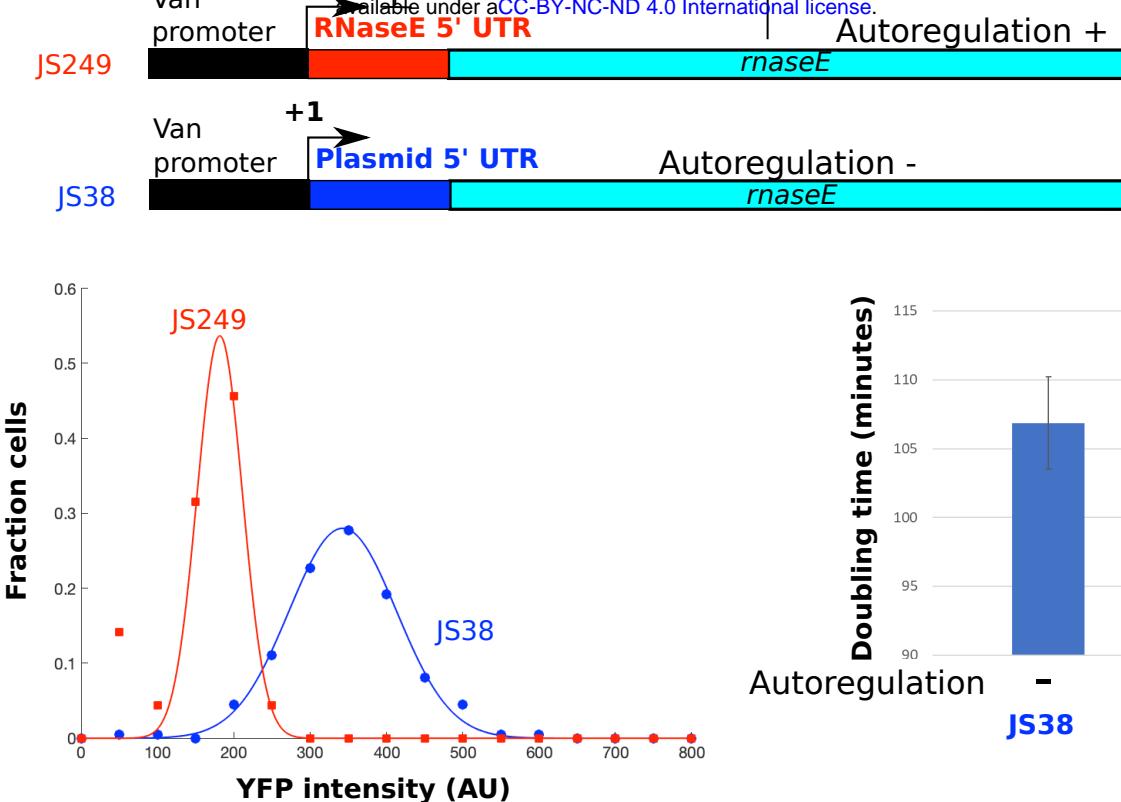
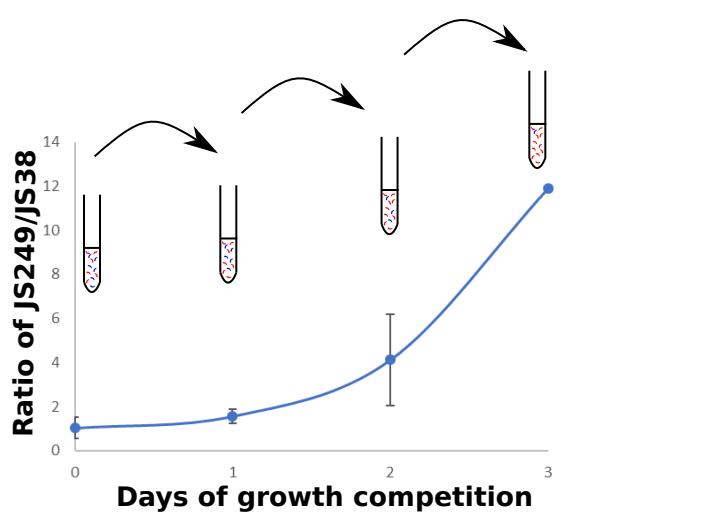
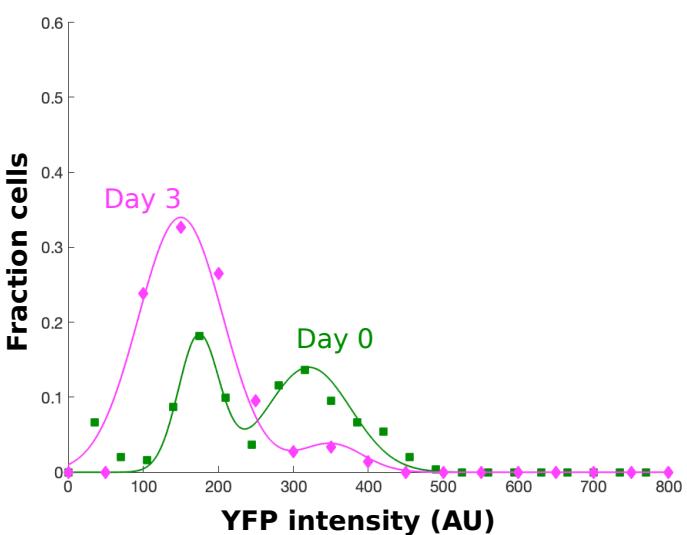
587

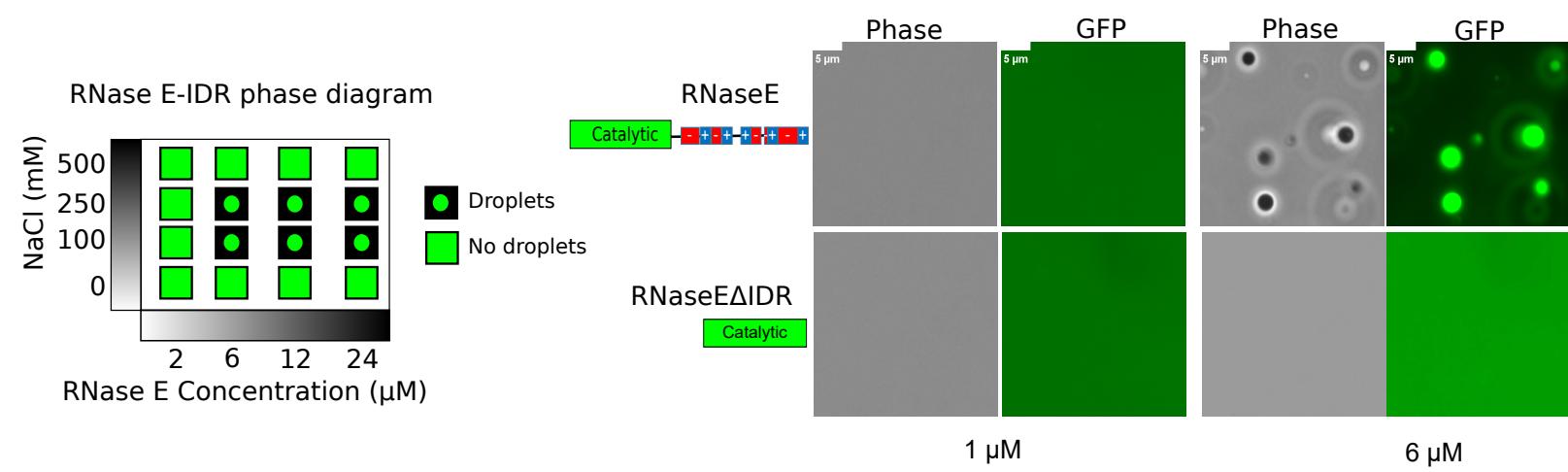

A.


B.



A.




B.



A.

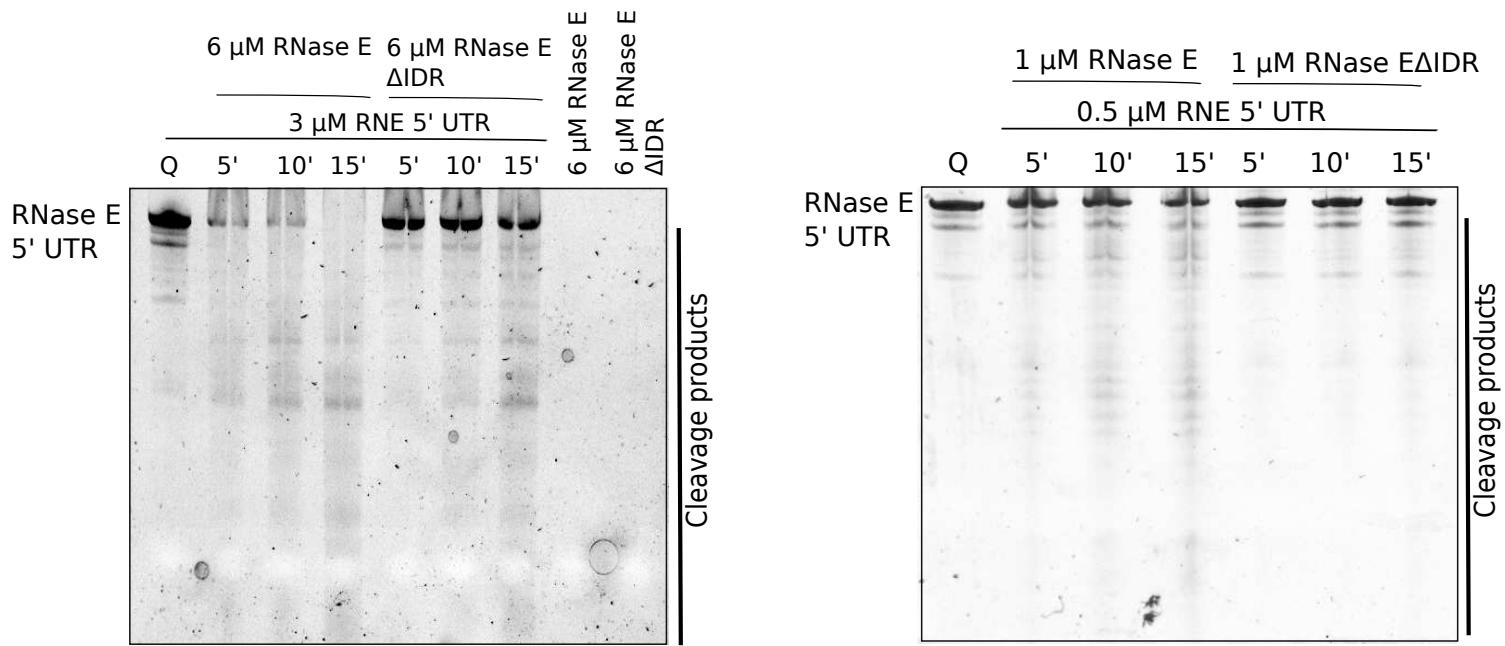

bioRxiv preprint doi: <https://doi.org/10.1101/2023.12.15.571756>; this version posted December 15, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 4**B.****C.**

A.

B.

