

1 **Molecular Epidemiology of multidrug-resistant *Klebsiella pneumoniae*, *Enterobacter*
2 *cloacae*, and *Escherichia coli* outbreak among neonates in Tembisa Hospital, South Africa**

3 John Osei Sekyere,^{1,2,3#} Ph.D., Masego Mmathi,¹ BSc, Anel Bosch,^{1,5} MBChB, MMed,
4 Ramathetje Virginia Ntsoane,¹ MBChB, MMed, Harishia Naidoo,¹ MBChB, Sinenhlanhla
5 Doyisa,⁴ BSc, Nontuthuko E. Maningi,⁴ Ph.D., Nontombi Marylucy Mbelle,¹ MBChB, Ph.D.,
6 and Mohamed Said,^{1,5} MBChB, MMed.

7 ¹Departments of ¹Medical Microbiology and ²Dermatology, School of Medicine, University of
8 Pretoria, South Africa

9 ³ Institute of Biomarker Research, Medical Diagnostic Laboratories, Genesis Biotechnology
10 Group, Hamilton, New Jersey.

11 ⁴Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, South
12 Africa.

13 ⁵ National Health Laboratory Services, Tshwane Academic Division (TAD), Pretoria, South
14 Africa.

15

16 #Address correspondence to j.oseisekyere@up.ac.za

17 Running Head: Multidrug-resistant *Enterobacteriales* outbreak in neonates.

18

19

20

21 **Abstract**

22 **Background.** An outbreak of multidrug-resistant *Klebsiella pneumoniae*, *Escherichia coli*, and
23 *Enterobacter cloacae* infections in a neonatal ward within a tertiary hospital in South Africa
24 resulted in the mortality of 10 patients within six months. In this work, the genomic
25 epidemiology of and the molecular factors mediating this outbreak were investigated.

26 **Methods.** Bacterial cultures obtained from clinical samples collected from the infected neonates
27 underwent phenotypic and molecular analyses to determine their species, sensitivity to
28 antibiotics, production of carbapenemases, complete resistance genes profile, clonality,
29 epidemiology, and evolutionary relationships. Mobile genetic elements flanking the resistance
30 genes and facilitating their spread were also characterized.

31 **Results.** The outbreak was centered in two major wards and affected mainly neonates between
32 September 2019 and March 2020. Most isolates (n = 27 isolates) were *K. pneumoniae* while both
33 *E. coli* and *E. cloacae* had three isolates each. Notably, 33/34 isolates were multidrug resistant
34 (MDR), with 30 being resistant to at least four drug classes. All the isolates were
35 carbapenemase-positive, but four *bla*_{OXA-48} isolates were susceptible to carbapenems. *Bla*_{NDM-1} (n
36 = 13) and *bla*_{OXA-48/181} (n = 15) were respectively found on *IS91* and *IS6*-like *IS26* composite
37 transposons in the isolates alongside several other resistance genes. The repertoire of resistance
38 and virulence genes, insertion sequences, and plasmid replicon types in the strains explains their
39 virulence, resistance, and quick dissemination among the neonates.

40 **Conclusions.** The outbreak of fatal MDR infections in the neonatal wards were mediated by
41 clonal (vertical) and horizontal (plasmid-mediated) spread of resistant and virulent strains (and
42 genes) that have been also circulating locally and globally.

43 **Keywords:** carbapenem; neonates; sepsis; outbreak; infection control; colistin.

44 **Introduction**

45 *Escherichia coli*, *Enterobacter cloacae* complex, and *Klebsiella pneumoniae* are three of the
46 most challenging Gram-negative bacterial pathogens implicated in numerous nosocomial
47 infections and outbreaks¹⁻³. They are mostly associated with multidrug resistance in urinary tract
48 infections, bacteraemia, meningitis, and pneumonia^{2,4,5}. Among infants, these two pathogens are
49 mainly associated with blood-stream infections (sepsis) and pneumonia. Outbreaks among
50 neonatal units and these bacteria are usually antibiotic resistant³.

51 *E. coli*, *E. cloacae*, and *K. pneumoniae* have been associated with resistance to carbapenems,
52 colistin, tigecycline, other β-lactams, fluoroquinolones, aminoglycosides, tetracyclines,
53 fosfomycin, and all other antibiotic classes^{2,5-7}. It is therefore not uncommon for these species to
54 harbour several resistance determinants and express multidrug resistance phenotypes.
55 Furthermore, highly virulent strains, including hypervirulent *K. pneumoniae*, have emerged and
56 several reports have shown the presence of multidrug resistance and hypervirulence in
57 nosocomial and community *K. pneumoniae* strains^{8,9}.

58 From September 2019, physicians at Tembisa hospital, South Africa, began to see a spike in
59 neonatal infections. The paediatrician notified the Department of Medical Microbiology at the
60 University of Pretoria and requested an investigation into the cause of the spike in infection
61 among neonates. Unfortunately, while preparations were ongoing to initiate the investigations, an
62 outbreak occurred between November 2019 and January 2020¹⁰. Twenty infants were infected
63 with carbapenem-resistant *K. pneumoniae* and *E. coli* during this outbreak and 10 demised. The
64 infections however continued until March 2020¹¹.

65 Clinical samples from the hospital's neonatal unit that had been sent for diagnosis at the National
66 Health Laboratory Services (N HLS), Tshwane Academic Division/Department of Medical
67 Microbiology, University of Pretoria, between September 2019 and March 2020, were therefore
68 collected and analysed. A series of phenotypic and molecular analyses of the samples were
69 undertaken to delineate the molecular epidemiology and resistance mechanisms of the strains
70 involved in the outbreak. Using whole-genome sequencing and phylogenomics, the evolutionary
71 relationship between the isolates and other regional and global strains as well as the genetic
72 context of their resistance determinants is characterised herein.

73 **Methods**

74 *Study setting and samples.* An uptick in carbapenemase-mediated infection outbreak was
75 observed at the Tembisa hospital in September 2019. We thus followed up on this to trace and
76 reign in the infection from further spread. Forty-five neonatal demographic data and 48 clinical
77 samples from the Tembisa hospital were sent to the National Health Laboratory Services
78 (N HLS), Tshwane Academic Division/Department of Medical Microbiology, University of
79 Pretoria, between September 2019 and March 2020. The clinical and demographic data were
80 curated into Microsoft Excel for downstream statistical analysis. The host age, disease, and
81 sample sources were included in the clinical data. Descriptive statistics were used to analyse the
82 demographic data.

83 *Isolate identification and resistance screening.* The samples (48 stored isolates) were retrieved
84 from the -70°C freezer, thawed and plated out on blood agar plates (BAP) (Diagnostic Media
85 Products, South Africa) for further testing. However, only 40 isolates could be revived. Hence,
86 all subsequent phenotypic and PCR tests were done on 40 isolates. The species and antibiotic
87 resistance profiles of the forty isolates were identified using Vitek 2 (Biomerieux, Johannesburg,

88 South Africa). Furthermore, the carbapenem minimum inhibitory concentrations (MIC) for all
89 isolates was determined with ertapenem, imipenem and meropenem Epsilon tests (E-tests)
90 (BioMérieux, France). Briefly, a 0.5 McFarland inoculum of each isolate was lawned onto a
91 Mueller-Hinton agar plate (Diagnostic Media Products, South Africa) and the E-test was placed
92 at the center of the plate and incubated in ambient air at 35-37°C for 18-24 hours. The MIC was
93 read at the point where the inhibition ellipse intersects with the test strip using the 2023 CLSI M-
94 100 breakpoints [imipenem, meropenem, and doripenem resistance: $\geq 4 \mu\text{g/mL}$; ertapenem
95 resistance: $\geq 2 \mu\text{g/mL}$]¹².

96 The colistin MIC for the isolates were determined with broth microdilution (BMD). Colistin
97 BMD was performed according to the Clinical and Laboratory Standards Institute (CLSI)
98 document M07-A10 in an untreated 96-well microtiter polystyrene plate¹³. Following subculture
99 of the isolates on BAP's, a 0.5 McFarland was inoculated into microtiter wells with colistin
100 concentration ranging from 0.125 $\mu\text{g/mL}$ to 64 $\mu\text{g/mL}$. The microtiter plates were incubated in
101 ambient air at 35-37°C for 18-24 hours. The MIC was read at the first well with no
102 macroscopically visible bacterial growth and interpreted using the 2023 CLSI M-100 breakpoints
103 [Colistin resistance: $\geq 4 \mu\text{g/mL}$]¹².

104 The modified carbapenem inactivation method (mCIM) was used to phenotypically screen the
105 isolates for carbapenemase production¹⁴.

106 *DNA extraction and PCR.* A second subculture on BAP was done to obtain fresh cultures for
107 DNA extraction and PCR to determine the presence of carbapenemase and colistin mobile
108 resistance (*mcr*) genes. The isolates were further screened molecularly using multiplex PCR for
109 *bla*_{IMP}, *bla*_{KPC}, *bla*_{VIM}, *bla*_{OXA}, and *bla*_{NDM} carbapenemases as well as for *Mcr* -1, *Mcr* -2, *Mcr* -3,
110 *Mcr*-4, and *Mcr*-5 colistin resistance genes. The PCR screening included one multiplex PCR

111 for *bla_{IM}*, *bla_{OXA}* and *bla_{NDM}* primers and two singleplex PCRs for both *bla_{KPC}* and *bla_{IMP}*. The
112 primers and the conditions used are shown in Table S1. In-house positive controls for
113 carbapenemases were used while *mcr*-positive controls were provided by the Technical
114 University of Denmark.

115 *Genomic and bioinformatic analyses*. Owing to funding restrictions, we could only sequence 34
116 isolates. Therefore, we used the phenotypic data of the isolates to select the subset of 34 out of
117 40 isolates for genomic DNA extraction and sequencing; isolates with resistance to more than
118 three antibiotics were prioritized for the whole-genome sequencing. gDNA were extracted from
119 the isolates using the MagnaPure 96 instrument (Roche, South Africa) from 24-hour BAP
120 cultures. The gDNA were sequenced on an Illumina Miseq at the genomic core sequencing
121 facility of the National Institute of Communicable Diseases (NICD) (Johannesburg, South
122 Africa). The generated fastQ and fastA files were submitted to GenBank under bioproject
123 number PRJNA850834.

124 The genomes were annotated with NCBI's PGAP. The generated .gff files were used to delineate
125 the genetic environment and associated mobile genetic environment of the resistance genes. The
126 species of each of the isolates were confirmed using NCBI's ANI. ResFinder
127 (<https://cge.food.dtu.dk/services/ResFinder/>) was used to determine the resistance determinants
128 in the genomes. The clonality of the isolates and their multi-locus sequence typing (MLST)
129 numbers were identified using MLST 2.0 (<https://cge.food.dtu.dk/services/MLST/>)¹⁵. The
130 plasmid replicon genes or incompatibility groups and associated contigs were determined using
131 PlasmidFinder (<https://cge.food.dtu.dk/services/PlasmidFinder/>). Mobile Element Finder was
132 used to identify the mobile genetic elements

133 (<https://cge.food.dtu.dk/services/MobileElementFinder/>) in the genomes, while the virulence
134 genes were identified using VirulenceFinder (<https://cge.food.dtu.dk/services/VirulenceFinder/>).

135 *Phylogenomics*

136 The genomes of *K. pneumoniae*, *Enterobacter cloacae*, *Citrobacter portucalensis*, and *E. coli*
137 isolates that are carbapenem- and/or colistin-resistant were curated from NCBI and PATRIC for
138 purposes of determining their evolutionary relationships with this study's isolates. These curated
139 genomes were categorized geographically into South Africa, Africa, and global for the
140 phylogenetic analyses. This study's genomes and those from each of the three categories
141 described above were aligned using Clustalw, which selected and aligned genes and sequences
142 that were common to all aligned isolates. A minimum of 1000 genes from each isolates' genome
143 were thus aligned for the core genome phylogenetic tree construction. The phylogenies were
144 subsequently inferred using RAxML (using a bootstrap reassessment of 1,000 x) and annotated
145 with Figtree.

146 The ARGs from this study's genomes and those of the genomes curated from NCBI and
147 PATRIC were obtained from NCBI or ResFinder (<https://cge.food.dtu.dk/services/ResFinder/>).
148 These ARGs were tabulated and arranged according to the host isolates' location on the
149 phylogenetic tree to provide a comparative phylogenomic view of the ARGs per clone or
150 evolutionary distance.

151 *Ethical approval.* This research was approved by the Ethical Review Board of the School of
152 Medicine, University of Pretoria, South Africa.

153 **Results**

154 *Outbreak settings and demographics.* An increase in carbapenem-resistant infections were
155 observed between September 2019 and March 2020 within the neonatal unit 4 at Tembisa
156 hospital, South Africa. This outbreak involved 45 neonates who were born between August 2019
157 and March 2020 (Table S2). The affected infants were aged between 1 and 70 days (Table S2).
158 Blood cultures (n = 26 specimen), and rectal swabs (n = 23 specimen) formed the most common
159 clinical specimens collected from the infants. Single specimens were taken from tracheal aspirate
160 (n = 1), urine (n = 1) and pus swab (n =1). Some of the specimens were taken from the same
161 patient/infant (duplicates), hence the higher number of specimens than that of infants.

162 *Initial identification and antibiotic sensitivity testing.* The isolates from the specimen were
163 initially identified by Vitek 2 as *K. pneumoniae*, with seven specimens having a mixture of both
164 *K. pneumoniae* and *Citrobacter* spp. (n = 2), *Enterobacter* spp. (n = 2), and/or *E. coli* (n = 3).
165 Vitek II susceptibility testing found two isolates to be resistant to colistin with MICs \geq 64 mg/uL
166 and 19 isolates to be resistant to at least one carbapenem with an MIC of \geq 2 mg/uL (Table S2).

167 *Carbapenemase production, MICs, and PCRs.* The results of mCIM, carbapenems MICs (E-test
168 except for ertapenem for which Vitek 2 was used), colistin BMD, and PCRs are summarized in
169 Table 1. All except four of the isolates were resistant to at least one carbapenem (imipenem
170 and/or ertapenem) from the E-test; yet the four non-resistant isolates harboured a *bla*_{OXA-48}-like
171 carbapenemase. There were 31 imipenem- or ertapenem-resistant isolates, and 27 meropenem-
172 resistant isolates while 27 isolates were resistant to all three carbapenems. All except seven
173 isolates were colistin-resistant; these seven resistant isolates had no *mcr-1* to -5 genes (Table 1).

174 All the isolates were positive for the mCIM and PCR carbapenemase tests, except T21
175 (JSK_2019-20), which was mCIM-positive, but PCR-negative. There were 15 NDM-positive
176 isolates, 18 OXA-48-like-positive isolates, three NDM + OXA-48-like-positive isolates, and

177 one VIM + OXA-48-like-positive isolates. None of the isolates was *mcr-1* to -5-positive.

178 Compared with OXA-48-like-positive isolates, all NDM-positive isolates were resistant to all

179 three carbapenems except T33 (meropenem MIC = 4 µg/mL), T23 (imipenem MIC = 24 µg/mL;

180 meropenem MIC = 4 µg/mL), and T8 (OXA-48-like and NDM-positive; meropenem MIC = 4

181 µg/mL); see Table 1.

182 ***Genomic analyses***

183 *Identification and resistance profiles.* The species of the isolates were confirmed by their average

184 nucleotide identity (ANI) on NCBI. Of the 34 sequenced isolates, 27 were *Klebsiella*

185 *pneumoniae*, three were *E. coli* (T-5, T-11, and T-48), three were *E. cloacae* (T-13, T-20, and T-

186 46), and one was *Citrobacter portucalensis* (T-22). The inferred resistance profiles of the

187 isolates, from their resistance genes, showed that 33/34 isolates were multidrug resistant. Except

188 *E. cloacae* (T13, T20, and T46) and T48 (*E. coli*), all the other isolates were resistant to at least

189 four antibiotic classes: aminocyclitol, aminoglycosides, amphenicol, βeta-lactam, folate pathway

190 antagonist, fosfomycin, macrolide, peroxide, quaternary ammonium compound, quinolone,

191 rifamycin, and tetracycline (Table S3). Only one isolate had a tetracycline resistance gene.

192 *Resistance determinants.* The distribution of the antibiotic resistance genes per isolate is shown

193 in Table S3, with the most frequently identified being *oqxAB* (n = 28 isolates), *fosA* (n = 27

194 isolates), *sul-1 & sul-2* (n = 23 isolates), *qacE* (n = 22 isolates), *mphA* (n = 20 isolates), *aac(6')-*

195 *Ib-cr* (n = 20 isolates), *aph(3")-Ib* (n = 17 isolates), *aph(6)-Id* (n = 17 isolates), *aadA16* (n = 16

196 isolates), *dfrA27* (n = 16 isolates), *arr-3* (n = 16 isolates), *bla_{CTX-M-15}* (n = 16 isolates), *bla_{TEM-1B}*

197 (n = 16 isolates), *bla_{OXA-48}* (n = 15 isolates), *bla_{SHV-187}* (n = 14 isolates), and *rmtC* (n = 12

198 isolates). *bla_{NDM-1}* was present in 13 isolates (Table S3).

199 Common mutation-based resistance mechanisms were found in *gyrA* (n = 25 isolates), *ompK36*
200 (n = 26 isolates), and *ompK37* (n = 26 isolates). Nineteen *K. pneumoniae* isolates viz., T8, T9,
201 T10, T12, T14, T16, T17, T18, T19, T23, T27, T28, T29, T30, T31, T32, T33, T37, and T39,
202 had between 15 and 22 resistance genes (Table S3).

203 Discrepancies between the PCR data and the whole-genome sequencing (WGS) data were
204 observed. PCR did not identify *bla_{OXA-181}* in strain T21 (JSK-2019-20), albeit WGS identified
205 this gene and mCIM showed the presence of a carbapenemase. Moreover, the WGS data did not
206 confirm the presence of VIM + OXA-48, NDM + OXA-48, and the presence of OXA and NDM
207 in some of the isolates. Indeed, some of the isolates could not be revived for WGS after the PCR
208 screening step. Evidently, some might have lost their plasmids during the subsequent culturing
209 steps to obtain 24-hour genomic DNA for the WGS. However, the presence of both NDM and
210 OXA-48/181 in the isolates were mostly confirmed by both PCR and WGS (Tables 1 and S3).

211 *Virulence factors.* Among the 34 sequenced isolates, 24 virulence genes were identified: *air* (n =
212 1 isolate), *ccl* (n = 12 isolates), *cia* (n = 2 isolates), *chuA* (n = 2 isolates), *cvaC* (n = 1 isolate),
213 *eilA* (n = 2 isolates), *etsC* (n = 1 isolate), *fyuA* (n = 18 isolates), *gad* (n = 2 isolates), *hylF* (n = 1
214 isolate), *KpsMII_K5* (n = 1 isolate), *KpsE* (n = 1 isolate), *ipfA* (n = 2 isolates), *iroN* (n = 1
215 isolates), *irp2* (n = 18 isolates), *iss* (n = 2 isolates), *iucC* (n = 1 isolate), *iutA* (n = 28 isolates),
216 *mchF* (n = 1 isolate), *ompT* (n = 2 isolates), *sitA* (n = 1 isolate), *terC* (n = 12 isolates), *traT* (n = 5
217 isolates), and *yfcV* (n = 1 isolate). *E. coli* isolates T11 and T48 had the highest number of
218 virulence genes (n = 17 and 13, respectively), while the other isolates harboured between one
219 and four genes.

220 *Plasmid replicon/incompatibility types.* An average of four plasmid incompatibility groups were
221 found in each isolate, with higher numbers being detected in isolates T1 (n = 7), T2 (n = 9), T11

222 (n = 5), T18 (n = 8), T20 (n = 5), T22 (n = 6), T39 (n = 6), and T40 (n = 6). The remaining
223 isolates had between one and four incompatibility groups, with four plasmid types per isolate
224 being very dominant. There were 25 plasmid types, of which IncFIA(HI1) (n = 5 plasmid types),
225 Col(pHAD28) (n = 8 plasmid types), ColKP3 (n = 10 plasmid types), ColRNAI (n = 14 plasmid
226 types), IncFIB(K) (n = 15 plasmid types), IncFIB(pNDM-Mar) (n = 7 plasmid types), IncFII(Yp)
227 (n = 16 plasmid types), IncL (n = 16 plasmid types) and IncX3 (n = 10 plasmid types) were most
228 common.

229 Of the 55 mobile genetic elements (MGEs) identified in the isolates, *ISVsa3* (n = 5 isolates),
230 *ISEc15* (n = 7 isolates), *ISEc36* (n = 10 isolates), *ISKpn19* (n = 11 isolates), *ISKpn21* (n = 11
231 isolates), *ISKpn26* (n = 11 isolates), *ISKpn28* (n = 11 isolates), *ISKpn34* (n = 11 isolates),
232 *ISKpn43* (n = 11 isolates), *ISSen4* (n = 11 isolates), *IS26* (n = 12 isolates), *ISEc33* (n = 13
233 isolates), *ISKox1* (n = 13 isolates), *IS5075* (n = 19 isolates), *IS6100* (n = 22 isolates), *ISKox3* (n
234 = 24 isolates), and *ISKpn1* (n = 20 isolates) were prominent. The number of MGEs per isolate
235 ranged from three to 16, with an average of nine MGEs per isolate.

236 The MGEs associated with *bla*_{NDM-1} and *bla*_{OXA-48/-181} are shown in Figure 1. Irrespective of the
237 strain (MLST) or species, the same genetic environment in the same or reversed orientation, or a
238 truncated version of it (in the case of OXA-181), was found within the immediate flanks of
239 *bla*_{NDM-1}, *bla*_{OXA-48}, and *bla*_{OXA-181} (Fig. 1).

240 The clonality of the isolates was determined using their MLST (see Tables 1 & S3). All the three
241 *E. coli* strains were not related and three of the *K. pneumoniae* strains (i.e., ST5785, ST25, and
242 ST297) were also singletons with no relation with the other *K. pneumoniae* strains that occurred
243 in multiples: ST17 (n = 2); ST1266 (n = 3); ST307 (n = 9); ST152 (n = 13). Whereas the single
244 *K. pneumoniae*, *E. coli*, and *C. portucalensis* clones as well as the three *E. cloacae* clones were

245 isolated in 2020 from rectal swabs, *K. pneumoniae* ST307 and ST152 were identified between
246 2019 and 2020 from different specimen types: pus, ETA, rectal swab, blood culture, and urine.
247 *K. pneumoniae* ST17 was only isolated in 2019 from blood cultures only.

248 A uniformity in resistance profiles, ARGs, virulence genes, plasmid types, and MGEs was not
249 observed among isolates of the same clone although some genes and genetic elements were
250 uniformly present in members of the same clone (Table S3).

251 *Phylogenomics.*

252 The evolutionary relationships and antibiotic resistance patterns between this study's isolates and
253 other closely related isolates are depicted in Figures 2-8, Figures S1-S9, and Table S4. With
254 some exceptions, isolates belonging to the same MLST (clones) were found to be closely related
255 (found on the same branch with bootstrap values of more than 50) to each other than those from
256 different MLST clones on the trees. Moreover, the resistance profiles of the clones/isolates found
257 on the same branch (with very close evolutionary distance) were very similar, albeit some
258 differences were also observed. For instance, irrespective of country, source, and date of
259 isolation, *E. coli* ST131 clones had very similar ARG profiles (Fig. 2), suggesting a possible
260 international transmission of that clone with their associated ARGs. Similar trends were also
261 observed in closely related *K. pneumoniae* clones and isolates on the same cluster or branch.
262 Notably, *E. cloacae* isolates that were of very close evolutionary distance in Fig. 7 had very
263 similar resistance profiles, which differed from those that were distant and found on different
264 branches and clusters. These uniform patterns were observed in strains that were isolated from
265 different parts of the world and from different clinical and environmental specimen types.

266 **Discussion**

267 In this study, we describe an outbreak of fatal carbapenem-resistant *K. pneumoniae*, *E. coli*, and
268 *E. cloacae* infections in a tertiary hospital in Gauteng, South Africa, which contributed to the
269 mortality of at least 10 neonates. It is worrying to note that the strains were mostly multidrug-
270 resistant, with all except four of the strains being resistant to at least four antibiotic classes
271 (Figures 2-8 and S1-S9; Tables 1 and S1-S4). More concerning is the presence of
272 carbapenemases in all the strains, which confer resistance to almost all β -lactams. Although no
273 *mcr* genes were identified, seven strains were resistant to colistin, a last-resort antibiotic for
274 carbapenem-resistant Gram-negative bacterial infections⁷.

275 Outbreaks involving *K. pneumoniae* and *E. coli* in hospital settings are common; including fatal
276 outbreaks in neonatal units as reported in this study³. Indeed, this is not the first outbreak to
277 occur in South Africa as well. However, this study presents one of the most comprehensive
278 molecular and genomic analyses of infection outbreaks involving these species and *E. cloacae*⁵.

279 Although all the isolates were mCIM-positive and all-but-one was PCR-positive for
280 carbapenemases, they were not all phenotypically resistant to carbapenems; at least four isolates
281 were carbapenem-susceptible (Table 1). This observation is not singular as some isolates with
282 carbapenemases have been reported to be phenotypically susceptible to carbapenems. For such
283 observations, it was concluded that the carbapenemases were not expressed, although they were
284 present^{16,17}. For the PCR-negative but mCIM-positive isolate, there could be the presence of
285 either a novel carbapenemase or a known carbapenemase that was not targeted by the PCR. The
286 latter possibility was invalidated by the presence of *blaOXA-181*, which was identified by the
287 whole-genome data but was not identified by the PCR. Thus, the mCIM agreed with the whole-
288 genome sequencing data.

289 However, it is worth noting that carbapenem resistance is not only mediated by carbapenemases
290 as other determinants such as hyperexpression of AmpCs, ESBLS, and efflux pumps and hypo-
291 expression of porins also determine carbapenem resistance^{18–20}. The presence of a resistance
292 gene with a non-commensurate phenotypic expression of the resistance gene is not limited to
293 carbapenems alone. This is one of the reasons why molecular diagnostic tests for antibiotic
294 resistance genes cannot be used solely as representative or confirmatory of phenotypically
295 resistant pathogens. In this study, we also observed that the colistin-resistant isolates did not have
296 *mcr* genes^{7,18}.

297 As recently observed in a molecular study to screen for carbapenemases and *mcr* genes, *mcr*
298 genes are relatively less prevalent than carbapenemases²¹. This phenomenon was also observed
299 in this study as no *mcr* gene was identified, albeit seven isolates were colistin-resistant. This is a
300 positive finding as colistin is currently the last-resort antibiotic for carbapenem-resistant
301 infections^{7,22}. Moreover, the rarity of *mcr* genes will help reduce the spread of colistin resistance
302 as *mcr* genes are mainly plasmid-borne and very mobile.

303 Similar findings with higher prevalence of *bla*_{OXA-181/48} and *bla*_{NDM} carbapenemase genes in
304 Gram-negative bacteria has been reported in South Africa, confirming this observation, and
305 showing that these two carbapenemases are common in South African hospitals^{16,23–27}. The
306 phylogenomic analyses of the South African isolates confirm these observations and similar
307 patterns (Table S4). Furthermore, the presence of other clinically important resistance genes such
308 as *bla*_{CTX-M-15}, *bla*_{SHV}, *bla*_{TEM}, *qnrB/S*, *oqxA/B*, *dfrA*, *Sul1/2/3*, *aac(6')-lb-cr*, *aadA*, and *mph(A)*
309 explains the multidrug and pan-drug resistance nature of the isolates. This might explain the
310 failure of the clinicians to treat these infections, leading to the mortality of 10 infants.

311 As shown in Fig. 1, the carbapenemases in the isolates were flanked by other resistance genes
312 and mobile genetic elements such as composite transposons: *IS91* (*bla*_{NDM}) and *IS6*-like *IS26*
313 (*bla*_{OXA-181}). Instructively, irrespective of the strain in which any of the three carbapenemase i.e.,
314 *bla*_{OXA-48}, *bla*_{OXA-181}, and *bla*_{NDM-1}, was found, their genetic support/environment were all the
315 same. This similarity in synteny and flanks around these resistance genes is further corroborated
316 by the fact that most of these isolates, irrespective of the species or the clone, had the same
317 insertion sequences: *IS26* (n = 12); *ISEc33* (n = 13); *ISKpn26* (n = 16); *ISSen4* (n = 16); *IS5075*
318 (n = 19); *ISKpn1* (n = 20); *IS6100* (n = 22); *ISKox3* (n = 24) (Table S3: MGEs). Furthermore,
319 each of the isolate had an average of three plasmid replicons/incompatibilities, with the least
320 being one and the highest being nine. The commonest of these plasmid types among all the
321 isolates were *IncL* (n = 16), *IncFII(Yp)* (n = 16), *IncFIB(K)* (n = 15), *ColRNAI* (n = 14), *IncX3*
322 (n = 10), and *ColKP3* (n = 10). Owing to the break-up of the genomes into several contigs, it is
323 difficult to associate these plasmid types with each ARG. However, taken together, these show
324 that the ARGs in these MDR isolates are being disseminated through these MGEs (Table S3:
325 Plasmid incompatibility).

326 These genetic environments and ARG flanks are also commonly observed in other studies
327 involving the same or different species within Enterobacterales from both South Africa and
328 globally, corroborating the role of MGEs in the transmission of carbapenemases and other ARGs
329 within and across clones and species^{2,5,7,16,28}.

330 Although there are differences in the ARGs present in the isolates (Table S3: ARGs), there are
331 very close similarities and uniformity in the ARGs present in the isolates. This uniformity in
332 ARGs, MGEs, and plasmid incompatibility/replicon types across the isolates suggest that
333 irrespective of the clones and species, there are plasmid-borne MGEs that are shuttling the ARGs

334 between and across the species and clones^{5,7,16,28,29}. Therefore, there is both clonal and plasmid-
335 mediated transmission of the same ARGs in the hospital, particularly when the outbreak occurred
336 in two major wards: ward 4 and 4a-NICU.

337 In fact, this observation is also magnified in Figures 2-8, where the same ARGs were seen
338 among isolates of the same clone and isolates with very close evolutionary distance. In
339 particular, the phylogenomic analyses of the isolates show that the same ARGs, possibly hosted
340 on MGEs, and clones are being disseminated across South Africa, Africa, and globally. It is
341 observed from Figures 2-8 that the same clones among the three species cluster together closely
342 in the phylogenetic tree alongside other clones. The presence of other clones clustering alongside
343 the same clones is not surprising given the higher resolution of whole-genome-based typing
344 compared to multi-locus sequence typing (MLST) that only uses seven house-keeping genes.
345 The *E. coli* isolates from this outbreak were of the same clone as *E. coli* clones ST58, ST69,
346 ST87, ST103, ST131, ST457, ST616, and ST648, which were common among other isolates
347 from South Africa, Africa, and globally. The resistance profiles within each of these clones or
348 phylogenetic cluster were mostly uniform with multidrug resistance (Fig. 2-3).

349 The *K. pneumoniae* clones in this study shared the same clone and phylogenetic cluster as *K.*
350 *pneumoniae* ST14, ST15, ST17, ST25, ST101, ST152, ST231, and ST307, and the resistance
351 profiles within each of these clonal clusters were very similar with multiple resistance genes
352 (Fig. 4-6). Likewise, the *E. cloacae* isolates clustered with *E. cloacae* ST84 and ST456 with very
353 similar multi-resistance profiles (Fig. 7-8). These observations support the fact that there is
354 clonal and MGE-mediated transmission of these ARGs across the globe, which caused the
355 outbreak in the hospital under study.

356 In summary, the outbreak that occurred at the Tembisa hospital was clonally and horizontally
357 mediated, spreading multidrug-resistant infections and causing fatalities.

358 **Acknowledgement:** We are grateful to the technical staff of the National Health Laboratory
359 Service (N HLS), Tshwane Academic Division, University of Pretoria, for their assistance with
360 the initial microbiological processing of the clinical samples.

361 **Funding:** This work was funded by a research grant awarded to Dr. John Osei Sekyere from the
362 N HLS (National Health Laboratory Service) RESEARCH TRUST under grant number
363 GRANT004 94809 and GRANT004 94808.

364 **Author contributions:** SD assisted with data capturing and data analysis; NEM assisted with
365 data capturing and manuscript editing; AB and MS undertook phenotypic AST testing, data
366 capturing, analysis of AST results, and reviewing of manuscript. RV assisted with initial data
367 and isolates collation, and review of manuscript. MM performed laboratory work and reviewing
368 of manuscript. NMM initiated the concept and design as well as assisted with the co-ordination
369 of the project. JOS designed, supervised, and coordinated the execution of the project, undertook
370 bioinformatics analyses and image generation, wrote the manuscript, and validated the final
371 version of the manuscript for submission.

372 **Transparency declaration:** The authors declare no conflict of interest and the funding agency
373 (N HLS) had no role in the decision to write or submit this manuscript.

374 **References**

375 1. Spyropoulou, A. *et al.* A ten-year surveillance study of carbapenemase-producing
376 Klebsiella pneumoniae in a tertiary care Greek university hospital: predominance of KPC-
377 over VIM- or NDM-producing isolates. *J. Med. Microbiol.* **65**, 240–246 (2016).

378 2. Osei Sekyere, J. & Reta, M. A. Genomic and Resistance Epidemiology of Gram-Negative
379 Bacteria in Africa: a Systematic Review and Phylogenomic Analyses from a One Health
380 Perspective. *mSystems* **5**, (2020).

381 3. Osei Sekyere, J., Reta, M. A. & Fourie, P. B. Risk factors for, and molecular
382 epidemiology and clinical outcomes of, carbapenem- and polymyxin-resistant Gram-
383 negative bacterial infections in pregnant women, infants, and toddlers: a systematic review
384 and meta-analyses. *Ann. N. Y. Acad. Sci.* 1–18 (2021) doi:10.1111/nyas.14650.

385 4. Perovic, O. *et al.* Carbapenem-resistant Enterobacteriaceae in patients with bacteraemia at
386 tertiary hospitals in South Africa, 2015 to 2018. *Eur. J. Clin. Microbiol. Infect. Dis.*
387 (2020) doi:10.1007/s10096-020-03845-4.

388 5. Osei Sekyere, J. & Reta, M. A. Global evolutionary epidemiology, phylogeography and
389 resistome dynamics of Citrobacter species, Enterobacter hormaechei, Klebsiella variicola,
390 and Proteaceae clones: A One Health analyses. *Environ. Microbiol.* 1462-2920.15387
391 (2020) doi:10.1101/2020.05.21.20109504.

392 6. Jean, S.-S. *et al.* Carbapenemase-producing Gram-negative bacteria: current epidemics,
393 antimicrobial susceptibility and treatment options. *Future Microbiol.* **10**, 407–425 (2015).

394 7. Ramaloko, W. T. & Osei Sekyere, J. Phylogenomics, epigenomics, virulome and
395 mobilome of Gram-negative bacteria co-resistant to carbapenems and polymyxins: a One
396 Health systematic review and meta-analyses. *Environ. Microbiol.* **24**, 1518–1542 (2022).

397 8. Shu, L. *et al.* Emergence of OXA-232 Carbapenemase-Producing Klebsiella pneumoniae
398 That Carries a pLVPK-Like Virulence Plasmid among Elderly Patients in China.
399 *Antimicrob. Agents Chemother.* **63**, (2019).

400 9. Fu, L. *et al.* Co-location of the blaKPC-2, blaCTX-M-65, rmtB and virulence relevant
401 factors in an IncFII plasmid from a hypermucoviscous *Klebsiella pneumoniae* isolate.
402 *Microb. Pathog.* **124**, 301–304 (2018).

403 10. Essel, V. *et al.* A multisectoral investigation of a neonatal unit outbreak of *Klebsiella*
404 pneumoniae bacteraemia at a regional hospital in Gauteng Province, South Africa. *South*
405 *African Med. J.* **110**, 783–790 (2020).

406 11. Magobo, R. E. *et al.* Outbreak of NDM-1– and OXA-181– Producing *Klebsiella*
407 pneumoniae Bloodstream Infections in a Neonatal Unit, South Africa. *Emerg Infect Dis*
408 **29**, 1531–1539 (2023).

409 12. CLSI & Clinical and Laboratory Standards Institute (CLSI). *Performance standards for*
410 *Antimicrobial Susceptibility Testing; Twenty-Seventh Informational Supplement M100-*
411 *ED33:2023*. <https://clsi.org/standards/products/microbiology/documents/m100/> (2023).

412 13. Clinical and Laboratory Standards Institute (CLSI). *Methods for Dilution Antimicrobial*
413 *Susceptibility Tests for Bacteria That Grow Aerobically* ; Approved Standard — Ninth
414 *Edition*. vol. 32 (2012).

415 14. Gill, C. M., Lasko, M. J., Asempa, T. E. & Nicolau, D. P. Evaluation of the EDTA-
416 Modified Carbapenem Inactivation Method (eCIM) for Detecting Metallo-beta-lactamase-
417 producing *Pseudomonas aeruginosa*. *J. Clin. Microbiol.* (2020) doi:10.1128/JCM.02015-
418 19.

419 15. Larsen, M. V *et al.* Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. *J.*
420 *Clin. Microbiol.* **50**, 1355–1361 (2012).

421 16. Kopotsa, K., Mbelle, N. M., Sekyere, J. O. & Osei Sekyere, J. Epigenomics, genomics,
422 resistome, mobilome, virulome and evolutionary phylogenomics of carbapenem-resistant
423 Klebsiella pneumoniae clinical strains. *Microb. Genomics* **6**, 2020.06.20.20135632
424 (2020).

425 17. Nordmann, P. & Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in
426 Gram-negative Bacteria. *Clin. Infect. Dis.* **69**, S521–S528 (2019).

427 18. Mmatli, M., Mbelle, N. M., Maningi, N. E. & Osei Sekyere, J. Emerging Transcriptional
428 and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in
429 Enterobacteriaceae: a Systematic Review of Current Reports. *mSystems* **5**, (2020).

430 19. Queenan, A. M. & Bush, K. Carbapenemases: the versatile beta-lactamases. *Clin
431 Microbiol Rev* **20**, (2007).

432 20. Osei Sekyere, J., Govinden, U., Bester, L. A. & Essack, S. Y. Colistin and Tigecycline
433 Resistance In Carbapenemase-Producing Gram Negative Bacteria: Emerging Resistance
434 Mechanisms And Detection Methods. *J. Appl. Microbiol.* **121**, 601–617 (2016).

435 21. Mmatli, M., Leshaba, T. M. S., Skosana, L. B., Mbelle, N. M. & Osei Sekyere, J.
436 Molecular Screening of Clinical Multidrug-Resistant Gram-Negative Bacteria Shows
437 Endemicity of Carbapenemases, Coexistence of Multiple Carbapenemases, and Rarity of
438 mcr in South Africa. *Microb. Drug Resist.* **28**, 1028–1036 (2022).

439 22. Mmatli, M., Mbelle, N. M. & Osei Sekyere, J. Global epidemiology, genetic environment,
440 risk factors and therapeutic prospects of mcr genes: A current and emerging update. *Front.
441 Cell. Infect. Microbiol.* **12**, (2022).

442 23. Lowe, M. *et al.* Klebsiella pneumoniae ST307 with blaOXA-181, South Africa, 2014-
443 2016. *Emerg. Infect. Dis.* **25**, 739–747 (2019).

444 24. Pedersen, T. *et al.* Spread of Plasmid-Encoded NDM-1 and GES-5 Carbapenemases
445 among Extensively Drug-Resistant and Pandrug-Resistant Clinical Enterobacteriaceae in
446 Durban, South Africa. *Antimicrob. Agents Chemother.* **62**, e02178-17 (2018).

447 25. Choi, M. *et al.* The Diversity of Lipopolysaccharide (O) and Capsular Polysaccharide (K)
448 Antigens of Invasive Klebsiella pneumoniae in a Multi-Country Collection. *Front.*
449 *Microbiol.* **11**, 1249 (2020).

450 26. Perovic, O. *et al.* Carbapenem-resistant Enterobacteriaceae in patients with bacteraemia at
451 tertiary hospitals in South Africa, 2015 to 2018. *Eur. J. Clin. Microbiol. Infect. Dis.* **39**,
452 1287–1294 (2020).

453 27. Lowe, M., Shuping, L. & Perovic, O. Carbapenem-resistant Enterobacteriales in patients
454 with bacteraemia at tertiary academic hospitals in South Africa, 2019 - 2020: An update.
455 *South African Med. J.* **112**, 545–552 (2022).

456 28. Kopotsa, K., Osei Sekyere, J. & Mbelle, N. M. Plasmid evolution in carbapenemase-
457 producing Enterobacteriaceae: a review. *Ann. New* **1457**, 61–91 (2019).

458 29. Osei Sekyere, J. & Reta, M. A. Phylogeography and Resistome Epidemiology of Gram-
459 Negative Bacteria in Africa: A Systematic Review and Genomic Meta-Analysis from a
460 One-Health Perspective. *medRxiv* 2020.04.09.20059766 (2020)
461 doi:10.1101/2020.04.09.20059766.

Table 1. Summary of phenotypic, biochemical, and molecular (PCR) results for the carbapenem-resistant strains

No.	Sample_name	Episode number	Study number	Specimen	mCIM	Carbapenemase (KPC, OXA, VIM, NDM, IMP)	Carbapenem MICs	Col BMD mg/L	Mcr 1-5
1	JSK_2019-1	IL02324174	T1	Rectal swab	+	OXA+VIM	I [†] =0.5, M [‡] =0.5, E [§] =>32	0.25	- ^{**}
2	JSK_2019-2	IL02320320	T2	Rectal swab	+	OXA	I=1, M=2, E=4	0.25	-
3		IL02319935-2	T3	Rectal swab	+				NG ^{††}
4	JSK_2019-3	IL02312035	T4	Rectal swab	+	OXA	I=1, M=0.5, E=0.5	0.25	
5	JSK_2019-4	IL02284805-2 (<i>E. coli</i>)	T5	Rectal swab	+	OXA	I=2, M=0.5, E=0.5	0.125	-
6	JSK_2019-5	IL02284805-3 (<i>K. pneumo</i>)	T6	Rectal swab	+	OXA	I=>32, M=>32, E=>32	32	-
7	JSK_2019-6	IL02282080	T7	Rectal swab	+	OXA+NDM	I=>32, M=>32, E=>32	0.125	-
8	JSK_2019-7	IL02277245	T8	Pus swab	+	OXA+NDM	I=32, M=4, E=32	0.5	-
9	JSK_2019-8	IL02273128	T9	Rectal swab	+	OXA	I=>32, M=>32, E=>32	32	-

^{*} Positive results

[†] Imipenem MIC

[‡] Meropenem MIC

[§] Ertapenem MIC

^{**} Negative PCR results

^{††} No growth

10	JSK_2019-9	IL02268788	T10	Blood culture	+	OXA	I=>32, M=>32, E=>32	>64	-
11	JSK_2019-10	IL02267712-1 (<i>E. coli</i>)	T11	Rectal swab	+	OXA	I=>32, M=1, E=16	0.25	-
12	JSK_2019-11	IL02267712-2 (<i>K. pneumo</i>)	T12	Rectal swab	+	OXA	I=32, M=>32, E=>32	>64	-
13	JSK_2019-12	IL02267712-3 (<i>E. cloacae</i>)	T13	Rectal swab	+	OXA	I=>32, M=>32, E=>32	>64	-
14	JSK_2019-13	IL02267312	T14	Blood culture	+	NDM	I=>32, M=>32, E=>32	2	-
15	JSK_2019-14	IL02246685	T15	Urine	+	OXA	I=>32, M=>32, E=>32	0.25	-
16	JSK_2019-15	IL02261808	T16	Rectal swab	+	NDM	I=>32, M=>32, E=>32	0.125	-
17	JSK_2019-16	IL02257486	T17	Blood culture	+	NDM	I=>32, M=>32, E=>32	0.125	-
18	JSK_2019-17	IL02253744	T18	Rectal swab	+	OXA+NDM	I=>32, M=>32, E=>32	0.125	-
19	JSK_2019-18	IL02250251-1 (<i>K. pneumo</i>)	T19	Rectal swab	+	OXA	I=>32, M=>32, E=>32	0.125	-
20	JSK_2019-19	IL02250251-2 (<i>E. cloacae</i>)	T20	Rectal swab	+	OXA	I=>32, M=>32, E=>32	0.125	-
21	JSK_2019-20	IL02250245-	T21	Rectal	+	No gene detected	I=>32, M=1,	>64	-

		1 (<i>C. freundii</i>)		swab			E=>32		
22	JSK_2019-21	IL02250245-2 (<i>K. pneumo</i>)	T22	Rectal swab	+	OXA	I=>32, M=>32, E=>32	0.25	-
23	JSK_2019-22	IL02250352	T23	Blood culture	+	NDM	I=2, M=4, E=>32	0.25	-
24	JSK_2019-23	IL02246823	T24	Blood culture	+	NDM	I=>32, M=>32, E=>32	0.5	-
25		IL02246225-1 (<i>C. freundii</i>)	T25	Rectal swab	+	NG			NG
26		IL02246225-2 (<i>K. pneumo</i>)	T26	Rectal swab	+	NG			NG
27	JSK_2019-24	IL02243704	T27	Rectal swab	+	NDM	I=>32, M=>32, E=>32	0.125	-
28	JSK_2019-25	IL02245959	T28	Blood culture	+	NDM	I=>32, M=>32, E=>32	0.125	-
29	JSK_2019-26	IL02243664	T29	Blood culture	+	NDM	I=>32, M=>32, E=>32	0.125	-
30	JSK_2019-27	IL02241322	T30	ETA	+	NDM	I=>32, M=>32, E=>32	1	-
31	JSK_2019-28	IL02243241	T31	Blood culture	+	NDM	I=>32, M=>32, E=>32	0.25	-
32	JSK_2019-29	IL02241855	T32	Blood culture	+	NDM	I=>32, M=>32,	0.25	-

							E=>32		
33	JSK_2019-30	IL02239816	T33	Blood culture	+	NDM	I=>32, M=4, E=>32	0.125	-
34	JSK_2019-31	IL02239311	T34	Blood culture	+	NDM	I=>32, M=>32, E=>32	0.125	-
35		IL02238220	T35	Rectal swab	+	NG			NG
36		IL02237822	T36	Blood culture	+	NG		0.25	NG
37	JSK_2019-32	IL02217473	T37	Blood culture	+	OXA	I=>32, M=>32, E=>32	0.125	-
38	JSK_2019-33	IL02195267	T38	Rectal swab	+	OXA	I=>32, M=>32, E=>32	0.125	-
39	JSK_2019-34	IL02158904	T39	Blood culture	+	OXA	I=>32, M=>32, E=>32	0.125	-
40	JSK_2019-35	IL02157057	T40	Blood culture	+	OXA	I=1, M=0.25, E=0.5	0.25	-
41	JSK_2019-36	IL02292248-1 (<i>K. pneumo</i>)	T41	Rectal swab	+	NDM	I=32, M=16, E=O/S (no Vitek MIC)	0.125	-
42	JSK_2019-37	IL02290036	T42	Rectal swab	+	NDM	I=>32, M=>32, E=O/S (no Vitek MIC)	0.125	-
43		IL02290034	T43	Rectal swab	+	NG			NG
44		IL02296394-3	T44	Rectal swab	+	NG			NG
45	JSK_2019-38	IL02298389	T45	Rectal	+	OXA	I=1, M=0.25,	0.25	-

46	JSK_2019-39	IL02292248-2 (<i>E. cloacae</i>)	T46	Rectal swab	+	OXA	I=4, M=16, E=O/S (no Vitek MIC)	>64 -
47		IL02296394-1	T47	Rectal swab	+	NG		NG
48	JSK_2019-40	IL02296394-2 (<i>E. coli</i>)	T48	Rectal swab	+	OXA	I=16, M=2, E=O/S (no Vitek MIC)	0.25 -

Table S1. Primers, PCR conditions, & PCR Results.

Table S2. De-identified demographic data of the human hosts from which the strains were isolated.

Table S3. Raw sequence and genomic data of the strains

Table S4. Phylogenomic and comparative genomic data of the strains.

Figure S1. Comparative phylogenomics of *Escherichia coli* strains from both this study and other strains from South Africa. The names of the strains from this study are coloured green. The names of closely related strains to this study's strains are shown in blue. Branches holding this study's strain with very high bootstrap values (>50%) are shown in red to depict isolates with very close evolutionary distance.

Figure S2. Comparative phylogenomics of *Escherichia coli* strains from both this study and other strains from Africa. The names of the strains from this study are coloured green. The names of closely related strains to this study's strains are shown in blue. Branches holding this study's strain with very high bootstrap values (>50%) are shown in red to depict isolates with very close evolutionary distance.

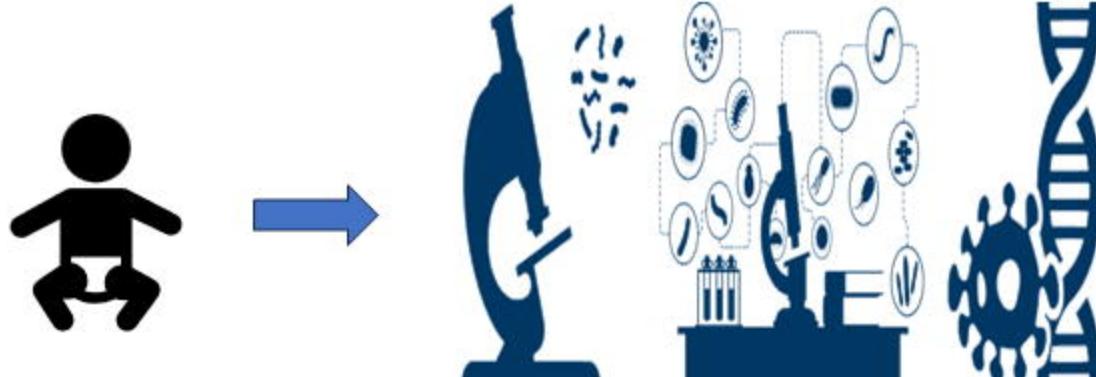

Figure S3. Comparative phylogenomics of *Escherichia coli* strains from both this study and other strains from the world. The names of the strains from this study are coloured green. The names of closely related strains to this study's strains are shown in blue. Branches holding this study's strain with very high bootstrap values (>50%) are shown in red to depict isolates with very close evolutionary distance.

Figure S4. Comparative phylogenomics of *Klebsiella pneumoniae* strains from both this study and other strains from Africa. The names of the strains from this study are coloured green. The names of closely related strains to this study's strains are shown in blue. Branches holding this study's strain with very high bootstrap values (>50%) are shown in red to depict isolates with very close evolutionary distance.

Figure S5. Comparative phylogenomics of *Klebsiella pneumoniae* strains from both this study and other strains from the world. The names of the strains from this study are coloured green. The names of closely related strains to this study's strains are shown in blue. Branches holding this study's strain with very high bootstrap values (>50%) are shown in red to depict isolates with very close evolutionary distance. Both S5A and S5B are phylogenetic analyses of global strains.

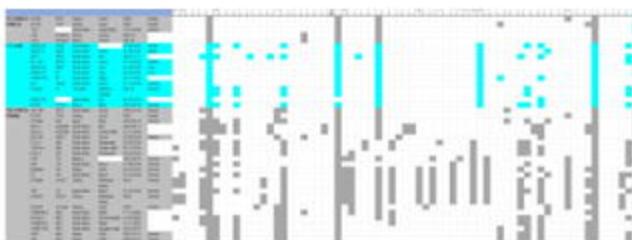
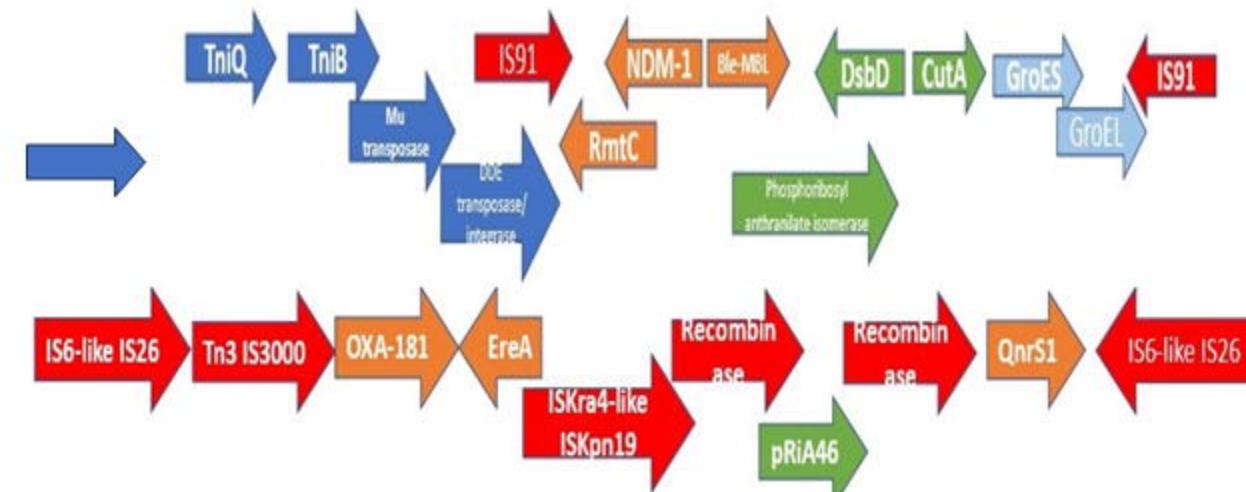
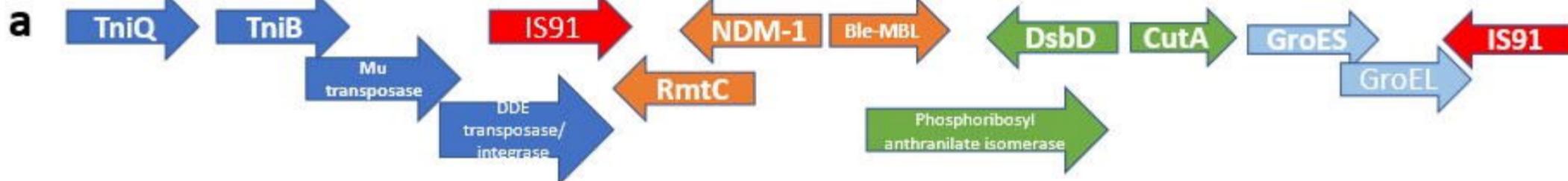


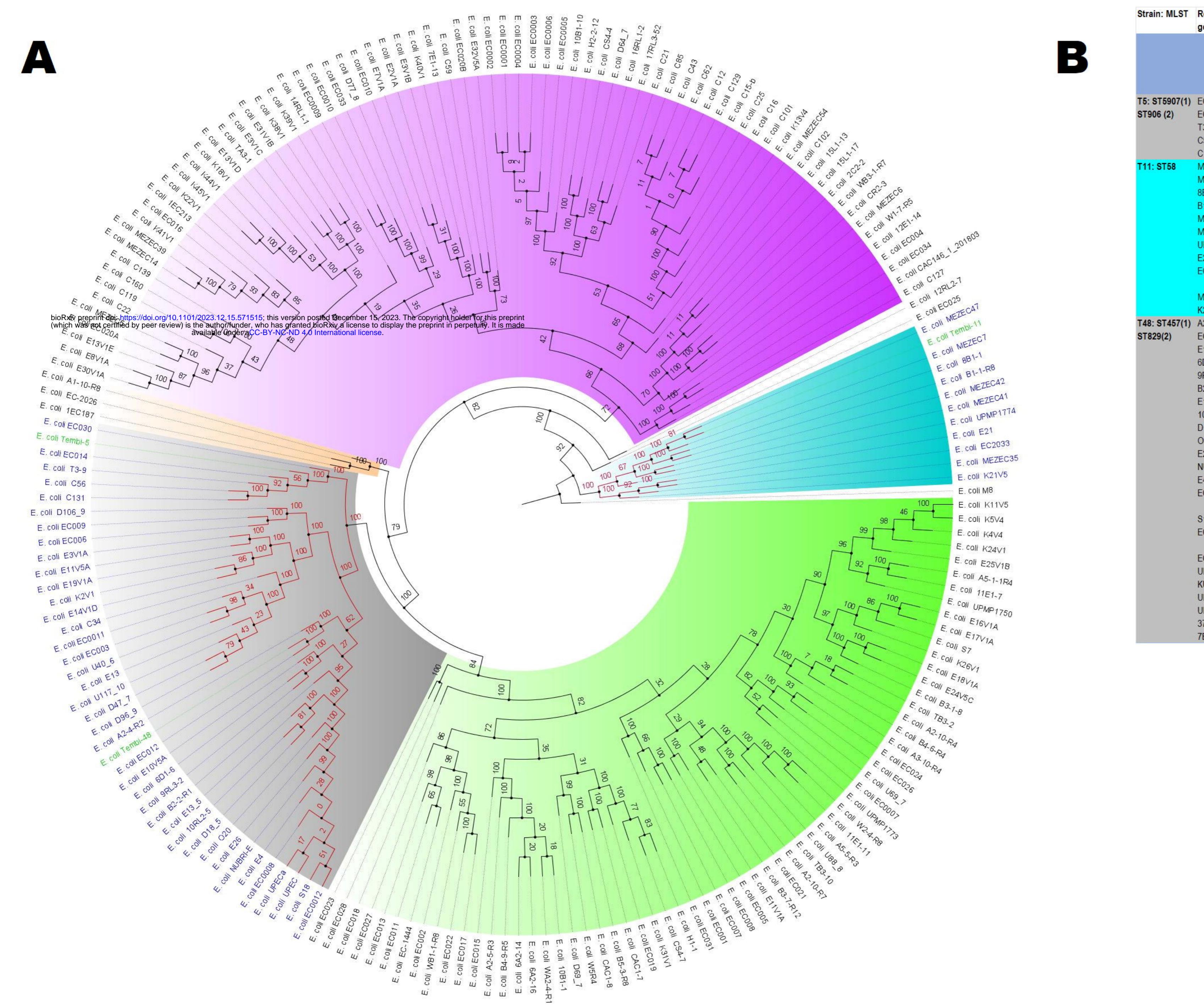
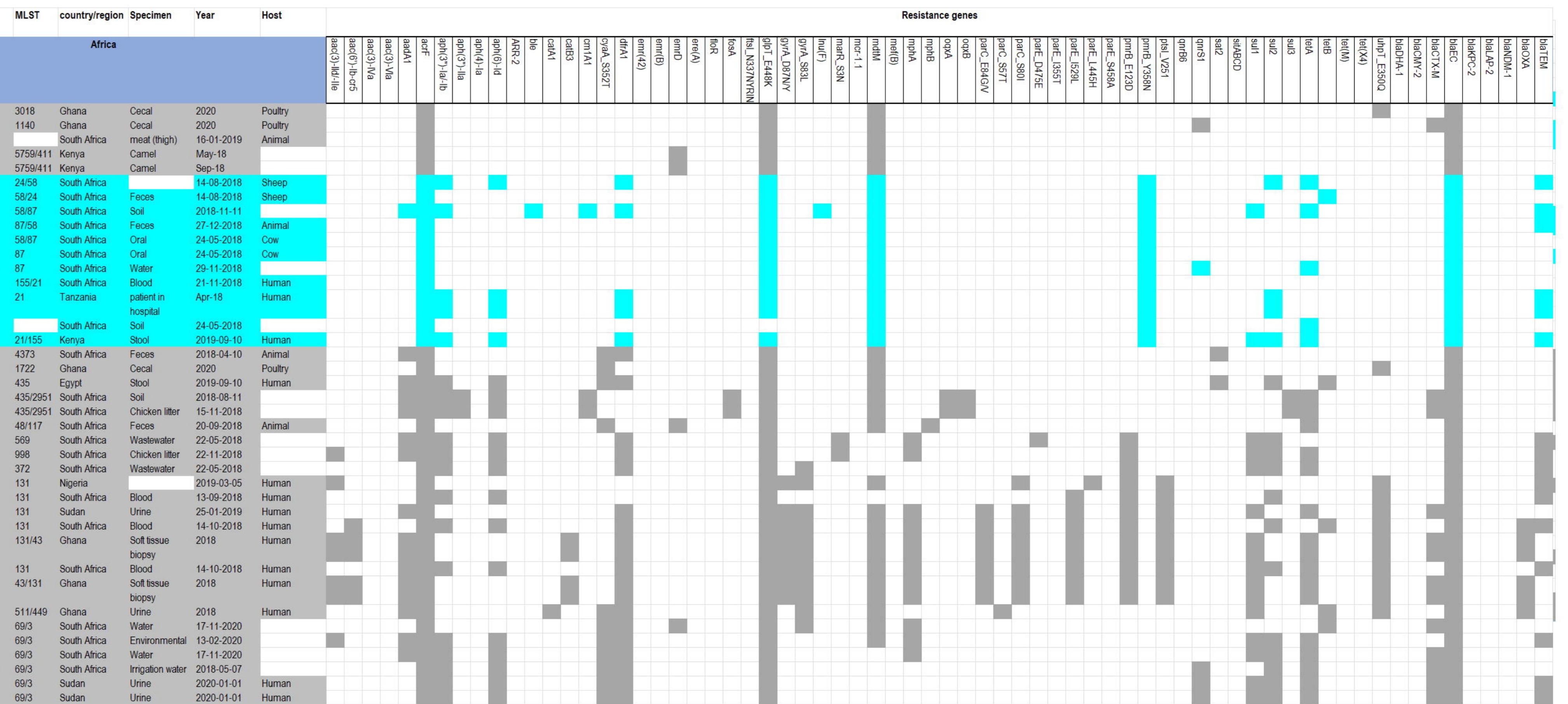
Figure S6. Comparative phylogenomics of *Enterobacter cloacae* strains from both this study and other strains from Africa. The names of the strains from this study are coloured green. The names of closely related strains to this study's strains are shown in blue. Branches holding this study's strain with very high bootstrap values (>50%) are shown in red to depict isolates with very close evolutionary distance.

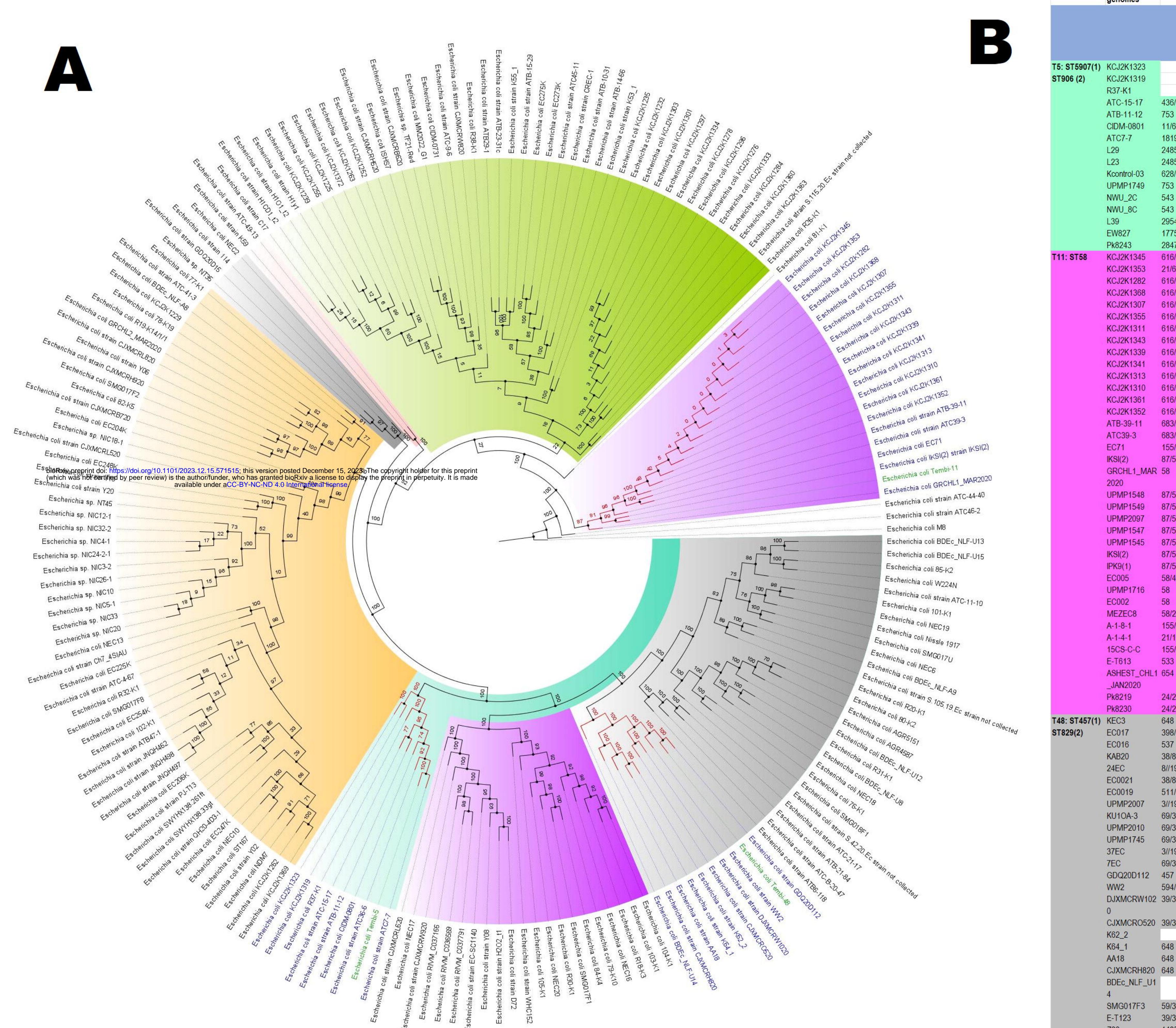
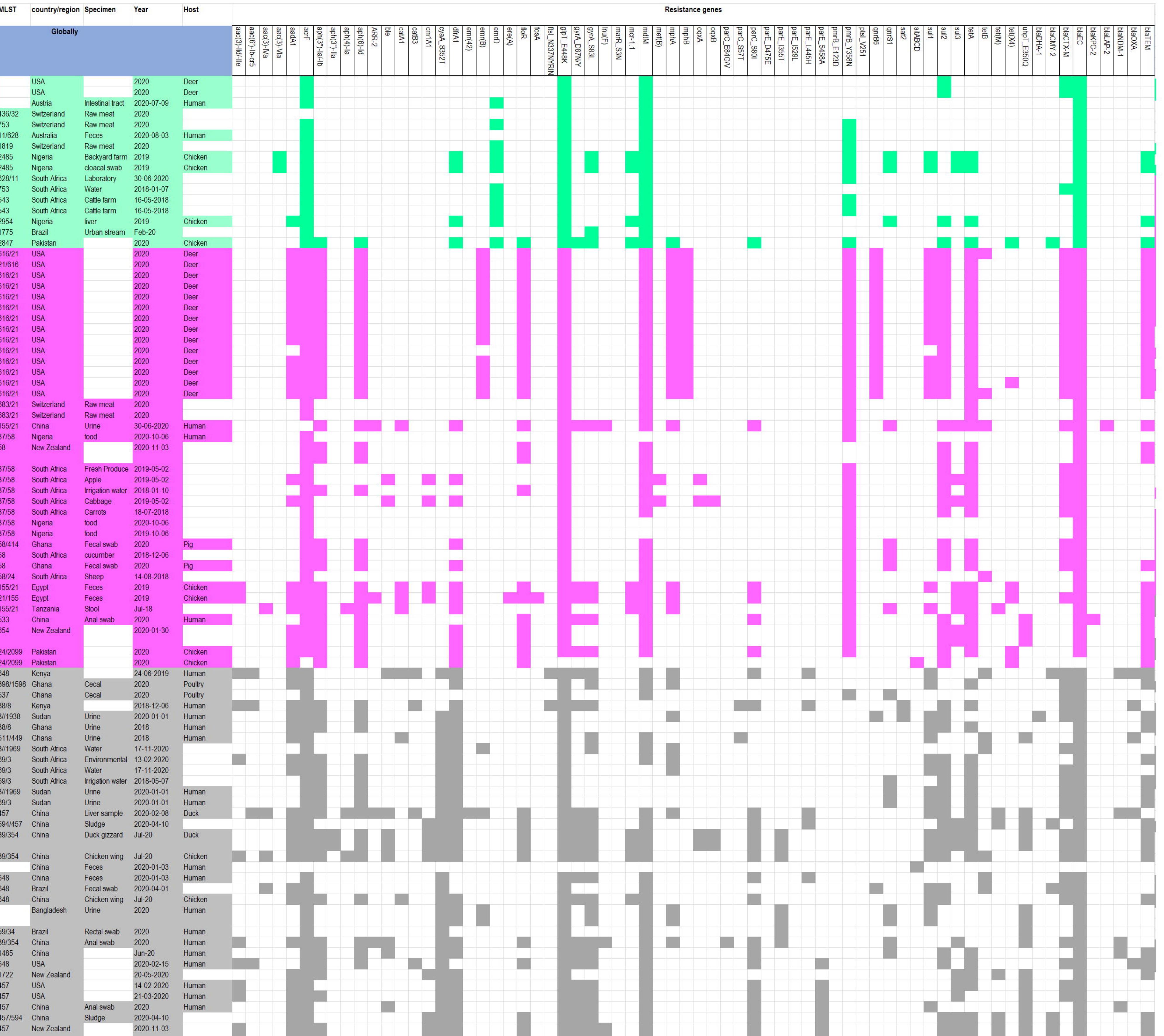
Figure S7. Comparative phylogenomics of *Citrobacter portucalensis* strains from both this study and other strains from the whole world. The names of the strains from this study are coloured green. The names of closely related strains to this study's strains are shown in blue. Branches holding this study's strain with very high bootstrap values (>50%) are shown in red to depict isolates with very close evolutionary distance.

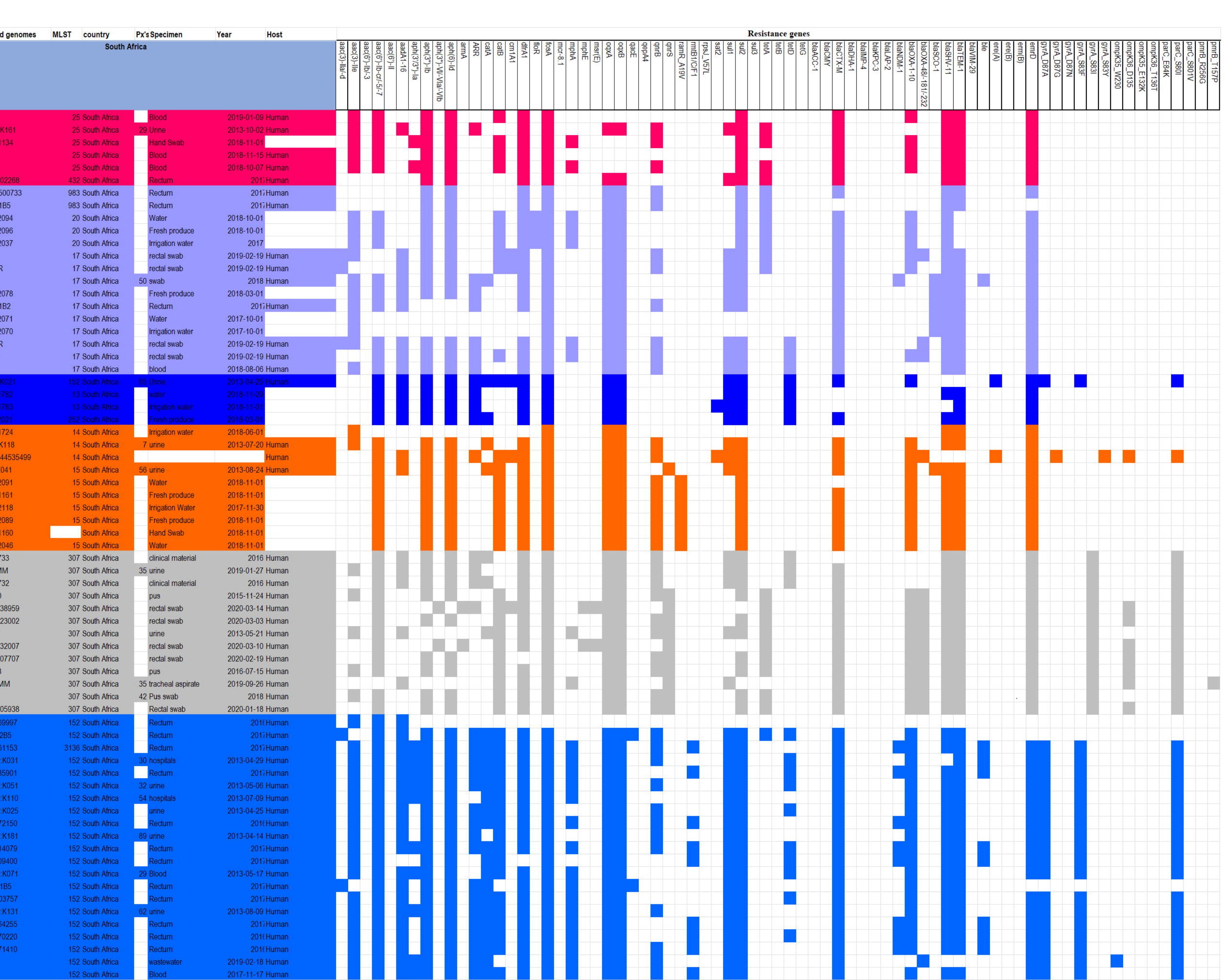
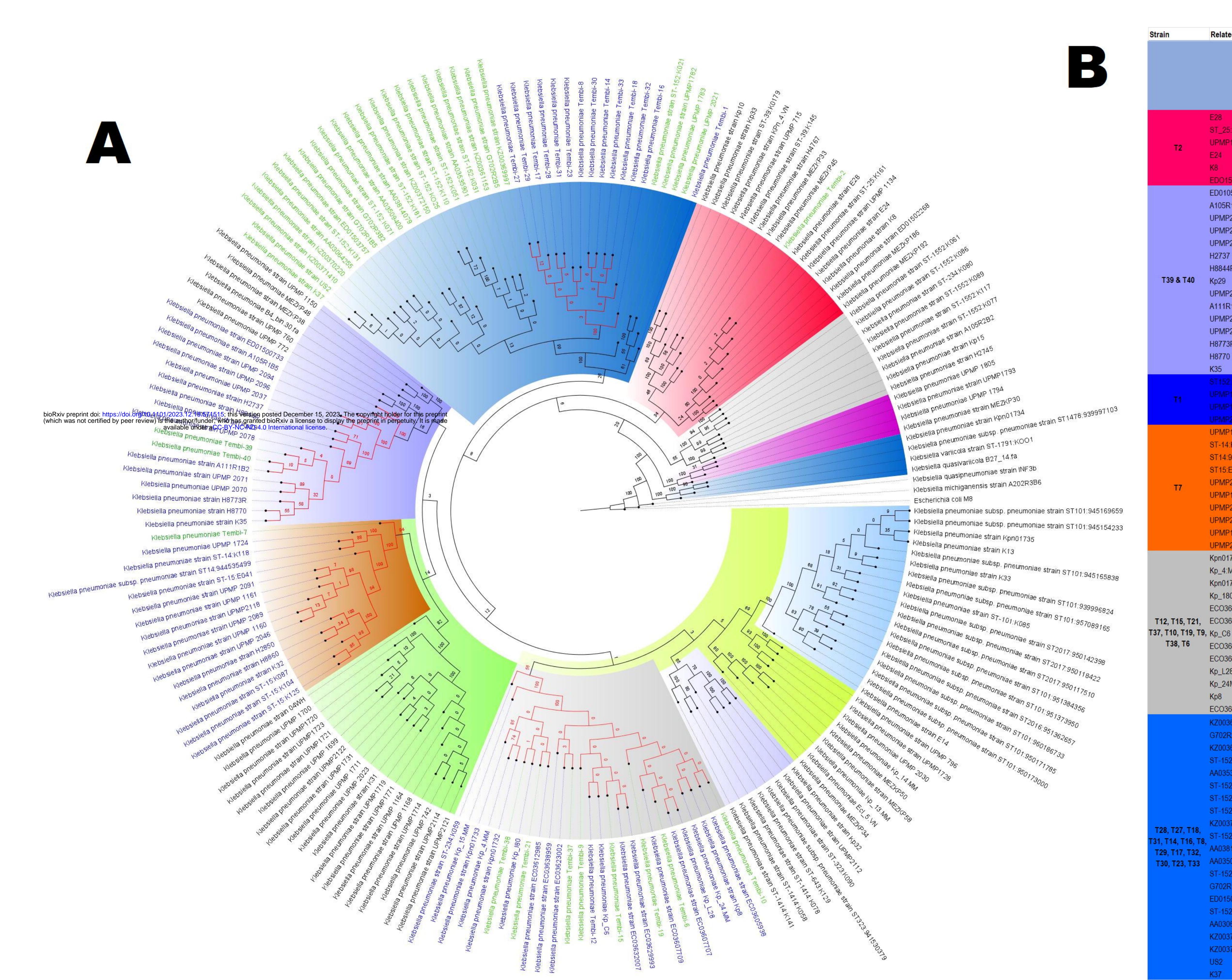


Increased infant infections and fatalities were observed in Tembisa Hospital, 2019.

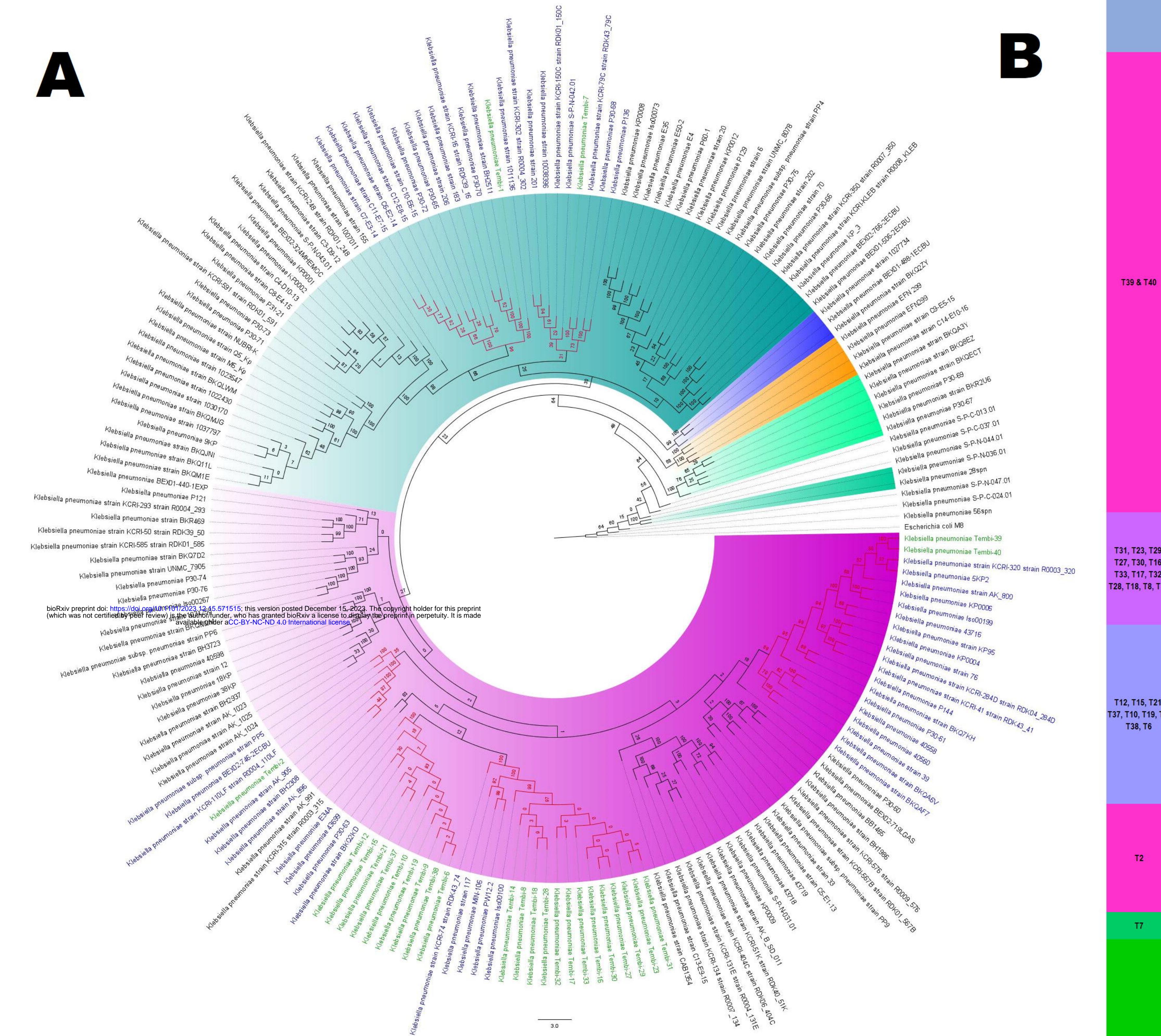

Clinical specimen were collected from the hospital for microbiological analyses

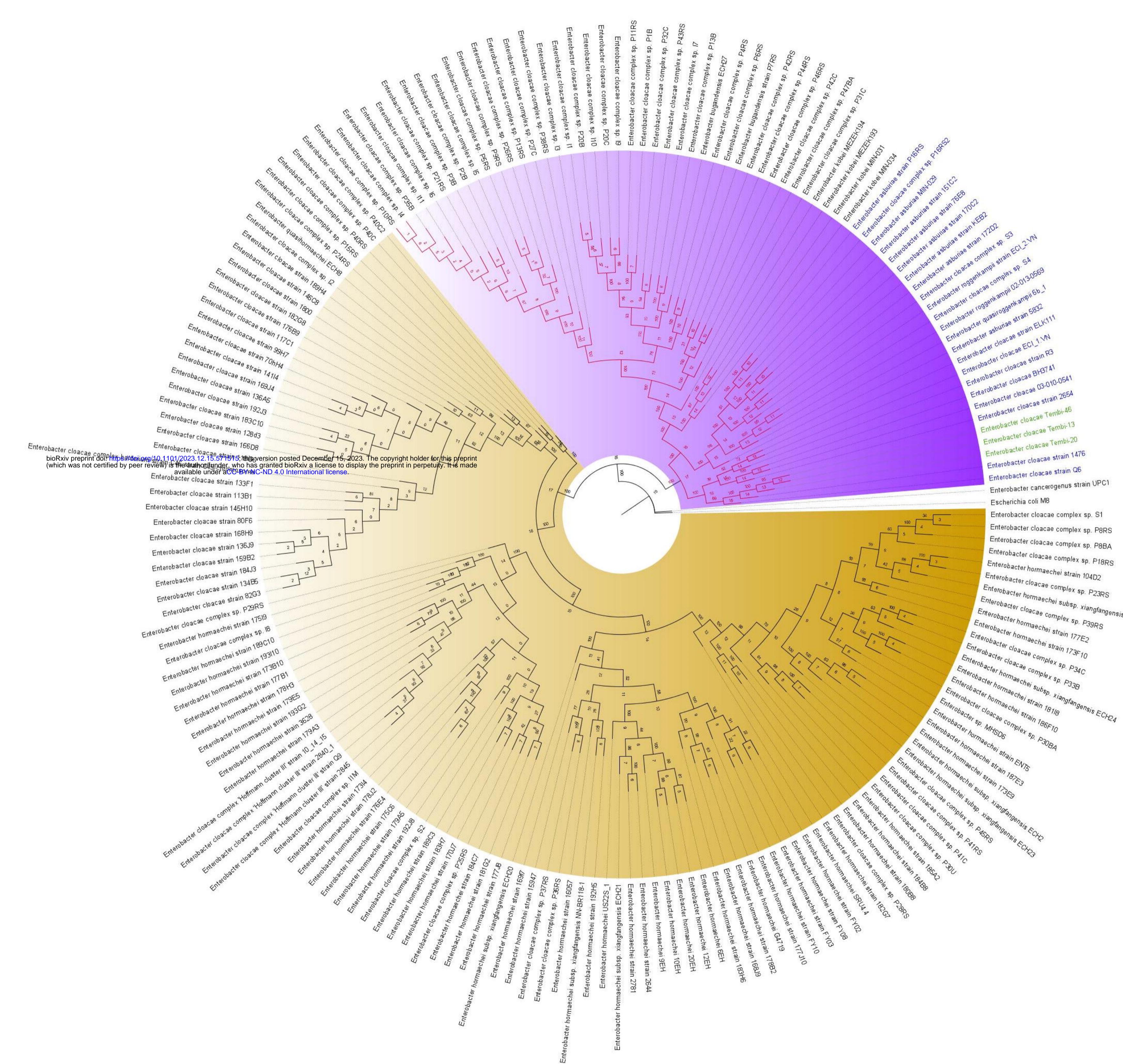


A core genome phylogenomics showed that the strains causing the fatal outbreak were both clonal and multiclonal. These strains had been previously found in South Africa, Africa, and globally.

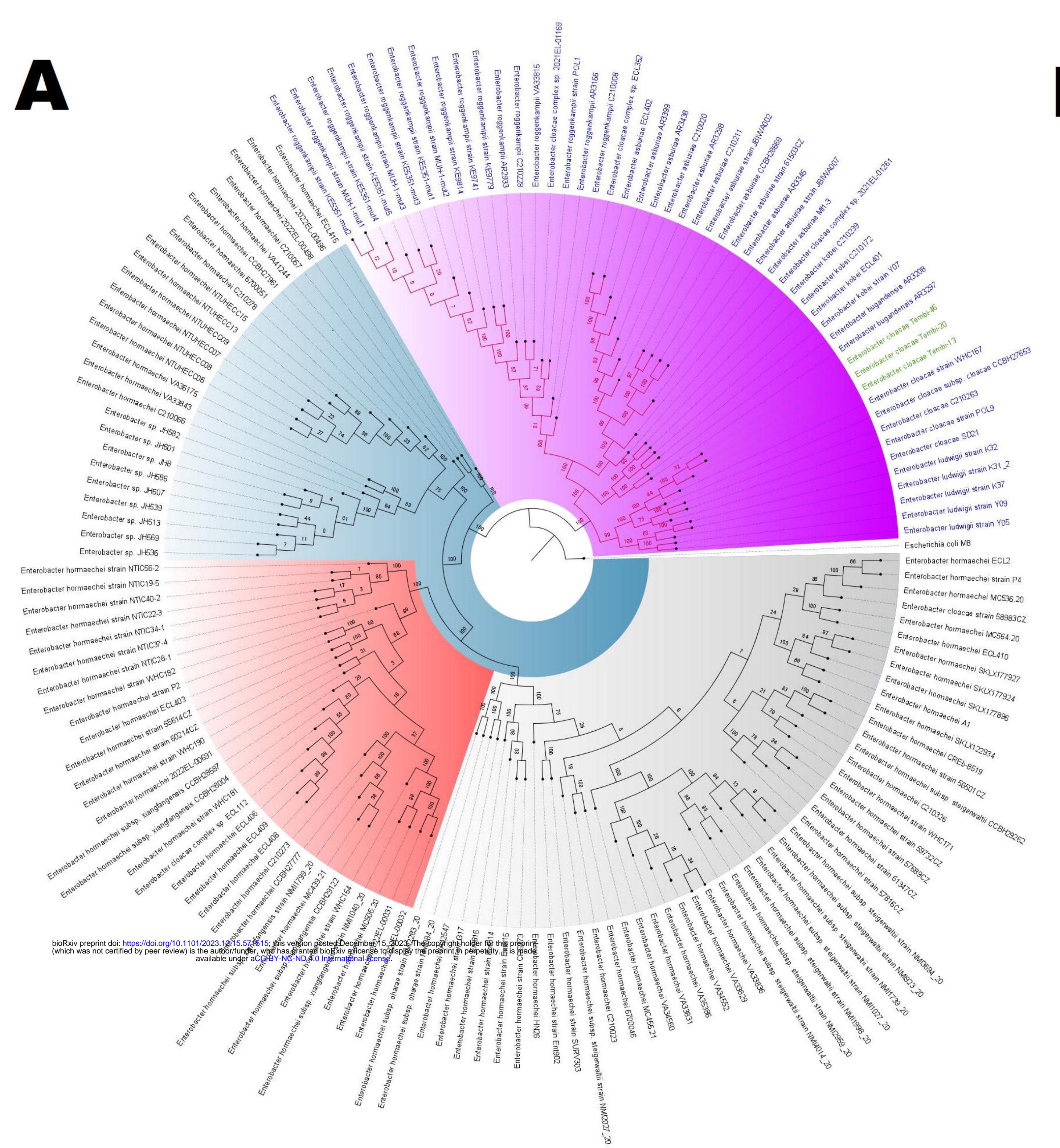



The isolates recovered from the clinical samples had plasmid-borne NDM and OXA-48/181 carbapenemase genes bracketed by Iss and composite transposons that facilitated their dissemination across species and clones in the hospital environment.



A**B**


A**B**


A

A

bioRxiv preprint doi: <https://doi.org/10.1101/2023.12.15.574515>; this version posted December 15, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.